arXiv:2004.10466v1 [math.PR] 22 Apr 2020

CONICAL TESSELLATIONS ASSOCIATED WITH WEYL CHAMBERS

THOMAS GODLAND AND ZAKHAR KABLUCHKO

ABSTRACT. We consider d-dimensional random vectors Y7, ...,Y, that satisfy a mild general posi-
tion assumption a.s. The hyperplanes

Yi+Y)h (1<i<j<n), (Y-Y)" (1<i<j<n), ¥ (1<i<n)
generate a conical tessellation of the Euclidean d-space, which is closely related to the Weyl cham-
bers of type B,. We determine the number of cones in this tessellation and show that it is a.s.
constant. For a random cone chosen uniformly at random from this random tessellation, we com-
pute expectations for a general series of geometric functionals. These include the face numbers,
as well as the conical intrinsic volumes and the conical quermassintegrals. Under the additional
assumption of symmetric exchangeability on Y7, ...,Y,, the same is done for the dual random cones
which have the same distribution as the positive hull of Y1 — Y3,...,Y,,_1 — Y,, Y, given that this
positive hull is not equal to R%. All these expectations turn out to be distribution-free.
Similarly, we consider the conical tessellation induced by the hyperplanes

(Yi—Y;)" (1<i<j<n).

This tessellation is closely related to the Weyl chambers of type A,_1. We compute the number
of cones in this tessellation and the expectations of the same geometric functionals for the random
cones obtained from this random tessellation.

The main ingredient in the proofs is a connection between the number of faces of the tessellation
and the number of faces of the Weyl chambers of the corresponding type that are intersected by a
certain linear subspace in general position.

1. INTRODUCTION

Let {Hy,...,H,} be a set of distinct hyperplanes in R? passing through the origin. These
hyperplanes dissect R? into finitely many polyhedral cones forming a conical tessellation of RY.
More precisely, the set R? \ Ui, H; consists of open connected components whose closures define
the polyhedral cones of the tessellation. Under the condition that the hyperplanes satisfy some
minor assumption, which is referred to as general position, Schlfli [14] derived the well-known
formula for the number C(n,d) of cones induced by these hyperplanes:

C(n, d) zzjz; <”;1) (1.1)

For a simple inductive proof of this formula, see [16, Lemma 8.2.1].

If the hyperplanes Hy, ..., H, are chosen at random, for example independently and uniformly
on the space of all linear hyperplanes, we obtain a random conical tessellation. By intersecting the
cones of a conical tessellation with the unit sphere S we obtain a tessellation of the unit sphere
by spherical polytopes; see Figure [1] for a sample realization in dimension d = 3. This tessellation
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has been studied by Cover and Efron [4] and Hug and Schneider [5]. For further results on this and
other types of random tessellations of the sphere we refer to [13} 2, [3, 15l 9} 6] [7, [§].

FIGURE 1. Tessellation of the unit sphere in R? induced by n = 36 uniform and
independent hyperplanes.

In this paper we want to introduce two new classes of conical tessellations that are related
to reflection groups of types A,,_1 and B,. Let us start with tessellations of type B,. Take some
vectors yi,...,yn € R? where n > d. By definition, the hyperplane arrangement A” (Y1, -5 Yn)
consists of the hyperplanes in R¢ given by
)J_

(vit+yj)-, 1<i<j<nmn,

(yi — vy
v, 1<i<n,

>t 1<i<j<n,

where z+ = {y € R? : (z,y) = 0} denotes the orthogonal complement of a vector z € R?\ {0}
and (-, -) denotes the standard Euclidean scalar product. For these hyperplane to be well-defined,
we assume that y; # +y; and y; # 0 for all 1 < i < j < n. Then the Weyl tessellation of type
B,,, denoted by WB(y1, ..., yn), is defined as the conical tessellation generated by the hyperplanes
from AB(y1,...,yn). Now, the natural question arises if we can evaluate the number of cones in
the Weyl tessellation of type B,,, which we denote by

DB(n,d) :== #WP(y1, ..., yn).

Note that DB (n,d) initially depends on the choice of vectors 1, ...,%,. We will not indicate this
fact in the notation, since it turns out that D®(n, d) is constant, under certain mild conditions on
Y1, - -+, Yn which we will state in Theorem [1.1

Denote the group of permutations of the set {1,...,n} by S,,. Our first result in analogy to

(1.1) is as follows.

Theorem 1.1. Let y1,...,y, € RY, where n > d, satisfy the following assumption:
(B1) For every e = (e1,...,en) € {£1}" and every permutation o € S,, let any d or fewer of

the vectors 1Y, (1) —€2Ys(2), €2Yo(2) —€3Yo(3): - - - s En—1Yo(n—1) — EnYo(n) EnYo(n) e linearly
independent.

Then the number of cones in the Weyl tessellation WE(yy, ... yn) is given by
DB(n,d) =2(B(n,n—d+1)+ B(n,n—d+3)+...),
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FIGURE 2. Left: Weyl tessellation of type B, of the unit sphere in R? with n = 6.
Right: Weyl tessellation of type A,_1 of the unit sphere in R3 with n = 9. Both
tessellations are generated by 36 hyperplanes. The vectors Y7,...,Y,, (red points)
were sampled independently and uniformly on the unit sphere.

where B(n, k) are the coefficients of the polynomial
(t+1)(E+3)-...-(t+2n—1)=> B(n,k)t" (1.2)
k=0
and, by convention, B(n,k) =0 for k ¢ {0,...n}.

The assumption on y1, . ..,y in Theorem [I.I|may seem very specific and unnatural, but in the
course of this paper we will show that, in certain random settings, it is satisfied with probability
1; see Lemma Moreover, in Theorem we will state an equivalent assumption, called
which allows to view from the larger perspective of general position.

We may also define a conical tessellation of type A,_1. Take some pairwise distinct vectors
Y1, -, Yn € RY where n > d+1. By definition, the hyperplane arrangement .AA(yl, ..., Yn) consists
of the hyperplanes given by
)J_

(vi—y;), 1<i<j<n.

Then the Weyl tessellation of type A,_1, denoted by WA(y1,...,yn), is defined as the conical
tessellation generated by the hyperplane arrangement A4 (y1,...,%,). We denote the number of
cones in the Weyl tessellation of type A,_1 by

DA(n,d) = #WAy1, ..., yn).
The next result is an analogue of Theorem

Theorem 1.2. Let y1,...,y, € R, where n > d + 1, satisfy the following assumption.:

(A1) For every permutation o € Sy, let any d or fewer of the vectors Yo(1) = Yo(2)s - -+ » Yo(n—1) —
Yo(n) be linearly independent.

Then the number of cones in the Weyl tessellation WA(y1, ..., yn) of type An_1 is given by

DA(n,d):2([n_Z+1] + [n—?l-i—?)] +>
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where [;ﬂ are the Stirling numbers of first kind defined by the formula
" [n
tt+1)- .. (t+n—1)= ¢ 1.
(t+1) o (tn—1) ;M (13)

and, by convention, [}] =0 for k ¢ {1,...n}.

As a byproduct of the proofs of these and some more general theorems, we shall also compute
the total number of j-dimensional faces in the tessellations WE (y1, ..., yn) and WA(y1, ..., yn); see
Theorems [3.10] and

The Schlfli formula has several probabilistic consequences [20, 4, 5]. For example, Hug
and Schneider [5] (who continued the work of Cover and Efron [4]) defined the random Schifli
cone Sy as the random cone obtained by picking uniformly at random one of the cones induced by
random, independent linear hyperplanes Hi,..., H, having a distribution satisfying some minor
condition (for example, the uniform distribution on the set of all hyperplanes). These authors
evaluated the expectations of a few geometric functionals like the expected number of j-faces of
S, which is given by

20=3( " VC(n —d+74,j

(1.4)

for j =1,...,d. Hug and Schneider [5] generalized these results by introducing a series of general
geometric functionals Y}, ;, called the size functionals. In order to define them, we need to introduce
the conical quermassintegrals. For a cone C, which is not a linear subspace, the j-th conical
quermassintegral U;(C) is defined as 1/2 times the probability that that the intersection of C' with
a uniform random (d — j)-dimensional linear hyperplane is different from {0}. Then the functional
Y; ;(C) is defined as the sum of U;(F) over all k-faces F' of C. In [5, Theorem 4.1}, Hug and
Schneider derived a formula for the expected size functionals of S, namely

. 2k_j(k7ij)c(n —k +j7j)

EYa k+j,a-k(Sn) = 20 d) (1.5)

for 1 < j <k < dandn > k—j. The quantities Y ; are significant, since they comprise
a lot of important geometric functionals, such as the number of k-faces of C' and the conical
quermassintegrals U;(C') mentioned above, as special cases. Furthermore, the j-th conical intrinsic
volume v;(C), which is essentially defined as the probability that the projection of a standard
Gaussian vector in R? onto C lies in the relative interior of a j-face of C, can be expressed through
the quermassintegrals.

Again, the natural question arises whether similar calculations are possible for a random cone
chosen from the Weyl tessellations. At first, we consider the type B,. Let Yi,...,Y, be (possibly
dependent) random vectors in R? with n > d satisfying assumption a.s. For example,
is satisfied a.s. if (Y7,...,Y,) has a joint density function on (R%)™ with respect to ™, where yu is
a Lebesgue measure or, more generally, any o-finite measure on R¢ that assigns measure zero to
each affine hyperplane; see Lemma Then the random Weyl cone DE of type B, is defined as
follows: Among the cones of the random Weyl tessellation W2 (Y1,...,Y,,) choose one uniformly at
random. For a realization of the random tessellation W2 (Y1, ...,Y},), see the left panel of Figure
One of our main results is the following formula for the expected size functionals of DZ.
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Theorem 1.3. Let DP be a random Weyl cone of type B, in R? defined as above. Then
s ()PP —k+4,5)  nl

EYq ktja-k(Dy) = 2D (n, d) (n—k+j)!

holds for all 1 < j <k <d.

For type A,_1, we can make similar calculations. Let Yi,...,Y, be random vectors in R%,
where n > d+ 1, which satisfy assumption a.s. Then the random Weyl cone D,‘? of type Ap_1
can be constructed as follows: Among the cones of the random Weyl tessellation W4 (Y1, ...,Y;,)
choose one uniformly at random. For a realization of the random tessellation WA(Yl, .., Y, see
the right panel of Figure 2l We can now state an analogue of Theorem

Theorem 1.4. Let D be a random Weyl cone of type A,_1. Then
(i )DYn—k+54)

Ay _
EYa k+j,a-k(Dy) = 2DA(n, d) (n—Fk+j)

holds for all 1 < j <k <d.

The similarities to the analogous result for Schlfli cones are obvious. From Theorems
and we will derive the values of several interesting expected geometrical functionals as special
cases. In the following corollaries we assume that n > d and holds a.s. (in the B, case) or
that n > d+ 1 and holds a.s. (in the A,_; case).

Corollary 1.5. For j = 1,...,d the expected numbers of j-faces of the random Weyl cones DB
and D2 are given by

2059 ( DB —d+j,5) ol

E f(Dy) = DB(n,d) (n—d+j)
(Z:l)DA(n—d+j,j) n!
B e 71 N R oy

Corollary 1.6. For j = 0,...,d — 1 the expected conical quermassintegrals of the random Weyl
cones DB and DA are given by

DP(n,d - j) DA(n,d — j)

EU;(DP) = ’ EU;(DY) = ’

U]( n) ZDB(n,d) ) UJ( n) 2DA(7’L,d)

Corollary 1.7. For j =1,...,d the expected conical intrinsic volumes of the random Weyl cones

DE and D2 are given by

B(n,n—d+ j) n 1
3 B — ’ - A fr B S ——
Ev;(DE) DE(nd) Ev; (D) [n_dﬂ] DA d)

The papers [11] and [10] studied convex hulls of the d-dimensional random walks (and bridges)
of the form Y1,Y1 + Ys,..., Y1 + ...+ Y, where Y7,...,Y,, are random vectors satisfying certain
exchangeability conditions; see also [I9]. The main results of these works are formulas for the
probability that such convex hull contains the origin, as well as for the expected number of j-
faces of the convex hull. These formulas (which are distribution-free) also involve the numbers
DB(n,d) and D4(n,d). In the following, we shall describe the dual cones of D2, respectively DA.
Under natural exchangeability assumptions on Y7,...,Y,, these turn out to be the positive hulls of
Y1 —Yo,..., Y1 =Y, Y, respectively Y1 — Ys,...,Y,_1 —Y},; see Section For these positive
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hulls, we are able to compute the expected values of the size functionals Y} ;, thus showing that
the differences of exchangeable random variables also exhibit a distribution-free behavior.

Let us finally mention that it is possible to extend the results of the present paper to Weyl
tessellations corresponding to the reflection groups of the product type By, X ... X By, x Ak, —1 X
... % Ap,—1. These arrangements of product type are just unions of the arrangements corresponding
to the individual factors. In particular, Weyl tessellations of type BT coincide with the tessellations
studied by Cover and Efron [4] and Hug and Schneider [5]. Thus, their results become special cases
of this more general setting. We refrain from stating the results in the product type setting since
they require introducing heavy notation.

The rest of the paper is mostly devoted to the proofs.

2. PRELIMINARIES

In this section we collect some notation and facts on polyhedral cones and integral geometry.
Let 04, d € N, be the (d— 1)-dimensional spherical Lebesgue measure on the unit sphere S !. The
spherical content of S is given by

2) d/2
Wy = O'dfl(Sdfl) = F(TZIZ/Q) .

2.1. Polyhedral cones. A polyhedral cone (or, for simplicity, just a cone) C C R? is a finite
intersection of closed half-spaces whose boundaries pass through the origin. We denote the set of
polyhedral cones in R? by PC%. A supporting hyperplane for a cone C' is a linear hyperplane H,
such that C lies entirely in one of the closed half-spaces H* and H~ induced by H. If not explicitly
stated otherwise, all hyperplanes are assumed to be linear.

A face of C is a set of the form F = C N H, for a supporting hyperplane H, or the cone
C itself. We denote by F(C) the set of all faces of C' and by Fi(C) the set of all k-dimensional
faces of C'. Note that the dimension of a cone C' is defined as the dimension of its linear hull,
ie. dimC = dimlin(C). Let fx(C) = #Fk(C) be the number of k-faces of C. Equivalently,
the faces of C are obtained by replacing some of the half-spaces, whose intersection defines the
polyhedral cone, by their boundaries and taking the intersection.

Furthermore, let linsp(C) = C' N (—C) denote the lineality space of C, which is the linear
subspace contained in C' and having the maximal possible dimension. Additionally, linsp(C) is
contained in every face of C. A cone C is pointed if it does not contain a non-trivial linear
subspace, i.e. if {0} is a O-dimensional face, or equivalently, if linsp(C) = {0}.

2.2. Duality. We will introduce the dual of a cone and state some useful results referring to [I,
Section 2.1] for the proofs.
The dual cone of a cone C C RY is defined as

C°={zeR?: (z,y) <0OVy e C}.

If C = L is a linear subspace, then C° = L™ is its orthogonal complement. There is a one-to-one
correspondence between the k-faces Fi(C) and the (d — k)-faces Fy_x(C). The following theorem
is a conical version of the Hahn-Banach theorem.

