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Abstract. In several cases, a sequence of free cumulants that counts certain binary plane trees
corresponds to a sequence of classical cumulants that counts the decreasing versions of the same
trees. Using two new operations on colored binary plane trees that we call insertion and decompo-
sition, we prove that this surprising phenomenon holds for families of trees that we call troupes. We
give a simple characterization of troupes, showing that they are plentiful. Troupes provide a broad
framework for generalizing several of the results that are known about West’s stack-sorting map
s. Indeed, we give new proofs of some of the main theorems underlying techniques that have been
developed recently for understanding s; these new proofs are far more conceptual than the original
ones, explain how the objects called valid hook configurations arise very naturally, and generalize to
the context of troupes. To illustrate these general techniques, we enumerate 2-stack-sortable and
3-stack-sortable alternating permutations of odd length and 2-stack-sortable and 3-stack-sortable
permutations whose descents are all peaks.

The unexpected connection between troupes and cumulants provides a powerful new tool for
analyzing the stack-sorting map that hinges on free probability theory. We give numerous applica-
tions of this method. For example, we show that if σ ∈ Sn−1 is chosen uniformly at random and
des denotes the descent statistic, then the expected value of des(s(σ)) + 1 is(

3−
n∑
j=0

1

j!

)
n.

Furthermore, the variance of des(s(σ))+1 is asymptotically (2+2e−e2)n. We obtain similar results
concerning the expected number of descents of postorder readings of decreasing colored binary plane
trees of various types. We also obtain improved estimates for |s(Sn)| and an improved lower bound
for the degree of noninvertibility of s : Sn → Sn. The combinatorics of valid hook configurations
allows us to give two novel formulas that convert from free to classical (univariate) cumulants. The
first formula is given by a sum over noncrossing partitions, and the second is given by a sum over
231-avoiding valid hook configurations. We pose several conjectures and open problems.

1. Introduction

Given a sequence (mn)n≥1 of elements of a field K, called a moment sequence, one can consider
the corresponding sequence (cn)n≥1 of classical cumulants, as well as the corresponding sequence
(κn)n≥1 of free cumulants. Cumulants are the fundamental combinatorial tools used in noncommu-
tative probability theory. Each of these three sequences determines the other two via summation
formulas involving partition lattices and noncrossing partition lattices.

E-mail address: cdefant@princeton.edu.
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If (κn)n≥1 is a sequence of free cumulants defined by κn = −Cn−1, where Cr = 1
r+1

(2r
r

)
is the

rth Catalan number, then the corresponding sequence of classical cumulants (cn)n≥1 is given by
cn = −(n − 1)!. Indeed, this is equivalent to the fact that the sequences ((−1)n−1Cn−1)n≥1 and
((−1)n−1(n − 1)!)n≥1 give the Möbius invariants of noncrossing partition lattices and partition
lattices, respectively. On the other hand, Cn−1 is the number of binary plane trees with n − 1
vertices, while (n − 1)! is the number of decreasing binary plane trees with n − 1 vertices. This
might seem like a mere coincidence; one of the primary goals of this paper is to show that it is not.

We will give a vast generalization of the above observation by developing a theory of troupes.
These are families of colored binary plane trees that are closed under two new operations that we
call insertion and decomposition, which resemble a product and a coproduct on trees. We will see
that many classical families of rooted plane trees found in the literature are troupes. In fact, we will
give a characterization of troupes, which will show that there are many of them. More precisely, we
will prove that every troupe is uniquely determined by its branch generators, which play the role
of “indecomposable” or “prime” elements. We also define insertion-additive tree statistics, some
natural examples of which are (essentially) the statistic that counts right edges and the statistic
that counts vertices with 2 children.

We will prove that if T is a troupe, then a sequence of free cumulants that counts trees in T
according to some insertion-additive tree statistics corresponds to a sequence of classical cumulants
that counts decreasing versions of the trees in T according to the same statistics. Some very specific
manifestations of this surprising phenomenon are as follows. Free cumulants given by Narayana
polynomials correspond to classical cumulants given by Eulerian polynomials. Free cumulants given
by aerated Catalan numbers correspond to classical cumulants given by tangent numbers. Free
cumulants given by Motzkin polynomials, which are the γ-polynomials of associahedra, correspond
to classical cumulants given by γ-polynomials of permutohedra. Free cumulants given by large
Schröder numbers correspond to classical cumulants that count cyclically ordered set partitions.

Our proof requires three main ingredients: the Refined Tree Decomposition Lemma, the Refined
Tree Fertility Formula, and the VHC Cumulant Formula. The Refined Tree Decomposition Lemma
generalizes the Refined Decomposition Lemma that the author has used to answer several questions
about West’s stack-sorting map in [20, 21, 23]. The proof given here is new and is more concep-
tual than the original proof; it also generalizes to the setting of troupes. From the Refined Tree
Decomposition Lemma, we will derive the Refined Tree Fertility Formula. This is a generalization
of the Refined Fertility Formula that the author has used to answer several other questions about
West’s stack-sorting map [19, 22, 24, 27–29]. Again, our proof is new, is far more conceptual than
the original proof, and generalizes to troupes. Our new proof also explains how the combinato-
rial objects called valid hook configurations, which appear in the formula, arise naturally. Special
cases of the Refined Tree Fertility Formula also imply new results about the stack-sorting map.
For example, we will obtain a formula for the number of alternating permutations in s−1(π) when
π is an arbitrary permutation of odd length and s denotes the stack-sorting map. We will also
obtain a formula for the number of permutations in s−1(π) whose descents are all peaks when π
is an arbitrary permutation. The VHC Cumulant Formula is a result that was essentially proven
(although not stated explicitly) in [29]. This is a formula that converts from free cumulants to the
corresponding classical cumulants via a sum over valid hook configurations.

The combination of the Refined Tree Fertility Formula and the VHC Cumulant Formula provides
a new method for analyzing the stack-sorting map, which we will illustrate with several applications.
One application is a result that was originally proven in [29], which states that uniquely sorted
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permutations (i.e., permutations with exactly one preimage under s) are enumerated by the absolute
values of the classical cumulants of the standard semicircular law (known as Lassalle numbers).

For another application, we consider the problem of computing the expected value E(Dn), where
Dn = des(s(σ)) + 1 and σ is chosen uniformly at random from Sn−1. Here, des denotes the
permutation statistic that counts descents. One can view des(s(σ)) + 1 as a measure of how far
s(σ) is from the identity permutation 123 · · · (n−1). It is not at all clear how one could use standard

methods to prove that the limit lim
n→∞

E(Dn)

n
even exists. Using free probability, we will not only

show that this limit exists, but will see that it is equal to 3 − e. In fact, this will follow from the
shockingly simple exact formula

E(Dn) =

Ñ
3−

n∑
j=0

1

j!

é
n.

Moreover, we will provide an algorithm for computing the generating functions of the moments of
the random variables Dn. As a consequence, we will see that the variance of Dn is asymptotically
(2 + 2e− e2)n.

Using elementary methods, we will also prove that the probability that 1 is a descent of s(σ) is
asymptotically 3− e. The same does not appear to be true for the probability that i is a descent in
s(σ) when i ≥ 2 is fixed. Thus, there seems to be a mysterious connection between the first index
and a random index when we examine the stack-sorting image of a random permutation.

Understanding the stack-sorting image of a random permutation is equivalent to understanding
the postorder reading P(T ) of a random decreasing binary plane tree T . The methods that we use
to understand the random variables Dn generalize immediately, allowing us to study descents in
postorder readings of random trees taken from other troupes. For example, we will show that if n
is even and T is chosen uniformly at random from the set of decreasing full binary plane trees with
n− 1 vertices and label set {1, . . . , n− 1}, then

E(des(P(T )) + 1) =

Ç
1− En

nEn−1

å
n ∼

Å
1− 2

π

ã
n,

where En denotes the nth Euler number. This can be rephrased in terms of stack-sorting because
E(des(P(T )) + 1) is also the expected value of des(s(σ)) + 1 when σ is chosen uniformly at random
from the set of alternating permutations in Sn−1. We will also show that if T is chosen uniformly
at random from the set of decreasing Motzkin trees with n− 1 vertices and label set {1, . . . , n− 1}
(n could be even or odd), then

E(des(P(T )) + 1) ∼
Ç

1− 3
√

3

2π

(
e

π

3
√
3 − 1

)å
n.

This result can also be rephrased in terms of stack-sorting because E(des(P(T )) + 1) is also the
expected value of des(s(σ))+1 when σ is chosen uniformly at random from the set of permutations
in Sn−1 whose descents are all peaks. As a final example of these methods, we will show that if T
is chosen uniformly at random from the set of decreasing Schröder 2-colored binary trees (defined
in Section 2) with n− 1 vertices and label set {1, . . . , n− 1}, then

E(des(P(T )) + 1) ∼
Å

1− 1

2 log 2

ã
n.
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We will also consider |s(Sn)|, the number of sorted permutations in Sn. Bousquet-Mélou [13]
found a recurrence for these numbers, but their asymptotic behavior is not known. Using Bousquet-
Mélou’s recurrence and a strengthening of Fekete’s lemma due to de Bruijn and Erdős, we will prove

that the limit lim
n→∞

Ç
|s(Sn)|
n!

å1/n

exists and is greater than 0.68631. Free probability theory will

allow us to show that the number of valid hook configurations of permutations in Sn is asymptoti-

cally n!/cn+1, where c ≈ 1.32874 is the smallest positive real root of 1− z 1F2

Å
1

2
;
3

2
, 2;−z2

ã
(where

1F2 denotes a generalized hypergeometric function). Every sorted permutation has a valid hook

configuration, so this result will imply that lim
n→∞

Ç
|s(Sn)|
n!

å1/n

≤ 1/c ≈ 0.75260.

As a final application, we consider the degree of noninvertibility of the stack-sorting map. Given
a finite set X and a function f : X → X, Propp and the author [30] defined

deg(f : X → X) =
1

|X|
∑
x∈X
|f−1(x)|2

as a measure of how far the function f is from being invertible. They showed that the limit
lim
n→∞

deg(s : Sn → Sn)1/n exists and lies in the interval [1.12462, 4], and they conjectured that it

actually lies in the interval (1.68, 1.73). Free probability will allow us to obtain a lower bound of
1.62924.

Associated to every valid hook configuration H are two set partitions, denoted |H and H. The
first partition is connected, while the second is noncrossing. The connected partitions |H play a
fundamental role in the VHC Cumulant Formula and its proof. By considering the noncrossing
partitions H, we will obtain two new combinatorial formulas that express (univariate) classical
cumulants cn in terms of the corresponding free cumulants κn. The first formula states that

(1) − cn =
∑

η∈NC(n)

|L(K(η))|(−κ•)η,

where L(K(η)) can be seen as the set of linear extensions of a certain poset associated to the
Kreweras complement K(η) of the noncrossing partition η. The second formula states that

(2) − cn =
∑

H∈VHC(Avn−1(231))

TH(−κ•)H

where VHC(Avn−1(231)) is the set of valid hook configurations of 231-avoiding permutations in
Sn−1 and TH is the number of linear extensions of a rooted tree poset associated to H, which can
be computed using the hook length formula for rooted tree posets. Let us remark that there are
other notions of cumulants in noncommutative probability theory; the task of finding combinatorial
formulas that convert between different types of cumulants was undertaken in [1, 3, 40,45].

One of the central notions in the study of the stack-sorting map is that of a t-stack-sortable
permutation, which is a permutation π such that st(π) is increasing (st denotes the t-fold iterate
of s). The enumeration of 2-stack-sortable permutations in particular has received a huge amount
of attention [8, 12, 15, 17, 20, 31–34, 36]. The Refined Tree Decomposition Lemma and the Refined
Tree Fertility Formula allow one to straightforwardly generalize many of the results that the author
has proven about the stack-sorting map to the more general context of troupes. To illustrate this,
we will show how the Refined Tree Decomposition Lemma gives a general method for enumerating
2-stack-sortable permutations belonging to sets of permutations that are associated with troupes.
For two very concrete applications, we enumerate 2-stack-sortable alternating permutations of
odd length and 2-stack-sortable permutations whose descents are all peaks. We will also prove
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that the generating function that counts 2-stack-sortable permutations associated to a troupe is
algebraic whenever the generating function counting the trees in the troupe is algebraic. This
is a far-reaching generalization of the fact that the generating function counting 2-stack-sortable
permutations is algebraic. Furthermore, we will show that these methods provide recurrences that
count 3-stack-sortable permutations associated to troupes.

As a final result, we prove that the sequence enumerating the trees in a troupe T is determined by
the sequence enumerating the branch generators of the troupe. In many cases, the latter sequence
is much simpler than the former. This yields a new transform on nonnegative integer sequences,
which we call the troupe transform.

1.1. Outline. In Section 2, we introduce insertion and decomposition, define and characterize
troupes, and give necessary background on the stack-sorting map and valid hook configurations.
Section 3 is devoted to the proof of the Refined Tree Decomposition Lemma. In Section 4, we
prove the Refined Tree Fertility Formula and detail some applications by choosing specific troupes.
Section 5 provides necessary background on the combinatorics of free probability theory and states
the VHC Cumulant Formula. In Section 6, we prove that a sequence of free cumulants that counts
trees in a troupe according to insertion-additive tree statistics corresponds to a sequence of classical
cumulants that counts the decreasing versions of the same trees according to the same statistics.
We then explain in more detail how this applies to some specific troupes. In Section 7, we outline
several applications of the Refined Tree Fertility Formula and the VHC Cumulant Formula to the
study of the stack-sorting map and, more generally, postorder readings of decreasing colored binary
plane trees. Section 8 is devoted to proving the new cumulant conversion formulas (1) and (2).
Section 9 provides a method for enumerating 2-stack-sortable permutations associated with troupes,
explicitly enumerates 2-stack-sortable alternating permutations of odd length and 2-stack-sortable
permutations whose descents are all peaks, proves the algebraicity of the generating functions
that count 2-stack-sortable permutations associated with troupes counted by algebraic generating
functions, and gives a recurrence for counting 3-stack-sortable permutations associated to troupes.
In Section 10, we prove that the sequence enumerating the trees in a troupe is determined by the
sequence enumerating the branch generators of the troupe, and we use this theorem to define the
troupe transform. In Section 11, we accumulate numerous open problems and conjectures from
throughout the article.

1.2. Notation and Terminology. For easy reference, we record some of the notation and termi-
nology that we will use throughout the article.

• Let [n] denote the set {1, . . . , n}.
• Given elements ai1,...,ir of a field K, we can consider the generating function A(x1, . . . , xr) =∑
i1,...,ir

ai1,...,irx
i1
1 · · ·x

ir
r , which is a formal power series in the variables x1, . . . , xr. We write

[xi11 · · ·xirr ]A(x1, . . . , xr) for the coefficient ai1,...,ir of xi11 · · ·xirr in this series.
• A composition of a positive integer b into a parts is an a-tuple of positive integers that sum

to b. If (un)n≥1 is a sequence of elements of a field K and q = (q1, . . . , qa) is a composition,
then we write uq for the product

∏a
t=1 uqt .

• A set partition of a finite set X is a set of pairwise-disjoint nonempty subsets of X whose
union is X. If (un)n≥1 is a sequence of elements of a field K and ρ is a set partition, then
we let (u•)ρ =

∏
B∈ρ u|B|.

• A permutation is an ordering of a finite set of positive integers, which we write in one-
line notation. Let Sn denote the set of permutations of [n]. A descent of a permutation
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π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. A peak of π is an index
i ∈ {2, . . . , n− 1} such that πi−1 < πi > πi+1. Let des(π) and peak(π) denote the number
of descents of π and the number of peaks of π, respectively. We say π is alternating if
its descents are precisely the even elements of [n − 1]. Let ALT be the set of alternating
permutations. Let EDP denote the set of permutations in which every descent is a peak.

2. Trees, Permutations, and Valid Hook Configurations

2.1. Troupes. A rooted plane tree is a rooted tree in which the children of each vertex are linearly
ordered from left to right. Such trees have been studied extensively in combinatorics and computer
science [4, 7, 10, 35, 38, 39, 47, 48, 52, 56]. We restrict our attention to binary plane trees; these are
rooted plane trees in which each vertex has at most two children and every child is designated as
either a left or a right child (but not both). Let BPT be the set of binary plane trees. The theory
we will develop is quite general if we restrict our attention to the set BPT, but we will obtain even
more general results if we allow ourselves to color the vertices of trees. Throughout this article, we
fix a finite set C of colors. It does not matter too much what the set C actually is, but we do want
to require that it is finite and contains the colors black and white. A colored binary plane tree is a
tree obtained from a binary plane tree by assigning the vertices colors from C (i.e., it is a binary
plane tree along with a function from the set of vertices of the tree to C). Let CBPT denote the
set of colored binary plane trees. Given a set T ⊆ CBPT, we let Tn denote the set of all trees in T
that have n vertices. We make the convention that binary plane trees are just colored binary plane
trees in which all of the vertices are black. Thus, BPT ⊆ CBPT. Our setup is able to model several
different families of trees because we have the freedom to color the vertices in many different ways.

Figure 1. The 5 binary plane trees with 3 vertices.

We are going to describe two new operations defined on colored binary plane trees, which we
call insertion and decomposition. These operations are very simple, but they will play a huge role
in the remainder of the paper.

To define insertion, suppose we are given two nonempty colored binary plane trees T1 and T2

along with a specific vertex v in T1. Replace v with two vertices that are connected by a left edge.
This produces a new tree T ∗1 with one more vertex than T1. We call the lower endpoint of the new
left edge v, identifying it with the original vertex v and giving it the same color as the original v.
We denote the upper endpoint of the new left edge by v∗, and we color v∗ black. For example, if

T1 = ,

where v is as indicated, then

T ∗1 = .
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The insertion of T2 into T1 at v, denoted ∇v(T1, T2) is the tree formed by attaching T2 as the right
subtree of v∗ in T ∗1 . For example, if T1 and T ∗1 are as above and

T2 = ,

then

∇v(T1, T2) = .

We can easily reverse the above procedure as follows. Let T be a colored binary plane tree, and
suppose v∗ is a black vertex in T with 2 children. Let v be the left child of v∗ in T , and let T2 be
the right subtree of v∗ in T . Let T ∗1 be the tree obtained by deleting T2 from T , and let T1 be the
tree obtained from T ∗1 by contracting the edge connecting v and v∗ into a single vertex. We call this
contracted vertex v, identifying it with the original v. We say the pair (T1, T2) is the decomposition
of T at v∗ and write ∆v∗(T ) = (T1, T2).

Definition 2.1. We say a collection T of colored binary plane trees is

• insertion-closed if for all nonempty trees T1, T2 ∈ T and every vertex v of T1, the tree
∇v(T1, T2) is in T;
• decomposition-closed if for every T ∈ T and every black vertex v∗ of T that has 2 children,

the pair ∆v∗(T ) is in T×T;
• black-peaked if for every T ∈ T, the vertices with 2 children in T are all black.

A troupe is a set of colored binary plane trees that is insertion-closed, decomposition-closed, and
black-peaked.1

Troupes are the sets to which our later theorems will apply. We now show that there are several
troupes by giving a simple characterization of them. This characterization will not be needed in
the remaining sections of the paper, so a reader primarily interested in cumulants and/or stack-
sorting can safely skip to Example 2.4. Before proving the characterization, we need a little more
terminology and a lemma.

The insertion closure of a set T ⊆ CBPT, denoted Ins(T), is the smallest (under containment)
insertion-closed subset of CBPT that contains T. This is well-defined because the intersection of a
collection of insertion-closed sets is insertion-closed. Note that Ins(T) is the set of trees obtained
by starting with T and performing all possible sequences of insertions.

Lemma 2.2. If a set T(0) of colored binary plane trees is decomposition-closed and black-peaked,
then its insertion closure Ins(T(0)) is a troupe.

Proof. Suppose T(0) ⊆ CBPT is decomposition-closed and black-peaked. Let T(1) be the union of
T(0) with the set of all trees that can be written as ∇v(T1, T2) for some nonempty T1, T2 ∈ T(0) and

some vertex v of T1. It is clear that T(1) is black-peaked because the new vertices with 2 children

1If we view insertion as analogous to a binary operation with decomposition as its inverse, then troupes are sets of
trees that are analogous to groups.
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that are produced from insertion are always black. We will show that T(1) is also decomposition-
closed. Choose T ∈ T(1), and let u∗ be a (necessarily black) vertex in T with 2 children. We

need to prove that ∆u∗(T ) ∈ T(1) ×T(1). If T ∈ T(0), then this follows from the assumption that

T(0) is decomposition-closed. Thus, we may assume T ∈ T(1) \T(0). This means that there exist

nonempty trees T1, T2 ∈ T(0) and a vertex v of T1 such that T = ∇v(T1, T2). Let v∗ be the parent
of v in T . Let u be the left child of u∗ in T . We consider three cases.

Case 1. Assume u∗ = v∗. In this case, ∆u∗(T ) = ∆v∗(∇v(T1, T2)) = (T1, T2) ∈ T(1) × T(1), as
desired.