Theorem 2.1 (Seperating hyperplane for cones). Let C,D be cones in R%. Then relint(C) N
relint(D) = 0 if and only if there exists a linear hyperplane H, not containing C'U D, such that
CCH" and DC H™.
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Note that relint X denotes the interior of a set X relative to its linear hull and is called the
relative interior of X. The theorem implies that C°° := (C°)° = C, which was shown in Proposition
2.3 of [1I]. The dual cone of the intersection of two cones C' and D is given by

(CND)° =C°+ D°, (2.1)

where C+ D :={z+y: 2z € C,y € D} denotes the Minkowski sum. The following result is a
variation of Farkas’ Lemma for cones.

Lemma 2.2. Let C,D be cones in R?. Then
relint(C) N D =0 < C°N—D° # {0}.
In particular, if D = L is a linear subspace, then
relint(C) N L = 0 < C° N L+ # {0}.
We are able to derive a related result, which will be of use in Section [3.5

Lemma 2.3. Let C be a cone and L be a subspace in R¢. Then
C'N L ¢ linsp(C) < relint(C°) N L+ = 0.

Proof. Suppose relint(C°) N L+ # (). Then, by Farkas’ Lemma C N L = {0}, which implies
C N L Clinsp(C).

To prove the other direction, assume relint(C°) N L+ = (. Note that (linsp(C))° = lin(C°),
since linsp(C') is the subspace contained in C' of maximal dimension, and thus, (linsp(C))° is the
subspace of smallest dimension containing C°. Then, we also have

relint(C°) N (L* N1in(C°)) = 0.

Applying Theorem in the ambient linear subspace lin(C®), we can find a separating hyperplane
H in lin(C®°), such that C° C H~ and L+ Nlin(C°) C HT, where H~, H* denote the closed half-
spaces in lin(C®) defined by H. This implies that L+ N1lin(C°) C H C H~, since L+ N1in(C®) is a
linear subspace. It follows that

C° + (L* Nlin(C°) C H™,

which implies C° + (L+ N1in(C°)) 2 1lin(C°), and thus, C° + L+ 2 lin(C°). This is equivalent to
CNL¢Z (lin(C?))° = linsp(C), due to (2.1). O

2.3. Geometric functionals of convex cones. We will introduce the geometric functionals for
convex cones which we want to evaluate in Section 6} For general information regarding spherical
integral geometry we refer to [16, Section 6.5]. At first, we will define the conical quermassintegrals
and state some important properties. They are taken from [5, Section 2]. For k € {0,...,d}
denote by G(d, k) the Grassmannian of k-dimensional linear subspaces in R?, and let v, be its
normalized Haar measure, meaning the unique rotation invariant Borel probability measure on
G(d, k). Rotation invariance will always refer to the invariance with respect to the action of the
special orthogonal group SOy, which is the group of linear mappings ¥ : R% — R? that preserve
scalar product and orientation.

Definition 2.4. For a cone C' C R? that is not a linear subspace the conical quermassintegrals are

defined by

1 .
U;(C) = / Licnrzfoyy va—j(dL), j=0,....d. (2:2)
2 Ja(a,a-j)
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Hence, 2U;(C) is the probability that a subspace, which is uniformly distributed on G(d, k),
intersects with C' in a non-trivial way. By definition, if L, C R? is a k-dimensional linear subspace,
then

Ui(Ly) = 1 if k—j >0 and odd,
AR T if k— 4 <0 or even.

Note that the conical quermassintegrals may be defined in a unified way via the Euler characteristic,
see [5, (1)]. For a d-dimensional cone C' C R?, we have

o4-1(C NS

Ug—1(C) =
() -
If the cone C is not a linear subspace, then we have the duality relation
S :
UN(C) +Ua5(C%) = 3, G=0,...d. (2.3)

Now, we define the conical intrinsic volumes. The definition and further properties are taken
from [II, Section 2.2] and [5, Section 2.

Definition 2.5. Let C be a polyhedral cone, and g be a d-dimensional standard Gaussian random
vector. Then

FeFi(C)
defines the k-th conical intrinsic volume (or, for simplicity, just intrinsic volume) of C, where for
a face F' € F(C), we put
vp(C) :=P(Ilc(g) € relint(F)).

Here, I1¢ denotes the orthogonal projection on C, that is Il (x) is the vector in C' minimizing the
Euclidean distance to = € R

Again, for a d-dimensional cone C' C R? we have
oq—1(C'N Sd_l)
Wy '
In this case, vy(C) is also called the solid angle of C, denoted by «o(C).
The conical intrinsic volumes and quermassintegrals are essentially different functionals, yet
there is a linear relation, which follows from a spherical integral-geometry formula of Crofton type

(see [16, (6.63)]):

va(C) =

|45~

U;(C) = Z vjart1(C),
k=0

for a cone C and j =0,...,d — 1. This implies the relations
vj=Uj1—Ujp1 forj=1,...d -2,
V-1 = Ug-2, (2.4)
vg =Uz_1.
Using and the duality relation for the quermassintegrals, we have
v;(C) =vq4—;(C°), j=0,...,d. (2.5)
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Following Hug and Schneider [5], we will use the conical quermassintegrals to define a more
general series of functionals which comprises some interesting geometric functionals as special cases.
Definition 2.6. For a cone C, k=1,...,dand j =0,...,k — 1 define the size functionals Y} ; by

Vi (C) =Y U(F).
Fe}'k(C)

If we set k = dim C, we get the conical quermassintegrals

Yiime,; = Z U;(F)=U;(C), j<dimC.
Fe‘rdimC(C)
Thus, using the relation (2.4]), we obtain the conical intrinsic volumes as a suitable linear transfor-
mation of the size functionals. On the other hand, for j = 0 and k = 1,...,d, the size functional
yields the number of k-faces for a cone C' whose k-faces are not linear subspaces, since
1 1
Yio(C)= Y Uo(F)= 5 > Igppopn = 3 fe(C). (2.6)
FeF,(C) FeFi(C)

2.4. Results on general position. Before proceeding to the Weyl tessellations, we need to in-
troduce the definitions of general position in various contexts and state some results that will be
used throughout this paper. For a vector x € R%\ {0}, let

et ={yecR: (y,2) =0}, 2~ ={yeR?: (y,z) <0}

We will make use of the duality relation

n

(pos{x1,...,zp})° = ﬂ x;, (2.7)

i=1
for all z1,...,z, € R% where pos X denotes the positive hull of a set X.

Definition 2.7. A set of vectors z1,...,z, € R? is said to be in general position if for any k < d
and 1 <1 < ... <1 < ntheset of vectors x;,, . .., x;, is linearly independent. A set of hyperplanes
Hy,...,H, € G(d,d — 1) is said to be in general position if

dlm(HllﬁﬂHlk):d*k‘
forany k<dand 1 <i <...<ip <n.

It is easy to see that x1,...,x, are in general position if and only if the hyperplanes :cll, s
are in general position. If this is the case, then
n n
pos{zy,...,z,} #R? = ﬂa:l_ # {0}(:>dimﬂa;i_ =d. (2.8)

i=1 i=1
We refer to [0, (14)] for the proof of the equivalences.

A hyperplane arrangement A in R? is a finite set of distinct linear hyperplanes. The rank of
the arrangement A is defined as

rank(A) = d — dim ( ﬂ H),
HeA
where rank(()) := 0.



10 THOMAS GODLAND AND ZAKHAR KABLUCHKO

We already saw in the introduction that a hyperplane arrangement A induces a set of cones.
Denote by R(A) the set of open connected components (”regions” or ”chambers”) of the comple-
ment R?\ (Jyc 4 H of the hyperplanes. Then, R(A) := {R: R € R(A)} is the conical tessellation
or the conical mosaic induced by A, where R denotes the closure of R. The set of faces F(R(A))
of R(A) is defined as the union of the sets of faces of the polyhedral cones C € R(A).

Thus, the conical mosaic R(A) for a hyperplane arrangement A consists precisely of the cones
of the form

() enH™, e ==l

which have non-empty interior. Here, H~ denotes one of the closed half-spaces induced by H.
For a lot of results, e.g. results on the faces of a conical tessellation, we need the concept of
general position of a linear subspace with respect to a hyperplane arrangement.

Definition 2.8. Let L € G(d, k) be a linear subspace of dimension k € {0,...,d — 1}. Then L is
said to be in general position with respect to A if for all finite subsets B C A

dim ( ﬂ (HnN L)> = max{0, k — rank(B)}. (2.9)
HeB

If L € G(d,k) is in general with respect to A = {Hj,..., H,}, then it is easy to see that the
induced hyperplane arrangement A|L := {H N L : H € A} also consists of distinct hyperplanes in
L and thus induces a conical mosaic in L. And more importantly, the general position assumption
provides that the subspaces H N L are hyperplanes in L, i.e. they have dimension k—1. If y1,...,yn
are the normal vectors to the hyperplanes Hi, ..., Hy,, respectively, then their orthogonal projec-
tions on L, denoted by Iz (y1), ..., (ys), are the normal vectors of HyNL,..., H, N L inside L,

respectively, since

(v, yi) = (v, yi — Up(yi)) + (v, 1 (yi)) = (v, UL(v:))
holds for all v € L.

Remark 2.9. It is important to note the following result, which follows from the definition above.
If a hyperplane arrangement A consists of hyperplanes Hy = yf-, o Hy = yf; in general position,
then the fact that a linear subspace L is in general position to A implies that the induced hyper-
planes Hi N L,..., H, N L are in general position in L, and thus, their respective normal vectors
II5(y1),...,I5(yn) are also in general position in L.

Lemma 2.10. For a linear subspace L C R% in general position with respect to a hyperplane
arrangement A, the closed chambers generated by the induced arrangement A|L are obtained by
intersecting the closed chambers of R(A) by L. Thus, we have

{CNL:CeRA),CNL+#{0}} =R(A|L).

Proof. Let A={Hy,...,H,}. Denote by y1,...,y, the normal vectors to hyperplanes Hy, ..., Hy,
respectively. Then for all e1,...,¢e, € {£1}"

n n
ﬂsiyi_ NL = ﬂEiHL(yi)_a
i=1 =1

where I (y;)~ = {v € L : (v,1I1(y;)) < 0}. Thus, if C € R(A) satisfies C N L # {0}, there are
€1,...,6n € {£1}", such that C =, e1y; . This means that {0} # CNL =\, el ()" €
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R(A|L). If otherwise D € R(A|L), then D = N, &1l (y;)~ for some ey, ..., &, € {£1}". It follows
that {0} # D = (", &y; N L, where [\, &y, is obviously different from {0} and therefore a
cone in R(A). O
Lemma 2.11. Let A be a hyperplane arrangement in R and let L be a linear subspace in R, If
L is in general position with respect to A, then for all R € R(A)

RNL#{0} & RNL#0,
or equivalently
CNL#{0} < relint(C)NL#0D
holds true for all C € R(A).

For the proof of this lemma, we refer to [I2] Section 6.3]. A similar result can be proven for
the faces in a conical tessellation.

Lemma 2.12. Let A be a hyperplane arrangement in R and let L be a linear subspace in RE. If

L is in general position with respect to A, then for all faces F' € F(R(A))
FNL+#{0} < relint(F)N L # 0.

Proof. Let A = {Hy,...,H,}. We define G(i) := H;; N...NH;, forall k <dand1<i <...<
i < n. Then, the linear subspace L N G(7) is in general position with respect to the hyperplane
arrangement {H; NG(i) : j ¢ {i1,...,ir}} in G(i). This is a direct consequence of the definition of
general position in (2.9). Since every face F' € F(R(A)) is contained in such a subspace G(i) for a
suitable collection of indices and and is furthermore a cone of the induced tessellation R(A|G(7)),
Lemma applied to the linear subspace G(i) yields

FNL#{0} < FN(LNG(i)) # {0} < relint(F) N (LN G(i)) # 0 < relint(F) N L # 0,
which completes the proof. ]

Similarly, we can define the notion of general position for two arbitrary linear subspaces.

Definition 2.13. Linear subspaces L, L' of R? are in general position if
dim(L N L") = max{0,dim L + dim L’ — d}.

This definition implies that a linear subspace L is in general position to a hyperplane arrange-
ment A if and only if L is in general position to each subspace K that can be represented as an
intersection of the hyperplanes from A.

Lemma 2.14. Let k € {0,...,d} and let M C R? be a linear subspace. Define B as the set of all
L € G(d,k), for which L and M are not in general position. Then vi(B) = 0.

Proof. The result follows from [16, Lemma 13.2.1], since v, = vof3, s defined as the image measure
of v under the mapping S : SOy — G(d, k), ¥ — VL for a fixed linear subspace Ly € G(d, k).
Note that v denotes the unique rotation invariant probability measure on the rotation group SOy .
Thus
vi(B) = v({¢ € SO4 : M is not in general position to ¥L) = 0.
O

Remark 2.15. Let L be a random k-dimensional subspace with distribution v, and let A be a
hyperplane arrangement. Then L is a.s. in general position with respect to A. This is a direct

consequence of Lemma and (2.9).
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3. CONICAL TESSELLATIONS AND WEYL CHAMBERS OF TYPE B,

In this section, we introduce the Weyl chambers in R” of type B, and a conical tessellation
of R?, which is closely related to it. Our main result is a formula on the expected k-face number
of a cone chosen uniformly at random from this tessellation. We will state it in Theorem [3.3] and
Corollary [3.5] In the present section, we always assume n > d.

3.1. The reflection arrangement and Weyl chambers of type B,. At first, we consider
Weyl chambers of type B,, and introduce the necessary notation, taken from [12] Section 2.1]. We
call G(By,) the reflection group of type B,, which acts on R™ by permuting the coordinates in an
arbitrary way and by multiplying any number of coordinates by —1. This means that the 2"n!
elements of G(B,,) are the linear mappings

g&,a' : Rn — Rna (513 e 7/8n) — (51ﬁ0(1)7 e agnﬁa(n))a

where o € S, is a permutation of the set {1,...,n} and ¢ = (e1,...,e,) € {£1}".
The closed Weyl chambers of type B,, are the cones of the conical tessellation induced by the
hyperplane arrangement A(B,,), which consists of the hyperplanes given by

{BeR": 0 =0} (1<i<j<n),
{BeR": B8 =—-p;} (1<i<j<mn), (3.1)
{BeR": B;,=0} (1<i<n).

It is called the reflection arrangement of type B,,. The name is due to the fact that reflections with

respect to the hyperplanes of this arrangement generate the group G(B,). Thus, it is easy to see
that the closed Weyl chambers of type B, are given by

C8 = {(Brye e Bn) ER™ :1By(1) < oo < EnBoim) <0}, 0 € Spy £ € {£1J™.

The superscript B indicates the type of the Weyl chamber. Equivalently, the Weyl chambers of
type B,, are defined as the reflections g C(B,,), g € G(By,), of the fundamental Weyl chamber of type
B,, given by

C(By)={(Br,...,Bn) ER":0< B1 <...< By}

The k-dimensional faces of the Weyl chamber C’fa are determined by the collection of indices
1<) <... <l <n and have the form

CO(ly, ... 1) ={BER 1181y = - .. = €1, Boty) < EL1+1Bo(ty41) = - - - = B (ta)
<...< 5lk—1+150(lk—1+1) = ... = glk/ﬁa(lk) (3.2)
< Bo(ty41) = -+ = Bom) = 0}

In the case i, = n, no f;’s are required to be 0. Thus, #.Fk(C’fg) = ()

3.2. Weyl tessellation of type B,. As mentioned in the introduction, we can define a conical
tessellation, which is closely related to the Weyl chambers of type B,,.

Definition 3.1. (Weyl tessellation of type B,,) Let y1, ..., y, € R? and let the hyperplane arrange-
ment AP (y1,...,y,) consists of the hyperplanes given by
(yi+y)" 1<i<j<n,

(yi—y)" 1<i<j<n, (3.3)
y, 1<i<n.
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Then the Weyl tessellation of type B, or Weyl mosaic of type B, is defined as the conical tessellation
induced by AP (y1,...,y,) and is denoted by W5 (y1,...,y,). We denote the number of cones in

WE(y1,...,yn) by
DB(n,d) == #WP(y1,. ... yn).
The set of k-faces of W2 (y1,...,yy,) is denoted by

]:If(?/l,,yn): U Fk(C), ‘Ff(ylu"'vyn):WB(y17"‘7yn)-
CeWB (y1,...,yn)

As mentioned in the introduction, we did not bother to indicate that D?(n,d) depends on
the choice of yi,...,yn, because we will show in Corollary [3.4] that it is constant under certain
conditions on y1,...,¥y,. It is easy to see that the cones in WB(y1, ..., y,) are the cones different
from {0} of the form

DEU = {’U eR%: <'U>51y0(1)> <. < <'U>5nya(n)> < 0}7 e=(e1,...,6n) € {:I:l}n,a € Sn.

We will refer to these cones as Weyl cones of type By, or just Weyl cones when the type we are
referring to is obvious from the context.

The initial problem we encounter is that the hyperplanes of AZ(y1,...,y,) are not in general
position even if y1, . .., y, are in general position. Thus, without further conditions on y1, ..., y,, we
cannot say with certainty that AZ(y1, ..., y,) is even a hyperplane arrangement, i.e. the hyperplanes
are distinct. Yet, we may formulate two equivalent conditions, under which we are able derive
general results on the faces and the number of cones in the Weyl tessellation of type B,,.

Theorem 3.2. For arbitrary y., . .., y, € R? the following conditions and are equivalent:
(B1) For every e = (e1,...,en) € {£1}" and 0 € S,, the vectors e1Yo(1) — £2Yo(2), E2Yo(2) —
€3Ya(3)s - - - 1En—1Yo(n—1) — EnYo(n)s EnYo(n) ATE N general position.
(B2) The linear subspace L+ has dimension d and is in general position with respect to the
hyperplane arrangement A(By,), where L := {3 € R" : B1y1 + - - + Bnyn = 0}.

We will often refer to these conditions as the general position assumptions (B1) and [(B2)l It
is not obvious that the conditions [(B1)| and |(B2)| are equivalent and the proof will be postponed
to Section [6] In some cases it is more natural to use condition [(B1)] and sometimes it will be more

convenient to use |(B2)]

Now, we state the main result of this section.

Theorem 3.3. Let y1, ...,y € R? satisfy one of the equivalent general position assumptz’ons
or|(B2). For 1<k <d, we have

> Y. lucoy

FE]-—kB(yl,...,yn) Cede(yl,...,yn)

!
okt M) (Bn—d4kn—d+1)+Bn—d+kn—d+3)+...).
i) Gy B ke —d 1) Bl —d o kn—d8) 4 )
Recall that the B(n,k)’s are the coefficients of the polynomial
(t+1)(t+3) ... (t+2n—1) =) B(n,k)t* (3.4)
k=0

and, by convention, B(n,k) =0 for k ¢ {0,...n}.
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We will postpone the proof of Theorem to Section because we need to establish some
results on the faces of the Weyl tessellation first. As a special case of this theorem, we are able to
derive the number of cones in the Weyl tessellation W5 (y1,...,y,) of type B, under one of the
equivalent conditions or We introduced this result as Theorem in the introduction
and will now restate it here as a corollary of Theorem [3.3] Note that the condition on yi, ...,y

stated in Theorem |1.1| coincides with the general position assumptions |(B1)]

Corollary 3.4. Let y1,...,y, € R? satisfy one of the equivalent general position assumptions

or|(B2), Then the number of cones in the Weyl mosaic WB(y1,...,yn) of type B, is given by
DP(n,d) =2(B(n,n—d+1)+ B(n,n—d+3)+...).

Proof. This follows from Theorem [3.3]in the special case k = d. O

Note that under the assumptions of Theorem [3.3] we may also write

odkf M n! B

Fef,f(yl,...,yn) CE}—dB(yl,...,yn)

It is evident that Theorem also carries the following probabilistic meaning.

Corollary 3.5. Let yi,...,yn € R? satisfy one of the equivalent general position assumptions
or . Let QB be sampled randomly and uniformly among the DB (n,d) cones of WB(y1,...,yn).

Then the expected number of k-dimensional faces of QF is given by

1
B
BIQT) = BBt ) 2. >, lrco
" CEFB(y1,yn) FEFEWY1,yn)
_gdk[ M n! DB(n —d+k,k)
N d—k)(n—d+k)! DB(n,d)

3.3. Characterizing the faces of the Weyl tessellation of type B,,. Before we are able to
prove Theorem[3.3] it is necessary to consider the faces of the Weyl tessellation more closely. At first,
we introduce helpful notation. For y1,...,y, € R%, a collection of indices 1 < Ij < ... < ly_qsr < 7,
a vector of signs € € {£1}" and a permutation o € S, we define

ng(lly e ln7d+k) = {U S Rd : €1fg(1) =...= gllfU(ll) < €l1+1f0(l1+1) =...= 612f0(12)
<...< gln7d+k71+1fa(ln—d+k—1+1) =T gln*d+k'f0’(ln—d+k) (3.5)
< Solnaspt1) = -+ = Jom) = 0},

where the functionals f; are defined by f; = f;(v) := (v,y;), i =1,...,n. If l,_q1x = n, no f;’s are
required to be 0. These cones will represent the k-faces of the Weyl tessellation, according to the
following proposition.

Proposition 3.6. Let 1 < k < d and let yy,...,y, € R? satisfy the general position assumption
. Then it holds:
(i) For every F € FB(y1,...,yn) there exist a collection of indices 1 <ly < ... <lp_agyk <1,
a vector of signs € € {£1}" and a permutation o € S, such that F = Ffa(ll, ey ln—dtk)-
(it) Let 1 <1y < ... <lp_apr < n and e € {£1}", 0 € S,. If FE (I1,. .., ln_ayr) # {0}, then
ng(lla ce ,ln,dJrk) S ]:,f(yl, R ,yn>.
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Proof. We start by proving (i). Let F € FZ(y1,...,yn). Then there exists a Weyl cone D €
FP(y1,...,yn), such that D = Dfa and F € FP(D) for suitable ¢ € {£1}" and o € S,,. Every
face of a polyhedral cone is obtained by replacing some of the half-spaces, whose intersection defines
the cone, by their boundaries, or in this case equivalently, replacing some of the inequalities in the
defining condition of Df’o_ by equalities. Thus there exist a number 1 < m < n and a collection of
indices 1 <y < ... <, <n, such that F' = ng(ll, ooy lm). Tt is left to show that m =n —d+ k.
We have

FCLyp={veR ie1foq)y="""=eufotn) - Elmstifollm 141) =" = Elmfolim)s
folmt1) = = fom) =0}
Note that the condition which defines L,, effectively consists of n —m equations. Thus, the general
position assumption |(B1)|implies dim(L,,) = max{0,d—n+m}. Since dim F = k > 1, it is obvious
that dim L,, = d — n+m. Now, we want to show that the dimensions of F' and L,, are equal. Due
to|(B1)|, L, is in general position to the arrangement

Am = {(811%(11) - €l1+1ya(l1+1))l7 ) (€lmya(zm) - 5lm+1ya(lm+1))J—}7

where ¢;, 11 = 0 for [,,, = n, and additionally, the hyperplanes of A,, are itself in general position.
Thus, the hyperplanes in the induced arrangement A,,|L,, = {H N L,, : H € A;,,} are in general
position in L,, and generate a mosaic of (d — n + m)-dimensional cones in L,,, following .
Since the cones in the induced mosaic are obtained by intersecting the cones of R(A,,) with L,,
and F = DN Ly, is such a cone, F' # {0} implies that dim F' = d — n + m. On the other hand, F
is a k-dimensional face, thus k = d — n + m holds true.

The proof of (ii) is similar. Obviously Ffa(ll, cooyln_qrr) is a face of the Weyl tessellation
WB(y1,...,yn) forall 1 <y < ... <ly_gyx <nande € {£1}", 0 € S,. If not {0}, then it is
already a k-dimensional face, due to the general position arguments we stated above. O

To conclude this section, we want to evaluate the number of Weyl cones C € W5 (y1,...,yn)
that contain a k-face F' = Ffa(ll, eoisln—drk) € FB(y1,-..,yn), which will be necessary for the
proof of Theorem In order to avoid heavy notation, we consider an example from which the
general case should become evident.

Example 3.7. Consider the case n = 7, d = 6, £k = 2 and the face of the Weyl tessellation
W2B(y1,...,y7) in R® given by

F={weR':—fs=fa< —fs <fa=/f1<fo=fr=0}
—_——— ~— —_—
group 1 group 2 group 3 group 4

Assume that F' # {0}. Under assumption [(BI)| the cone F is a 2-dimensional face of the Weyl
tessellation of type Bz, due to Proposition [3.6] In particular, it is a 2-face of the Weyl cone

(veRb: —fs< fo<—f3< f1< fi < fo < fr <0} (3.6)
However, it is also a 2-face of
(weR’: fa<—fs<—f3< fa< fr < —fr < fo <0}

and, more generally any number of cones obtained from (3.6)) by permuting the f’s inside the groups
(= f5, f2), (= f3), (fa, f1), (f6, f7), and by changing any number of signs in the last group. The total
number of cones obtained in this way is 2!112!2!22.
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The question arises, if there are any other Weyl cones that contain F. We will show that the
answer is “no”. Indeed, if we change the sign of any f; that is not in the last group (for example,
f1), we see that F' is not contained in this cone any longer, e.g.

FEeeR i —fs<fo<—f3<fu<—fi<fo< fr <O}

Otherwise, F' would be contained in the hyperplanes {f; < 0} and {—f; < 0}, and thus, F C {f; =
0}. This implies

F={veR':~fs=fo<—fs<fa=fi=fo=fr=0}

The number of groups in this representation is strictly smaller than in the original one because
f1 was not in the last group. In fact, the cone on the right-hand side is a 1-face of the Weyl
tessellation, due to Proposition under the general position assumption This means that
any cone where we altered a sign of any f;, which is not in the last group, does not contain F'.

From now on, we can consider only the Weyl cones in whose representations the signs of all
fi’s are the same as in the original representation of F', except for the f;’s in the last group. Take
such a cone and assume that in its representation we have an inequality £f; < £f;, while in the
representation of F' we have the converse inequality +f; < £f;. For example take the cone

{veRt: —fs=fo<—fs<fa=fo < fi= fr=0}
which satisfies fg < fi, while in the representation of F' we have f; < fg. We claim that F' is
not contained in this cone. Indeed, otherwise, F' would be contained in the hyperplane {f; = fs},
which implies that

F={veR':—fs=fr<—fs<fa=fi=fe=fr=0}
Again, the number of groups in this representation is strictly smaller than in the original repre-
sentation of F'. In fact, the cone on the right-hand side is a 1-face, similar to the previous case.
That is a contradiction, since F' is 2-dimensional. This means that there are no other Weyl cones
containing F'. Generalizing this argument, yields the following proposition.

Proposition 3.8. Let 1 < k < d and let y1,...,yn € R? satisfy the general position assumption
. Then, each k-face Ffa(ll, coisln—drk) € FP(y1, ..., yn) belongs to exactly

lll(lg — ll)' S (n — ln,d+k)!2nfl"*d+k
cones C € WB(y1,...,yn).

The same argument proves also the following proposition stating that there is a one-to-one
correspondence between the k-faces of the Weyl mosaic and those combinatorial representations
leading to a non-trivial face.

Proposition 3.9. Let y1,...,y, € R? satisfy the general position assumption . Let fur-
thermore F = FE (Iy,... ln_ayr) and G = FP (i1,... in—qsm) be such that F # {0}, with

some g,0 € {£1}", o,m € S, and 1 < k < d, 1 <m <dand1 <l3 < ... <lp_gix < n,
1<y <. <ip—ggm <n. If F =G, thene =9, o =m, k=m, and l; = i; for all admissible j.

3.4. Counting the faces of Weyl tessellations of type B,,. Now, the question arises if we can
evaluate the total number of k-faces in the Weyl tessellation W5 (y1, ..., yn).

Theorem 3.10. Let y1, ...,y € R? satisfy one of the equivalent general position assumptions
or|(B2). Then the number of k-faces in the Weyl mosaic of type B, is given by

#FE (.. oyn) = T(nyn — d+k)DP(n — d + k, k)
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for ke {1,...,d}, where the T(n,k)’s are given by

T(n,k) = ni‘f (7;) {” . ”}zn—r—kz

r=0

Here, {Z} 1s the Stirling number of second kind, that is the number of partitions of an n-element
set into k mon-empty subsets.