Case 2. Assume u∗ 6= v∗ and u∗ 6= v. Since u∗ 6= v∗, the vertex u∗ is in either T1 or T2. We will
assume u∗ is a vertex in T1, the proof in the other case is completely analogous. Because u∗ is black
and has 2 children in T , it must also be black and have 2 children in T1. This means that we can
decompose T1 at u∗ to form the pair ∆u∗(T1) = (T3, T4). The trees T3 and T4 are in T(0) because

T(0) is decomposition-closed and contains T1. Because u∗ 6= v, the vertex v is in either T3 or T4.
We assume v is in T3; the case in which v is in T4 is similar. Note that u 6= v because u∗ 6= v∗. It
follows immediately from the definition of insertion that ∇v(∇u(T3, T4), T2) = ∇u(∇v(T3, T2), T4).
Therefore,

∆u∗(T ) = ∆u∗(∇v(T1, T2)) = ∆u∗(∇v(∇u(T3, T4), T2)) = ∆u∗(∇u(∇v(T3, T2), T4))

= (∇v(T3, T2), T4).

The trees T2 and T3 are in T(0), so ∇v(T3, T2) ∈ T(1). Since T4 ∈ T(0) ⊆ T(1), this completes the
proof in this case.

Case 3. Assume u∗ = v. In this case, u∗ must be in T1. As in the previous case, u∗ is black and
has 2 children in T1, so we can write ∆u∗(T1) = (T3, T4) for some T3, T4 ∈ T(0). One can readily
check that ∆u∗(T ) = (∇u(T3, T2), T4) (see Figure 2 for an example). The trees T2 and T3 are in

T(0), so ∇u(T3, T2) ∈ T(1). Since T4 ∈ T(0) ⊆ T(1), this completes the proof in this final case.

We have shown that T(1) is decomposition-closed and black-peaked. Now let T(2) be the union
of T(1) with the set of all trees that can be written as ∇v(T1, T2) for some nonempty T1, T2 ∈ T(1)

and some vertex v of T1. By the exact same argument as above, T(2) is decomposition-closed
and black-peaked. Repeating this construction, we obtain an infinite chain T(0) ⊆ T(1) ⊆ · · · ,
where T(i+1) is the union of T(i) with the set of all trees that can be written as ∇v(T1, T2) for

some nonempty T1, T2 ∈ T(i) and some vertex v of T1. It follows by induction on i that T(i)

is decomposition-closed and black-peaked for every nonnegative integer i. Therefore,
⋃
i≥0 T(i) is

decomposition-closed and black-peaked. It is straightforward to see that
⋃
i≥0 T(i) = Ins(T(0)),

so Ins(T(0)) is decomposition-closed and black-peaked. The set Ins(T(0)) is insertion-closed by
definition, so it is a troupe. �

We say a colored binary plane tree T is a branch if none of the vertices in T have 2 children. Let
Branch denote the set of branches.

Theorem 2.3. There is a bijective correspondence between the collection of all troupes and the
collection of all sets of branches. Under this correspondence, a troupe T corresponds to T∩Branch,
and a set B of branches corresponds to Ins(B).

Proof. Because branches do not have vertices with 2 children, they cannot be decomposed. There-
fore, every set of branches is vacuously decomposition-closed and black-peaked. Let T be a
troupe. Since T ∩ Branch is decomposition-closed and black-peaked, it follows from Lemma 2.2
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Figure 2. An illustration of trees appearing in Case 3 in the proof of Lemma 2.2.

that Ins(T ∩ Branch) is a troupe. Because T is insertion-closed and contains T ∩ Branch, we
must have Ins(T ∩ Branch) ⊆ T. We wish to prove the reverse containment. We will show that
Tn ⊆ Ins(T ∩ Branch) for every n ≥ 0, where n is the set of trees in T with n vertices. This
is certainly true for n ≤ 2 because every colored binary plane tree with at most 2 vertices is a
branch. Therefore, we may assume n ≥ 3 and induct on n. Choose T ∈ Tn. If T is a branch, then
T ∈ Ins(T ∩ Branch). Suppose T is not a branch. This means there is a vertex v∗ of T that has
2 children. The vertex v∗ must be black because T is black-peaked. Let (T1, T2) = ∆v∗(T ), and
let v be the left child of v∗ in T . The trees T1 and T2 are in T because T is decomposition-closed.
By induction on n, the trees T1 and T2 are in Ins(T ∩ Branch). Since this set is insertion-closed, it
must contain the tree ∇v(T1, T2) = T . This completes the proof that T = Ins(T ∩ Branch).

Now let B be a set of branches. It is clear that B ⊆ Ins(B) ∩ Branch. To prove the reverse
containment, we use the fact that Ins(B) is the set of trees obtained by starting with B and
performing all possible sequences of insertions. If a tree is in Ins(B) ∩ Branch, then it cannot be
obtained from an insertion because it has no vertices with 2 children. Therefore, every tree in
Ins(B) ∩ Branch must be in B. �

In light of the preceding theorem, we define the branch generators of a troupe T to be the
elements of T∩Branch. One can think of the branch generators as the “indecomposable” elements
of the troupe. Notice that Theorem 2.3 implies that there are uncountably many troupes (there
are even uncountably many troupes contained in BPT). Our theorems in the rest of the paper will
apply to all troupes, but our concrete examples will focus on the following four.

Example 2.4 (Binary Plane Trees). The set BPT of all binary plane trees is certainly a troupe; its
branch generators are the branches whose vertices are all black. It is well known that |BPTn| = Cn,

where Cn = 1
n+1

(2n
n

)
is the nth Catalan number. Therefore,

♦(3)
∑
n≥0

|BPTn|zn =
∑
n≥0

Cnz
n =

1−
√

1− 4z

2z
.

Example 2.5 (Full Binary Plane Trees). We say a binary plane tree is full if every vertex has
either 0 or 2 children. We also make the convention that the empty tree is not full. Let FBPT be
the set of full binary plane trees, and let FBPTn be the set of trees in FBPT with n vertices. The
trees in FBPT7 are shown in Figure 3. It is easy to see that FBPT is a troupe; its only branch
generator is the tree consisting of a single black vertex. Every full binary plane tree has an odd
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number of vertices, and there is a natural bijection from FBPT2k+1 to BPTk obtained by removing
(also called pruning) the leaves of the trees in FBPT2k+1. Therefore, |FBPT2k+1| = Ck. We have

(4)
∑
n≥0

|FBPTn|zn =
∑
k≥0

|FBPT2k+1|z2k+1 =
∑
k≥0

Ckz
2k+1 =

1−
√

1− 4z2

2z
.

Figure 3. The 5 full binary plane trees with 7 vertices.
♦

Example 2.6 (Motzkin Trees). A Motzkin tree (also called a unary-binary tree) is a nonempty
binary plane tree in which every child that has no siblings is a left child. Let Mot be the set of
Motzkin trees, and let Motn be the set of Motzkin trees with n vertices. It is straightforward to
check that Mot is a troupe; its branch generators are the nonempty branches that have only left
edges and only black vertices.

Remark 2.7. Motzkin trees are usually defined so that children without siblings are not designated
as left or right children. Under this definition, Motzkin trees are not binary plane trees. However,
there is an obvious bijection between Motzkin trees in the traditional sense and Motzkin trees as
we have defined them above (just designate each child without siblings to be a left child). This
allows us to apply our theorems to Motzkin trees as well. 4

The trees in Mot4 are depicted in Figure 4. It is well known that |Motn| = Mn−1, where
Mn denotes the nth Motzkin number (with the convention M−1 = 0). These numbers form

the OEIS sequence A001006 [51]; they can be defined via their generating function
∑
n≥0

Mnz
n =

1− z −
√

1− 2z − 3z2

2z2
. Hence,

(5)
∑
n≥0

|Motn|zn =
∑
n≥0

Mn−1z
n =

1− z −
√

1− 2z − 3z2

2z
.

Figure 4. The 4 Motzkin trees with 4 vertices.
♦

Example 2.8 (Schröder 2-Colored Binary Trees). A 2-colored binary tree is a colored binary plane
tree in which each vertex is colored either black or white. Of course, the number of such trees with
n vertices is 2nCn. The focus of the article [38] is the bijective enumeration of 2-colored binary
trees that satisfy certain constraints. For example, let Sch denote the set of 2-colored binary trees
in which no white vertex has a left child. Let Schn be the set of trees in Sch with n vertices. The
trees in Sch2 are shown in Figure 5. We call these trees Schröder 2-colored binary trees because (an
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equivalent reformulation of) the first part of Corollary 4.2 in [38] states that |Schn| is the nth large
Schröder number Sn. These numbers form OEIS sequence A006318 [51]. We have the generating
function identity ∑

n≥0

|Schn|zn =
∑
n≥0

Snz
n =

1− z −
√

1− 6z + z2

2z
.

The large Schröder numbers also satisfy the identity Sn =
∑n
j=0

(n+j
n−j
)
Cj . In fact, an equivalent

reformulation of the second part of Corollary 4.2 in [38] states that
(n+j
n−j
)
Cj is the number of trees

in Schn with j black vertices.

Figure 5. The 6 Schröder 2-colored binary trees with 2 vertices.

The set Sch is a troupe; its set of branch generators is the set of branches that are 2-colored
binary trees in which no white vertices have left children. ♦

2.2. Decreasing Colored Binary Plane Trees. Let X be a finite set of positive integers. A
labeled colored binary plane tree on X is a colored binary plane tree whose vertices are bijectively
labeled with the elements of X. A decreasing colored binary plane tree is a labeled colored binary
plane tree in which every nonroot vertex is given a label that is smaller than the label of its
parent. A labeled colored binary plane tree with n vertices is standardized if its set of labels is
[n] = {1, . . . , n}.

Definition 2.9. The skeleton of a labeled colored binary plane tree T is the colored binary plane
tree skel(T ) obtained by removing the labels from the vertices of T . Given a set T of colored binary
plane trees, let DT denote the set of decreasing colored binary plane trees T such that skel(T ) ∈ T.
Let DT be the set of standardized trees in DT.

The trees in DBPT3 are depicted in Figure 6. Each colored binary plane tree represents a poset
on its set of vertices in which u < v if and only if u is a descendant of v. From this point of view,
a decreasing colored binary plane tree is a pair (T, L), where T is a colored binary plane tree and
L is a linear extension of the poset represented by T .

1

2

3

1

1 1

1 1

2 2 2 2 2

3 3 3 3 3

Figure 6. The 6 standardized decreasing binary plane trees with 3 vertices.

A permutation is an ordering of a finite set of positive integers; we write permutations as words
in one-line notation. Let Sn denote the set of permutations of [n]. Two natural tree traversals that
produce a permutation of a set X from a labeled colored binary plane tree on X are the in-order
reading I and the postorder reading P. If T is the empty tree, then I(T ) and P(T ) are both just
the empty permutation. Now suppose T is a nonempty labeled colored binary plane tree on X.
Let TL and TR be the (possibly empty) left and right subtrees of the root of T , respectively. Let
m ∈ X be the label of the root. The in-order reading and postorder reading are defined recursively
by

I(T ) = I(TL)m I(TR) and P(T ) = P(TL)P(TR)m.
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For example, the in-order readings of the trees in Figure 6 are, from left to right, 123, 213, 132,
231, 312, 321. The postorder readings of these trees are 123, 123, 123, 213, 123, 123.

We dealing with in-order readings and postorder readings, we will focus exclusively on decreasing
colored binary plane trees. It is well known that the in-order reading gives a bijection between
decreasing binary plane trees on X and permutations of X. Given a permutation π, we let I−1(π)
denote the unique tree in DBPT whose in-order reading is π. On the other hand, it is clear from
the trees in Figure 6 that the postorder reading does not yield such a bijection.

2.3. Insertion-additive Tree Statistics. Our main results will allow us to work with enumera-
tions of troupes that are refined according to tree statistics that interact nicely with insertion.

Definition 2.10. A tree statistic is a function f : CBPT→ C. For every tree statistic f , we define
a function f̈ : DT→ C by

f̈(T ) = f(skel(T )).

We say a tree statistic f is insertion-additive if for all nonempty colored binary plane trees T1 and
T2 and all vertices v in T1, we have

f(∇v(T1, T2)) = f(T1) + f(T2).

Example 2.11. The most obvious insertion-additive tree statistic is the statistic that maps each
tree with n vertices to the number n + 1. We now describe some other natural statistics that
are insertion-additive. One can show that if T is any decreasing colored binary plane tree, then
the number of right edges in T is equal to the number of descents in the in-order reading I(T ).
Furthermore, the number of vertices in T that have 2 children is equal to the number of peaks
of I(T ) (this explains the term “black-peaked” from Definition 2.1). Therefore, it makes sense
to define des(T ) and peak(T ) to be the number of right edges in T and the number of vertices
with 2 children in T , respectively. Since des(T ) and peak(T ) only depend on the skeleton of
T , the maps des and peak descend to tree statistics on colored binary plane trees. For every
colored binary plane tree T , we define des(T ) and peak(T ) to be the number of right edges in T
and the number of vertices with 2 children in T , respectively. Thus, des(T ) = des(skel(T )) and
peak(T ) = peak(skel(T )) for every decreasing colored binary plane tree T . We make the convention
that des(ε) = 0 and peak(ε) = −1, where ε is the empty tree.

Suppose T1, T2 ∈ CBPT are nonempty, and let v be a vertex in T1. The right edges in ∇v(T1, T2)
are the right edges in T1, the right edges in T2, and the new right edge connecting the new vertex
v∗ to the root of T2. Therefore, des(∇v(T1, T2)) = des(T1) + des(T2) + 1. This shows that the
function T 7→ des(T ) + 1 is an insertion-additive tree statistic. The vertices with 2 children in
∇v(T1, T2) are the vertices with 2 children in T1, the vertices with 2 children in T2, and the new
vertex v∗. Consequently, the function T 7→ peak(T ) + 1 is insertion-additive. Another natural
insertion-additive tree statistic is the map T 7→ black(T ) + 1, where black(T ) is the number of
black vertices in T . Indeed, the black vertices in ∇v(T1, T2) are the black vertices in T1, the black
vertices in T2, and the new vertex v∗. If c is any color other than black, then the statistic that
maps T to the number of vertices with color c in T is insertion-additive. ♦

2.4. The Stack-Sorting Map. In his book The Art of Computer Programming, Knuth intro-
duced a “stack-sorting algorithm” [42]; his analysis of this algorithm led to several advances in
combinatorics, including the notion of a permutation pattern and the kernel method [2, 7, 41, 46].
In his Ph.D. thesis, West defined a deterministic variant of Knuth’s algorithm [62]. This variant is
a function that we denote by s and call the stack-sorting map. Despite the fact that this function is
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so easy to define, it is remarkably difficult to analyze. Consequently, it has received a great amount
of attention since its inception (see [7, 9, 19,20,29] and the references therein).

To define s, assume we are given an input permutation π = π1 · · ·πn. Throughout this procedure,
if the next entry in the input permutation is smaller than the entry at the top of the stack or if the
stack is empty, the next entry in the input permutation is placed at the top of the stack. Otherwise,
the entry at the top of the stack is annexed to the end of the growing output permutation. This
procedure stops when the output permutation has length n. We then define s(π) to be this output
permutation. Figure 2.4 illustrates this procedure and shows that s(4162) = 1426.

4162 162 62 62

4 4
1

1

4

6214 142

6

1426214

6

14

6
2

Figure 7. The stack-sorting map s sends 4162 to 1426.

If π is a permutation with largest entry m, then we can write π = LmR for some permutations
L and R. A useful recursive description of the stack-sorting map states that

(6) s(π) = s(L)s(R)m.

For example,
s(416352) = s(41) s(352) 6 = s(1) 4 s(3) s(2) 56 = 143256.

There is another alternative definition of the stack-sorting map that makes use of in-order and
postorder readings of binary plane trees. Namely,

(7) s = P ◦ I−1.

For example, we have

246153
I−1

−−→
12 3

4 5

6

P−−→ 241356,

and one can check that s(246153) = 241356. It is this alternative definition that will allow us to
apply free probability theory to answer some (otherwise very difficult) natural questions about s
in Sections 4 and 7.

West [62] defined the fertility of a permutation π to be |s−1(π)|. According to (7),

(8) |s−1(π)| = |P−1(π) ∩ DBPT|.
In other words, the fertility of π is the number of decreasing binary plane trees with postorder π.
A priori, computing fertilities of permutations is a difficult task. Indeed, West devoted ten pages
of his dissertation [62] to the computation of the fertilities of permutations of the forms

23 · · · k1(k + 1) · · ·n, 12 · · · (k − 2)k(k − 1)(k + 1) · · ·n, and k12 · · · (k − 1)(k + 1) · · ·n.
Bousquet-Mélou [13] defined a permutation to be sorted if its fertility is positive (i.e., it is in the
image of s). She found an algorithm that determines whether or not a given permutation is sorted.
She then asked for a general method for computing the fertility of any given permutation.

The current author has found two distinct yet related methods for computing fertilities of arbi-
trary permutations. The first method, which we call the Fertility Formula, was developed in [26].
The Fertility Formula expresses |s−1(π)| as a sum of products of Catalan numbers, where the sum
runs over combinatorial objects called valid hook configurations. The second method is the De-
composition Lemma, a recursive formula that was first proven in [20]. We are going to give a new
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proof of the Decomposition Lemma; the new proof makes use of decreasing binary plane trees and,
consequently, is more conceptual than the original purely permutation-based proof.

The definition of a valid hook configuration appears complicated at first glance, and the original
proof of the Fertility Formula in [26] seems very ad hoc. Our new proof of the Decomposition
Lemma yields a more general result that allows us to rederive the Fertility Formula. This new
derivation is much cleaner than the original proof, and it explains why valid hook configurations
are defined the way they are. This new proof of the Decomposition Lemma also generalizes to
arbitrary troupes; hence, we will call this more general result the Tree Decomposition Lemma.
From the Tree Decomposition Lemma, we will derive a new Tree Fertility Formula, which will
be one of the two main tools allowing us to connect free and classical cumulants with families
of colored binary plane trees and decreasing colored binary plane trees in Section 6. In fact, we
can even refine the Tree Decomposition Lemma and Tree Fertility Formula by taking into account
certain tree statistics; we call these more general results the Refined Tree Decomposition Lemma
and the Refined Tree Fertility Formula.

3. The Refined Tree Decomposition Lemma

The plot of a permutation π = π1 · · ·πn is the diagram showing the points (i, πi) ∈ R2 for all
1 ≤ i ≤ n. A hook of π is a rotated L shape connecting two points (i, πi) and (j, πj) with i < j
and πi < πj , as in Figure 8. The point (i, πi) is the southwest endpoint of the hook, and (j, πj) is
the northeast endpoint of the hook. Let SWi(π) be the set of hooks of π with southwest endpoint
(i, πi). For example, Figure 8 shows the plot of the permutation π = 426315789. The hook shown
in this figure is in SW3(π) because its southwest endpoint is (3, 6). It’s northeast endpoint is (8, 8).

2

3

5
6

1

7

4

9

8

Figure 8. The plot of 426315789 along with a single hook.

Suppose π is not a monotone increasing permutation, and let d1 < · · · < dk be its descents.
The rightmost ascending run of the plot of π is the sequence of points (dk + 1, πdk+1), . . . , (n, πn).
For example, the rightmost ascending run of 426315789 is (5, 1), (6, 5), (7, 7), (8, 8), (9, 9). We say a
descent d of π is right-bound2 if every hook in SWd(π) has its northeast endpoint in the rightmost
ascending run of the plot of π. This is equivalent to saying that every entry in π that is greater than
πd and to the right of πd is also to the right of πdk . Of course, this means that dk is automatically a
right-bound descent. The descents of 426315789 are 1, 3, and 4, but the only right-bound descents
are 3 and 4.

2In the hypothesis of the Refined Decomposition Lemma in [20], one chooses a “tail-bound descent” of a permutation.
By contrast, our Refined Tree Decomposition Lemma will require the choice of a right-bound descent. Every tail-
bound descent is right-bound, so this is one of the two ways in which the Refined Tree Decomposition Lemma
generalizes the Refined Decomposition Lemma (the other is that it applies to troupes).
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Let H be a hook of π with southwest endpoint (i, πi) and northeast endpoint (j, πj). The
H-unsheltered subpermutation of π is the permutation πHU = π1 · · ·πiπj+1 · · ·πn. Similarly, the
H-sheltered subpermutation of π is πHS = πi+1 · · ·πj−1. For instance, if π = 426315789 and H is the
hook shown in Figure 8, then πHU = 4269 and πHS = 3157. The terms “sheltered” and “unsheltered”
come from the fact that, in applications, the plot of πHS will lie entirely below the hook H. In
particular, this will be the case if i is a right-bound descent of π.

Theorem 3.1 (Refined Tree Decomposition Lemma). Let T be a troupe. Let f1, . . . , fr be insertion-
additive tree statistics, and let x1, . . . , xr be variables. If d is a right-bound descent of a nonempty
permutation π, then ∑

T ∈P−1(π)∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r

=
∑

H∈SWd(π)

Ö ∑
TU∈P−1(πHU )∩DT

x
f̈1(TU )
1 · · ·xf̈r(TU )

r

èÖ ∑
TS∈P−1(πHS )∩DT

x
f̈1(TS)
1 · · ·xf̈r(TS)

r

è
.