Remark 3.11. The numbers T'(n, k) are known as the B-analogons of Stirling numbers of the second
kind [I8] and appear as Entry A039755 in [I7]. The A-analogons of the Stirling numbers of the
second kind are the usual Stirling numbers {Z} The generating functions of both sequences are
given by

i iT(n, k)%yk = e"exp (%(62‘” — 1)), i i {Z}i:yk = exp (y(ez - 1))

n=0 k=0 n=0 k=0
The numbers T'(n, k) and {}} appear as the coefficients in the formulas

n n
n

"= (=1 FT(n, k) (t41)(¢43) . (t42k—1), " = Z(—l)”_k{k}t(t+1)(t+2) (k1)

k=0 k=0

see Entry A039755 in [I7]. This should be compared to the following formulas for the Stirling
numbers of the first kind [}}] and their B-analogues B(n, k):

(t+1)(t+3)-....(t+2n—1)zzn:B(n,/f)tka t(t+1)'---‘(t+”—1):zn:mtk'
k=0 k=1

Proof of Theorem [3.10, Due to Proposition i), each k-face F € FP(y1,...,yn) is contained in
a k-dimensional linear subspace of the form

L(l,s,o) = {U S RY 61f0(1) =...= 611f0(l1), ey
Eln7d+k71+1f0(1n7d+k71+1) =T Clayk fo'(lnfdJrk)’
Sotn-ainr) =+ = Jom) = 0}
for 1 <li < ... <lpegee <n,l=(l1,... ,ln—qgsr), € € {£1}" and 0 € S,,. At first, we want
to evaluate the number of distinct subspaces of this form. For each fixed number of elements
r € {0,...,d — k} in the last group of equations there are (7:) possibilities to choose its elements
among {f1,..., fn}. Then, we are left with a set of n — r elements, which we want to partition in

n—d-+k non-empty sets. Thus, there are {nfgfr k} possibilities to choose the partition. Furthermore,
we can choose the signs of the f;’s in the first n — d + k groups arbitrarily, for which there are 2"
possibilities. But since we obtain the same subspace if we multiply any group of equations by —1,
we have to divide the 2"~ possibilities by 27~ 9t*. This yields a total of

d—k n—r d—k
Z n n—r 2 :Z n n—r od—k—r
r)\n—d+kJ2n—dtk r)\ln—d+k
r=0 r=0
possible subspaces of the form L(l,e,0). All these subspaces are pairwise different, which can be
shown in the same way as in Example and relies on the general position assumption |(B1)
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Now, we want to show that the k-faces of WB(y1,...,y,) contained in L(l,e,0) form a Weyl
mosaic in L(l,e,0) and that the number of these k-faces is DP(n — d + k,k). To simplify the

notation, we consider the special case ¢;, = 1 and o(i) = ¢, for all i = 1,...,n, and define
d
L= {U € R%: fl == fl1)' "7fln,d+k71+1 = .= fln7d+k7fln7d+k+1 = ... = f?’b = 0}
Now, we show that the projections Il (y1, ), - - ., [z (yi,_,., ) satisfy the general position assumption

(B1)in L, and thus, induce a mosaic of type B, in L. Corollary would then imply that the
number of these k-dimensional cones is D®(n—d+k, k). Take some 0 € {#1}""* and 7 € S,_g1%-

Due to|(B1)} the hyperplanes

{(yl - 312)% sy (yl1—1 - yl1)L> sy (yln—d+k—1+1 - yln_d+k_1+2)L7 ey (yln_d+k—1 - yln_d_;,_k)L’
(yln7d+k+1 - yln,d+k+2)l7 SRR (yn—l - yn)J_7 yTJL_’
1 1
<5lylﬂ.(1) - 52ylﬂ.(2)) ) (5n*d+k‘ylﬂ.(n_d+k) - 6n7d+k+1ylﬂ(n_d+k+1)) }

are in general position. Therefore, L (being the intersection of the hyperplanes in the first two
lines) is in general position with the hyperplanes constituting the third line. Thus, by Remark
the hyperplanes in L given by

1 1
Ln (5lyl,,<1) - 62ylﬂ.(2)) PR 7L N (5n—d+k?/lﬂ(n,d+k) - 5n—d+k+1ylw(n,d+k+1))

are in general position in L. It follows from the definition of L that the representation of the last
hyperplane in this list can be simplified as follows

N n
LY (On—dt kYl gy — On—dtb-t 1Y (o giisny) = L0 (Ondt k¥ (0 gn))

It follows that the normal vectors of the hyperplanes from the above list (taken inside L) are in
general positions. So,

OIIL (i) = 021 (Yt ) )5 - - - s Ot k=1 1L (Yt 1)) — Ot L (Yt i)
6n7d+kHL(ylﬂ(n_d+k))
are in general position in L, for all § € {£1}"~%* and 7 € S,,_q4x, which proves for the
projected vectors Il (i, ), - - UL (Y, o)
Thus, the orthogonal complements of the vectors Ip(y,), ..., L (y,_,.,) induce in the k-

dimensional linear space L a Weyl mosaic consisting of D”(n — d + k, k) k-dimensional cones.
These are the cones different from {0} of the form

{vel:on(wLy,,) < - < 0n—ark (0 MLy, gin)) < 0}
={veLl:dfi, < - < On—drkfiygir <0}
—fveR" 61 fi, 1= =011 S O2fi, 0 1= = 0afi,
S SOtk Sl —airy 11 = - = Onmdtk S gy S Slnapr1 == [ =0},

where in the first equality we used that (v, L (v, )) = (v, 41, ), forallv € Land i=1,...,n—
d + k. The second equality follows from the definition of L. The last representation basically says
that we keep the groups of equations from L (except for the last one), permute them according to
7w and change the signs the groups according to §. Since we are interested only in cones different
from {0}, the above representations define the k-faces of W2 (y1, ..., 9,) due to Proposition (ii).
Since the cones different from {0} cover L, these are already all of the k-faces contained L. The
same arguments, with y; replaced by €;y,(;), are valid for the general case of a subspace L(l,e,0).
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In summary, we know that every k-face of W5 (y1,...,y,) is contained in a unique subspace
of the form L(l,e,0) and every such subspace contains D?(n —d+ k, k) faces of dimension k. This
yields a total of

d—k
n n—r
2=k=rpBn —d+k k)y=T —d+kKYDB(n—d+ k. k
S (400 (n—d-+ b, k) = T(n,n — d+ K)DP(n — d+ . )

k-faces of WEB(y1,...,yn). g

3.5. Proof of Theorem In this section, we are finally going to prove Theorem [3.3] We do
this in a separate section, since the proof requires a lot of results we need to establish first. These
results will explain the connection between the Weyl tessellation and the Weyl chambers of type
B,,. But first, we need to prove a lemma stating a useful result on vectors in general position, which
we will need for the proof.

Lemma 3.12. Let y1, ...,y € R? be in general position. Then pos{yi,...,y,} = R¢ holds if and
only if there exists an o = (a1, ..., ay) € RE,\ {0}, such that arys + -+ + any, = 0.

Proof. Suppose pos{y1,...,yn} = R% Let x € R%\ {0}, thus also £z € pos{y1,...,y.} \ {0}. It
follows that we can find a 8= (B1,...,8,) € R, \ {0}, such that

= Pyr+ -+ Buyn
Moreover, there exists a v = (71,... ,7n) € R%, \ {0}, such that

—Z=71Y1+ ...+ VnYn-
Then

We define o; = 8; +v; > 0 for ¢ = 1,...,n and observe that «; > 0 has to hold true for at least
onet € {l,...,n}.

To prove the other direction, let o = (a1, ..., o) € R\ {0} satisfying a1y +. ..+ anyn = 0.
Since 1, ..., yn are in general position, o; > 0 holds true for at least d + 1 indices i € {1,...,n}.
That is easily seen by considering the contraposition. If there is a & € {1,...,d} and indices
1 <idp <...<i <n,such that a;;,...,0; > 0and o =0 for all j € {1,...,n}\ {i1,... 9},
then

i Yiy + .o+ oy, = 0.

But since y;,, ..., ¥;, are linearly independent by the general position assumption, «;,,...,q;, are
also required to be 0, which is a contradiction.

Additionally, suppose pos{y1,...,¥n} # R%, then N, y; = pos{y1,...,yn}° # {0}. That is,
there exists a w € R%\ {0}, such that

(w,y;) <0, i=1,...,n.

We claim that (w,y;) = 0 holds true for at most d — 1 indices i € {1,...,n}. To see this, observe

that there is a k > d and indices 1 < i; < ... < i < n satisfying (w,y;,) =0 for all r =1,... k,

then y;,,..., v, € wt e G(d,d—1). But this is a contradiction to the general position of y1, ..., yp.
Taking these results into consideration, we have

0= <w70> = <w7041y1 + - anyn> = Oq<’UJ,y1> + o+ an<w7yn> < 07
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since all summands are non-positive, a; > 0 holds at least d + 1 times and (w,y;) = 0 at most
d — 1 times, thus at least two summands «;(w, y;) are negative. That is a contradiction, yielding

pos{y1,...,yn} = R% O

The main ingredient in the proof of Theorem is the following result on the number of
k-faces of Weyl chambers of type B,, intersecting a linear subspace only in a trivial way. It was
proven in [I2] Theorem 2.1] in a probabilistic version.

Theorem 3.13. Let Ly € G(n,d) be a deterministic d-dimensional subspace of R™ in general
position with respect to the reflection arrangement A(By,). Then

_ n\ n!
Yo > > Lpnpe—op =2 <k>k,(3(k,n —d=1)+B(k,n—d—=3)+...),
ee{*1}" 0€Sn FeF,(CB,) '
where the B(k,j)’s are defined in Theorem 3.3

Recall that the cones Cfa ={(B1,...,Bn) €ER" 1 218,01y < ... < enflon) < 0} denote the
Weyl chambers of type B,, as introduced in Section [3.1]

Remark 3.14. We can easily derive the analogous result for the faces that do intersect the subspace
L4 in a non-trivial way. By taking ¢ = +1 in (3.4) we get

B(k,1) + B(k,3) + ... = B(k,0) + B(k,2) + ... = 2F "1kl
Under the assumptions of Theorem it follows that

DD ﬂ{Fde#O}}—?”'() Yo > 2. Lipnne=op

e€{£1}n o€Sn FeF,(CE,) e€{£1}n o€Sn FeFL(CE,)

|

_ 2”—k<7;> k'DB(lc d—n+k),

where we used in the first step that the number of Weyl chambers is 2"n! and each chamber has
(Z) faces of dimension k.

To make use of Theorem [3.13] we will derive a connection between the faces of the Weyl
tessellation W5 (y1,...,9,) and the faces of the Weyl chambers in R" of type B,. Recall the
notation F (1, .. lp—gsx) for the k-faces of the Weyl mosaic of type B, from and the
notation C ' (l1,..., 1) for the k-faces of the Weyl chambers of type B, in R™ from (3.2).

Lemma 3.15. Let 1 < k < d and let yq,...,yn € R? satisfy one of the equivalent general position
assumptions or|{(B2). For L={ €R": Biy1 + ...+ Buyn = 0} the equivalence

FE (I, ly—ark) = {0} & CE (11, ... ly—ark) N LT = {0} (3.7)
holds true for all1 <ly < ... <lp_qix <n,e € {£1}" and o € S,,.

Before we prove this lemma, we want to state separately the special case ¢; = +1, o(i) = @
and k = d. In this case the lemma states that

WeRY: (1) <...< (v,yn) <0} ={0} & {BER": 3 < ... < B, <0}N Lt = {0}
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This means that the Weyl cone on the left hand side is degenerate, i.e. equal to {0}, if and only if
the corresponding Weyl chamber, having the same arrangement of inequalities, intersects L' only
in a trivial way. Thus, using this lemma, we can count the number of faces of the Weyl chambers
intersected by L' in a non-trivial way, which is already done in Theorem instead of counting
the faces of the Weyl mosaic. That is the basic idea behind the proof of Theorem [3.3]

Proof of Lemma[3.15 For the sake of simplicity, we first derive a result for the special case (i) = @

andg; =1,foralli=1,...,n. For 1 <1; <... <lp_g+r < n we define
F={eR: fi=...=f,<fomi=-.=f, < ... < fi wirt1=...= fo=0},
which is just a shorthand notation for Ffa(ll, o+ oy ln—q+k) in the special case ¢; = 1 and o(i) = i.

Note that we the linear functionals f; are defined by f; = fi(v) := (v,y;) as above. We already saw
in Proposition that if F is not {0}, it is a k-face of the Weyl mosaic W5 (y1, ..., yn), due to the
general position assumption [(B1)] Then, the linear span of F is given by

inF={veR: fi=...=fi,fus1 == frsoes fro_gpor1 = = fn =0},

since the condition of lin F’ consists of d—k equations, and therefore, the general position assumption

(B1)| implies that dim(lin F') = d — (d — k) = k holds true. Using the duality properties (2.1)) and
B3, we get

n7d+k e} TL*d+k [e}
P = <1inFﬁ N —yli+1)> = (lin F)* + < M (- ylm))
=1

=1
= (hn F‘)L + pOS{yll Y+l s Yl g T yln_d_»,_k-i-l}v

where we set y,4+1 = 0. Thus, we get

F°NlinF = pOS{H(yll - yll+1)? <o 7H(yln,d+k - yln,d+k+1)}a

where IT : RY — lin(F) is the orthogonal projection onto lin(F). In order to prove this equation,
we can represent the vectors y;, — yi,+1 as (zi, x;), where z; is the projection on lin F', and x; is the
projection on (lin F')*. Thus, the vectors in F° = (lin F)*+pos{y, = Y41+ - - » Y arr — Yl arntl}
take the form

Q121 + oo A Op—dt-kPn—d+k
V+oiT) . O dkTn—d+k

for aq,...,ap—gyr > 0 and v € (lin F)L. Here, the first entry denotes the component in lin
and the second entry denotes the component in (lin F)*. Such a vector is contained in lin F' if
and only if the second component is 0, that is, —v = ajz1 + ... + ap—_grxTn—d+k. Therefore,
FeNnlinF =vpos(z1,...,2n—d+k)-

Taking all of that into consideration, we obtain

F={0} & F° =R
S FPNlinF =1lin F
~ pOS{H(yll - yll+1)7 cee 7H(yln,d+k - yln,dyﬁrl)} =lin F*

Note that we used the decomposition F° = (lin F)* + (F° Nlin F') for the second equivalence.
Applying Lemma to the k-dimensional linear subspace lin ', we have that lin ' = pos{II(y;, —
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Y1)y (W, gn = Y_ain+1)} if and only if there exist oy,,...q, ., > 0 that do not vanish
simultaneously and such that
0= allﬂ(yll - yl1+1) +...+ aln7d+kn(yln7d+k - yln,d+k+1)
= H(O‘h (Y — Y1) + ..+ Al gtk (yln—d+k - yln—d+k+1))'

This holds if and only if there exists an a = (aq,...,ap) € R with oy, ..., q > 0 not all

being 0, such that

n—d+k

0= al(yl - y2) +...+ an—l(yn—l - yn) + anyn

After regrouping the terms, the condition is of the form
0=ay1 + (a2 —a1)y2 + ... + (an — An—1)¥n,

since (lin(F))* = lin{y; —yis1 i € {1,...,n\{l1, -, ln_ask}}s Ynt1 := 0. By defining 81 = o,
B; = oy — a1 for ¢ = 2,...,n, we see that this is equivalent to the existence of a vector f € R"
with 81 +...+ 8, 20,680+ ...+ B, 2 0,..., 81+ -+ B1,_,, = 0, where at least one inequality
is strict, such that

0=75y+-+ By,

By defining M := {8 €R": B1+...+ 5, >0,...,61++ B,_,., > 0}, recalling L = {3 € R" :
Biy1 + ...+ Bnyn = 0} and taking the previous results into account, we get

F={0} < MnL¢ linsp(M),

since linspM := M N(-M) ={BeR": 1 +...+ 8, =0,....,81+ ...+ B,_,,, = 0} is the
lineality space of M. Using Lemma we get

M N L ¢ linsp(M) < relint(M°) N L+ = 0.
For the dual cone of M, the following holds:

Iy ln—d+k
—— °
M°=({BeR":((1,...,1,0,....,00",8) > 0,....((1,...,1,0...,0)", B) > 0})
= —pos{(1,...,1,0,...,00",....(1,...,1,0...,0)"}

={freR":zy=...=2, <apyp=...=2, <...<wy,_, . 41=... =2, =0}
=: G,
where G is just a shorthand notation for the (n — d + k)-dimensional face CZ (I1, ..., l,—_a4r) of

the Weyl chambers of type B, in the special case ¢; = 1 and o (i) = i. Taking all equivalences into
consideration, applying Lemma and using |(B2) we get

F={0} relint(G)N Lt =0 = Gn Lt = {0},

which is the special case g; = 1 and o(i) = i of the equivalence (3.7).
Now we return to the general case and apply this equivalence, replacing yi,...,y, by the
VeCtors 1Yy (1), - - - s EnYo(n) for € € {£1}" and o € S,,. It follows