Proof. Let π = π1 · · ·πn. Let X be the set of entries in π, and let m = max(X). If SWd(π) is
empty, then πn 6= m. In this case, P−1(π) is empty, so both sides of the desired equation are 0.
Thus, we may assume SWd(π) is nonempty. This implies that πd < m.

Suppose T ∈ P−1(π)∩DT, and let v be the vertex of T with the label πd. Because πd < m, the
vertex v is not the root of T . Thus, v has a parent v∗. Let πj be the label of v∗. Note that πd < πj
because T is decreasing. Because d is a descent of π, we know that j 6= d + 1. It follows from
the fact that π = P(T ) that d + 1 < πj , that v is a left child of v∗, and that v∗ has a nonempty
right subtree TS . Furthermore, (j, πj) is the northeast endpoint of a hook H ∈ SWd(π). Let T ∗U
be the tree obtained from T by deleting TS . There is a left edge in T ∗U connecting v to its parent
v∗; contract this edge into a single vertex v (with the same color as the original v), and give this
vertex the label πd. This produces a decreasing colored binary plane tree TU .

The procedure we just described for producing the decreasing colored binary plane trees TU and
TS is exactly the same as the procedure used to decompose skel(T ) at the vertex v∗ (note that v∗

is black because it is a vertex with 2 children in the tree skel(T ), which is in the troupe T). Hence,

∆v∗(skel(T )) = (skel(TU ), skel(TS)).

The assumption that T ∈ DT tells us that skel(T ) ∈ T. Because T is a troupe, the trees skel(TU )
and skel(TS) are also in T. Thus, TU and TS are in DT. Comparing the above decomposition
procedure with the definition of the postorder reading, we find that P(TU ) = πHU and P(TS) = πHS .
Consequently, TU ∈ P−1(πHU ) ∩ DT and TS ∈ P−1(πHS ) ∩ DT.

This process is reversible. Suppose we are given the hook H ∈ SWd(π) with northeast end-
point (j, πj) along with the trees TU ∈ P−1(πHU ) ∩ DT and TS ∈ P−1(πHS ) ∩ DT. Let v be the
vertex in TU with label πd. The trees skel(TU ) and skel(TS) are in T. Because T is a troupe,
∇v(skel(TU ), skel(TS)) ∈ T. Let v∗ be the parent of v in ∇v(skel(TU ), skel(TS)). Every vertex in
∇v(skel(TU ), skel(TS)) other than v∗ is a vertex in either TU or TS . Let us give v∗ the label πj
and give each vertex in ∇v(skel(TU ), skel(TS)) the same label that it has in either TU or TS . This
produces a new labeled colored binary plane tree T satisfying skel(T ) = ∇v(skel(TU ), skel(TS)).
Note that TS is the right subtree of v∗ in T . Let T ∗U be the tree obtained by deleting TS from T .
Our goal is to show that T is a decreasing colored binary plane tree. In order to do this, it suffices
to show that TS and T ∗U are decreasing and that the label of the root of TS is less than the label πj
of v∗.
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We are given that TU and TS are decreasing colored binary plane trees; we want to check that T ∗U
is also. The only thing we need to verify is that the label πj of v∗ is smaller than the label of the
parent of v∗ in T ∗U if v∗ has a parent. Suppose v∗ does have a parent u in T ∗U , and let a be its label.
Since u is the parent of v in TU , we know that a is greater than πd and appears to the right of πd
in the permutation P(TU ) = πHU . Every entry that appears to the right of πd in πHU must appear
to the right of πj in π. It is at this point that we use the crucial hypothesis that d is a right-bound
descent. Indeed, this hypothesis implies that πj is in the rightmost ascending run of π, so it is less
than every entry that appears to its right in π. In particular, this means that πj < a, as desired.

It now remains to check that the label of the root of TS is less than πj . This labels is an
entry in the permutation πHS , whose plot lies below H in the plot of π (because d is right-bound).
Consequently, this label is less than πj . It follows from our construction that P(T ) = π, so we have
shown that T ∈ P−1(π) ∩ DT.

The above argument shows that there is a bijection

ϕ :
⋃

H∈SWd(π)

(P−1(πHU ) ∩ DT)× (P−1(πHS ) ∩ DT)→ P−1(π) ∩ DT

such that

skel(ϕ(TU , TS)) = ∇v(skel(TU ), skel(TS)),

where v is the vertex with label πd. For each i ∈ [r], we have

f̈i(ϕ(TU , TS)) = fi(skel(ϕ(TU , TS))) = fi(∇v(skel(TU ), skel(TS))) = fi(skel(TU )) + fi(skel(TS))

= f̈i(TU ) + f̈i(TS),

where we have used the definition of f̈i and the assumption that fi is insertion-additive. This
completes the proof. �

Example 3.2. We illustrate the proof of Theorem 3.1 in the specific case in which T is the troupe
BPT and π = 426315789 is the permutation shown in Figure 8. Let d = 3 (so πd = 6). One element
of P−1(π) ∩ DBPT is the tree

T =
24

76

5

8

9

3

1

.

Here, v is the vertex with label 6. The parent v∗ of v has label πj = 8, so H is the hook shown
in Figure 8. The corresponding unsheltered and sheltered subpermutations are πHU = 4269 and
πHS = 3157. Now observe that

TU =
24

6

9

∈ P−1(πHU ) ∩ DBPT and TS =

7

53

1

∈ P−1(πHS ) ∩ DBPT. ♦

Corollary 3.3 (Tree Decomposition Lemma). Let T be a troupe. If d is a right-bound descent of
a nonempty permutation π, then

|P−1(π) ∩ DT| =
∑

H∈SWd(π)

|P−1(πHU ) ∩ DT| · |P−1(πHS ) ∩ DT|.

Proof. Set x1 = · · · = xr = 1 in Theorem 3.1. �
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The following corollary is a mild generalization of the Refined Decomposition Lemma from
[20] (the original formulation used “tail-bound descents,” which are less general than right-bound
descents). Recall that s denotes the stack-sorting map.

Corollary 3.4 (Refined Decomposition Lemma). If d is a right-bound descent of a nonempty
permutation π, then ∑

σ∈s−1(π)

x
des(σ)+1
1 x

peak(σ)+1
2

=
∑

H∈SWd(π)

Ö ∑
µ∈s−1(πHU )

x
des(µ)+1
1 x

peak(µ)+1
2

èÖ ∑
λ∈s−1(πHS )

x
des(λ)+1
1 x

peak(λ)+1
2

è
.

Proof. We can apply Theorem 3.1 with T = BPT. It follows from (7) that for every permutation τ ,
the in-order reading I : P−1(τ)∩DBPT→ s−1(τ) is a bijection. Let f1 and f2 be the tree statistics
given by f1(T ) = des(T ) + 1 and f2(T ) = peak(T ) + 1, as defined in Example 2.11. As mentioned

in that example, we have f̈1(T ) = des(I(T )) + 1 and f̈2(T ) = peak(I(T )) + 1 for every T ∈ DBPT.
The proof now follows from Theorem 3.1. �

Corollary 3.5 (Decomposition Lemma). If d is a right-bound descent of a nonempty permutation
π, then

|s−1(π)| =
∑

H∈SWd(π)

|s−1(πHU )| · |s−1(πHS )|.

Proof. Set x1 = x2 = 1 in Corollary 3.4. �

Remark 3.6. One of the useful aspects of the Refined Tree Decomposition Lemma and its corol-
laries is that they give us the freedom to choose any right-bound descent d of the permutation
π. In the applications of the Decomposition Lemma in [20, 21], it is most convenient to choose a
right-bound descent d such that (d, πd) is the highest point in the plot of π that does not lie in the
“tail” of π. By contrast, we will find it useful in the next section to take d to be the largest descent
of π. 4

4. The Refined Tree Fertility Formula

Let us fix a troupe T, and let Tn denote the set of trees in T with n vertices. Let us also fix
insertion-additive tree statistics f1, . . . , fr and variables x1, . . . , xr. Let

Gn(x1, . . . , xr) =
∑
T∈Tn

x
f1(T )
1 · · ·xfr(T )

r .

In many applications, the polynomials Gn(x1, . . . , xr) can be computed using standard combinato-
rial methods. The basic idea of this section is to iteratively apply the Refined Tree Decomposition
Lemma in order to express ∑

T ∈P−1(π)∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r

as a sum of products of polynomials Gqt(x1, . . . , xr), where the sum ranges over valid hook configu-
rations. A different sum over valid hook configurations will appear in the VHC Cumulant Formula,
allowing us to connect cumulants with trees. We begin by handling the case in which π is an
increasing permutation.
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Lemma 4.1. If π is an increasing permutation of length n, then∑
T ∈P−1(π)∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r = Gn(x1, . . . , xr).

Proof. If π is any permutation (not necessarily increasing), then the map skel : P−1(π)∩DT→ Tn

is an injection satisfying f̈i(T ) = fi(skel(T )) for all i ∈ [r] and T ∈ P−1(π) ∩ DT. The lemma
follows from the observation that this map is bijective when π is increasing. Indeed, suppose
T ∈ Tn. There is a unique way to label the vertices of T to obtain a labeled colored binary plane
tree T with postorder reading π. Using the fact that π is increasing, one can straightforwardly
show that T is in fact decreasing. �

Iterative Decomposition Procedure. Suppose π is a permutation with descents d1 < · · · < dk,
where k = des(π) ≥ 1. The descent dk is necessarily right-bound. Therefore, the Tree Decomposi-
tion Lemma (Corollary 3.3) tells us that choosing a tree in P−1(π) ∩ DT is equivalent to choosing

a hook Hk ∈ SWdk(π) and then choosing trees T (k)
U ∈ P−1(πHkU )∩DT and T (k)

S ∈ P−1(πHkS )∩DT.

For notational convenience, let π = π(k) and π(k−1) = πHkU = (π(k))HkU . Notice that if k ≥ 2,

then dk−1 is the largest descent of π(k−1) (in particular, it is right-bound). This means that we

can invoke the Tree Decomposition Lemma once again to see that choosing T (k)
U is equivalent to

choosing a hook Hk−1 ∈ SWdk−1
(π(k−1)) and then choosing trees T (k−1)

U ∈ P−1((π(k−1))
Hk−1

U )∩DT

and T (k−1)
S ∈ P−1((π(k−1))

Hk−1

S ) ∩ DT. Let π(k−2) = (π(k−1))
Hk−1

U . We can repeat this process

by always choosing Hi ∈ SWdi(π
(i)) and setting π(i−1) = (π(i))HiU . We do this either until it is

impossible to choose Hi because SWdi(π
(i)) = ∅ or until we obtain a permutation π(0). Note that

if we do reach a point where SWdi(π
(i)) = ∅ for some i ∈ [k], then P−1(π(i)) ∩ DT = ∅. ♦

We now see that the number of ways to choose a tree in P−1(π)∩DT is equal to the number of
ways to do the following two tasks:

(†) Perform the Iterative Decomposition Procedure until producing a permutation π(0).

(††) Choose trees T (1)
U ∈ P−1(π(0)) ∩ DT and T (i)

S ∈ P−1((π(i))HiS ) ∩ DT for all i ∈ [k].

Suppose we have already performed Task (†). We can naturally view the chosen hooks H1, . . . ,Hk

as hooks of the original permutation π. By construction, the permutations π(0) and (π(i))HiS , which

we can see as subpermutations of π, are each increasing. Let q0 denote the length of π(0). For each
i ∈ [k], let qi denote the length of (π(i))HiS . According to Lemma 4.1, the number of ways to perform

Task (††) is given by the product
∏k
t=0 Gqt(1, . . . , 1). In fact, we can say more by taking into account

the statistics f1, . . . , fr. It follows from the Refined Tree Decomposition Lemma (more precisely,

the bijection used in its proof) and Lemma 4.1 that
∑
x
f̈1(T )
1 · · ·xf̈r(T )

r =
∏k
t=0 Gqt(x1, . . . , xr),

where the sum ranges over all trees in P−1(π) ∩ DT that can be formed by performing Task (††)
in various ways (we still assume that we have already performed Task (†)).

Example 4.2. Consider the permutation π = 2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16, whose plot is
shown in Figure 9. We have k = des(π) = 3; the descents of π are d1 = 2, d2 = 7, and d3 = 9.

Let us begin the Iterative Decomposition Procedure by setting π(3) = π and choosing H3 to be
the hook in SW9(π(3)) whose northeast endpoint has height 13. We obtain the subpermutations

(π(3))H3
S = 1 6 12 and π(2) = (π(3))H3

U = 2 7 3 5 9 10 11 4 8 14 15 16. We next choose H2 to be the

hook in SW7(π(2)) whose northeast endpoint has height 15; we can naturally identify this hook

with the hook of π labeled H2 in Figure 9. We obtain the subpermutations (π(2))H2
S = 4 8 14 and
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π(1) = (π(2))H2
U = 2 7 3 5 9 10 11 16. Finally, choose H1 to be the hook in SW2(π(1)) whose northeast

endpoint has height 11; as before we can see H1 as a hook of π. We obtain the subpermutations
(π(1))H1

S = 3 5 9 10 and π(0) = (π(1))H1
U = 2 7 16.

2

7

3

5

9

10

11

4

8

1

6

12

13

14

15

16

Figure 9. Hooks that divide the plot of a permutation π into smaller pieces.

In Figure 9, we have assigned different colors to the hooks Hi and have colored the points of
(π(i))HiS with the same color as Hi. We have also drawn a sky above the entire diagram. For now,
the sky is mostly decorative, but we will see later that it plays an important role. We have colored
the points of π(0) blue to match the color of the sky. We have q0 = 3, q1 = 4, q2 = 3, and q3 = 3,
so this particular choice of hooks accounts for a total of G3(1, . . . , 1)3G4(1, . . . , 1) of the trees in

P−1(π)∩DT. The sum of x
f̈1(T )
1 · · ·xf̈r(T )

r over all such trees T is G3(x1, . . . , xr)
3G4(x1, . . . , xr). ♦

Suppose, as above, that we have a permutation π with descents d1 < · · · < dk and that we
have performed Task (†). For every i ∈ [k], the southwest endpoint of the hook Hi is the point
(di, πdi). Observe that none of these hooks pass directly underneath any points in the plot of π.
Furthermore, no two of these hooks intersect each other unless the southwest endpoint of one hook
is the northeast endpoint of another. This leads us naturally to the definition of a valid hook
configuration.

Definition 4.3. Let π be a permutation with descents d1 < · · · < dk, where k = des(π). A
valid hook configuration of π is a tuple H = (H1, . . . ,Hk) of hooks of π that satisfy the following
properties:

(1) For each i ∈ [k], the southwest endpoint of Hi is (di, πdi).
(2) No point in the plot of π lies directly above a hook in H.
(3) No two hooks intersect or overlap each other unless the northeast endpoint of one is the

southwest endpoint of the other.

Let VHC(π) denote the set of valid hook configurations of π. More generally, for each set
S of permutations, let VHC(S) =

⋃
π∈S VHC(π). We make the convention that a valid hook
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configuration includes its underlying permutation as part of its identity. In other words, VHC(π)
and VHC(π′) are disjoint whenever π 6= π′. We also make the convention that if π is monotonically
increasing, then VHC(π) contains a single element: the empty valid hook configuration of π, which
has no hooks.

To build further intuition for this definition, consider Figure 10, which shows all six elements of
VHC(3142567).
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Figure 10. The valid hook configurations of 3142567.

We have observed that every configuration of hooks that arises by completing Task (†) is a valid
hook configuration. It is straightforward to check (for example, by induction), that every valid hook
configuration of π arises in this way. In other words, completing Task (†) is equivalent to choosing
an element of VHC(π). Once we have done this, the number of ways to complete Task (††) is given
by a product of numbers Gqt(1, . . . , 1), as described above. We can obtain the specific numbers qt
immediately from the given valid hook configuration as follows.

Fix π = π1 · · ·πn with des(π) = k. Each valid hook configuration H = (H1, . . . ,Hk) ∈ VHC(π)
induces a coloring of the plot of π. To begin this coloring, draw a sky over the entire diagram and
assign a color to the sky; in this article, we will always color the sky blue. Assign arbitrary distinct
colors other than blue to the hooks H1, . . . ,Hk. There are k northeast endpoints of hooks, and
these points remain uncolored. However, all of the other n− k points will be colored. In order to
decide how to color a point (i, πi) that is not a northeast endpoint, imagine that this point looks
directly upward. If it sees a hook when looking upward, it receives the same color as the hook that
it sees. If it does not see a hook, it must see the sky, so it receives the color blue. However, if (i, πi)
is the southwest endpoint of a hook, then it must look around (on the left side of) the vertical part
of that hook.

Figure 9 shows the coloring of the plot of a permutation induced by a valid hook configuration.
Indeed, the points given the same color as the hook Hi in this coloring correspond to the entries
of the subpermutation (π(i))HiS that appears in the Iterative Decomposition Procedure. Similarly,

the points colored blue correspond to the entries of π(0). Keeping with the notation introduced
earlier, we let qi denote the number of points given the same color as the hook Hi. Let q0 be the
number of blue points. Let qH denote the tuple (q0, . . . , qk). Observe that the point (di + 1, πdi+1)
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is necessarily the same color as Hi, while (1, π1) is necessarily blue. This means that qH is a
composition of n− k into k + 1 parts. We will find it convenient to write

GqH(x1, . . . , xr) =
k∏
t=0

Gqt(x1, . . . , xk).

Remark 4.4. Let Compk+1(n − k) denote the set of compositions of n − k into k + 1 parts. Fix

a permutation π with des(π) = k. Suppose H = (H1, . . . ,Hk) ∈ VHC(π) is such that qH =
(q0, . . . , qk). The hook Hk is completely determined by the number qk and the permutation π.
It then follows by induction on ` that the hooks Hk−` for 1 ≤ ` ≤ k − 1 are also determined
by the entries in (q0, . . . , qk). Thus, the map VHC(π) → Compk+1(n − k) given by H 7→ qH is
injective. 4

The previous discussion yields a formula for the number of trees in DT with a prescribed postorder
reading, counted according to the statistics f̈1, . . . , f̈r.

Theorem 4.5 (Refined Tree Fertility Formula). Let T be a troupe, and let f1, . . . , fr be insertion-
additive tree statistics. For every permutation π, we have∑

T ∈P−1(π)∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r =
∑

H∈VHC(π)

GqH(x1, . . . , xr),

where GqH(x1, . . . , xr) =
k∏
t=0

Gqt(x1, . . . , xr) =
k∏
t=0

∑
T∈Tqt

x
f1(T )
1 · · ·xfr(T )

r when qH = (q0, . . . , qk).

We now give some concrete examples to illustrate the Refined Tree Fertility Formula. Recall
that if (un)n≥1 is a sequence of elements of a field and q = (q0, . . . , qk) is a composition, then we
let uq =

∏k
t=0 uqt .

Example 4.6 (Binary Plane Trees). Let T = BPT, and let f1(T ) = des(T ) + 1 and f2(T ) =
peak(T ) + 1. We know by Example 2.11 that f1 and f2 are insertion-additive. Therefore, we may
apply the Refined Tree Fertility Formula to find that

(9)
∑

T ∈P−1(π)∩DBPT

x
des(T )+1
1 x

peak(T )+1
2 =

∑
H∈VHC(π)

GqH(x1, x2)

for every permutation π. In order to perform calculations with this formula, we would like to know
how to explicitly compute the polynomials

Gn(x1, x2) =
∑

T∈BPTn
x

des(T )+1
1 x

peak(T )+1
2 .

Recall that we made the conventions des(ε) = 0 and peak(ε) = −1, where ε is the empty tree. In

other words, G0(x1, x2) = x1. Let G(x1,x2)(z) =
∑
n≥0 Gn(x1, x2)zn. Each binary plane tree must

be empty, a single root vertex, a root vertex with a nonempty left subtree and an empty right
subtree, or a root vertex with a nonempty right subtree and a left subtree that may or may not be
empty. This observation translates into the equation

G(x1,x2)(z) = x1 + x1x2z + z(G(x1,x2)(z)− x1) + z(G(x1,x2)(z)− x1)G(x1,x2)(z),

which implies that

(10) G(x1,x2)(z) =
1− z + x1z −

»
(1− z + x1z)2 − 4x1z(1− z + x2z)

2z
.
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Although we will not need it, we remark that one can derive from (10) the formula

[xi1x
j
2z
n]G(x1,x2)(z) =

1

n+ 1− j

Ç
n− 1

n− j

åÇ
n+ 1− j

j

åÇ
n+ 1− 2j

i− j

å
for the coefficient of xi1x

j
2z
n in G(x1,x2)(z).

We now consider the Narayana numbers N(n, i) = 1
n

(n
i

)( n
i−1

)
. These numbers constitute one of

the most common refinements of the sequence of Catalan numbers. In particular, N(n, i) is the
number of binary plane trees with n vertices and i− 1 right edges. Therefore, we have

Gn(x1, 1) =
∑

T∈BPTn
x

des(T )+1
1 = Nn(x1),

where Nn(x) is the Narayana polynomial defined by Nn(x) =
n∑
i=1

N(n, i)xi. Narayana polynomials

are also the h-polynomials of associahedra [52]. Specializing x2 = 1 in (9) yields

(11)
∑

T ∈P−1(π)∩DBPT

x
des(T )+1
1 =

∑
H∈VHC(π)

NqH(x1)

for every permutation π. Specializing further, we have Nn(1) = Cn, so

(12) |P−1(π) ∩ DBPT| =
∑

H∈VHC(π)

CqH .

These results concerning binary plane trees translate immediately into the language of stack-
sorting. It follows from (7) that for every permutation τ , the in-order reading I : P−1(τ)∩DBPT→
s−1(τ) is a bijection. We have des(T ) = des(I(T )) and peak(T ) = peak(I(T )) for every T ∈ DBPT.
Therefore, (9), (11), and (12) are equivalent to the equations

(13)
∑

σ∈s−1(π)

x
des(σ)+1
1 x

peak(σ)+1
2 =

∑
H∈VHC(π)

GqH(x1, x2),

(14)
∑

σ∈s−1(π)

x
des(σ)+1
1 =

∑
H∈VHC(π)

NqH(x1),

and

(15) |s−1(π)| =
∑

H∈VHC(π)

CqH .

We call equations (13) and (15) the Refined Fertility Formula and the Fertility Formula, respec-
tively. The current author has used these formulas to generalize many known results and to prove
several new results concerning the stack-sorting map [19,22,24,27–29]. ♦

The results in the following three examples are all new. This includes the specific cases in which
we set x1 = · · · = xr = 1, which provide formulas for the number of trees of each specified type
that have a prescribed postorder reading.

Example 4.7 (Full Binary Plane Trees). Let T be the troupe FBPT. Every tree in FBPT has an
odd number of vertices, and it is straightforward to check that des(T ) = peak(T ) = k for every
T ∈ FBPT2k+1. Therefore, counting trees in FBPT according to the statistics des and peak is
not interesting (it suffices to count according the number of vertices). We have Gn = |FBPTn| =
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C(n−1)/2, where C(n−1)/2 = 0 when n is even. The sequence (C(n−1)/2)n≥1 is the sequence of aerated
Catalan numbers (OEIS sequence A126120 [51]). By the Tree Fertility Formula, we have

(16) |P−1(π) ∩ DFBPT| =
∑

H∈VHC(π)

C(qH−1)/2

for every permutation π.

As in the previous example, we can reformulate this result in terms of the stack-sorting map.
We say a permutation π = π1 · · ·πn is alternating if its set of descents is precisely the set of even
elements of [n − 1]. Let ALT be the set of alternating permutations. Alternating permutations
have been studied extensively (see Stanley’s survey [58] and the references therein); the number
of alternating permutations in Sn is the Euler number En. These numbers can be defined via the

generating function equation
∑
n≥0

En
zn

n!
= sec(z) + tan(z). The numbers En with n even are called

secant numbers, and the numbers En with n odd are called tangent numbers. When n is odd, the
in-order reading gives a bijection from DFBPTn to the set of alternating permutations of length n.
Therefore, we can use (7) and (16) to obtain the following new theorem concerning the stack-sorting
map.

Theorem 4.8. For every permutation π of odd length, the number of alternating permutations in
s−1(π) is ∑

H∈VHC(π)

C(qH−1)/2.

Problem 4.9. Find an analogue of Theorem 4.8 for permutations of even length. ♦

Example 4.10 (Motzkin Trees). Let T be the troupe Mot, and let f1 be the insertion-additive tree
statistic given by f1(T ) = des(T )+1. We could also consider the statistic given by T 7→ peak(T )+1,
but that would be redundant because des(T ) = peak(T ) for every Motzkin tree T . Consider the

Motzkin polynomials Mn−1(x) =
n∑
i=1

(n− 1)!

(n− 2i+ 1)! i! (i− 1)!
xi, whose coefficients form the OEIS

sequence A055151 [51]. These polynomials refine the sequence of Motzkin numbers in the same
way that Narayana polynomials refine the sequence of Catalan numbers. Indeed, the coefficient
of xi in Mn−1(x) is the number of Motzkin trees with n vertices and i − 1 right edges. It is also
known [52] that Motzkin polynomials are the γ-polynomials of associahedra. Let

Gn(x1) =
∑

T∈Motn

x
des(T )+1
1 = Mn−1(x1),

and let G(x1)(z) =
∑
n≥0 Gn(x1)zn. Each Motzkin tree must be a single root vertex, a root vertex

with a nonempty left subtree and an empty right subtree, or a root vertex with two nonempty
subtrees. This yields the equation

G(x1)(z) = x1z + zG(x1)(z) + zG(x1)(z)2,

which implies that

(17) G(x1)(z) =
1− z −

√
1− 2z + z2 − 4x1z2

2z
.

By the Refined Tree Fertility Formula, we have

(18)
∑

T ∈P−1(π)∩DMot

x
des(T )+1
1 =

∑
H∈VHC(π)

GqH(x1) =
∑

H∈VHC(π)

MqH−1(x1)
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for every permutation π. Since Mn−1(1) = Mn−1 = |Motn|, we can specialize x1 = 1 to obtain the
formula

(19) |P−1(π) ∩ DMot| =
∑

H∈VHC(π)

MqH−1.

We can translate these results into the language of stack-sorting. Let

EDP = {π : des(π) = peak(π)}

denote the set of permutations in which every descent is a peak. Alternatively, EDP is the set
of permutations that have no double descents (i.e., consecutive descents) and in which 1 is not a
descent. The standardized permutations in EDP are counted by the OEIS sequence A080635 [51],
which has the exponential generating function∑

n≥0

|EDP∩Sn|
zn

n!
=

1

2
+

√
3

2
tan

Ç√
3

2
z +

π

6

å
.

The in-order reading gives a bijection I : DMot → EDP. Therefore, we can use (8) and (18) to
obtain the following new theorem concerning the stack-sorting map.

Theorem 4.11. For every permutation π, we have∑
σ∈s−1(π)∩EDP

x
des(σ)+1
1 =

∑
H∈VHC(π)

MqH−1(x1).

In particular, the number of permutations in s−1(π) whose descents are all peaks∑
H∈VHC(π)

MqH−1. ♦

Example 4.12 (Schröder 2-Colored Binary Trees). Let T be the troupe Sch, and let f1(T ) =
des(T ) + 1, f2(T ) = peak(T ) + 1, and f3(T ) = black(T ) + 1. We saw in Example 2.11 that f1, f2, f3

are insertion-additive. Let G(x1,x2,x3)(z) =
∑
n≥0 Gn(x1, x2, x3)zn, where

Gn(x1, x2, x3) =
∑

T∈Schn
x

des(T )+1
1 x

peak(T )+1
2 x

black(T )+1
3 .

Although we will not explicitly need this formula, one can show that

G(x1,x2,x3)(z) =
1− x1z − x3z + x1x3z −

»
Q(x1,x2,x3)(z)

2z
,

where

Q(x1,x2,x3)(z) = (1− x1z − x3z + x1x3z)
2 − 4z(x1x3 − x2

1x3z + x1x2x3z − x1x
2
3z + x1x2x

2
3z).

The Refined Tree Fertility Formula tells us that∑
T ∈P−1(π)∩DSch

x
des(T )+1
1 x

peak(T )+1
2 x

black(T )+1
3 =

∑
H∈VHC(π)

GqH(x1, x2, x3)

for every permutation π.

Let us specialize to the case in which x2 = x3 = 1. Note that Gn(x1, 1, 1) counts Schröder
2-colored binary trees with n vertices according to their number of right edges. Every Schröder
2-colored binary tree with n vertices and r right edges can be constructed by choosing a binary
plane tree with n vertices and r right edges, coloring black the n − 1 − r vertices that have left
children (since white vertices cannot have left children), and then coloring each of the remaining
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r + 1 vertices either black or white. The number of ways to make these choices is 2r+1N(n, r + 1),
so

Gn(x1, 1, 1) =
n−1∑
r=0

2r+1N(n, r + 1)xr+1
1 = Nn(2x1),

where N(n, r + 1) and Nn(2x) denote Narayana numbers and Narayana polynomials. Thus,∑
T ∈P−1(π)∩DSch

x
des(T )+1
1 =

∑
H∈VHC(π)

NqH(2x1).

Another interesting specialization comes from setting x1 = x2 = 1. It follows from Corollary 4.2
in [38] that

(n+j
n−j
)
Cj is the number of trees in Schn with j black vertices. Therefore,∑

T ∈P−1(π)∩DSch

x
black(T )+1
3 =

∑
H∈VHC(π)

GqH(1, 1, x3),

where GqH(1, 1, x3) =
k∏
t=0

qt∑
j=0

Ç
qt + j

qt − j

å
Cjx

j+1
3 when qH = (q0, . . . , qk).

Finally, Gn(1, 1, 1) is the nth large Schröder number Sn, so

♦(20) |P−1(π) ∩ DSch| =
∑

H∈VHC(π)

SqH .

In summary, this section shows that if one knows the set of valid hook configurations of a
permutation π, then one can count the trees in P−1(π)∩DT for a large variety of sets T. One can
even count these trees according to some natural statistics.

5. Free Probability Theory and the VHC Cumulant Formula

5.1. Background. Let K be a field. Let Π(X) denote the collection of all set partitions of a totally
ordered finite set X. We let Π(n) = Π([n]). Given a sequence (un)n≥1 of elements of K and a set
partition ρ, we let

(u•)ρ =
∏
B∈ρ

u|B|.

We say two distinct blocks B,B′ of a set partition ρ ∈ Π(X) form a crossing if there exist i, j ∈ B
and i′, j′ ∈ B′ such that either i < i′ < j < j′ or i > i′ > j > j′. A partition is noncrossing if no
two of its blocks form a crossing. Let NC(X) be the set of noncrossing partitions in Π(X), and
let NC(n) = NC([n]). The sets Π(n) and NC(n) are both lattices under the reverse refinement
ordering [50, Lecture 9].

A noncommutative probability space over K is a pair (A, ϕ), where A is a unital associative
algebra and ϕ : A → K is a unital linear functional (meaning ϕ(1A) = 1K). Given a1, . . . , an ∈ A
and B = {b1 < · · · < br} ⊂ [n], let aB = (ab1 , . . . , abr). One of the goals of noncommutative
probability theory is to understand the joint moments

mn(a1, . . . , an) := ϕ(a1 · · · an).

The classical cumulants are the elements cn(a1, . . . , an) of K that satisfy the formula

(21) mn(a1, . . . , an) =
∑

ρ∈Π(n)

cρ(a1, . . . , an),
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where cρ(a1, . . . , an) =
∏
B∈ρ

c|B|(aB). This formula immediately implies that the joint moments are

determined by the classical cumulants. On the other hand, one can apply Möbius inversion to (21)
in order to deduce that the classical cumulants are determined by the joint moments [50, Lecture 11].

The free cumulants, originally introduced by Speicher in [55], are the elements κn(a1, . . . , an) of
K that satisfy the formula

(22) mn(a1, . . . , an) =
∑

η∈NC(n)

κη(a1, . . . , an),

where κη(a1, . . . , an) =
∏
B∈η

κ|B|(aB). This shows that the free cumulants determine the moments.

One can use Möbius inversion, this time on the noncrossing partition lattice, to rearrange (22),
expressing the free cumulants in terms of the moments [50, Lecture 11].

The preceding paragraphs describe moments, classical cumulants, and free cumulants that are
multivariate in the sense that they involve several (possibly) distinct elements a1, a2, . . . of A. In
many applications, it will suffice to consider the univariate case in which the elements a1, a2, . . .
are all equal. In this case, we drop the notation expressing the dependence on a1, a2, . . . and simply
write mn, cn, and κn. In fact, we will rarely need to refer to the noncommutative probability
space (A, ϕ). For the sake of notational convenience and clarity of exposition, we will phrase all of
the results concerning cumulants in the univariate setting; we will then explicitly point out which
results generalize straightforwardly to the multivariate setting. Because we will only perform formal
combinatorial and algebraic manipulations, the sequences (mn)n≥1, (cn)n≥1, (κn)n≥1 can be any
sequences of elements of K, so long as they satisfy the defining equations

(23) mn =
∑

ρ∈Π(n)

(c•)ρ and mn =
∑

η∈NC(n)

(κ•)η for all n ≥ 1.

As mentioned above, each one of the sequences (mn)n≥1, (cn)n≥1, (κn)n≥1 determines the other
two. For example, if we are given a sequence of classical cumulants (cn)n≥1, then the corresponding
free cumulants κn are given by

κn =
∑

η∈NC(n)

µNC(η, 1̂n)(m•)η =
∑

η∈NC(n)

µNC(η, 1̂n)
∏
B∈η

∑
ρ∈Π(B)

(c•)ρ,

where µNC and 1̂n denote the Möbius function of NC(n) and the maximal element of NC(n), respec-
tively. This last expression is somewhat unsatisfying because it does not give a clear combinatorial
picture of what is happening. The following result due to Lehner gives a much simpler combina-
torial explanation of how to convert from classical to free cumulants. The crossing graph G(ρ) of
a set partition ρ ∈ Π(X) is the graph whose vertices are the blocks of ρ in which two blocks are
adjacent if and only if they form a crossing. For example, a partition is noncrossing if and only if its
crossing graph has no edges. We say a set partition is connected if its crossing graph is connected.
Let Πcon(X) denote the set of connected set partitions in Π(X), and let Πcon(n) = Πcon([n]).

Theorem 5.1 ([45]). If (cn)n≥1 is a sequence of classical cumulants, then the corresponding free
cumulants are given by

κn =
∑

ρ∈Πcon(n)

(c•)ρ.

More recently, Josuat-Vergès found a simple combinatorial formula that inverts Theorem 5.1. Let
TG(x, y) be the Tutte polynomial of a finite graph G. We refer the reader to [6] and the references
therein for more information about this important graph invariant and its generalizations.
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Theorem 5.2 ([40]). If (κn)n≥1 is a sequence of free cumulants, then the corresponding classical
cumulants are given by

−cn =
∑

ρ∈Πcon(n)

TG(ρ)(1, 0)(−κ•)ρ.

The obvious generalizations of Lehner’s theorem and Josuat-Vergès’ theorem to the multivariate
setting hold as well.

The reason why it is useful to have combinatorial formulas for converting between cumulants,
especially in our applications to the stack-sorting map in Section 7, is that they correspond to
transformations of generating functions. Whenever we have a sequence (un)n≥1 of elements of K,

we can consider the ordinary generating function F (z) =
∑
n≥1

unz
n; we then let “F (z) =

∑
n≥1

un
zn

n!

denote the corresponding exponential generating function. It turns out that

(24) “F (z) = L−1{F (1/t)/t}(z),

where L−1 denotes the inverse Laplace transform. Indeed, this follows from the linearity of the

inverse Laplace transform and the fact that L−1{t−n−1}(z) =
zn

n!
. If u1 6= 0, the series F (z) has a

unique formal compositional inverse, which is another power series that we denote by F 〈−1〉(z); it

satisfies F (F 〈−1〉(z)) = F 〈−1〉(F (z)) = z. If u1 = 0, there can be multiple compositional inverses of
F (z). When this arises in applications, we can determine the correct series by analyzing the initial
terms of the candidate compositional inverses.

Let (mn)n≥1 be a moment sequence, and let (cn)n≥1 and (κn)n≥1 be the corresponding sequences
of classical and free cumulants. The moment series M(z) is simply the ordinary generating function

M(z) =
∑
n≥1

mnz
n.

Then M̂(z) =
∑
n≥1

mn
zn

n!
. Because the classical cumulants cn satisfy the formula on the left in (23),

it follows from the Exponential Formula [57, Chapter 5] that

(25)
∑
n≥1

cn
zn

n!
= log(1 + M̂(z)).

The R-transform R(z) of the moment series M(z), which was originally defined by Voiculescu
[60,61] in his foundational work on free probability, is the ordinary generating function of the free
cumulants:

R(z) =
∑
n≥1

κnz
n.

The R-transform and the moment series are related by the equation

(26)
R〈−1〉(z)

1 + z
= M 〈−1〉(z),

where we must choose the appropriate branches of the compositional inverses when m1 and κ1

are 0 [50, Lecture 16]. On the level of generating functions, we can convert from free to classical
cumulants (and vice versa) by combining (24), (25), and (26).
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5.2. Cumulants and Valid Hook Configurations. We now state and prove the central theorem
connecting free and classical cumulants with valid hook configurations. This theorem will represent
the second half of the bridge connecting the free probability world with the rooted plane tree (and
stack-sorting) world (the first half of this bridge is the Refined Tree Fertility Formula). In fact,
much of the heavy lifting needed to prove this theorem was done in [29]; we just need to recall the
results from that paper.

Our first order of business is to slightly modify the colorings of valid hook configurations that we
introduced in Section 4. Recall that, originally, we did not color the northeast endpoints of hooks.
Here, it will be convenient to color these points as well. We simply color the northeast endpoint of
a hook H the same color as H. The top right panel in Figure 11 shows an example.
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Figure 11. The top right panel shows the modified diagram of a valid hook config-
uration H ∈ VHC(π), where π = 7 11 10 13 3 2 6 8 1 4 5 9 12 14 15. The top left panel
shows the connected set partition |H and acyclic orientation of the crossing graph
G(|H) that correspond to H under the bijection Φ. The bottom right panel shows
the noncrossing partition H

Let π ∈ Sn−1 be a permutation, and let H ∈ VHC(π) be a valid hook configuration of π. Now
imagine projecting the colored points and the sky in the modified coloring of H onto a vertical wall
on the left side of the diagram. This produces a set partition |H ∈ Π(n). More precisely, we define
|H by saying that two elements a, a′ ∈ [n] are in the same block of |H if and only if the points with
heights a and a′ in the modified diagram of H have the same color, where we think of the sky as a
blue point with height n. We color each block B ∈ |H the same color as the points whose heights
are in B. For example, if H is as shown in the top right panel in Figure 11, then

|H = {{1, 4, 5, 9}, {2, 6}, {3, 8, 12, 14, 15}, {7, 11, 16}, {10, 13}}.

Remark 5.3. Given a valid hook configuration H with k hooks, we can consider the composition
qH = (q0, . . . , qk) defined in Section 4. The sizes of the blocks of |H are q0 + 1, . . . , qk + 1. 4
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There is another natural partition H ∈ Π(n) associated to H, which we get by projecting the
points in the modified diagram of H downward onto a floor. More precisely, we first declare that
two elements i, i′ ∈ [n − 1] are in the same block of H if and only if (i, πi) and (i′, πi′) have the
same color in the modified coloring of H. We then add the number n to the block containing the
numbers i such that (i, πi) is blue. We color each block B ∈ H the same color as the points whose
positions (i.e., x-coordinates) are in B. For example, if H is as shown in the top right panel in
Figure 11, then

H = {{1, 2, 16}, {3, 4}, {5, 8, 13, 14, 15}, {6, 7}, {9, 10, 11, 12}}.

It follows easily from the definition of a valid hook configuration (Definition 4.3) that the partition
H is noncrossing. On the other hand, it follows from Theorem 5.4 below that |H is a connected

set partition. For each block B ∈ |H, let ÙB be the block in H with the same color as B. The map

B 7→ ÙB is clearly a bijection from |H to H that preserves sizes of blocks.

An acyclic orientation of a graph G is an assignment of a direction to each of the edges of G so
that there are no directed cycles in the resulting directed graph. A source of a directed graph is a
vertex with in-degree 0. When we speak of a source of an acyclic orientation, we mean a source in

the corresponding directed graph. Let ‹Πcon(n) denote the set of pairs (ρ, α) such that ρ ∈ Πcon(n)
and α is an acyclic orientation of the crossing graph G(ρ) whose unique source is the block of ρ
containing the number n. Greene and Zaslavsky [37] proved that if v is a vertex in a finite simple
graph G, then the number of acyclic orientations of G in which v is the unique source is the value
TG(1, 0) of the Tutte polynomial of G. It follows that

TG(ρ)(1, 0) = |{α : (ρ, α) ∈ ‹Πcon(n)}|
for each ρ ∈ Πcon(n).

We can now state the main bijection from [29]. Let VHC(Sn−1) denote the set of all valid
hook configurations of permutations in Sn−1. Choose H ∈ VHC(Sn−1), and let |H and H be its
associated connected set partition and its associated noncrossing partition, respectively. Suppose

B and B′ are two blocks of |H that are adjacent in G(|H) (i.e., they form a crossing). Let ÙB andÙB′ be the corresponding blocks in H. If min ÙB < min ÙB′, orient the edge connecting B and B′ in

G(ρ) from B to B′. If min ÙB′ < min ÙB, orient the edge connecting B and B′ in G(ρ) from B′ to B.
After orienting all of the edges of G(|H) in this way, we obtain an acyclic orientation αH of G(|H).
Let

Φ(H) = (|H, αH).

For example, if H is the valid hook configuration whose modified coloring is shown in the top right
panel of Figure 11, then |H and αH are shown in the top left panel of the same figure.