FE (I, ly—ark) = {0} & G N (Le o)t = {0},

where L&U = {ﬁ c R™ . ﬂlelyg(l) + ...+ ,BlnidJrk&lnichyg(lnﬂHk) + ,Blnid+k+1yg(ln7d+k+1) 4+ ...+
/Bnya(n) - 0}'
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Now, it is left to show that
GN(Leo)t ={0} & CE (L, ..., ln—arx) N LT = {0}

holds for every ¢ € {£1}", 0 € S,,. At first, we see that for any rotation ¥ € SOy and linear
subspace U

WUt ={zeR?: Wu,z) =0Vuec U} ={z eR?: (u,971z) =0Vu e U}
:{ﬁxeRd:<u,x> =0Vue U}:ﬁUJ‘
holds true. Moreover, we can see that
Leo = {B€RY: Bor()eo-1()¥1 + - - F Bo1(ty_0ir)Eo2(lnayr)Yln—ain
+ Bo-1(1—arrt DYln—aint1 + - - -+ Bo—1(n)¥n = 0}
={BER" My + ...+ Ymyn =0}

for vi = By1(iyeo-13), 1 € {1, ln—ayk} and v; = Bo-1(3), € {ln—qrx +1,...,n}. Now we choose
the unique g € G(B,,) satisfying 5 = g+, that is

g:(z1,...,20) — (513:0(1), el gk Lol arn)? Tolln—arnt1)s - - s To(n))s
and we get
Leo ={g7 €ER" : my1 + -+ + Ynyn = 0} = gL.
It follows that
GNLt,={0} < GngL"={0}

sgldnLt={0}

& CP (.. i) N LT = {0},
since g~ is defined by

(1‘1, cee ,:Cn) — (60—1(1)330—1(1), cen ’80_1(ln7d+k)x0_1(ln7d+k)’ xﬂ_l(ln7d+k+1)’ ce ,x0_1(n))

and therefore it is easy to check that

gilG = ng(ll, ceey ln—d+k)-
Taking all into consideration this yields

Ffa(ll, SRR) ln—d—f—k) = {0} <~ Cfa(ll, . 7ln—d+k) N LL = {0}7
which completes the proof. ([l

Finally, we are able to prove Theorem |3.3

Proof of Theorem 3.5, Let 1 < k < d and let y1,...,y, satisfy one of the equivalent general position
assumptions |(B1)| or (B2)l We want to evaluate the number of k-faces of F € FZ(y1,...,yn), each

face counted with the multiplicity equal to the number of d-dimensional cones C € F f (Y1, -5 Yn)
containing it. We define Q,,(I) := {e € {£1}" : &, ,,,+1 = ... = &, = 1} and use Proposition

and Proposition [3.8] to obtain

> > Lircey

FE]-—,f(yl,...,yn) Ceff(yl,...,yn)

= Z Lo — L)l (10— Ly gy ) 120 Itk Z Z L(RE (11,0 b —asn)2{0}}

1<h<..<lp_gyx<n e€eQp (1) 0ESK
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= Z Ll — 1)) (n = Lygqp) 120t d Z Z LeeB, (11l —a )L £{0}}

1<h<..<lp_g4x<n e€Qp(l) 0ESR
Note that we applied the equivalence (3.7) from Lemma in the last equation. Now, we use
that each face CZ (11, ..., ln_q1k) is contained in exactly I1!(ly—11)! -+ (n—l,— dpk)12" Itk Weyl

chambers CZ, of type B,,. For this fact, we refer to [12, Proof of Theorem 2.1]. Furthermore L' is

a d-dimensional subspace and in general position with respect to the reflection arrangement A(B,,),
due to|(B2)l Thus, we can apply Theorem or rather Remark replace k by n —d+ k and

get
> Y. luco

FeFE(y1,....yn) CEFE(y1,....yn)

= > X > Lirnns#{op

ee{£l}m 0€Sn FeF,_a1x(CE,)
|
—gdhtt( M) (Bn—d+kn—d+1)+Bn—d+kn—d+3)+...
which completes the proof. O

4. CONICAL TESSELLATIONS AND WEYL CHAMBERS OF TYPE A, 1

4.1. The reflection arrangement and Weyl chambers of type A,,_;. Our calculations for
the Weyl chambers and the Weyl tesselation of type B, suggest that we should be able to prove
similar results for the Weyl chambers of type A,_1. We introduce the necessary notation, which is
taken from [I2, Section 2.5]. In this section, we always assume that n > d + 1.

We call G(A,,—1) the reflection group of type A,_1, which acts on R™ by permuting the coor-
dinates in an arbitrary way. This means that the n! elements of G(B,,) are the linear mappings

U:Rn%an (617"‘76n)’_>(ﬂa(l)a"'uﬁo(ﬂ))?

where 0 € S,.
The closed Weyl chambers of type A,—1 are the cones of the conical tessellation induced by
the hyperplane arrangement A(A,_1) consisting of the hyperplanes given by

It is called the reflection arrangement of type A,—1. Thus, the closed Weyl chambers of type A, _1
are given by

COA = {(51, ... 7/8n> eR": 60-(1) <... S /Bo'(n)}a

where o € S,,. The superscript A indicates the type of the Weyl chamber. Similar to the Bj,-case,
the the Weyl chambers of type A,_1 may equivalently be defined as the reflections gC(A4,-1),
g € G(Ap—1), of the fundamental Weyl chamber of type A,,—1 given by

C(An—l) - {(617"‘7/871) eR": p1 <... < ﬁn}

The k-dimensional faces of the Weyl chambers C4 are determined by the collection of indices
1<l <...<lp_1 <n—1 and have the form

CA(ly, ..., lp—1) (4.2)
={BER": Byy = = Botty) < Boti+1) = Bott) < -+ S Boty_141) = -+ = Bom) }+
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For this fact, we refer to [I2, Section 2.7]. Thus, the number of k-faces of C4 is given by #F(C4) =
-1

(:20)-

4.2. Weyl tessellation of type A,,_;1. The definition of the Weyl tessellation of type A,_1 is

somewhat simpler than for tessellations of type B,,.

Definition 4.1. (Weyl tessellation of type A, 1) Let y1,...,y, € R? and let the hyperplane
arrangement A4 (yy, ..., y,) consist of the hyperplanes given by

(y; — yj)L, 1<i<ji<n. (4.3)

Then the Weyl tessellation of type A,_1 or Weyl mosaic of type A,_1 is defined as the conical
tessellation generated by AA(yl, ..., Yn) and is denoted by WA(yl, .y Yn). We denote the number
of cones in WA(y1,...,yn) by

DA(n,d) == #WAy1, ..., yn).

Similarly, the set of k-faces of WA(y1, ..., yn) is denoted by ]-",?(yl, ..y Yn), where ]-"j(yl, ceyYn) =
WAL, yn)-

We will show in Corollary that D4(n,d) is constant under certain mild conditions on
Yy, Yn. The cones in WA(y1,...,yn) are the cones different from {0} of the form

D? = {’U S R?: <v7y0'(1)> << <vvycr(n)>}7 o € Sp.

Again, we will refer to these cones as Weyl cones of type A, or just Weyl cones.

Since the definition of the Weyl chambers and Weyl cones of type A,_1 is similar and even
somewhat simpler than that of type B, it suggests that we can prove similar results on the number
of Weyl cones and Weyl faces of type A,_1. We will state the results but will not give each proof
in full detail. At first, we need assumptions on y1,...,y, similar to and

Theorem 4.2. For arbitrary yi,...,yn € R? the following condz’tz’ons and are equivalent:
(A1) For every o € S, the vectors Yo(1) — Yo(2)s Yo(2) — Yo(3)s - - - s Yo(n—1) — Yo(n) aT€ in general
position.
(A2) The linear subspace L has dimension d and is in general position with respect to the
hyperplane arrangement A(A,—1), where L := {8 € R" : f1y1 + -+ + Bnyn = 0}.

We will prove this theorem in Section @ Note that the general position assumption |(B1)
implies [(A1)| and |(B2)|implies |(A2), since A(A,—1) € A(By,). The analogue to Theorem [3.3|is as
follows.

Theorem 4.3. Let yq,...,y, € R? satisfy one of the equivalent general position assumptions
or|{(A2). For1 <k <d, we have

Z Z 1 _ 9 n—1 n! n—d+k 4 n—d+k .
e = Nag—k)m—d+r)\|n—d+1]  |n-d+3] " )
Recall that [Z] are the Stirling numbers of first kind defined by the formula
t(t e —-1) = .
(t+1) (t+n—1) ZMt (4.4)
k=1
and, by convention, [}}] =0 for k ¢ {1,...n}.
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We postpone the proof Theorem [£.3]to Section[4.4] Again, we are able to compute the number
of cones in the Weyl tessellation WA(y1, ..., y,) of type A,_1 under one of the conditions or

(A2)

Corollary 4.4. Let yi, ..., y, € R? satisfy one of the equivalent general position assumptions
or|{(A2). Then the number of cones in the Weyl mosaic WA(yl, .oy Yn) of type Ap_q is given by

DA(n,d):2<[n_Z+1] + [n_zﬂ} +>

Proof. This follows from Theorem [4.3]in the special case k = d. O

Note that we may rewrite the claim of Theorem [£.3] as follows:

n—1 n! A

FeF{(y1,yn) CEF (Y1, yn)
Again, we can state the probabilistic version of Theorem 4.3

Corollary 4.5. Let y1,...,y, € R? satisfy one of the equivalent general position assumptions
07‘. Let Q4 be sampled randomly and uniformly among the DA(n,d) cones of WA(y1,. .., yn).
Then the expected number of k-dimensional faces of Q* is given by

1
A
EMQY = pamgy 2= >, Lrcoy
’ CEFj(ylw-yyn) FE]:;?(y17~--,yn)
_(n—1 n! DAn —d+k, k)
S \d—k)(n—d+Ek) DA(n,d)

4.3. Faces of the Weyl tessellation of type A,_1. For y1,...,y, € R? a collection of indices
1<h<...<lp—gtk—1 <n—1and o € S, we define

FA(L, .o ly—gii1) (4.5)
={0ERY: fouy = = fou)) < fothat) == Folts) S - < folln ainat) == fom)}

where the functionals f; are defined by f; = fi(v) := (v,y;), i = 1,...,n. These cones will, similarly
to the B,-case, represent the k-faces of the Weyl tessellation of type A,_1. The next result is an
analogue to Propositions and Therefore, we omit the proof.

Proposition 4.6. Let 1 < k < d and let y1,...,yn € R? satisfy the general position assumption
(A1), Then it holds:

(i) For every F € f,f(yl, ..., Yn) there are a collection of indices 1 <1y < ... < lp_gik—1 <
n —1 and a permutation o € Sy, such that F = FA(l1, ..., lp_aik—1)-
(ZZ) Let 1 <1 < ... < ln—d+k—1 <n—-1lando € S,. If F;l(ll,...,ln_d_;,_k_l) 75 {0}, then
Ff(ll) s 7ln—d+k—1) € ]:1;4(?/1, s 7yn)
(iii) BEvery k-face FA(l1, ... ln—ask—1) € Fi-(Y1,--.,Yn) is contained in ezactly

lll(lg - ll)' tae (n — ln—d+k—1)!

cones C € FiHy1, ..., Yn).
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Theorem 4.7. Let yi,...,y, satisfy one of the equivalent general position assumptions |[(A1) or

((A2), Then the number of k-faces in the Weyl mosaic of type A,—_1 is given by
A n A
N n) — D - ’ ’
#Fie (Y15 -+ Yn) {n_d+k} (n—d+k,k)
forall k€ {1,...,d}.

Proof. This is proven similar to Theorem Due to Proposition (i), each k-face of ' €
]:,;4 (y1,--.,Yn) is contained in a subspace of the form

L(l,O’) = {UERd:fG(I):"':fa(ll)""afa(ln dtk—1+1) fa }

for suitable 1 <) < ... <lp—g+k—1 < n—1and o € §,. There are a total of {n—d+k} distinct
subspaces of the given form, since these are in one-to-one correspondence with partitions of the set
{1,...,n} into n — d 4+ k non-empty sets.

Now, it is left to prove that every subspace L(I, o) contains exactly DA (n —d+ k, k) k-faces of
WAy1,. .., yn). Again, consider only the case L := L(I,0) for o(i) =i, i =1,...,n. For this, we
need to show that Iy (y, ), ..., (v, _, he s (yn) satlsfy the general posmon assurnptlon m
in L, which is shown in the same way as in Theorem This completes the proof.

4.4. Proof of Theorem The proof of Theorem [4.3]is similar to that of Theorem Again,
the main ingredient is a result on the number of k-faces of Weyl chambers of type A, _1 intersecting
a linear subspace in a trivial way. It was proven in [I2] Theorem 2.8] in a probabilistic version, and
we will state it as follows.

Theorem 4.8. Let Ly € G(n,d) be a deterministic d-dimensional subspace of R™ in general position
with respect to the reflection arrangement A(A,—1). Then

1 ~2nlfn—1 k k

2. Z {F”Ld:{‘)}}_ﬂ k—1)\In—d=1] T |ln—a-3 "
o€Sn FeFi(

where the [k] s are deﬁned as in Theorem .

Recall that the cones C4 := {(B1,...,5,) € R™ : Bo1) < --- < Bon)} denote the Weyl
chambers of type A,,_; as introduced in Section [4.1]

Remark 4.9. Similar to the case of B,,, we can easily derive the analogous result for the faces that
intersect the subspace Ly in a non-trivial way. By taking ¢ = £1 in (4.4]) we get

LI L IO 2 O L n!
) gl T =g N
It follows that under the assumptions of Theorem [£.§]

-1
Z Z LirnL.#(oyy =7 <n > Z Z Il{}«“de:{o}}

0ES, FEF,L(CA) o€Sn FeF(

(L)

n!(n— A
_k:'<k‘ >D (k,n—d+k),

where we used in the first step that the number of Weyl chambers is n! and each chamber has (Zj)
k-faces.
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The following lemma is an analogue to Lemma Recall the notation F2A(ly, ..., ly—qir_1)
for the k-faces of the Weyl mosaic of type A,_; from (4.5, and the notation CA(ly,...,lx_1) for
the k-faces of the Weyl chambers of type A,,—1 in R" from (4.2)).

Lemma 4.10. Let 1 <k < d and let yi,...,y, € R? satisfy one of the equivalent general position
assumptions|(A1) or|(A2) For L ={8 € R": fiy1 + ...+ Buyn = 0} the equivalence

FMlu, .o k1) = {0} & C2(l, -+ -y ln—gik—1) N L = {0}
holds true for oll 1 <l < ... <lp_gqix—1 <n—1ando € S,.

Proof. The proof is similar to that of Lemma [3.15] and we will not explain each argument in full
detail. Let 1 < I} < ... < lp—g+k—1 < n — 1. We start with the special case o(i) = i for all
i€ {l,...,n}. Define
F={veR': fi=..=fu<furi=.=fu < < fip g1 == fuls
where the f;’s are the functionals defined by f; = fi(v) := (v, y;). Then, we have
F={0}& F°NlinF =1linF
- POS{H(yll - yll-l-l)) cevy H(yln,d+k,1 - yln—d+k—1+1)} = 111’1 F7

where II denotes the orthogonal projection onto lin F'. Using Lemma [3.12] and the general position
assumption this is equivalent to the fact that there are oy ,...q, > 0 that do not
vanish simultaneously and satisfy

—d+k—1

0= H(all (yh - yl1+1) +.o.o+ aln—d+k—1(yln—d+k—l - yln—d+k—1+1)>'

Since
(lin )" =1n{ys — y2, - Y1 — Yoo Yind1 — Yia42s - - Yio—1 — Yios
s Yl arhr Ll ~ Yl gin 142> Yn—1 — Yn})
the above is equivalent to the existence of a vector (a, ..., a,—1) € R*! where oy, . . ., A gy 2

0 do not vanish simultaneously, such that
0=ai(y1 —y2) +...+ an-1(Un-1— ¥n).
After regrouping the terms, the condition takes the form
O=ay1+ (a2 —a)y2 + ...+ (-1 — ¥n—2)Yn—1 + (—n—1)Yn.

By setting 81 := a1, 8; :=a; —aj—1,2<i<n—1and 3, := —ap—1=—(B1+ ...+ Bn_-1), this is
equivalent to the fact that there exists a vector (81, ..., 3,) € R" satisfying 81 + ...+ 5, = 0 and

i+ +B8, 20,80+ .+ B, >0, 810+ + B,y 20,

where at least one inequality is strict, such that Siy1 + ... + Bryn = 0. Similarly to the proof of

Lemma|3.15, we define M := {8 € R" : B1+...+8;;, >0,..., 814+ +Bi,_ 4 = 0,81+... 48, =
0} and obtain

F={0} < LNM ¢linsp(M) < relint(M°) N L+ = 0,

where
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=—pos{(1,...,1,0,...,00", ..., (1,...,1,0...,00", (1,..., )T, (-1,--- = )T}
:{xeRd:xlz...:xll <app=...=x, <...<@T, 41 = ... = Tn}
=: G.

Note that G is just a shorthand notation for the k-face D2 (I, . .., l,_q4x_1) of the Weyl tessellation
of type A,_1, in the special case o(i) = i. Using Lemma and [(A2)| we get

F ={0} & relint(G)N L+ =0 < G L+ = {0}, (4.6)

which is the special case o(i) = i of Lemma The general case is obtained in the same way as

in the proof of Lemma We can replace y1,...,Yn DY Ys(1)s - - -1 Yo(n) in (4.6) for o € S, and
get

FAly, . lp—aik1) = {0} & G N (Ly)* = {0},
where Ly := {8 € R" : 81951) + - .- + Ba¥Yo(n) = 0}. In the same way, we are able to derive that
GN(Ly)t={0} g tGNLt ={0} & CAl, ..., ln—gix—1) N Lt = {0}
for the transformation g = g, € G(A,,_1), and thus, g~! = g, 1. O

Proof of Theorem[{.3 Let 1 < k < d let y1,...,y, € R? satisfy one of the equivalent general
position assumptions (A1)l or The proof follows that of Theorem [3.3] Using Proposition
and Lemma [4.10, we get

> > Lircey

Féff(yl,...,yn) Ceff(yh...,yn)

= > W2 = 1) (0= Ineask=1)! Y LAt e )20}
1<h<.<lp—g+r—1<n—1 €Sy

= > Bl = 1) (0= bnmasi=1)! D LGy )AL £ON
1<h<.<lp—g+k—1<n—1 €S,

=, > Lirnns£{op

0€Sn FeF,_aik(CE,)

(e (e e e )

which completes the proof. Here, we used that each face Cf(ll, eeoyln_gik—1) is contained in
exactly I1!(la — 11)! -+ (n — ly_qyp—1)! Weyl chambers C4. For this fact, we refer to [I2, Proof of
Theorem 2.8]. Since [(A2)|is satisfied, we were able to apply Theorem [4.8 O

5. EXPECTATIONS FOR RANDOM WEYL CONES

In this section, we will formally define the random Weyl cones DZ and D7, whose definitions
was already sketched in the introduction. Furthermore, we want to evaluate the expected size
functionals Yy j of D and D7, like Hug and Schneider did in [5, Theorem 4.1] for the Random
Schlfli cone, and thus, derive results for the expected geometric functionals, which we introduced
in Section

5.1. Random Weyl cones. In this Section, we will define the random cones chosen from the Weyl
tessellations we introduced in the Sections [3] and [l
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Type B,,. At first, we consider the B,-case.

Definition 5.1 (Random Weyl cone of type B,,). Let Yi,...,Y, be random vectors in R¢ that
satisfy one of the equivalent general position assumptions or a.s. Then the random
Weyl cone DE of type B, is obtained as follows: Among the cones of the random Weyl tessellation
WHB(Y1,...,Y,,) we pick one uniformly at random.

Due to Corollary [3.4] the number of Weyl cones in the induced tessellation WB(Y7,...,Y},) is
a.s. constant and the distribution of D2 is therefore given by

P(DB € B) — / LS 15O Py, ) (5.1)

n DB(n,d
(R?) (n’ )Ceff(yl,...7yn)

for B € B(PC?), where Py here and from now on denotes the joint probability law of (Y3,...,Y;)

on (RY)™. The following lemma states that under some mild assumptions on the distribution of
(Y1,...,Y,) the general position assumptions (B1)| and (B2)| are a.s. satisfied. We will postpone
the proof to Section [6.2

Lemma 5.2. Let ju be a o-finite Borel measure on R that assigns measure zero to each affine
hyperplane, i.e. each (d — 1)-dimensional affine subspace. Furthermore, let Y1,...,Y, be random
vectors in RY having a joint p™-density on (RN)™. Then Y,...,Y, satisfy the general position

assumptions|(B1) and|(B2) almost surely.

Remark 5.3. Special cases of the measure ; are the Lebesgue measure X on R? and the spherical
Lebesgue measure o4_1 on S%!, since both assign measure zero to affine hyperplanes. Thus, in
the interesting case where Y,...,Y, have a joint (A¢)"- or a joint (o4_;)"-density, the general

position assumptions [(B1)| and |(B2)| are a.s. satisfied. This includes the case where Yi,...,Y, are
independent and uniformly distributed on the unit sphere S 1.

If we additionally assume Y7,...,Y,, to be symmetrically exchangeable, that is

d
(}/17 ce. 7Yn) — (81Ya'(1)5 LI agnYo(n))

for every e € {+1}" and ¢ € S,,, we can find an equivalent Definition of DZ. At first, we need the
following proposition, which is an analogue to Theorem 8.2.1 in [I6], going back to the results of
Wendel in [20].

Proposition 5.4. Let Yi,...,Y, be random vectors in RY, which are symmetrically exchangeable
and satisfy one of the equivalent general position assumptions|(B1) or a.s. Then
DB (n,d)

ALY

Proof. Since the random vector (Y7i,...,Y,) is symmetrically exchangeable, we get

i) =P{v €R: (1,Y1) <... < (0,Y) <0} #{0}) =

= /@w)n L{{verd:(wy) <. <(vga) <0y£{01} Py (d(Y1, -+ 9n))

1
- / ayn 270! Z ]l{Dga?é{O}} ]P)Y(d(yla ceey yn))
e A S Ty U

_ D(n.d)
- ol
We used Corollary in last equation, which holds for Py-a.e. (y1,...,yn). O
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Proposition 5.5. Let Yi,...,Y, be random vectors in RY, which are symmetrically exchangeable

satisfy one of the equivalent general position assumptions|(B1) or a.s. Let G be defined as the
random cone whose distribution is that of {v € R%: (v,Y]) < --- < (v,Yy,) < 0} conditioned on the
event that {v € R : (v,Y]) <--- < (v,Y,,) <0} is different from {0}. Then

G <pB.
Proof. Thus, G is a random cone with distribution given by P(G = {0}) = 0 and for B € B(PC%\
{{0}}) by

PG € B) = 1 B({v e B : (0. V) < - < (0.Y,) <0} € B)

n

= D) oy TPV SR 0 S S () S O) B (A, )
2"n) 1
= DB(n.d) /(Rd)n st 2. 1e(DE)Py(d(y, )

(e,0)E{£1}" xS,

1
- [ e 15(C) By (d(y - o)
n DB n,d Z
(BY) ( ) CE]:dB(yl,...,yn)
= P(D? € B).
Note that we used the symmetrical exchangeability of (Y7,...,Y},). O

Similar to the Cover-Efron cone in [5], we may define the cone, which is dual to DZ in distri-
bution.

Definition 5.6. Let Y7,...,Y, be random vectors in R? which are symmetrically exchangeable

and satisfy one of the equivalent general position assumptions|(B1)[or|(B2)l Then the random cone
Cf is defined as the cone whose distribution is that of pos{Y; — Ya,...,Y,_1 — Y, ¥, } conditioned
on the event that pos{Y; — Ya,...,Y, 1 — Y;,Y,} is not equal to R%.

Proposition 5.7. Let Yi,...,Y, be random vectors in RY, which are symmetrically exchangeable
and satisfy one of the equivalent general position assumptions or|{(B2) a.s. Then

¢l £ (D7)".
Proof. The distribution of C? satisfies P(C? = R?) = 0 = P(D? = {0}) = ]P’((Df)o = RY).
Moreover, for B € B(PC?\ {{0}}), we have
P(pOS{Yl — YQ, ey Y, 1 — Yn, Yn} S B)
P(pOS{Yl - Y27 s 7YTL—1 - Yn7 Yn} 7& Rd)

1
=@ /(Rd) I(pos{y1, —¥2,- -, Yn—1 — Yn- Un}) Py (d(y1, .- -, yn))
an "

PP e B) =

2"n! 1
= DB (TL, d) /(Rd)n onp Z Ip ( pos{glyo(l) —&2Yo(2)y - - - 7€nya'(n)})
(e,0)ESp x{£1}m

X PY(d(yla o 7yn))

- /(Rd)n DB(ln,d) Z ]lB((Dfa)o) Py (d(y1,---,yn))

(e,0)€Sp x{£1}"
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CeFB (y1,5yn)
~P((DE) < B),
where we used (2.7)) and the symmetric exchangeability. The last equation follows from (5.1). O

Type A,_1. Now, we introduce the analogous random cones chosen from the Weyl tessellation of
type A,_1, which we defined in Section

Definition 5.8 (Random Weyl cone of type A, _1). Let Y7,...,Y;, be random vectors in R? that
satisfy one of the equivalent general position assumptions or a.s. Then the random Weyl
cone D' of type A,_1 is obtained as follows: Among the cones of the random Weyl tessellation
WA(Y1,...,Y,) we pick one uniformly at random.

Due to Corollary the number of Weyl cones in the induced tessellation WA(Y7,...,Y;,) is
a.s. constant. Then, the distribution of D7 is given by

1
P(D,‘? S B) = / . m Z HB(C) ]P)Y(d(yla cee 7yn)) (52)
(R T CEFL (Y yn)

for B € B(PC%). The following lemma states that the same mild conditions on the distribution of

(Y1,...,Y,) imply that |(Al) and [(A2)| are a.s. satisfied.

Lemma 5.9. Let p be a o-finite Borel measure on R? that assigns measure zero to each affine

hyperplane. Furthermore, let Y1,...,Y, be random wvectors in R? having a joint p™-density on

(RY™. Then Yi,...,Y, satisfy the general position assumptions|(A1) and|(A2) almost surely.

Proof. This follows from Lemma since [(B1)| implies [(A1)| and [(B2)| implies [(A2) O
If we additionally assume Y7,...,Y,, to be exchangeable, that is

d
(Y1,...,Y,) = (Ya(l)a s 7Y0'(7’Z))
for every o € S,,, we can provide the following equivalent construction of D;?.

Proposition 5.10. Let Y, ...,Y, be random vectors in R%, which are exchangeable and satisfy one
of the equivalent general position assumptions or a.s. Let G be defined as the random
cone whose distribution is that of {v € R?: (v,Y]) < --- < (v,Yy)} conditioned on the event that
{weR: (v,Y7) < - < (v,Yy)} is different from {0}. Then,

g <A

The equivalence is proven in the same way as Proposition Note that under the assumptions
of Proposition [5.10| we have

DA(n, d)
n!

P({veRY: (0, Y1) <...< (0,Y,)} # {0}) =
Again, we may define the cone, which is dual to D7 in distribution.

Definition 5.11. Let Y;,...,Y,, be random vectors in R?, which are exchangeable and satisfy one
of the equivalent general position assumptions or a.s. Then the random cone CT‘? is
defined as the cone whose distribution is that of pos{Y; — Ya,...,Y,_1 — ¥,,} conditioned on the
event that pos{Y; — Ys,...,Y,,_1 — Y,,} it is not equal to R%.
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Proposition 5.12. Let Yi,...,Y, be random vectors in R?, which are exchangeable and satisfy
one of the equivalent general position assumptions|(A1) or a.s. Then

Ad A\°

cA L (DAY,
Proof. The proof is similar to the proof of Proposition and is left to the reader. O
5.2. Expected size functionals of random Weyl cones. In this section, we want to prove our
main results on the expected size functionals of the random Weyl cones, which we already stated

in the introduction as Theorem [I.3] and Theorem Again, we divide this section into the results
for type B, and the results for type A,_1.

Type B,,. At first, we need to state a result on the faces of the Weyl mosaic, induced in a linear
subspace. For this, we introduce the following notation. Let U C R be a k-dimensional linear
subspace in R?. Recall from Sectionthat the hyperplane arrangement induced by A (y1, ..., yn)
in U is defined as A®|y(y1,...,yn) = {HNU : H € AB(y1,...,yn)}. The induced arrangement
ABlu(y1,. .., yn) is explicitly given by the following hyperplanes in U:

1 .
(HU(yi) + HU(yj)) NU, 1<i<j<n,
1 .
(HU(yi) - HU(yj)) NnNU, 1<i<j<n,
My (y)tNU, 1<i<n.
By definition, the induced Weyl tessellation in U, which we will denote by W|y(y1,. .., yn),
consists of the cones of the conical tessellation in U generated by the hyperplane arrangement

AB|u(y1,- -+, yn). We denote the set of j-faces of WE|(y1,...,yn) by Ff\U(yl, ..., yn). To state
an explicit representation of these faces, we define the cones

ng’U(ll’ e ln—k—f—j) = ng(ll, ey ln—k+j) NnU,

where e € {£1}", 0 € S,, 1 <j<k<d,and1 <[} <... <l py; <n. Let f] be the linear
functionals on U given by f! = f/(v) := (v,IIy(y;)) for i = 1,...,n. Since

fitv) = (i) = (v, Iy (i) + (v, 9 — Mo (y:)) = (0, Ty () = fi(v)

holds for all v € U, we have the explicit representation

ng|U(l17 e 7ln—k+j) == {’U ceU: Elf(;(l) =...= Elller(ll) S 611+1f;(l1+1) =...= €l2f;(l2)
<L gt o s t) = = s P ey (5:3)
/ _ _ g —
< o(lp—pgj+1) = 00 fa(n) - 0}’

We shall see below that if not {0}, the cones F£J|U(ll, .oy ln—g4j) are the j-faces of the induced
Weyl mosaic WB|y (1, ..., yn).