Theorem 5.4 ([29]). If H ∈ VHC(Sn−1), then Φ(H) ∈ ‹Πcon(n). Furthermore, the map

Φ : VHC(Sn−1)→ ‹Πcon(n)

is a bijection.

The following corollary now follows immediately from Josuat-Vergès’ formula (Theorem 5.2) and
the preceding theorem.

Corollary 5.5 (VHC Cumulant Formula). If (κn)n≥1 is a sequence of free cumulants, then the
corresponding classical cumulants are given by

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H.
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Because Josuat-Vergès’ formula extends to the multivariate setting, so does Corollary 5.5. More
precisely, this means that if (A, ϕ) is a noncommutative probability space and a1, . . . , an ∈ A, then

(27) − cn(a1, . . . , an) =
∑

H∈VHC(Sn−1)

∏
B∈|H

(−κ|B|(aB)).

In Section 8, we will use Corollary 5.5 and the combinatorics of valid hook configurations to give
new formulas that convert from free to classical cumulants; these new formulas will not extend to
the multivariate setting.

Example 5.6. Figure 12 shows the modified colorings of the two valid hook configurations in
VHC(S3). The associated connected set partitions are {{1, 2, 3, 4}} and {{1, 3}, {2, 4}}. If (A, ϕ)
is a noncommutative probability space and a1, a2, a3, a4 ∈ A, then it follows from (27) that

−c4(a1, a2, a3, a4) = −κ4(a1, a2, a3, a4) + (−κ2(a1, a3))(−κ2(a2, a4))

= −κ4(a1, a2, a3, a4) + κ2(a1, a3)κ2(a2, a4).

Specializing to the univariate setting, this says that

−c4 = −κ4 + κ2
2.
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Figure 12. The modified colorings of the valid hook configurations of permutations
in S3 and their associated connected set partitions.

♦

6. Troupes and Cumulants

We can now state and prove one of our main results. We will then illustrate this theorem with
several examples. In what follows, we work over the field K = C(x1, . . . , xr). Given a set T of
colored binary plane trees, let DT denote the set of standardized trees in DT.

Theorem 6.1. Let T be a troupe. Let f1, . . . , fr be insertion-additive tree statistics, and let
x1, . . . , xr be variables. If (κn)n≥1 is the sequence of free cumulants defined by

κn = −
∑

T∈Tn−1

x
f1(T )
1 · · ·xfr(T )

r ,

then the corresponding sequence (cn)n≥1 of classical cumulants is given by

cn = −
∑

T ∈DTn−1

x
f̈1(T )
1 · · ·xf̈r(T )

r .

Proof. Preserving the notation from the Refined Tree Fertility Formula (Theorem 4.5), we let
Gm(x1, . . . , xr) = −κm+1. If H is a valid hook configuration with qH = (q0, . . . , qk), then the
blocks of |H have sizes q0 + 1, . . . , qk + 1. Thus,

GqH(x1, . . . , xr) =
k∏
t=0

Gqt(x1, . . . , xr) =
k∏
t=0

(−κqt+1) = (−κ•)|H.
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Combining the Refined Tree Fertility Formula (Theorem 4.5) with the VHC Cumulant Formula
(Corollary 5.5), we find that

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H =
∑

π∈Sn−1

∑
H∈VHC(π)

GqH(x1, . . . , xr)

=
∑

π∈Sn−1

∑
T ∈P−1(π)∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r =
∑

T ∈DTn−1

x
f̈1(T )
1 · · ·xf̈r(T )

r . �

Remark 6.2. Despite the very simple-looking relationship between the free and classical cumulants
in Theorem 6.1, we do not see any way to prove the result without the use of the Refined Tree
Fertility Formula (which, in turn, relies on the Refined Tree Decomposition Lemma) and the VHC
Cumulant Formula. It is likely that these tools are truly necessary for the proof because the
hypothesis that T is a troupe is needed. Indeed, suppose we were to take T to be the set of all
binary plane trees that are branches (meaning no vertices have 2 children). Set r = 0. In this case,
the free cumulants κn in Theorem 6.1 satisfy κ1 = −|T0| = −1 and κn = −|Tn−1| = −2n−2 for all
n ≥ 2. If Theorem 6.1 applied in this setting, it would tell us that c4 = −|DT3| = −4. However,
we can use the computation in Example 5.6 to see that −c4 = −κ4 + κ2

2 = 4 + (−1)2 = 5. 4

Example 6.3 (Binary Plane Trees). Let T = BPT, and let f1(T ) = des(T ) + 1 and f2(T ) =
peak(T ) + 1. Let

Gn(x1, x2) =
∑

T∈BPTn
x

des(T )+1
1 x

peak(T )+1
2

be as in Example 4.6. The generating function for these polynomials is given explicitly in (10).
Theorem 6.1 tells us that if we define free cumulants by κn = −Gn−1(x1, x2), then the corresponding
classical cumulants are

cn = −
∑

T ∈DBPTn−1

x
des(T )+1
1 x

peak(T )+1
2 .

Using the in-order reading I, we can rephrase this result purely in terms of permutations. We
say a permutation π = π1 · · ·πn is 231-avoiding if there do not exist indices i1 < i2 < i3 such
that πi3 < πi1 < πi2 . Given a binary plane tree T with n vertices, there is a unique decreasing

binary plane tree T̈ with skeleton T and postorder reading 123 · · ·n. It is well known that the
map T 7→ I(T̈ ) is a bijection from BPTn to the set Avn(231) of 231-avoiding permutations in

Sn. Furthermore, des(T ) = des(I(T̈ )) and peak(T ) = peak(I(T̈ )). On the other hand, the map
I : DBPTn → Sn is a bijection satisfying des(I(T )) = des(T ) and peak(I(T )) = peak(T ). It
follows that the above free and classical cumulants are

κn = −
∑

π∈Avn−1(231)

x
des(π)+1
1 x

peak(π)+1
2 and cn = −

∑
π∈Sn−1

x
des(π)+1
1 x

peak(π)+1
2 .

Let us now specialize by setting x2 = 1. In this case, the free cumulants are given by Narayana
polynomials:

(28) κn = −Gn−1(x1, 1) = −Nn−1(x1).

Using the above expression for the classical cumulants in terms of permutations, we find that

(29) cn = −
∑

π∈Sn−1

x
des(π)+1
1 = −x1An−1(x1),

where An−1(x1) is an Eulerian polynomial (see OEIS sequence A008292). The Eulerian polynomials
are the h-polynomials of permutohedra [52]. Thus, we have shown, in a combinatorial fashion, that
the above sequence of free cumulants given by Narayana polynomials, which are the h-polynomials
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of associahedra, corresponds to a sequence of classical cumulants given by Eulerian polynomials,
which are the h-polynomials of permutohedra.

If we specialize to the case in which x1 = 1, then the free cumulants count 231-avoiding stan-
dardized permutations according to their number of peaks (see OEIS sequence A091894) and the
classical cumulants count arbitrary standardized permutations according to their number of peaks
(see OEIS sequence A008303).

Finally, we can specialize to the case x1 = x2 = 1. Here, the free and classical cumulants are

κn = −Cn−1 and cn = −(n− 1)!.

The corresponding moment sequence (mn)n≥1 is simply −1, 0, 0, 0, . . .. The fact that the free cumu-
lants −Cn−1 correspond to the classical cumulants −(n− 1)! is well known; it follows from the fact
that the numbers (−1)n−1Cn−1 and (−1)n−1(n−1)! are the Möbius invariants of noncrossing parti-
tion lattices and partition lattices, respectively. What is nontrivial is our combinatorial explanation
of this correspondence, which relies on valid hook configurations and binary plane trees. ♦

Example 6.4 (Full Binary Plane Trees). Let T = FBPT. Theorem 6.1 tells us that if we define
free cumulants by κn = −|FBPTn−1| = −C(n−2)/2 (where C(n−2)/2 = 0 when n is odd), then

the corresponding classical cumulants are cn = −|DFBPTn−1|. Note that cn = 0 when n is odd.
Suppose n is even. As mentioned in Example 4.7, the in-order reading gives a bijection from
DFBPTn−1 to the set Sn−1 ∩ALT of alternating permutations in Sn−1. Thus, cn = −En−1, where
En−1 denotes an Euler number (also called a tangent number since n− 1 is odd). ♦

Example 6.5 (Motzkin Trees). Let T = Mot, and let f1(T ) = des(T ) + 1. Let

Gn(x1) =
∑

T∈Motn

x
des(T )+1
1 = Mn−1(x1)

be the Motzkin polynomials. The generating function for these polynomials and an explicit formula
for their coefficients are given in Example 4.10. Theorem 6.1 tells us that if we define free cumulants
by κn = −Mn−2(x1), then the corresponding classical cumulants are

cn = −
∑

T ∈DMotn−1

x
des(T )+1
1 .

Referring back to the bijections DMot → EDP and BPTn−1 → Avn−1(231) mentioned in Exam-
ple 4.10 and Example 6.3, respectively, we find that we can write

κn = −
∑

π∈Avn−1(231)∩EDP

x
des(π)+1
1 and cn = −

∑
π∈Sn−1∩EDP

x
des(π)+1
1 .

The coefficients of the polynomials −cn form the γ-vectors of permutohedra [52, 54]; they appear
in the OEIS sequence A101280 [51]. Thus, we have shown, in a combinatorial fashion, that free
cumulants given by Motzkin polynomials, which are the γ-polynomials of associahedra, correspond
to classical cumulants given by the γ-polynomials of permutohdera.

If we specialize to the case x1 = x2 = 1 and define the sequence of free cumulants by κn = −Mn−2,
then the corresponding classical cumulants are cn = −|DMotn−1| = |Sn−1 ∩ EDP |. The numbers
−cn form the OEIS sequence A080635 [51]. ♦

Example 6.6 (Schröder 2-Colored Binary Trees). Let T = Sch, and let f1(T ) = des(T ) + 1,
f2(T ) = peak(T ) + 1, and f3(T ) = black(T ) + 1. Let

Gn(x1, x2, x3) =
∑

T∈Schn
x

des(T )+1
1 x

peak(T )+1
2 x

black(T )+1
3
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be as in Example 4.12. Theorem 6.1 tells us that the free cumulants κn = −Gn−1(x1, x2, x3)
correspond to the classical cumulants

cn = −
∑

T ∈DSchn−1

x
des(T )+1
1 x

peak(T )+1
2 x

black(T )+1
3 .

Let us consider the specialization x2 = x3 = 1. In this case, −κn counts large Schröder trees
with n− 1 vertices according to their number of right edges. As mentioned in Example 4.12,

κn = −Gn−1(x1, 1, 1) = −Nn−1(2x1),

where Nn−1(x) is a Narayana polynomial. The corresponding classical cumulants are given by

cn = −
∑

T ∈DSchn−1

x
des(T )+1
1 .

Notice that we can appeal directly to (28) and (29) (replacing x1 with 2x1) to see that we also
have cn = −2x1An−1(2x1), where An−1(x) is an Eulerian polynomial. This yields the following
enumerative corollary, which appears to be new.

Corollary 6.7. For every n ≥ 1, we have∑
T∈DSchn−1

xdes(T )+1 = 2xAn−1(2x).

We can also consider the specialization x1 = x2 = 1. By [38, Corollary 4.2], we have

κn = −
∑

T∈Schn−1

x
black(T )+1
3 = −

n∑
j=0

Ç
n+ j

n− j

å
Cjx

j+1
3 ,

from which one can compute the R-transform

R(z) =
∑
n≥1

κnz
n = −

1− z −
»

(1− z)2 − 4x3z

2
.

Invoking (26), one can show that the corresponding moments are given by mn = −x3 for all n ≥ 1.
According to (25), we have ∑

n≥1

cn
zn

n!
= log(1− x3(ez − 1)).

On the other hand,

cn = −
∑

T ∈DSchn−1

x
black(T )+1
3 .

This proves the following enumerative corollary.

Corollary 6.8. We have∑
n≥1

∑
T∈DSchn−1

x
black(T )+1
3

zn

n!
= − log(1− x3(ez − 1)).

In particular, ∑
n≥1

|DSchn−1|
zn

n!
= − log(2− ez).
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The series − log(1−x3(ez− 1)) is the exponential generating function of the triangle of numbers
appearing as OEIS sequence A028246 [51]. These numbers have numerous known properties, in-
cluding close connections with Bernoulli numbers, but none of them seem to have much to do with
trees. Hence, Corollary 6.8 appears to give a new combinatorial interpretation of these numbers.
Namely, it tells us that the rows in the triangle count (standardized) decreasing Schröder 2-colored
binary trees according to the number of black vertices. Setting x3 = 1, we obtain the second part
of Corollary 6.8, which tells us that (standardized) decreasing Schröder 2-colored binary trees are
counted by the numbers appearing in OEIS sequence A000629. These numbers count many ob-
jects, including cyclically ordered set partitions, but this combinatorial interpretation in terms of
decreasing Schröder 2-colored binary trees seems to be new. ♦

7. Further Applications

We now apply the machinery developed in the preceding sections to answer several other natural
questions about valid hook configurations, rooted plane trees, and the stack-sorting map. The basic
idea is to start by choosing an appropriate sequence of free cumulants κn from an appropriate field K.
For our purposes, it will suffice to take K = C(x). We then combine the VHC Cumulant Formula
(Corollary 5.5) with the Refined Tree Fertility Formula (Theorem 4.5) or one of its corollaries
to obtain combinatorial information about the corresponding classical cumulants cn. Then, by
combining (24), (25), and (26), we can gain information about the exponential generating function∑
n≥1 cn

zn

n!
.

When computing asymptotic formulas for the sequences arising in the this section, it will be
useful to keep in mind the following lemma, which is a standard result in singularity analysis
(see [35, Chapter IV]).

Lemma 7.1. Let f : C→ C be a meromorphic function with a simple pole at the complex number
c. Suppose that f is holomorphic at every complex number z such that |z| ≤ |c| and z 6= c. Letting
[zn]f(z) denote the coefficient of zn in the power series expansion of f(z) about the origin, we have
[zn]f(z) ∼ −c−n−1 Res

z=c
f(z).

Let #ρ denote the number of blocks in a set partition ρ. Let hook(H) denote the number of
hooks in a valid hook configuration H. Throughout our applications, it will be useful to keep in
mind the fact that if H is a valid hook configuration of a permutation π, then

#|H = hook(H) + 1 = des(π) + 1.

7.1. Counting Valid Hook Configurations. Our first application in this section will be the
only one that does not make use of the Refined Tree Fertility Formula or one of its corollaries. We
are going to compute a generating function that counts valid hook configurations according to their
number of hooks. The following theorem is implicit in [29].

Theorem 7.2. We have∑
n≥1

∑
H∈VHC(Sn−1)

xhook(H)+1 z
n

n!
= − log

Ç
1− x

∫
e(1−x)zJ1(2z

√
x)

z
√
x

dz

å
,

where J1 is a Bessel function of the first kind and the indefinite integral is taken so that it approaches
0 as z → 0.
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Proof. Define a sequence (κn)n≥1 of free cumulants by letting κn = −x for all n ≥ 1. Let (mn)n≥1

and (cn)n≥1 be the corresponding sequences of moments and classical cumulants, which satisfy (23).
It is well known that the Narayana number N(n, r) is equal to the number of partitions in NC(n)
with r blocks [50, Lecture 9]. It follows from (23) that

mn =
∑

η∈NC(n)

(−x)#η =
n∑
r=1

N(n, r)(−x)r,

so the moment series is M(z) =
∑
n≥1

n∑
r=1

N(n, r)(−x)rzn. It is known [51] that

∑
n≥1

n∑
r=1

N(n, r)yr
zn

n!
= y

∫
e(1+y)zJ1(2z

√
−y)

z
√
−y

dz,

so

M̂(z) =
∑
n≥1

n∑
r=1

N(n, r)(−x)r
zn

n!
= −x

∫
e(1−x)zJ1(2z

√
x)

z
√
x

dz.

Now, equation (25) tells us that∑
n≥1

cn
zn

n!
= log(1 + M̂(z)) = log

Ç
1− x

∫
e(1−x)zJ1(2z

√
x)

z
√
x

dz

å
.

To finish the proof, we invoke Corollary 5.5, which tells us that

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H =
∑

H∈VHC(Sn−1)

x#|H =
∑

H∈VHC(Sn−1)

xhook(H)+1. �

Corollary 7.3. We have∑
n≥1

|VHC(Sn−1)|z
n

n!
= − log

Å
1− z 1F2

Å
1

2
;
3

2
, 2;−z2

ãã
,

where 1F2 denotes a generalized hypergeometric function.

Proof. Put x = 1 in Theorem 7.2, and use the fact that∫
J1(2z)

z
dz = z 1F2

Å
1

2
;
3

2
, 2;−z2

ã
. �

We can derive from Corollary 7.3 the following asymptotic formula for |VHC(Sn−1)|.

Corollary 7.4. As n → ∞, we have |VHC(Sn)| ∼ n!/cn+1, where c ≈ 1.32874 is the smallest

positive real root of 1− z 1F2

Å
1

2
;
3

2
, 2;−z2

ã
.

Proof. Let Q(z) = 1− z 1F2

Å
1

2
;
3

2
, 2;−z2

ã
, and let a =

1

2πi

∫
|z|=1.4

Q′(z)

Q(z)
dz. The function Q(z) is

entire, so it follows from the argument principle from complex analysis that a is the number of zeros
of Q(z) with absolute value less than 1.4, counted with multiplicity. One can show3 that a = 1. We
can compute that the unique root of Q(z) with absolute value less than 1.4 is c ≈ 1.32874. This

3To prove this rigorously, one can first expand Q′(z) and Q(z) in series in order to estimate
Q′(z)

Q(z)
with a sufficiently

small explicit error that holds uniformly for all z with |z| = 1.4. One can then numerically estimate the integral to
show that |a− 1| < 1. Since a must be an integer, it must be 1. We omit the details of this computation.
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means that Q′(z)/Q(z) is a meromorphic function whose only pole in the disc {z ∈ C : |z| < 1.4}
is a simple pole at z = c. It follows from Corollary 7.3 and Lemma 7.1 that

|VHC(Sn)| = n! [zn]

Ñ
∂

∂z

∑
m≥1

|VHC(Sm−1)|z
m

m!

é
= n! [zn]

Å
∂

∂z
(− log(Q(z)))

ã
= −n! [zn]

Ç
Q′(z)

Q(z)

å
∼ n!c−n−1 Res

z=c

Ç
Q′(z)

Q(z)

å
= n!c−n−1. �

Using Corollary 7.3, one can compute that

(|VHC(Sn−1)|)n≥1 = 1, 1, 1, 2, 6, 22, 99, 520, 3126, 21164, 159226, 1318000, 11902268, 116444668, . . . .

Upon inspection of the initial values of this sequence, we arrive at the following conjecture.

Conjecture 7.5. If n ≥ 3, then |VHC(Sn−1)| is odd if and only if n+ 1 is a power of 2.

The enumeration of valid hook configurations avoiding certain patterns has been initiated in [25]
and extended in [53].

7.2. Uniquely Sorted Permutations. In this section, we will see that the Fertility Formula
and the VHC Cumulant Formula allow us to understand uniquely sorted permutations, which
are permutations that have exactly one preimage under the stack-sorting map s. We make the
convention that the empty permutation is not uniquely sorted. The results in this section are taken
from [29]. Our goal is simply to illustrate the use of the Fertility Formula and the VHC Cumulant
Formula, so we will sketch the main ideas and refer the reader to [29] for a more detailed treatment.

Recall that a permutation is called sorted if it is in the image of the stack-sorting map s. It is

known [7, Chapter 8, Exercise 18] that if π = π1 · · ·πn is nonempty and sorted, then des(π) ≤ n− 1

2
.

It is natural to ask what can be said about the permutations that achieve this upper bound. The
following theorem from [29] answers this question.

Theorem 7.6 ([29]). A permutation π = π1 · · ·πn is uniquely sorted if and only if it is sorted and

has exactly
n− 1

2
descents. In particular, every uniquely sorted permutation has odd length.

Proof. Let k = des(π). Suppose π is uniquely sorted. Certainly π is sorted, so we must show that
n = 2k+ 1. It follows from the Fertility Formula (15) that π has a unique valid hook configuration
H and that qH = (1, . . . , 1) consists of only 1’s. When we defined qH in Section 4, we remarked
that it is a composition of n− k into k + 1 parts. It follows that n = 2k + 1.

Conversely, assume π is sorted and n = 2k + 1. Because π is sorted, it follows from the Fertility
Formula that π has a valid hook configuration H. The only composition of n− k into k + 1 parts
is the tuple (1, . . . , 1) with k + 1 1’s. Using Remark 4.4, we find that H is the unique valid hook
configuration of π and that qH = (1, . . . , 1). It now follows from (15) that |s−1(π)| = 1, so π is
uniquely sorted. �

Let Un denote the set of uniquely sorted permutations in Sn, and let VHC(Un) =
⋃
π∈Un VHC(π).

We have seen that each uniquely sorted permutation has a unique valid hook configuration, so
we obtain a bijection Un → VHC(Un) by sending each uniquely sorted permutation to its valid
hook configuration. A matching is a set partition in which each block has size 2. Referring to



TROUPES, CUMULANTS, AND STACK-SORTING 37

Remark 5.3 and the above proof of Theorem 7.6, we see that VHC(Un) is precisely the set of valid
hook configurations in VHC(Sn) such that |H is a matching. Therefore, if we define a sequence
(κn)n≥1 of free cumulants by κ2 = −1 and κn = 0 for all n 6= 2, then we can use the VHC Cumulant
Formula (Corollary 5.5) to see that

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H =
∑

H∈VHC(Un−1)

1 = |VHC(Un−1)| = |Un−1|.

Let NC(2)(n) denote the set of noncrossing matchings of {1, . . . , n}. It is clear that |NC(2)(n)| = 0

when n is odd, and it is known [50, Lecture 8] that |NC(2)(2k)| = Ck for all integers k ≥ 1. Referring
to (23) again, we find that mn = 0 when n is odd and that

m2k =
∑

η∈NC(2k)

(κ•)η =
∑

η∈NC(2)(2k)

(−1)k = (−1)kCk for all k ≥ 1.

This means that

M̂(z) =
∑
n≥1

mn
zn

n!
=
∑
k≥1

(−1)kCk
z2k

(2k)!
=
J1(2z)

z
− 1,

where J1 is a Bessel function of the first kind. Finally, we can use (25) to see that∑
n≥1

|Un−1|
zn

n!
= −

∑
n≥1

cn
zn

n!
= − log

Ç
J1(2z)

z

å
.

It is known [51] that− log

Ç
J1(2z)

z

å
=
∑
k≥1

Ak
z2k

(2k)!
, where (Ak)k≥1 is known as Lassalle’s sequence.

This fascinating sequence first emerged in [44], where Lassalle proved that its terms are positive
and increasing, settling a conjecture of Zeilberger. The first few terms of Lassalle’s sequence are

1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616, 62720089624920.

Thus, we have the following theorem.

Theorem 7.7 ([29]). For every k ≥ 0, we have |U2k+1| = Ak+1.

We refer the reader to [40, 44, 59] for more information about Lassalle’s sequence and to [29]
for more information about uniquely sorted permutations. The investigation of pattern-avoiding
uniquely sorted permutations was initiated in [19] and extended in [49].

7.3. Descents in Sorted Permutations. Several papers have investigated the relationship be-
tween the permutation statistic des, which counts the descents of a permutation, and the stack-

sorting map s. For example, it is known [7, Chapter 8, Exercise 18] that 0 ≤ des(s(σ)) ≤ n− 1

2
for

every σ ∈ Sn. Of course, the lower bound of 0 is tight since s(σ) could be the identity permutation
123 · · ·n. Knuth’s [42] characterization and enumeration of the permutations σ ∈ Sn such that
des(s(σ)) = 0 was the first result about stack-sorting; it also initiated the study of permutation
patterns and the kernel method [2,7,41,46]. As mentioned in Section 7.2, the upper bound is tight
(for n odd) and is attained when s(σ) is uniquely sorted. It is natural to ask for the expected value
of des(s(σ)) when σ ∈ Sn is chosen uniformly at random. To simplify some of the formulas, we will
actually consider the problem of computing the expected value E(Dn), where Dn = des(s(σ)) + 1
and σ is chosen uniformly at random from Sn−1.
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In what follows, recall the notation from (24), (25), and (26). Let us define

(30) Fx(z) =
1

2

Ä
−x− x2z + x

√
1− 4z + 2xz + x2z2

ä
.

We choose the branch of the square root that evaluates to 1 when z → 0. We view Fx(z) as
a power series in the variable z with coefficients in C(x). In particular, copying (24), we have“Fx(z) = L−1{Fx(1/t)/t}(z), where the inverse Laplace transform is taken with respect to the
variable t.

Theorem 7.8. We have∑
n≥1

Ñ ∑
σ∈Sn−1

xdes(s(σ))+1

é
zn

n!
= − log(1 + “Fx(z)).

Proof. Define a sequence (κn)n≥1 of free cumulants by κn = −xCn−1. Let (mn)n≥1 and (cn)n≥1 be
the corresponding sequences of moments and classical cumulants, respectively. According to the
VHC Cumulant Formula (Corollary 5.5), we have

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H =
∑

H∈VHC(Sn−1)

x#|H(C•−1)|H =
∑

π∈Sn−1

xdes(π)+1
∑

H∈VHC(π)

(C•−1)|H.

We can now use the Fertility Formula (15), along with Remark 5.3, to see that∑
H∈VHC(π)

(C•−1)|H =
∑

H∈VHC(π)

CqH = |s−1(π)|

for every π ∈ Sn−1. Consequently,

−cn =
∑

π∈Sn−1

xdes(π)+1|s−1(π)| =
∑

σ∈Sn−1

xdes(s(σ))+1.

According to (25), we have

∑
n≥1

Ñ
−

∑
σ∈Sn−1

xdes(s(σ))+1

é
zn

n!
= log(1 + M̂(z)),

where M(z) =
∑
n≥1

mnz
n is the moment series. Thus, it suffices to show that M(z) = Fx(z).

The R-transform is given by

R(z) =
∑
n≥1

κnz
n = −x

∑
n≥1

Cn−1z
n = −x1−

√
1− 4z

2
.

It is straightforward to check that R〈−1〉(z) =
−xz − z2

x2
, so it follows from (26) that M 〈−1〉(z) =

−xz − z2

x2(1 + z)
. From this, one can show that M(z) = Fx(z), as desired. �

Recall that the variance of a random variable Y is Var(Y ) = E((Y −E(Y ))2) = E(Y 2)−E(Y )2.
The mth moment of a random variable Y is defined to be E(Y m). The identity in the previous
theorem encodes all of the information about the random variables Dn = des(s(σ)) + 1. Indeed,
we will describe an algorithm for computing, for each fixed m, a generating function that encodes
the mth moments of the variables Dn. We begin by illustrating how this algorithm allows us to
compute the means and variances of these variables. Let us stress that there is no apparent way
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to use standard methods to show that the limit lim
n→∞

E(Dn)

n
even exists. This makes the incredible

simplicity of the exact formula for E(Dn) in the next theorem all the more surprising.

Theorem 7.9. For every n ≥ 1, we have

E(Dn) =

Ñ
3−

n∑
j=0

1

j!

é
n ∼ (3− e)n.

Proof. We use the notation [f(x)]x=1 to denote the evaluation of f(x) at x = 1. Notice that

∑
n≥1

E(Dn)

n
zn =

∑
n≥1

∑
σ∈Sn−1

(des(s(σ)) + 1)
zn

n!
=

 ∂

∂x

∑
n≥1

Ñ ∑
σ∈Sn−1

xdes(s(σ))+1

é
zn

n!


x=1

.

By Theorem 7.8, we have

(31)
∑
n≥1

E(Dn)

n
zn =

ï
∂

∂x
(− log(1 + “Fx(z)))

ò
x=1

=

[
−

∂
∂x
“Fx(z)

1 + “Fx(z)

]
x=1

= −

î
∂
∂x
“Fx(z)

ó
x=1

1 + “F1(z)
.

Referring to (30), we see that F1(z) = −z, so

(32) “F1(z) = −z.

To compute
î
∂
∂x
“Fx(z)

ó
x=1

, notice that there are two operations being performed to the series

Fx(z). One is the transformation from an ordinary generating function in z to the corresponding
exponential generating function, which is described in (24) via an inverse Laplace transform. The
other is the operation that differentiates with respect to x and then sets x = 1. These two operations
commute, so we haveï

∂

∂x
“Fx(z)

ò
x=1

=

ï
∂

∂x

Ä
L−1 {Fx(1/t)/t} (z)

äò
x=1

= L−1


î
∂
∂xFx(1/t)

ó
x=1

t

 (z).

One can now compute

î
∂
∂xFx(1/t)

ó
x=1

t
=

t− 2

t2(1− t)
so that

(33)

ï
∂

∂x
“Fx(z)

ò
x=1

= L−1

®
t− 2

t2(1− t)

´
(z) = −1− 2z + ez.

Combining this with (31) and (32), we obtain

(34)
∑
n≥1

E(Dn)

n
zn =

1 + 2z − ez

1− z
.

The desired result is now immediate if we extract the coefficient of zn in
1 + 2z − ez

1− z
. �

Theorem 7.10. We have∑
n≥1

E(D2
n)

n
zn =

2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z

(1− z)2
.

The variances of the random variables Dn satisfy Var(Dn) ∼ (2 + 2e− e2)n.
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Proof. The proof is similar to that of Theorem 7.9. First, notice that∑
n≥1

E(Dn(Dn − 1))

n
zn =

∑
n≥1

∑
σ∈Sn−1

(des(s(σ)) + 1) des(s(σ))
zn

n!

=

 ∂2

∂x2

∑
n≥1

Ñ ∑
σ∈Sn−1

xdes(s(σ))+1

é
zn

n!


x=1

.

By Theorem 7.8, we have∑
n≥1

E(Dn(Dn − 1))

n
zn =

ñ
∂2

∂x2
(− log(1 + “Fx(z)))

ô
x=1

(35) =

− ∂2

∂x2
“Fx(z)

1 + “Fx(z)
+

(
∂
∂x
“Fx(z)

1 + “Fx(z)

)2

x=1

= −

î
∂2

∂x2
“Fx(z)

ó
x=1

1− z
+

Å−1− 2z + ez

1− z

ã2

,

where the last equality follows from the identities (32) and (33) that we derived during the proof
of Theorem 7.9. The same argument used to derive (33) allows us to computeñ

∂2

∂x2
“Fx(z)

ô
x=1

= L−1


î
∂2

∂x2
Fx(1/t)

ó
x=1

t

 (z) = L−1

®
−2

1− 3t+ t2

t2(1− t)3

´
(z) = −z(2− 2ez + zez).

Substituting this into (35) yields∑
n≥1

E(Dn(Dn − 1))

n
zn =

z(2− 2ez + zez)

1− z
+

Å−1− 2z + ez

1− z

ã2

.

Consequently, ∑
n≥1

E(D2
n)

n
zn =

∑
n≥1

E(Dn(Dn − 1))

n
zn +

∑
n≥1

E(Dn)

n
zn

=
z(2− 2ez + zez)

1− z
+

Å−1− 2z + ez

1− z

ã2

+
1 + 2z − ez

1− z
=

2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z

(1− z)2
,

where we have used (34). Theorem 7.9 tells us that
E(Dn)2

n
= (3− e)2n+O(1/n!), so

∑
n≥1

Var(Dn)

n
zn =

∑
n≥1

E(D2
n)

n
zn −

∑
n≥1

E(Dn)2

n
zn

=
2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z

(1− z)2
−
∑
n≥1

(3− e)2nzn −
∑
n≥1

O(1/n!)zn

=
2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z − (3− e)2z

(1− z)2
−
∑
n≥1

O(1/n!)zn.

The only singularity of
2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z − (3− e)2z

(1− z)2
is a simple pole at z = 1,

so it follows from Lemma 7.1 that

lim
n→∞

Var(Dn)

n
= −Res

z=1

2 + 7z − (3 + 5z − 3z2 + z3)ez + e2z − (3− e)2z

(1− z)2
= 2 + 2e− e2. �
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In theory, one can repeat the main steps used in the above proof of Theorem 7.10 to compute

the generating functions
∑
n≥1

E(Dm
n )

n
zn for each fixed m ≥ 2. Note that

∑
n≥1

E(Dn(Dn − 1) · · · (Dn −m+ 1))

n
zn =

 ∂m

∂xm

∑
n≥1

Ñ ∑
σ∈Sn−1

xdes(s(σ))+1

é
zn

n!


x=1

=

ï
∂m

∂xm
(− log(1 + “Fx(z)))

ò
x=1

by Theorem 7.8. After expanding this last expression, we find that its computation requires us to

know “F1(z) and

ï
∂p

∂xp
“Fx(z)

ò
x=1

for all 1 ≤ p ≤ m. We have seen that “F1(z) = −z, and we can

compute

ï
∂p

∂xp
“Fx(z)

ò
x=1

using the fact thatï
∂p

∂xp
“Fx(z)

ò
x=1

= L−1


î
∂p

∂xpFx(1/t)
ó
x=1

t

 (z).

This shows how to compute
∑
n≥1

E(Dn(Dn − 1) · · · (Dn −m+ 1))

n
zn. Using linearity of expectation,

we can express
∑
n≥1

E(Dm
n )

n
zn as a linear combination of the generating functions

∑
n≥1

E(Dn(Dn − 1) · · · (Dn −m+ 1))

n
zn and

∑
n≥1

E(Dp
n)

n
zn for 1 ≤ p ≤ m− 1.

If we assume inductively that we have already computed the latter generating functions, then we

can compute
∑
n≥1

E(Dm
n )

n
zn.

Recall that the mth central moment of a random variable Y is E((Y − E(Y ))m). Using the

procedure just described, we have computed
∑
n≥1

E(Dm
n )

n
zn for 2 ≤ m ≤ 6. Using Theorem 7.9,

which gives a simple explicit formula for E(Dn) for every n ≥ 1, we have derived the asymptotics
for the mth central moments of Dn for m ≤ 6 (we omit the details of these computations). The
results are

• E((Dn − E(Dn))2) ∼ (2 + 2e− e2)n;
• E((Dn − E(Dn))3) ∼ (6− 61

2 e+ 24e2 − 5e3)n;

• E((Dn − E(Dn))4) ∼ 3(2 + 2e− e2)2n2;
• E((Dn − E(Dn))5) ∼ 5(24− 98e− 38e2 + 137e3 − 68e4 + 10e5)n2;
• E((Dn − E(Dn))6) ∼ 15(2 + 2e− e2)3n3.

These results are highly suggestive of an asymptotic normal distribution. Indeed, it is well known
that if Y is a normally-distributed random variable with mean µ and variance σ2, which we write
as Y ∼ N(µ, σ2), then the central moments of Y are given by E((Y − µ)m) = 0 for m odd and
E((Y − µ)m) = σm(m− 1)!! for m even. Thus, we have the following conjecture.
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Conjecture 7.11. The sequence (Yn)n≥1 of random variables defined by

Yn =
Dn − (3− e)n√

n

converges in distribution to a random variable Y such that Y ∼ N(0, 2 + 2e− e2).

An alternative approach one might take to proving Conjecture 7.11 is as follows. For each
i ∈ [n− 2] and π ∈ Sn−1, let desi(π) = 1 if i is a descent of π, and let desi(π) = 0 otherwise. Define
a random variable Dn,i = desi(s(σ)), where σ is chosen uniformly at random from Sn−1. Then

Dn = 1 +
n−2∑
i=1

Dn,i. One might hope to understand the distribution of Dn by first understanding

the distributions of the variables Dn,i and their dependencies.

Suppose we wish to use this approach to prove, without free probability theory, that lim
n→∞

E(Dn)

n
= 3− e. It would suffice to show that E(Dn,i)→ 3− e as n→∞ for all 1 ≤ i ≤ (1− o(1))n. This
approach seems promising at first because, as we will prove below, lim

n→∞
E(Dn,1) = 3− e. This says

that if σ ∈ Sn−1 is chosen uniformly at random, then the probability that 1 is a descent of s(σ) is
asymptotically (as n→∞) the same as the probability that a randomly-chosen index i ∈ [n− 2] is
a descent of s(σ).4 However, it appears that lim

n→∞
E(Dn,2) 6= 3−e. Thus, for right now, the identity

(36) lim
n→∞

E(Dn,1) = lim
n→∞

E(Dn)

n
appears to be a mysterious coincidence. It would be interesting to have an explanation for why
(36) should hold, besides the fact that we can compute the limits separately and see that they are
equal.

Theorem 7.12. With the notation from above, we have lim
n→∞

E(Dn,1) = 3− e.

Proof. The standardization of a permutation π is the permutation obtained by replacing the ith-
smallest entry in π with i for all i. For example, the standardization of 3856 is 1423. Consider
the definition of the stack-sorting map from Section 2.4 that makes use of the stack. For entries a
and b of a permutation σ, we say b forces a out of the stack in σ if b is the leftmost entry that is
greater than a and to the right of a in σ. Let s(σ)i denote the ith entry in s(σ). Let Vm be the
set of permutations σ = σ1 · · ·σm ∈ Sm such that 1 is a descent of s(σ) and no entry forces s(σ)2

out of the stack in σ (i.e., there are no entries greater than s(σ)2 to the right of s(σ)2 in σ). Let
Vm,j = {σ ∈ Vm : s(σ)1 = j}. Notice that Vm,1 is empty since 1 cannot be a descent of s(σ) if
s(σ)1 = 1. Upon inspection of the definition of s, we find that for 2 ≤ j ≤ m, the set Vm,j consists
of permutations of the form

m(m− 1) · · · (k + 1)jk(k − 1) · · · (j + 1)(j − 1)(j − 2) · · · 1

for some k ∈ {j+1, . . . ,m}. This shows that |Vm,j | = m−j, so |Vm| =
m∑
j=2

(m−j) =
(m− 1)(m− 2)

2
.

Now let V ′m+1 be the set of permutations σ = σ1 · · ·σm+1 ∈ Sm+1 such that 1 is a descent of
s(σ) and such that σm+1 forces s(σ)2 out of the stack in σ. One can check that σ ∈ V ′m+1 if and

4This is also reminiscent of Theorem 5.7 in [29], which implies that the expected value of the first entry of a random
uniquely sorted permutation in S2k+1 is k + 1. Of course, the expected value of the entry in a randomly-chosen
position in such a permutation is also k + 1. Perhaps there is some deeper connection between the behavior of the
first entry of a sorted permutation and the behavior of a random entry.
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only if σm+1 ∈ {2, . . . ,m + 1} and the standardization of σ1 · · ·σm is in Vm. This implies that

|V ′m+1| = m|Vm| =
m(m− 1)(m− 2)

2
.

Finally, let Wn
m+1 be the set of permutations σ = σ1 · · ·σn ∈ Sn such that 1 is a descent of

s(σ) and σm+1 forces s(σ)2 out of the stack in σ. It is straightforward to see that σ ∈ Wn
m+1 if

and only if the standardization of σ1 · · ·σm+1 is in V ′m+1. Thus, the probability that a randomly-

chosen element of Sn is in Wn
m+1 is

|V ′m+1|
(m+ 1)!

. Notice that 1 is a descent of s(σ) if and only if

σ ∈
Ä⋃n−1

m=1W
n
m+1

ä
∪ Vn. The sets Wn

2 , . . . ,W
n
n , Vn are disjoint. Therefore, if σ is chosen uniformly

at random from Sn, then the probability that 1 is a descent of s(σ) is

n−1∑
m=1

|V ′m+1|
(m+ 1)!

+
|Vn|
n!

=
n−1∑
m=1

m(m− 1)(m− 2)/2

(m+ 1)!
+

(n− 1)(n− 2)/2

n!
.

As n→∞, this approaches
∞∑
m=1

m(m− 1)(m− 2)/2

(m+ 1)!
= 3− e. �

We end this section with another conjecture, which concerns the polynomials
∑

σ∈Sn−1

xdes(s(σ))+1,

whose exponential generating function is given in Theorem 7.8. A sequence a1, . . . , am is called
unimodal if there exists an index j such that a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ am. Let

ak(n) = |{σ ∈ Sn−1 : des(s(σ)) + 1 = k}| be the coefficient of xk in
∑

σ∈Sn−1

xdes(s(σ))+1. We

conjecture that the sequences a1(n), . . . , an−1(n) are unimodal. It is known [16] that a polynomial
with nonnegative real coefficients that has only real roots must have unimodal coefficients. Thus,
our unimodality conjecture would follow from the following much stronger conjecture.

Conjecture 7.13. For every n ≥ 1, the polynomial
∑

σ∈Sn−1

xdes(s(σ))+1 has only real roots.

We have checked Conjecture 7.13 for all n ≤ 33. It would not be computationally feasible to
check this many cases of the conjecture without the help of Theorem 7.8.

7.4. Descents in Postorder Readings of Trees. Because the in-order reading I is a bijection
from the set DBPTn−1 of standardized decreasing binary plane trees with n − 1 vertices to the
set Sn−1, we can use (7) to give an equivalent description of the random variable Dn. Namely,
Dn = des(P(T )) + 1, where T is chosen uniformly at random from DBPTn−1. We can derive
analogues of our results concerning Dn for other troupes as well. The same approach used in
Section 7.3 provides an algorithm for computing the moments of the random variable des(P(T ))+1,
where T is chosen uniformly at random from DTn−1. To illustrate this, we will focus specifically
on full binary plane trees, Motzkin trees, and Schröder 2-colored binary trees. Furthermore, we
will content ourselves with discussing only the expected values of the associated random variables.
In each case, we will see that E(des(P(T )) + 1) ∼ γn for some explicit constant γ that we will
compute. It is not clear how one could use standard methods to show that the constant γ even
exists, let alone compute its exact value.

7.4.1. Descents in Postorder Readings of Full Binary Plane Trees. Recall that |FBPTn| = C(n−1)/2,
where C(n−1)/2 = 0 when n is even. As mentioned in Example 4.7, the number of standardized
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decreasing full binary plane trees with n vertices when n is odd is |DFBPTn| = En, where the Euler

numbers En are defined via their generating function
∑
n≥0

En
zn

n!
= sec(z) + tan(z).