Lemma 5.13. Let 1 < j < k < d and let yy,...,yn € R? satisfy the general position assumption
(B1). Furthermore, let U € G(d, k) be in general position with respect to the hyperplane arrange-
ment AP (y1,...,yn). Then the following holds:
i) For every j-face F; € FB|y(y1,...,yn) of the tessellation WE|y(y1, ..., yn) there is a unique
J J
(d—k+j)-face F € ffﬁkﬂ(yl, ...y Yn) containing F; and satisfying F; = FNU.
(ii) If F € f£k+j(y1, .oy yn) and FNU # {0}, then FNU € Ff!U(yl, cey Yn)-
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Proof. At first, we show that the projections I (y1), ...,y (yy,) satisfy the general position as-
sumption [(B1)| Take some ¢ € {+1}" and o € §,,. Condition (B1) implies that

(1Yo (1) — €2Yo(2) s - - -+ (En—1Yo(n-1) — En¥o(m)) s (En¥o(n)) ™

are in general position. Since U is in general position with respect to the arrangement A (y1, ..., y,)
containing these hyperplanes, we have that the following hyperplanes in U

un (glya(l) - 52y0(2))L7 NAN (snflya(n—l) - 5nya(n))L? un (Z_:nya(n))L

are in general position in U. Since U N (z+) = (I (2))* NU for every z € RY, it follows that

1 n n
(e10u (o)) — 2l (Yo(2)))” N U, - (En11y (Yo (n-1)) — enllu Wo@m)) ™ N U, (enly (Yom)))” NU

are in general position in U. Equivalently, the vectors

e1lly (Yo (1)) — €2y Wo2))s - - 5 En 10U (Wo(n-1)) — €nllt (Yo ), €nllt (Yo(n))

are in general position in U. This means that, under the given assumptions, is satisfied for
HU(yl)a ce 7HU(yn)'

Now, we prove part (i). Let F} € Ff\U(yl, ...yYn). We can apply Proposition (1) in the
ambient linear subspace U to the projections Iy (y1), ..., Hy(y,). It follows from this proposition
and the representation that there are 1 <1 <... <[, p4; <nande € {£1}", 0 € S, such
that

Fj = F£U|U(l17 .. wln—k—i-j) = ng(ll, .. aln—k+j) NnU.

Now, we define F' := F(fa(ll,...,ln_kﬂ). Note that F' # {0} because F; # {0}. Since |(B1)|is
satisfied for y1,...,yn, Proposition (ii) yields that F' € f£k+j(y1, oy Yn). It follows from the
construction that F NU = Fj.

The uniqueness of F &€ }“dB_kJrj (y1,..-,yn) such that F N U = F} follows from our general
position assumptions or rather from the fact that the projections Iy (y1), ...,y (y,) satisfy the
assumption in U. We will sketch the idea of the proof. Suppose there is another face G €
f£k+j(y1, ...,yn) with GNU = F;. By Proposition (1) this means that there are 1 < i3 <
. <lip—pyj <nand d € {£1}", T € S,, such that G = Ffﬂ(il, oy in—kyj). It follows that

Ffﬂ(il, ce ain—k—&-j) NU = ng(lla ce aln—k+j) NU = Fj.
Consequently,

Ffﬂ|U(i1, o kgg) = Ffo(ll, cosln—ktj)|lu = Fj # {0}

Applying Proposition in the ambient space U to the projected vectors Iy (y1), ..., Hy(yy), we
get € =9, 0 =, and [; = i; for all admissible j. But this implies that F' = G. This proves (i).

Now we will prove part (ii). Suppose F € Ff_kﬂ (y1,...,yn) satisfying F N U # {0}. Propo-
sition (1) implies that there are 1 <} < ... < lp_py; < nand e € {£1}", 0 € Sy, such that
F=F2 (l,...,ln_t;). As we have seen in above, it follows

{0} #FNU=FE|v(la,... . ln—ktj)-

Since My (y1), - - ., My (yn) satisfy the condition [[BI)|in U, we can apply Proposition [3.6{ii) in the
linear subspace U, which yields that F N U is j-face of the induced Weyl mosaic W2|y(y1,. . ., yn)-
O
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The next theorem is our main result and gives a formula for the expected size functionals Y} ;
of a random Weyl cone DZ. We stated it as Theorem in the introduction and will restate it
here.

Theorem 5.14. Let Yi,...,Y, be random vectors in R that satisfy one of the equivalent general
position assumptions 07’ a.s. Let DB be a random Weyl cone of type B, in R? as defined

in Section[5.1. Then
k—j( mn B ..
d—k+j,d—k\&n 2DB(n,d) (n—k;—i—j)!

holds for all1 < j <k <d.

(5.4)

Proof. Suppose 1 < j < k < d. Let Py be the joint probability law of (Y1,...,Y;) on (R%)". Using
the definition of the size functional and (5.1, we get

EYy ryjh—(DR)=E > Us(F)
FeFa 11;(DE)

B /(]Rd)" DB(lnd) Z Z Ua—(F) Py (d(y1, -, yn))

CG}—dB(yl,.,.,yn) Fe}—dBkarj(C)

In order to apply the definition of the quermassintegral Uy j we need to verify that the
(d—k+j)-faces F € ffﬁkﬂ. (y1,--.,Yn) are a.s. no linear subspaces. Proposition (1) yields that
every such (d — k + j)-face can be represented in the form F' = ng(ll, -y ln—k4;) for suitable
cee{l}", oS, and 1 <l < ... <lh_p4; <1 (see (3.5)). As we have seen several times before,
assumption implies that the linear hull of F'is a (d — k + j)-dimensional subspace and is given
by

Li-kyj ={veR re1fory = . = €t fo)r- iy i1 oty sy tl) = - - = Enfo(m) = O}
Note that the assumptions n > d and 1 < j < k < d imply that n > k— j, and thus, n—k+j > 1.
Therefore, there are at least two groups of equations in the defining condition of lin F' (In the special
case l; = n, the last group of equations is empty, but the following argument still holds). Suppose
that F' is a linear subspace, then we have ng(ll, oo sln—k4j) = Lg—k+j. Due to the form of the
representation of F', this implies

Lg ryj C (é?zlya(ll) - Ezl+1ya(zl+1))

and therefore even

il
Li ks C (5l1yo(l1) - 511+lya(ll+1))

Then, we have

1
L1 0V (€0Yo@y) — Ei+1Yo(m41)) = La—ktj

but assumption implies that the left-hand side is a subspace of dimension d — k + j — 1, which
is a contradiction. Note that in the case [ = n, we may replace €;,Yy(1,) — €1, 41Y0 (1,41) PY €1Yo(11)
in the argument above, which leads to the same result.

Now, we can apply and then interchange the integral and the sums. This yields

1
B
EYd—kH,k—j(Dn) = m /(R Z Z ]l{FgC}

d\n
V" FeFB o (1vin) CEFE (1)
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x /G(d L rrvfoyy ve(dAU) Py (d(y1, - - - yn))

2DB /Rd)n/ Lirnuz{oy Z Lircey

@K perp, (y1 ..... vn) CEFB (Yt vign)
X l/k(dU) ]Py(d(yl,. . ,yn)) (55)

Our goal is to show that the sums inside the integrals are constant for vg-almost every U € G(d, k)
and Py-almost every (yi,...,%n) € (R?)". Using Lemma we obtain

> Lirrvzfoy D, Lipcoy = > > lip,cpy

FEFP i (y1,yn) CEFB(y1,..yn) FieFPlu(iyyn) DEFZ|u(y1ssyn)
(5.6)

for almost every U € G(d, k) and Py-almost every (yi,...,yn). Indeed, by Lemma there is a
one-to-one correspondence between the pairs F' C C such that F'NU # {0} and the pairs F; C D
as above. Note that Lemma was applicable, since vg-almost every U € G(d, k) is in general
position with respect to the arrangement A5 (Y1,--.,Yn), due to Remark and almost every
set of vectors (y1,...,yn) satisfies the general position assumption |(B1)

Applying Theorem to the ambient linear subspace U instead of R¢ and the projections
My (y1), ..., Hy(yy) instead of y, ..., y,, we obtain

|
1¢p, = ok=J " LDB — 1, 7)- .

F-e]—'.B|U(y1,... Yn) DE]'—B|U(yl cesYn)

To see that Theorem [3.3]is applicable, note that vg-a.e. U is in general position with respect to the
arrangement AZ(yy, ..., y,) and hence the projections Iy (y1), . . ., Iy (y,) satisfy assumptlonm
as we have shown in the proof of Lemma b.13

Inserting (5.7]) and ( into , we arrive at
1 S n n!
EY, DB — .ok —— _DBn—k+jj
d—k+j, k— J( ) 2DB( d) <k—]> (n—k’—l—j)‘ ( +.77.7);

which completes the proof. ]

This theorem yields the expected number of faces, the expected quermassintegral and the
expected intrinsic volumes of a random Weyl cone D , as mentioned in the introduction. We
will restate the results here. Under the additional assumption that Yi,...,Y,, are symmetrically

exchangeable, we obtain the same properties for the cone CZ defined in Definition which is
dual to D in distribution.

Corollary 5.15. Let Yi,...,Y, be random vectors in R that satisfy 07" a.s. For j =

., d, the expected number of j-faces of the random Weyl cone DF of type B,, is given by
2d7j(dﬁj)DB(n_d+j7j) n!

DEB(n,d) (n—d+j)
If, additionally, we assume Yi,...,Y, to be symmetrically exchangeable, the expected number of
j-faces of CB for j =0,...,d —1 is given by
2(7)DP(n—j,d—j) nl
DP(md) ()

E f;(DF) = (5.8)

E f;(CF) =



CONICAL TESSELLATIONS ASSOCIATED WITH WEYL CHAMBERS 37

Note that (5.8)) coincides with the formula derived in Corollary which is not surprising.

Proof. Every j-face F € ]-"jB (Y1,...,Y,) is not a linear subspace a.s. Thus, the j-faces of D2 are
a.s. not linear subspaces. Then we can use (2.6) and get

E f;(DF) = 2EY;,o(DE).
Using (5.4) with k = d, yields the desired formula.

The second property follows from E f;(CZ?) = E f;((DF)°) and the 1:1-correspondence between
the j-faces of a cone and the (d — j)-faces of its dual cone. O

Corollary 5.16. Let Y1,...,Y, be random vectors in R? that satisfy or a.s. Then, the
expected conical quermassintegrals of the random Weyl cone DB are given by

D%(n,d - j)
2DB(n,d)
forj=0,...,d—1. ForCB and j =1,...,d, it is given by
DB(na d) B DB(na])
2DB(n,d)
if we additionally assume that Y1,...,Y, are symmetrically exchangeable.

Proof. Replacing k and j in (5.4)) both by d — j, we obtain

EU;(Df) =

EU;(CP) =

DB(n,d—j
EU;(Dy) =EYy (D7) =EY4,4-(a-5(Dy) = 21§B(n 7 )

Using (2.3)) and the fact that CZ is almost surely pointed, we get
D"(n,d) — D"(n, j)

1
EU,(CF) = 5 —EUs(DE) = EU;(CF) =

2DB(n,d)
O
Corollary 5.17. Let Y7,...,Y, be random vectors in R? that satisfy 07’ a.s. For j =
1,...,d, the expected conical intrinsic volumes of the random Weyl cone Dy’ are given by
B(n,n —d+ j)
Ev;(DB) = —

If we additionally assume Y1,...,Y, to be symmetrically exchangeable, then for j =0,...,d—1 the
expected intrinsic volumes for CE are given by
B(n,n — j)
Ev;(C}) = —p—=~
UJ( n) DB(TL, d)
and it holds that
DB(n,d) — DB(n,d — 1)
2DB(n,d)

Proof. We use the linear relation between the conical quermassintegrals and conical intrinsic vol-
umes given in (2.4). For j € {1,...,d — 2}, we obtain

DB(n,d—j+1)—DB(n,d—j—1) Bn,n—d+j

Evo(DF) =Eve(Cl) =
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For j=d—1and j = d, we get

Bn n,n —
Evi-1(Dy) = EUs2(Dy) = 2%3((7;,23) - Bl(?é (n,d)l)

and
DB(n,1) 1 B(n,n)

Evg(DB) =EU; 1(DP) = 2DB(n,d) DB(n,d) DB(n,d)

In the case j = 0, we get
DB(n,d) — DB(n,d — 1)
2DB(n,d)
The expected intrinsic volumes for CZ then follow from (2.5). U

Evo(Dy) =Ewa(Cy) = EUs1(CY) =

In each of these corollaries we see a great similarity to the respective results on the expected
geometric functionals of a random Schlfli cone and the random Cover-Efron cone, which Hug and
Schneider stated in [5, Section 4]. Note that v4(C) = 04-1(C)/wq, thus the expected solid angle «
of a random Weyl cone D2 is the special case j = d of Corollary El and is given by

1
Eo(D}}) = Eva(Dy)) = DB(n.d)’

Type A,_1. Similarly, we obtain the expected size functionals of random Weyl cone of type A,_1.
This is an analogue to Theorem

Theorem 5.18. Let Yy,...,Y, be random vectors in R? that satisfy one of the equivalent general
postition assumptions m or|(A2) a.s. Let D2 be a random Weyl cone of type A,_1 as defined
in Section[5.1. Then

(h))DAn—k+j,4)  nl
2DA(n, d) (n—Fk+j)!

EYy kijak(D) = (5.9)

holds for all 1 < j <k <d.

Proof. This is proven in the same way as Theorem [5.14] and uses the corresponding results for the
Weyl tessellation of type A,_1. O

Thus, we can formulate the same corollaries for the random Weyl cone of type A,—1. We omit
the proofs, since they are analogous to the B,-case. Recall that the random cone C;? is defined
in Definition and is dual in distribution to D;? if we additionally assume Y7,...,Y, to be
exchangeable.

Corollary 5.19. Let Yi,...,Y, be random vectors in R? that satisfy or a.s. For j =
1,...,d, the expected number of j-faces of the random Weyl cone D;? of type An_1 is given by
(i)DAn—d+4.5)

2DA(n, d) (n—d+j)!

If we additionally assume Yi,...,Y;, to be exchangeable, the expected number of j-faces of C;* for
7=0,....,d—1 is given by

E f;(D;) =

(7)DA= d—j)

EfiC) = 2DA(n, d) (n—j)
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Corollary 5.20. LetYi,...,Y, be random vectors in R? that satisfy or a.s. The expected
conical quermassintegrals of the random Weyl cone D;;‘ are given by
D4(n,d — j)
EU;(DE) = ’
i(Pn) 2DA(n, d)
forj=0...,d—1. ForC;? and j=1,...,d, it is given by

DA(TL, d) — DA(n,j)

EU;(C.) =
i(Ca) 2DA(n, d)
if we additionally assume that Y1,...,Y, are exchangeable.
Corollary 5.21. Let Yi,...,Y, be random vectors in R? that satisfy EAZE or a.s. Forj =
1,...,d, the expected conical intrinsic volumes of the random Weyl cone Df) are given by
n 1
Euv;(D) = — .
%i(Pn) [n—dﬂ] DA(n,d)

If we additionally assume Y1,...,Y, to be exchangeable, then for j = 0,...,d — 1 the expected
intrinsic volumes for Cg‘ are given by

1
Evj(c)=| " |———
vCa) [n - j] DA(n,d)
and it holds that
DA(n,d) — DA(n,d — 1)

EUO(D;?) = EUd(C,;?) = 2DA(7’L d)

6. GENERAL POSITON: PROOFS OF THEOREMS [3.2] [£.2] AND LEMMA [5.2]

6.1. Equivalences of [(B1)| and [(B2)}, [(A1)] and [(A2)} We will prove the equivalence of the
general position assumptions. Recall that yq,...,y, € R satisfy and I@ if the following
holds true. '
(B1) For every ¢ = (e1,...,6n) € {£1}" and 0 € S, the vectors €1Yy(1) — £2Ys(2), E2Yo(2) —
€3Yo(3)s - + + 1 En—1Yo(n—1) — EnYo(n)s EnYo(n) are in general position.
(B2) The linear subspace L has dimension d and is in general position with respect to the
hyperplane arrangement A(B,,), where L := {f € R" : S1y1 + -+ + Bnyn = 0}.

Proof of Theore. At first, we prove that|(B2)/implies|(B1)l Let|(B2)/hold true for yi,...,y, €

R?, but suppose |(B1 |is not satisfied. Then, there exist ¢ € {£1}" and o € S, such that

€1Ys(1) — €2Y5(2)) - - - 1 En—1Ya(n—1) — EnYo(n)s EnYa(n)

are not in general position. For sake of simplicity, we first assume that &; = 1 and o (i) = 4. Thus,
Y1 — Y2, - -+ Yn—1 — Yn, Yn are not in general position. This means that there is a subset of d or fewer
linearly dependent vectors. In general, this set is of the form

Yt — Y2, -3 Yi1—1 — Yiyry Yir+1 — Yir+2y - - -y Yio—1 — Yigy - - - 7yik+1 - yik+27 ooy Yn—1 — Yny Yn

group 1 group 2 group k +1

for a kK > n —d and suitable indices 1 < i1 < o < ... < i < n. Note that each of these groups may
be empty and the set consists of n — k < d vectors. This set is linearly dependent if and only if
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there exist numbers A\; with ¢ € {1,...,n}\{41,...,ix} that do not vanish simultaneously and such
that

0=M1—y2)+  +XNiy1(¥i -1 — ¥i) + Mg 1 (Wi 11 — Yir+2) + -+ Aig—1(Yia—1 — Yin)
+ o N1 Wi+ — Yigt2) - Anm1(Un—1 — Yn) + Anyn
After regrouping the terms, the condition takes the form
0=Xy1+ A2 = A)yz + ...+ (Nip—1 — A —2)¥i -1 + (= Aii—1)¥i,
+ N 1Yi1 + N2 = A+ )¥in+2 + oo+ (Aio—1 — Mio—2)¥io—1 + (—Xip—1)Yis (6.1)
o At 1Yt T (N2 — i 1) Y2 + -+ (A — Aa—1) Y,

or equivalently,
(AL A2 = AL A —1 = A —2s =X =1 A1y A 42 = A1y -5 Aig—1 — Aig—2, —Aip—1,

.. 7)‘ik+17 )‘ik+2 - Aik-‘rla s 7)\n - )\n—l) € Lv
where L = {f € R" : B1y1 + ... + Bnyn = 0}. If we denote by ey, ..., e, the standard Euclidean
basis in R", this holds if and only if there exist numbers \; with ¢ € {1,...,n}\{i1,...,ix} that do
not vanish simultaneously and such that the vector

Arler —eg) + .o+ A€ -1 — €iy) + A 141 — €iy2) + oo Aipo1(ei 1 — eiy)+
st N1 (€i41 — €ipg2) + oo F Anmi1(en—1 — €n) + Anen

lies in L. This is equivalent to

lin {61 —€2,...,€i1—1 = €i;,Ci 141 — €i142, -+ Cin—1 — Cig,
ey €ipt]l — €ipt 2y .-, En—1 — Cp, en} N L # {0}.
This holds if and only if K+ N L # {0}, for the k-dimensional subspace
K={eR":Bi=...=08i1,..-, Bip_1+1=-..=Bi, Bix+1 = ... = B =0}
= (] (ei—eu)*,
i {i1, ik}

where e, 11 := 0. We observe that K is the intersection of hyperplanes from the reflection arrange-
ment A(B,,). Then, K+ N L # {0} is equivalent to

dim(L*NK)=n—dim(L+ K')=d-n+k—dim(LNK) #d—n+k,

since dim(L) = n — d. This means that L* is not in general position to A(B,), which is a
contradiction to |(B2)]

Now, we only need show that the general case follows from the previous results. If there
are ¢ € {£1}" and 0 € Sy, such that e1y5(1) — €2Y0(2), - - - » En—1Yo(n—1) — EnYo(n)s EnYo(n) are MOt
in general position, we can apply the above reasoning to €1ys(1), - - - Enlo(n) instead of y1,...,yn.
Thus, it follows that

dim ((Lep)" NK) #d—n+k,

where Le , = {8 € R" : €195(1)B1 + - - - + EnYo(n)Bn = 0}. It is easy to see that L., = ge ,L for the
reflection g , € G(By,) given by

Geo t (:1:‘1, ce 7xn) — (51170(1)’ s 75111'0(71))'
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Then, we have
dim (L* Ng; oK) = dim (g o L' NK) #d —n+ k.

g

Since g_ LK is also an intersection of hyperplanes from A(B,), we obtain that L is not in general
position to A(B,), which is a contradiction to [(B2)}

It is left to prove that implies M Let @ hold true for y1, ..., y, € R% This implies
that dim L+ = d. In order to prove this, it is enough to show that, for example, the set of d vectors
Yn—d+1s - - - Yn 18 linearly independent. Suppose A,_g+1Yn—d+1 + .- + Anyn = 0 holds for some
An—d+1,- -+, n € R. Representing the individual y;’s as telescope sums, this implies

0= )‘n—d-l—l((yn—d—i—l - yn—d+2) +...+ (ynfl - yn) + yn) +...+ )\nfl((ynfl - yn) + yn) + )\nyn
= )‘n—d-l—l(yn—d-l—l - yn—d+2) + ...+ (An—d+1 + ...+ )\n)yn

Since Yn—d+1 — Yn—di2s--->Yn—1 — Yn,Yn are linearly independent, due to |(B1)] it follows that
An—d+1 = -.. = Ap = 0, which proves the linear independence of y,_g4+11,...,yn. Then we obtain

dim L+ = n — dim L = rank(y1, . .., yn) = d.

Now, suppose L' is not in general position to A(B,,). Therefore, it exists a k-dimensional
subspace K’ that can be represented as the intersections of hyperplanes from A(B,,), such that

d—n+k ,k>n—d

dim(K' N L+ .
im( )7&{0 k<n—d

The linear subspace K’ is given by a set of equations of the following form. The coordinates
B1,..., 0, are decomposed into k 4+ 1 distinguishable groups. These groups are required to be
non-empty except the last one. All coordinates in the last group must be 0. For the remaining
variables there is a unique choice of signs, which multiplies each variable by +1 or —1, such that the
sign-changed variables are equal inside every group, except the last one. Then, there is a suitable
transformation g. , € G(B,,), such that g. ,K' is given by

{6€Rn:51:"':B’ip"'uﬂik_l-i-l:-~-:6ik7ﬁik+1:~--:5n:0} (62)

for some 1 <1y < ... <, <n, and thus, g. K’ coincides with the subspace K mentioned in the
above argument.
At first, suppose k > n — d. Then dim(K' N L*) # d —n + k implies that also

dim (e oK' N (Lep)t) = dim (9o oK' N ge L) #d—n+k

holds true. Now we can use the same arguments like in the first part of the proof, since all the steps
in the argument are equivalent. This implies that €1Y,(1) —€2Yo(2); - - - s En—1Yo (n—1) —EnYo(n)s EnYo (n)
are not in general position, and thus, is not satisfied. Note that the assumption kK > n — d
was crucial for the arguments in the first part, since this implies that the resulting set of vectors
consists of n — k < d elements.

In the case k < n — d, we know that dim(K’' N L*) # d —n + k. Due to

dim(K’ N LY) = dim(K’) + dim(LY) — dim(K’ + L) > k+d — n,

this implies even dim(K’N L) > n —d + k. Thus, there is a linear subspace K’ C K” that can
also be represented as the intersection of hyperplanes from A(B,,), such that dim(K"”) = n —d and
dim(K"” N L*) # {0}. Note that this subspace K” is obtained by deleting & — (n — d) equations in
the defining condition of K’, e.g. in the condition in (6.2)). The previous case yields that if such a
subspace K" exists, the general position assumption|(B1)|is not satisfied, which is contradiction. [
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The analogous result holds for the general position assumptions |(A1)| and |(A2)| of the A,,_1-
case, which we will restate here. We say that y1, ..., y, € R satisfy the general position assumptions

(A1)[or [(A2)|if the following holds.

(A1) For every o € Sy, the vectors Ys(1) — Yo (2), Yo(2) = Yo (3)s - - - s Yo(n—1) — Yo(n) ar€ in general
position.

(A2) The linear subspace L+ has dimension d and is in general position with respect to the
hyperplane arrangement A(A,,—1), where L := {8 € R : S1y1 + -+ + Bnyn = 0}.

Proof of Theorem [{.2. This is proven in the same way as Theorem Therefore we will only
give a short sketch of the proof. Suppose is not satisfied, then there is a o € §,,, such that
Yo(1) = Yo(2)s -+ Yo(n—1) — Yo(n) are not in general position. Consider the case o(i) = i, for all
i =1,...,n. Following the proof of Theorem [3.2 and replacing k by k — 1, this implies that there
is a linearly dependent subset of the form

Y — Y2, -5 Yii—1 — Yir s Yir+1 — Yio+1s - -5 Yio—1 — Yigy - - - 7yik_1+1 - yik_1+27 vy Yn—1 — Yn

group 1 group 2 group k

for a £k > n — d and suitable indices 1 < 47 < 49 < ... < ip_1 < n. This holds if and only if
K+ N L # {0}, for the k-dimensional subspace
KZ{ﬁERnlﬂl :-“:ﬂiuﬁiﬁ-l :...Zﬁi2,...,6ik_1+1 ::Bn}
Since K is the intersection of hyperplanes from the reflection arrangement A(A,_1), this implies
that L* is not in general position to A(A,_1), which contradicts The general case o € S,
follows in the same way.
We already saw in the proof of Theorem that implies dim L+ = d. Now, suppose L+

is not in general position to A(A;,—1). Then there is a k-dimensional linear subspace K’ that can
be represented as the intersection of hyperplanes from A(A,_1), such that

dim(K’' N LY) # max{0,d — n + k}. (6.3)

Since in the equation defining K’ the coordinates f1,...,[3, are decomposed into k non-empty
groups and are required to be equal inside each group, there is a suitable reflection g, € G(A,—1),
such that g, K’ is given by

{/8 ERn:ﬁl = ... :Bi176i1+1 — ... :Bi27"'aﬂik,1+1 = ... :671}
for some 1 < iy < ... < ip_1 < n. In both cases, k < n —d and k > n — d, (6.3)) implies that
Yo(1) = Yo(2)s - - - » Yo(n—1) — Yo(n) are not in general position, which contradicts This is proven
in the same way as in the proof of Theorem O

6.2. Proof of Lemma Let Yi,...,Y, be random vectors in R? having a joint u"-density
f on (RY)"™ where p denotes a o-finite measure on R? that assigns measure zero to each affine
hyperplane. Our aim is to prove that (B1) and (B2) are satisfied a.s.

Proof of Lemma[5.9 The conditions and are equivalent, thus, we only need to prove
Since Y1, ..., Y, have a joint density function with respect to u™, so does €1Y, (1), ..., €nY5(n),
for each € € {£1}" and o € S,,. Therefore, it suffices to prove that Y1 — Ys,...,Y,_1 — Y, Y, are
in general position a.s., or equivalently, that they are not in general position with probability 0. In

order to do this, suppose there is a subset of n — k < d linearly dependent vectors. Recalling the
proof of Theorem this set is of the form

Yl _)/27"';}/;171 —1/;:1,1/@'1+1—Yi1+27---ayz‘2—1 _nza"'a)/ik+l _}/;;k+27"'7yn71 _Yn7Yn
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for suitable indices 1 < 47 < ... < 4 < n. Thus, we are able to find numbers \; with i €
{1,...,n}\{é1,...,ix} that do not vanish simultaneously and such that
MY1T =M= X)Yo+ .o+ (N2 — A —1) Y51+ A 1Y,
+ (—Ai+1)Yi 41+ Nip1 = Nij2)Yipo + oo+ (Nigm2 — Aip—1)Yip—1 + Niy—1Ys,  (6.4)
+o (_)‘ikJrl)}/ikJrl + ()\ik+1 - Aik+2)mk+2 +o A A1 = )Y
holds true (see (6.1 solved for A1Y7). Without loss of generality, we may assume that A\; # 0
(Otherwise, choose the smallest ¢, such that A\; # 0 and solve for \;Y;). Divide by A1. The

possible values of the first line coincide with the affine hull of Ys, ..., Y;, denoted by aff{Ys,...,Y;, },

since the coefficients of the Y;’s satisfy the relation
A1 — A2 Nip—2 = Aig—1 | Aij—1
e =1.
A1 et A1 + A1

The dimension of this affine subspace is at most 7; — 2. The possible values of the second line of
(6.4), divided by Aj, define the linear subspace

Ly = {Bi 1Yo 41+ ... + B, Yey : Biyy1 + ... + Bi, = 0},

since the coefficients satisfy the relation

—Aip+1 n Aij+1 — Aij+2 T Aig—2 = Aip—1 . Aig—1 _ 0.
Al A1 A A1
Similarly, the subsequent lines, except the last one, define linear subspaces Lo,...,Lir_1. The
dimension of the linear subspaces L1, ..., Li_1 is at most 1o —i1 — 1,...,4; —ip_1 — 1, respectively.

Thus, implies that
Yie L(Ys,...,Y,) :=aff{Yo,..., Yy } + L1 + ...+ L1 + lin{Y}, 41,..., Yo},
and the dimension of the affine subspace L(Y3,...,Y,) is at most
(i1—=2)+@Ge—t1— ) +...+(ig—igp1— 1)+ (n—ix) =n—k—1<d.

It remains to show that the event Y7 € L(Y3,...,Y,) has probability 0. Now, since (Y1,...,Y;)
has a joint pu"-density, the conditional p-density of Y7 conditioned on the event that (Ya,...,Y,) =
(y2,...,Yyn) exists and we will denote it by f(y1|ye,...,yn). Following the above reasoning, we see
that

P(Yl S L(Y2, cee aYn))

= /(Rd) B P(Y1 € Lyz, -, yn)| (Yo, .. Ya) = (2, -, yn)) 1 (d(W2s - -, Un))

= / / Filyz, -« yn) p(dyr) 1" 1 (d(ya, - - - yn))
RA)"=1 S L(yz,...,yn)

since dim L(ya, . ..,yn) < d and p assigns measure to each affine hyperplane. (Il
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