Let

(37) F FBPT
x (z) = −x

1 + 2xz2 −
»

1− 4(1− x)z2

2(1 + x2z2)
.

We choose the branch of the square root that evaluates to 1 when z → 0. We view F FBPT
x (z) as a

power series in the variable z with coefficients in C(x) so that “F FBPT
x (z) = L−1{F FBPT

x (1/t)/t}(z),
where the inverse Laplace transform is taken with respect to the variable t.

Theorem 7.14. We have

∑
n≥1

Ö ∑
T ∈DFBPTn−1

xdes(P(T ))+1

è
zn

n!
= − log(1 + “F FBPT

x (z)).

Proof. Define a sequence (κn)n≥1 of free cumulants by κn = −xC(n−2)/2. Let (mn)n≥1 and (cn)n≥1

be the corresponding sequences of moments and classical cumulants, respectively. According to the
VHC Cumulant Formula (Corollary 5.5), we have

−cn =
∑

H∈VHC(Sn−1)

(−κ•)|H =
∑

H∈VHC(Sn−1)

x#|H(C(•−2)/2)|H

=
∑

π∈Sn−1

xdes(π)+1
∑

H∈VHC(π)

(C(•−2)/2)|H.

Combining (16) with Remark 5.3, we find that∑
H∈VHC(π)

(C(•−2)/2)|H =
∑

H∈VHC(π)

C(qH−1)/2 = |P−1(π) ∩ DFBPT|

for all π ∈ Sn−1. Therefore,

−cn =
∑

π∈Sn−1

xdes(π)+1|P−1(π) ∩ DFBPT| =
∑

T ∈DFBPTn−1

xdes(P(T ))+1.

The equation (25) tells us that

∑
n≥1

Ö
−

∑
T ∈DFBPTn−1

xdes(P(T ))+1

è
zn

n!
= log(1 + M̂(z)),

where M(z) =
∑
n≥1

mnz
n is the moment series. It now suffices to show that M(z) = F FBPT

x (z).

The R-transform is given by

R(z) =
∑
n≥1

κnz
n = −x

∑
n≥1

C(n−2)/2z
n = −x1−

√
1− 4z2

2
.

We now easily compute R〈−1〉(z) = ±
√
−xz − z2

x
, so it follows from (26) that

M 〈−1〉(z) = ±
√
−xz − z2

x(1 + z)
.
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From this, we find that

M(z) = −x
1 + 2xz2 ±

»
1− 4(1− x)z2

2(1 + x2z2)
.

We must choose the minus sign in the ± because M(0) = 0. Thus, M(z) = F FBPT
x (z). �

Theorem 7.15. If n ≥ 2 is even and T is chosen uniformly at random from DFBPTn−1, then

E(des(P(T )) + 1) =

Ç
1− En

nEn−1

å
n ∼

Å
1− 2

π

ã
n.

Proof. The proof is similar to that of Theorem 7.9. By Theorem 7.14, we have

∑
n≥1

∑
T ∈DFBPTn−1

(des(P(T )) + 1)
zn

n!
=

 ∂

∂x

∑
n≥1

Ö ∑
T ∈DFBPTn−1

xdes(P(T ))+1

è
zn

n!


x=1

(38) =

ï
∂

∂x
(− log(1 + “F FBPT

x (z)))

ò
x=1

=

[
−

∂
∂x
“F FBPT
x (z)

1 + “F FBPT
x (z)

]
x=1

= −

î
∂
∂x
“F FBPT
x (z)

ó
x=1

1 + “F FBPT
1 (z)

.

By (37), we have F FBPT
1 (z) = − z2

1 + z2
. Hence,

(39) “F FBPT
1 (z) = L−1

®
− (1/t)2

1 + (1/t)2

1

t

´
(z) = cos(z)− 1.

Also,ï
∂

∂x
“F FBPT
x (z)

ò
x=1

=

ï
∂

∂x

Ä
L−1

¶
F FBPT
x (1/t)/t

©
(z)
äò
x=1

= L−1


î
∂
∂xF

FBPT
x (1/t)

ó
x=1

t

 (z).

One can now compute

î
∂
∂xF

FBPT
x (1/t)

ó
x=1

t
=

1− t2

t(1 + t2)2
so that

(40)

ï
∂

∂x
“F FBPT
x (z)

ò
x=1

= L−1

®
1− t2

t(1 + t2)2

´
(z) = 1− cos(z)− z sin(z).

Let us combine this with (38) and (39) to see that

(41)
∑
n≥1

∑
T ∈DFBPTn−1

(des(P(T )) + 1)
zn

n!
= −1− cos(z)− z sin(z)

cos(z)
= 1− sec(z) + z tan(z).

Now, sec(z) =
∑
n≥0
n even

En
zn

n!
and tan(z) =

∑
n≥0
n odd

En
zn

n!
. It follows that if n ≥ 2 is even, then

1

|DFBPTn−1|
∑

T ∈DFBPTn−1

(des(P(T )) + 1) =
n!

En−1
[zn](1− sec(z) + z tan(z))

=
n!

En−1

Ç
−En
n!

+
En−1

(n− 1)!

å
=

Ç
1− En

nEn−1

å
n,

as desired. It is known that En ∼ 2(2/π)n+1n!, so

Ç
1− En

nEn−1

å
n ∼

Å
1− 2

π

ã
n. �
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Because I : DFBPTn−1 → Sn−1 ∩ ALT is a bijection when n is even, we can translate Theo-
rem 7.15 into the language of stack-sorting.

Corollary 7.16. Suppose n ≥ 2 is even. If σ is chosen uniformly at random from the set of
alternating permutations in Sn−1, then

E(des(s(σ)) + 1) =

Ç
1− En

nEn−1

å
n ∼

Å
1− 2

π

ã
n.

Remark 7.17. One might ask if an analogue of (36) holds for the random variables associated
to full binary plane trees (or alternatively, alternating permutations) considered in this section. It
turns out that this is not the case. One can show that if σ is chosen uniformly at random from the
set of alternating permutations in S2k−1, then the probability that 1 is a descent of s(σ) approaches
π

2
− 1 as k →∞. 4

We also have the following analogue of Conjecture 7.5. Using Theorem 7.14 and Mathematica,
we have checked this conjecture for all n ≤ 90.

Conjecture 7.18. For every even n ≥ 2, the polynomial
∑

T ∈DFBPTn−1

xdes(P(T ))+1 has only real

roots.

7.4.2. Descents in Postorder Readings of Motzkin Trees. Let

(42) FMot
x (z) = −x1− z + 2xz2 −

√
1− 2z − 3z2 + 4xz2

2(1− xz + x2z2)
.

We choose the branch of the square root that evaluates to 1 when z → 0. We view FMot
x (z) as a

power series in the variable z with coefficients in C(x) so that “F Mot
x (z) = L−1{F Mot

x (1/t)/t}(z),
where the inverse Laplace transform is taken with respect to the variable t.

Theorem 7.19. We have

∑
n≥1

Ö ∑
T ∈DMotn−1

xdes(P(T ))+1

è
zn

n!
= − log(1 + “F Mot

x (z)).

Proof. Define a sequence (κn)n≥1 of free cumulants by κn = −xMn−2, where Mn−2 is the (n− 2)th

Motzkin number. Let (mn)n≥1 and (cn)n≥1 be the corresponding sequences of moments and classical
cumulants, respectively. We now repeat the same argument as in the proof of Theorem 7.14, except
we invoke the equation (19) instead of (16). This yields the identity

∑
n≥1

Ö
−

∑
T ∈DMotn−1

xdes(P(T ))+1

è
zn

n!
= log(1 + M̂(z)),

where M(z) =
∑
n≥1

mnz
n is the moment series. It now suffices to show that M(z) = FMot

x (z).

The R-transform is given by

R(z) =
∑
n≥1

κnz
n = −x

∑
n≥1

Mn−2z
n = −x1− z −

√
1− 2z − 3z2

2
,
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so R〈−1〉(z) =
xz ±

√
−3x2z2 − 4x3z

2x2
. It follows from (26) that M 〈−1〉(z) =

xz ±
√
−3x2z2 − 4x3z

2x2(1 + z)
.

From this, we find that

M(z) = −x1− z + 2xz2 ±
√

1− 2z − 3z2 + 4xz2

2(1− xz + x2z2)
.

We must choose the minus sign in the ± because M(0) = 0. Thus, M(z) = FMot
x (z). �

Theorem 7.20. Suppose we choose T uniformly at random from DMotn−1. As n→∞,

E(des(P(T )) + 1) ∼
Ç

1− 3
√

3

2π

(
e

π

3
√
3 − 1

)å
n.

Proof. Repeating the argument from the proof of Theorem 7.15, we find that

(43)
∑
n≥1

∑
T ∈DMotn−1

(des(P(T )) + 1)
zn

n!
= −

î
∂
∂x
“F Mot
x (z)

ó
x=1

1 + “F Mot
1 (z)

.

It follows directly from (42) that FMot
1 (z) = − z2

1− z + z2
. Therefore,

(44) “F Mot
1 (z) = L−1

®
− (1/t)2

1− (1/t) + (1/t)2

1

t

´
(z) = ez/2

Ç
cos

Ç√
3

2
z

å
− 1√

3
sin

Ç√
3

2
z

åå
− 1.

Next, we computeï
∂

∂x
“F Mot
x (z)

ò
x=1

=

ï
∂

∂x

Ä
L−1

¶
F Mot
x (1/t)/t

©
(z)
äò
x=1

= L−1


î
∂
∂xF

Mot
x (1/t)

ó
x=1

t

 (z)

(45) = L−1

®
t2 − 2t

(1− t)(1− t+ t2)2

´
(z) = ez/2

Ç
ez/2 − cos

Ç√
3

2
z

å
− 1√

3
(1 + 2z) sin

Ç√
3

2
z

åå
.

Combining (43), (44), and (45), we obtain

(46)
∑
n≥1

∑
T ∈DMotn−1

(des(P(T )) + 1)
zn

n!
= −

ez/2 − cos
(√

3
2 z
)
− 1√

3
(1 + 2z) sin

(√
3

2 z
)

cos
(√

3
2 z
)
− 1√

3
sin
(√

3
2 z
) .

This last expression, viewed as a function of the complex variable z, is meromorphic. Its singularity

nearest to the origin is a simple pole at
2π

3
√

3
. By Lemma 7.1, we have

∑
T ∈DMotn−1

(des(P(T )) + 1)
1

n!
∼
Ç

2π

3
√

3

å−n−1

Res
z= 2π

3
√
3

ez/2 − cos
(√

3
2 z
)
− 1√

3
(1 + 2z) sin

(√
3

2 z
)

cos
(√

3
2 z
)
− 1√

3
sin
(√

3
2 z
)

=

Ç
2π

3
√

3

å−n−1Ç
1− e

π

3
√
3 +

2π

3
√

3

å
.

Finally, it is known (see OEIS sequence A080635) that |DMotn−1| ∼
Ç

2π

3
√

3

å−n
(n− 1)!, so

1

|DMotn−1|
∑

T ∈DMotn−1

(des(P(T )) + 1) ∼
n!
(

2π
3
√

3

)−n−1 (
1− e

π

3
√
3 + 2π

3
√

3

)
(

2π
3
√

3

)−n
(n− 1)!
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=

Ç
1− 3

√
3

2π

(
e

π

3
√
3 − 1

)å
n. �

Recall from Example 4.10 that the in-order reading I gives a bijection from DMotn−1 to the set
Sn−1 ∩ EDP of permutations in Sn−1 in which every descent is a peak. This allows us to translate
Theorem 7.20 into the following theorem about stack-sorting.

Corollary 7.21. Suppose we choose σ uniformly at random from the set of permutations in Sn−1

whose descents are all peaks. As n→∞,

E(des(s(σ)) + 1) ∼
Ç

1− 3
√

3

2π

(
e

π

3
√
3 − 1

)å
n.

Remark 7.22. Numerical evidence suggests that the natural analogue of (36) for the random
variables associated to Motzkin trees (or alternatively, permutations whose descents are all peaks)
considered in this section does not hold. 4

To end this section, we state the following analogue of Conjecture 7.5. Using Theorem 7.19 and
Mathematica, we have checked this conjecture for all n ≤ 31.

Conjecture 7.23. For every n ≥ 1, the polynomial
∑

T ∈DMotn−1

xdes(P(T ))+1 has only real roots.

7.4.3. Descents in Postorder Readings of Schröder 2-Colored Binary Trees. Let

(47) F Sch
x (z) = −x1− z + xz −

√
1− 6z + z2 + 2xz + 2xz2 + x2z2

2(1− xz)
,

where we choose the branch of the square root that evaluates to 1 when z → 0. We view F Sch
x (z)

as a power series in the variable z with coefficients in C(x).

Theorem 7.24. We have

∑
n≥1

Ö ∑
T ∈DSchn−1

xdes(P(T ))+1

è
zn

n!
= − log(1 + “F Sch

x (z)).

Proof. Define a sequence (κn)n≥1 of free cumulants by κn = −xSn−1, where Sn−1 is the (n− 1)th

large Schröder number. Let (mn)n≥1 and (cn)n≥1 be the corresponding sequences of moments and
classical cumulants, respectively. Repeating the same argument as in the proof of Theorem 7.14,
except invoking (20) instead of (16), we obtain

∑
n≥1

Ö
−

∑
T ∈DSchn−1

xdes(P(T ))+1

è
zn

n!
= log(1 + M̂(z)),

where M(z) =
∑
n≥1

mnz
n is the moment series. It now suffices to show that M(z) = F Sch

x (z).

The R-transform is given by

R(z) =
∑
n≥1

κnz
n = −x

∑
n≥1

Sn−1z
n = −x1− z −

√
1− 6z + z2

2
,
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so R〈−1〉(z) =
z(z + x)

x(z − x)
. It follows from (26) that M 〈−1〉(z) =

z(z + x)

x(z − x)(1 + z)
. From this, we find

that

M(z) = −x1− z + xz ±
√

1− 6z + z2 + 2xz + 2xz2 + x2z2

2(1− xz)
.

We must choose the minus sign in the ± because M(0) = 0. Thus, M(z) = F Sch
x (z). �

Theorem 7.25. Suppose we choose T uniformly at random from DSchn−1. As n→∞,

E(des(P(T )) + 1) ∼
Å

1− 1

2 log 2

ã
n.

Proof. Repeating the argument from the proof of Theorem 7.15, we find that

(48)
∑
n≥1

∑
T ∈DSchn−1

(des(P(T )) + 1)
zn

n!
= −

î
∂
∂x
“F Sch
x (z)

ó
x=1

1 + “F Sch
1 (z)

.

We see from (47) that F Sch
1 (z) = − z

1− z
, so

(49) “F Sch
1 (z) = L−1

®
− 1/t

1− (1/t)

1

t

´
(z) = 1− ez.

Next, we computeï
∂

∂x
“F Sch
x (z)

ò
x=1

=

ï
∂

∂x

Ä
L−1

¶
F Sch
x (1/t)/t

©
(z)
äò
x=1

= L−1


î
∂
∂xF

Sch
x (1/t)

ó
x=1

t

 (z)

(50) = L−1

®
2− 4t+ t2

(2− t)(1− t)2t

´
(z) = 1− (2 + z)ez + e2z.

Combining (48), (49), and (50), we obtain

(51)
∑
n≥1

∑
T ∈DSchn−1

(des(P(T )) + 1)
zn

n!
= −1− (2 + z)ez + e2z

2− ez
.

This last expression is meromorphic, and its singularity nearest to the origin is a simple pole at
log 2. Invoking Lemma 7.1, we find that∑
T ∈DSchn−1

(des(P(T )) + 1)
1

n!
∼ (log 2)−n−1 Res

z=log 2

1− (2 + z)ez + e2z

2− ez
= (log 2)−n−1

Å
log 2− 1

2

ã
.

Similarly, one can use Corollary 6.8 and Lemma 7.1 to show that |DSchn−1| ∼ (log 2)−n(n − 1)!.
Thus,

1

|DSchn−1|
∑

T ∈DSchn−1

(des(P(T )) + 1) ∼ n! (log 2)−n−1 (log 2− 1/2)

(log 2)−n(n− 1)!
=

Å
1− 1

2 log 2

ã
n. �

Remark 7.26. Numerical evidence suggests that the natural analogue of (36) for Schröder 2-
colored binary trees fails to hold, but only by a little. Suppose we choose T ∈ DSchn−1 uniformly
at random. It appears that as n → ∞, the probability that 1 is a descent of P(T ) approaches a

constant that is approximately 0.27259, which is just slightly less than 1− 1

2 log 2
≈ 0.27865. 4
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Using Theorem 7.24 and Mathematica, we have checked the following analogue of Conjecture 7.5
for all n ≤ 31.

Conjecture 7.27. For every n ≥ 1, the polynomial
∑

T ∈DSchn−1

xdes(P(T ))+1 has only real roots.

7.5. Asymptotics for Sorted Permutations. In [13], Bousquet-Mélou investigated sorted per-
mutations, which are permutations in the image of the stack-sorting map s. She considered the
numbers em,n, which count sorted permutations of length m+n according to an additional statistic
known as the Zeilberger statistic. For our purposes, it will be sufficient to know that these numbers
satisfy the initial conditions em,−1 = 0 and e0,n = 1 and that em,0 = |s(Sm)| is the number of sorted
permutations in Sm. The recurrence

(52) em,n = em−1,n+1 +
m−1∑
i=1

n−1∑
j=0

Ç
m− 1

i

å
em−i−1,n−j(ei,j − ei,j−1).

appears in [13]. Unfortunately, this recurrence does not tell us anything immediately about the
asymptotics of these numbers. The purpose of this section is to prove the following new estimates.

Theorem 7.28. The limit lim
n→∞

Ç
|s(Sn)|
n!

å1/n

exists and satisfies

0.68631 < lim
n→∞

Ç
|s(Sn)|
n!

å1/n

< 0.75260.

Proof. Suppose π ∈ s(Sm−1) and π′ ∈ s(Sn−1). We can write π = s(σ) and π′ = s(σ′) for some
σ ∈ Sm−1 and σ′ ∈ Sn−1. Let A be an (m− 1)-element subset of [m+ n− 2]. Let π̃ and σ̃ be the
permutations of A whose standardizations (as defined in the proof of Theorem 7.12) are π and σ,
respectively. Let π̃′ and σ̃′ be the permutations of [m + n − 2] \ A whose standardizations are π′

and σ′, respectively. We have s(σ̃) = π̃ and s(σ̃′) = π̃′, so it follows from the recursive description
of s given in (6) that

s(σ̃(m+ n− 1)σ̃′) = s(σ̃)s(σ̃′)(m+ n− 1) = π̃π̃′(m+ n− 1).

This shows that π̃π̃′(m+ n− 1) ∈ s(Sm+n−1). The map sending the tuple (π, π′, A) to the permu-
tation π̃π̃′(m+ n− 1) is injective, so

|s(Sm−1)||s(Sn−1)|
Ç
m+ n− 2

m− 1

å
≤ |s(Sm+n−1)|.

Rearranging, this shows that

(53)
|s(Sm−1)|
(m− 1)!

|s(Sn−1)|
(n− 1)!

≤ (m+ n− 1)
|s(Sm+n−1)|
(m+ n− 1)!

.

We will make use of a generalization of Fekete’s lemma due to de Bruijn and Erdős [18], which
states that if a sequence of positive real numbers (bm)m≥1 satisfies bmbn ≤ bm+n whenever 1/2 ≤

n/m ≤ 2, then lim
n→∞

b
1/n
n exists and equals sup

n≥1
b
1/n
n . Now let bn =

|s(Sn−1)|
n2(n− 1)!

for n ≥ 8 and bn = 0

for 1 ≤ n ≤ 7. It is not difficult to check that
m+ n− 1

m2n2
≤ 1

(m+ n)2
whenever m,n ≥ 8 and

1/2 ≤ n/m ≤ 2. Therefore, it follows from (53) that

bmbn ≤
m+ n− 1

m2n2

|s(Sm+n−1)|
(m+ n− 1)!

≤ |s(Sm+n−1)|
(m+ n)2(m+ n− 1)!

= bm+n
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whenever m,n ≥ 8 and 1/2 ≤ n/m ≤ 2. The inequality bmbn ≤ bm+n also certainly holds whenever
m or n is at most 7. According to the generalization of Fekete’s lemma that we mentioned above,

lim
n→∞

b
1/n
n exists and equals sup

n≥1
b
1/n
n . It now follows from the definition of bn that lim

n→∞

Ç
|s(Sn)|
n!

å1/n

exists and equals sup
n≥1

b
1/n
n . We have used Bousquet-Mélou’s recurrence (52) to compute b

1/802
802 , its

value is slightly larger than 0.68631. This yields the desired lower bound for the limit.

To prove the upper bound, note that it follows from the Fertility Formula (15) that every sorted
permutation in Sn has a valid hook configuration. Therefore, |s(Sn)| ≤ |VHC(Sn)|. By Corol-
lary 7.4,

|s(Sn)|
n!

≤ |VHC(Sn)|
n!

∼ 1

cn+1
,

where c ≈ 1.32874 is the constant appearing in that corollary. The desired upper bound is now
immediate because 1/c < 0.75260. �

7.6. The Degree of Noninvertibility of the Stack-Sorting Map. Recently, Propp and the
author introduced the degree of noninvertibility of a function f : X → X, where X is a finite
set [30]. This is defined to be

deg(f : X → X) =
1

|X|
∑
x∈X
|f−1(x)|2.

This is a natural measure of how far the function f is from being bijective. It is shown in [30] that
deg(s : Sn → Sn) grows exponentially in n, which is interesting because it contrasts the quadratic
growth of deg(B : Sn → Sn), where B is the bubble sort map. Indeed, Propp and the author

showed that deg(B : Sn → Sn) =
(n+ 1)(n+ 2)

6
. While an exact formula for deg(s : Sn → Sn)

currently seems out of reach, we can at least obtain estimates for this quantity. It was shown in [30]

that the limit lim
n→∞

deg(s : Sn → Sn)1/n exists and satisfies

(54) 1.12462 ≤ lim
n→∞

deg(s : Sn → Sn)1/n ≤ 4.

After running some experiments that used the Decomposition Lemma to compute the fertilities of
large random permutations, Propp and the author conjectured that this limit lies in the interval
(1.68, 1.73). In this section, we show how the tools involving free probability that we have developed
allow us to greatly improve upon the lower bound in (54). This will bring the known lower bound
close to the conjectured value of the limit.

Theorem 7.29. We have 1.62924 < lim
n→∞

deg(s : Sn → Sn)1/n.

Proof. For convenience, let dn = deg(s : Sn → Sn). Using the Fertility Formula (15) and Re-
mark 5.3, we find that

(n− 1)!dn−1 =
∑

π∈Sn−1

|s−1(π)|2 =
∑

π∈Sn−1

Ñ ∑
H∈VHC(π)

(C•−1)|H

é2

≥
∑

π∈Sn−1

∑
H∈VHC(π)

((C•−1)|H)2

=
∑

π∈Sn−1

∑
H∈VHC(π)

(C2
•−1)|H =

∑
H∈VHC(Sn−1)

(C2
•−1)|H.
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If we now define a sequence (κn)n≥1 of free cumulants by κn = −C2
n−1, then the VHC Cumulant

Formula (Corollary 5.5) tells us that the corresponding classical cumulants are given by

−cn =
∑

H∈VHC(Sn−1)

(C2
•−1)|H.

Hence, (n− 1)!dn−1 ≥ −cn. In the proof of (54) given in [30], it is shown that

lim
n→∞

d1/n
n = sup

n≥1
a1/n
n ,

where an =
dn−1

n2
for n ≥ 8 and an = 0 for 1 ≤ n ≤ 7. Thus,

lim
n→∞

d1/n
n ≥ a1/1000

1000 =

Å
d999

10002

ã1/1000

≥
Å −c1000

10002 · 999!

ã1/1000

> 1.62924.

To obtain the last inequality, we computed the exact value of c1000 using Mathematica. First,

we computed the first 1000 terms in the series expansion of the R-transform R(z) =
∑
n≥1

κnz
n =

−
∑
n≥1

C2
n−1z

n. Applying (26), then (24), and then (25) allowed us to compute the first 1000 terms

of the series
∑
n≥1

cn
zn

n!
. In particular, this yielded the value of c1000. �

Remark 7.30. The combination of the Fertility Formula and the VHC Cumulant Formula is useful
in the proof of Theorem 2.3 because it allows us to compute a lower bound for deg(s : S999 → S999).
Trying to compute deg(s : Sn → Sn) by brute force, one will not be able to exceed small values of
n (around n = 14). On the other hand, we lose something when we use the inequality

∑
π∈Sn−1

Ñ ∑
H∈VHC(π)

(C•−1)|H

é2

≥
∑

π∈Sn−1

∑
H∈VHC(π)

((C•−1)|H)2. 4

8. Other Cumulant Conversion Formulas

8.1. A Sum over Noncrossing Partitions. Recall how we derived the VHC Cumulant Formula
(Corollary 5.5) in Section 5.2. We first showed how to obtain a connected set partition |H from a
valid hook configurations H. We then saw from Theorem 5.4 that for each connected partition ρ,
the number of valid hook configurations H such that |H = ρ is given by the evaluation TG(ρ)(1, 0) of
the Tutte polynomial of the crossing graph of ρ. The VHC Cumulant Formula then followed from
Josuat-Vergès’ formula (Theorem 5.4). Because Josuat-Vergès’ formula extends to the multivariate
setting, the VHC Cumulant Formula also extends to the multivariate formula (27).

We also saw how to obtain a noncrossing set partition H from a valid hook configuration H.

There is a natural size-preserving bijection from |H to H, which we denoted by B 7→ ÙB. Therefore,
we can rewrite the VHC Cumulant Formula as

(55) − cn =
∑

H∈VHC(Sn−1)

(−κ•)H.

By describing the number of valid hook configurationsH such thatH is equal to a given noncrossing
partition η, we will obtain an analogue of Josuat-Vergès’ formula in which the sum ranges over
noncrossing partitions. This new formula does not extend to the multivariate setting. Indeed, it is
impossible to find a formula that expresses multivariate classical cumulants in terms of multivariate
free cumulants via a sum over noncrossing partitions (see, for example, Remark 8.1 in [1]).
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We are going to make use of a very important bijection K : NC(n) → NC(n), known as the
Kreweras complementation map. Given η ∈ NC(n), we define K ′(η) to be the maximum (in the
reverse refinement order) partition of the totally ordered set {1′ < 2′ < · · · < n′} such that η ∪K ′(η)
is a noncrossing partition of the totally ordered set {1 < 1′ < 2 < 2′ < · · · < n < n′}. We then
define K(η) to be the partition in NC(n) obtained by removing the primes from the elements of
the blocks of K ′(η). For example, Figure 13 shows that the Kreweras complement of the partition
η = {{1, 4, 5}, {2, 3}, {6}, {7, 8}} is the partition K(η) = {{1, 3}, {2}, {4}, {5, 6, 8}, {7}}.

1 2 3 4 5 6 71' 2' 3' 4' 5' 6' 7' 8 8'

Figure 13. The partition η = {{1, 4, 5}, {2, 3}, {6}, {7, 8}} (black) and its Kreweras
complement K(η) = {{1, 3}, {2}, {4}, {5, 6, 8}, {7}} (orange).

Now consider a noncrossing partition η ∈ NC(n) and its Kreweras complement K(η). We say j
is the successor of i in K(η) if i and j are in the same block B of K(η), i < j, and there are no
elements k ∈ B with i < k < j. Consider the elements of [n] as the vertices of a directed graph. If
i ∈ [n− 1] is the largest element of its block in K(η), draw a directed edge from i to i + 1. If i is
not maximal in its block in K(η), draw a directed edge from i+ 1 to i. If j is the successor of i in
K(η), then draw a directed edge from i to j. We call the resulting directed graph the arch graph
of K(η) (see Figure 14 for an example). Let L(K(η)) denote the set of permutations σ ∈ Sn such
that i appears to the left of j in σ whenever there is a directed edge from i to j in the arch graph
of K(η). The set L(K(η)) is nonempty if and only if the arch graph of K(η) is acyclic (i.e., has no
directed cycles). One can check that this occurs if and only if there do not exist two consecutive
integers in the same block of K(η), which occurs if and only if n = 1 or η contains no singleton
blocks. In this case, we can also view L(K(η)) as the set of linear extensions of the poset ([n],�)
defined by declaring that i � j if and only if there is a directed path from i to j in the arch graph

of K(η). Let ÑC(n) be the set of pairs (η, σ) such that η ∈ NC(n) and σ ∈ L(K(η)).

51 2 3 4 6 7 8 9 101112131415 16

51 2 3 4 6 7 8 9 101112131415 16

Figure 14. On top is the noncrossing partition H, where H is the valid hook con-
figuration whose modified diagram is shown in Figure 11. Its Kreweras complement
is K(H) = {{1}, {2, 4, 15}, {3}, {5, 7}, {6}, {8, 12}, {9}, {10}, {11}, {13}, {14}, {16}},
whose arch graph is shown on the bottom.

The reader may find it helpful to refer to Figures 11 and 14 in the following proof. If π =
π1 · · ·πn−1 ∈ Sn−1, then π−1 denotes the permutation in Sn−1 whose πth

i entry is i for all i ∈ [n−1].

Theorem 8.1. For π ∈ Sn−1 and H ∈ VHC(π), let Ψ(H) = (H, π−1n), where π−1n ∈ Sn is the

concatenation of π−1 and n. The map Ψ : VHC(Sn−1)→ ÑC(n) is a bijection.

Proof. If n = 1, then the proof is trivial because π is the empty permutation, H is the empty valid
hook configuration, and H = {{1}}. Assume n ≥ 2. We first prove that the image of Ψ is contained
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in ÑC(n). Let τ = πn = (π−1n)−1. We need to show that τ−1 ∈ L(K(H)). This is equivalent to
showing that τa < τb whenever there is a directed edge from a to b in the arch graph of K(H).
Choose i ∈ [n− 1], and consider the edge between i and i+ 1 in the arch graph of K(H). It follows
from the definition of the arch graph that this edge is directed from i + 1 to i if and only if i is
not maximal in its block in K(H). By inspecting the definition of the Kreweras complementation
map, we see that this occurs if and only if i + 1 is minimal in its block in H. This occurs if and
only if (i, πi) is the southwest endpoint of a hook in H, which happens if and only if i is a descent
of π. The descents of π are the same as the descents of τ , so the edge between i and i + 1 in the
arch graph of K(H) is directed from i+ 1 to i if and only if τi > τi+1. We also have a directed edge
from i to j in the arch graph of K(H) if j is the successor of i in K(H). It is straightforward to
check that this occurs if and only if there is a hook with southwest endpoint (i, πi) and northeast
endpoint (j, πj) in H. In this case, τi = πi < πj = τj , as desired.

To see that Ψ is bijective, we exhibit its inverse. Suppose we start with (η, σ) ∈ ÑC(n). Consider
i ∈ [n − 1]. If i is maximal in its block in K(η), then there is an edge directed from i to i + 1 in
the arch graph of K(η). Otherwise, i has a successor j in K(η), and there is a directed edge from
i to j in the arch graph of K(η). In either case, i is not a sink (i.e., a vertex with outdegree 0) in
the arch graph of K(η). As this is true for all i ∈ [n− 1], the number n is forced to be the unique
sink in this directed graph. It follows that n appears last in the permutation σ, so we can write
σ = π−1n for some π ∈ Sn−1. One can check that d is a descent of π if and only if d is not maximal
in its block in K(η). Therefore, each descent d of π has a successor b in K(η). Let d1 < · · · < dk
be the descents of π. For all 1 ≤ ` ≤ k, let b` be the successor of d` in K(η); we have πd` < πb`
because π−1n ∈ L(K(η)). Therefore, we can draw a hook H` with southwest endpoint (d`, πd`) and
northeast endpoint (b`, πb`) for all 1 ≤ ` ≤ k; this produces a configuration H = (H1, . . . ,Hk) of
hooks of π. The fact that K(η) is noncrossing implies that none of these hooks cross or intersect
each other, except possibly when the southwest endpoint of one is the northeast endpoint of another.
One can check by induction on m that Hk−m does not pass underneath any points in the plot of
π. It follows that H is a valid hook configuration. The resulting map (η, σ) 7→ H is the inverse of
Ψ. �

Combining (55) with Theorem 8.1 yields the following corollary.

Corollary 8.2. If (κn)n≥1 is a sequence of free cumulants, then the corresponding classical cumu-
lants are given by

−cn =
∑

η∈NC(n)

|L(K(η))|(−κ•)η.

Remark 8.3. It might be interesting to see if there are alternative methods for computing (or pos-
sibly other combinatorial descriptions of) the numbers |L(K(η))|, especially when the noncrossing
partitions η have special forms. For example, if n is even and we put

η = {{1, n}, {2, 3}, {4, 5}, . . . , {n− 2, n− 1}} and η′ = {{1, n}, {2, n− 1}, . . . , {n/2, n/2 + 1}},

then one can show that |L(K(η))| = (n− 3)!! and |L(K(η′))| = Cn/2−1. 4

8.2. A Sum over 231-Avoiding Valid Hook Configurations. Recall the definition of a 231-
avoiding permutation from Example 6.3. Let Avn−1(231) denote the set of 231-avoiding permuta-
tions in Sn−1. We say a valid hook configuration is 231-avoiding if its underlying permutation is
231-avoiding and write VHC(Avn−1(231)) for the set of 231-avoiding valid hook configurations in
VHC(Sn−1). In this section, we will rewrite the VHC Cumulant Formula as a sum over 231-avoiding
valid hook configurations.
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To begin, suppose P is an (n−1)-element poset, and let L(P ) denote the set of linear extensions of
P , which we view as labelings of P with the elements of [n−1]. Given L ∈ L(P ), define p`(L) ∈ L(P )
as follows. If the element of P with label ` in L is comparable to (equivalently, covered by) the
element with label `+ 1, then let p`(L) = L. Otherwise, let p`(L) be the linear extension obtained
from L by swapping the labels ` and `+1. This defines an involution p` : L(P )→ L(P ). Let SL(P )

denote the set of bijections from L(P ) to itself. It is not difficult to show (by induction on n) that
the subgroup of SL(P ) generated by p1, . . . , pn−2 acts transitively on L(P ).

We now once again make use of the in-order bijection I : DBPTn−1 → Sn−1. Let T ∈ BPT. The
tree T represents a poset in which a vertex u is less than a vertex v whenever u is a descendant of
v. From this point of view, standardized decreasing binary plane trees with skeleton T correspond
to linear extensions of T . We can use this correspondence to transfer the maps p` to the set Sn−1.
Doing so, we obtain the following alternative description.

Suppose π ∈ Sn−1. If there exists an entry a > `+ 1 that appears between ` and `+ 1 in π, let
p`(π) be the permutation obtained from π by swapping the entries ` and ` + 1. If no such entry
a exists, let p`(π) = π. This defines an involution p` : Sn−1 → Sn−1, which we can view as an
element of the group SSn−1 of all bijections from Sn−1 to Sn−1. Let Pn−1 = 〈p1, . . . , pn−2〉 be
the subgroup of SSn−1 generated by p1, . . . , pn−2. The result mentioned in the previous paragraph
implies that for every permutation π ∈ Sn−1, the Pn−1-orbit of π is the set of permutations π′

such that skel(I−1(π′)) = skel(I−1(π)).5

Notice that the set of descents of π is the same as the set of descents of p`(π). Suppose H =
(H1, . . . ,Hk) ∈ VHC(π). If Hr has southwest endpoint (i, πi) and northeast endpoint (j, πj),

then let ‹Hr be the hook of p`(π) with southwest endpoint (i, (p`(π))i) and northeast endpoint

(j, (p`(π))j). One can easily verify that ‹H := (‹H1, . . . , ‹Hk) is a valid hook configuration of p`(π)

satisfying ‹H = H and that the resulting map VHC(π) → VHC(p`(π)) given by H 7→ ‹H is a
bijection. It follows that the set {H : H ∈ VHC(π)} of noncrossing partitions associated to valid
hook configurations of π only depends on the Pn−1-orbit of π. Therefore, we can rewrite (55) as

(56) − cn =
∑
π

Tπ

∑
H∈VHC(π)

(−κ•)H,

where the first sum ranges over a set of representatives for the Pn−1-orbits in Sn−1 and Tπ denotes
the size of the Pn−1-orbit containing π.

For each valid hook configuration H of a permutation π ∈ Sn−1, let TH = Tπ. Letting Tπ =
skel(I−1(π)), we see from the above remarks that TH is the number of standardized decreasing
binary plane trees with skeleton Tπ. This description is useful because there is a well-known hook-
length formula for the number of linear extensions of a poset whose Hasse diagram is a rooted tree
(originally due to Knuth in [43]). For each of the n − 1 vertices v of Tπ, let hv denote the size of
the subtree of Tv with root v (including v itself). Then

TH =
(n− 1)!∏

v hv
.

For every binary plane tree T with n− 1 vertices, there is a unique decreasing binary plane tree
T̈ with skeleton T such that I(T̈ ) ∈ Avn−1(231). Indeed, T̈ is obtained by labeling the vertices

5In [39], the Pn−1-orbits are called Sylvester classes. In [5], it is shown that Pn−1-orbits form intervals in the weak
order on Sn. In [52], it is shown that Pn−1-orbits naturally label vertices of associahedra when associahedra are
viewed as generalized permutohedra.



56 TROUPES, CUMULANTS, AND STACK-SORTING

of T so that the postorder reading P(T̈ ) is 123 · · · (n − 1). Consequently, Avn−1(231) is a set
of representatives for the Pn−1-orbits in Sn−1. Referring back to (56), we obtain the following
theorem.

Theorem 8.4. If (κn)n≥1 is a sequence of free cumulants, then the corresponding classical cumu-
lants are given by

−cn =
∑

H∈VHC(Avn−1(231))

TH(−κ•)H.

Let us remark that 231-avoiding valid hook configurations were enumerated in [25], where they
were shown to be in bijection with 132-avoiding valid hook configurations (this essentially follows
from the above remarks because every Pn−1-orbit contains a unique 231-avoiding permutation
and a unique 132-avoiding permutation). In [53], Sankar gave an intricate bijection between 132-
avoiding valid hook configurations and intervals in Motzkin-Tamari posets.

9. 2-Stack-Sortable and 3-Stack-Sortable Permutations

A permutation π is called t-stack-sortable if st(π) is increasing. Let Wt(n) denote the set of
t-stack-sortable permutation in Sn. In [42], Knuth proved that W1(n) is the set Avn(231) of
231-avoiding permutations in Sn and that |W1(n)| = |Avn(231)| = Cn. In his thesis, West [62]

conjectured that |W2(n)| = 2
(n+1)(2n+1)

(3n
n

)
. This was later proved by Zeilberger [63]. Since then,

several papers devoted to the enumerative properties of 2-stack-sortable permutations have emerged
[8, 12,15,17,20,31–34,36].

If T ⊆ BPT, then the in-order map I gives a bijection between DT and a set I(DT) of stan-
dardized permutations associated to T. For example, I(DBPT) is the set of all standardized
permutations, I(DFBPT) is the set of standardized alternating permutations of odd length, and
I(DMot) is the set of standardized permutations in which every descent is a peak. A consequence
of the main theorem in this section will provide a way to enumerate 2-stack-sortable permutations
in I(DT) whenever T ⊆ BPT is a troupe. We will also see that in many cases, the generating
function that counts trees in P−1(Av(231))∩DT according to a collection of insertion-additive tree
statistics is algebraic. There has been a great deal of work devoted to proving the algebraicity of
various generating functions of combinatorial interest (see the survey [11]). We will also obtain a
recurrence that counts 3-stack-sortable permutations in I(DT).

The tail length of a permutation π = π1 · · ·πn ∈ Sn, denoted tl(π), is the largest integer ` ∈
{0, . . . , n} such that πi = i for all i ∈ {n− `+ 1, . . . , n}. For example, tl(324156) = 2, tl(3421) = 0,
and tl(12345) = 5. Let D≥`(n) = {π ∈ Avn+`(231) : tl(π) ≥ `}. In particular, D≥0(n) = Avn(231).
Let T be a troupe, and let f1, . . . , fr be insertion-additive tree statistics. Let

G(x1,...,xr)(y) =
∑
`≥0

G`(x1, . . . , xr)y
` =

∑
`≥0

∑
T∈T`

x
f1(T )
1 · · ·xfr(T )

r y`.

We are interested in the generating function

Ix1,...,xr(z, y) =
∑
`≥0

∑
n≥0

∑
T ∈P−1(D≥`(n))∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r zny`.

In truth, we will be primarily interested in the specialization

Ix1,...,xr(z, 0) =
∑
n≥0

∑
T ∈P−1(Avn(231))∩DT

x
f̈1(T )
1 · · ·xf̈r(T )

r zn.
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Theorem 9.1. With notation as above, we have

(Ix1,...,xr(z, y)− Ix1,...,xr(z, 0))(Ix1,...,xr(z, y)−G(x1,...,xr)(y))

=
Ix1,...,xr(z, y)−G(x1,...,xr)(y)

z
− Ix1,...,xr(z, y)− Ix1,...,xr(z, 0)

y
.

Proof. The specific case in which T = BPT, f1(T ) = des(T ) + 1, f2(T ) = peak(T ) + 1 was
proven in Section 4 of [20], except that the proof there was written in the language of stack-sorting
instead of postorder readings. The exact same proof applies, mutatis mutandis, in this more
general setting. The main difference is that one must now use the Refined Tree Decomposition
Lemma (Theorem 3.1) instead of the Refined Decomposition Lemma (Corollary 3.4). We omit the
details. �

Let K = C(x1, . . . , xr). Suppose the generating function G(x1,...,xr)(y) is algebraic over K(y),
meaning that it satisfies a polynomial equation with coefficients in K(y). Then we can solve the

equation in Theorem 9.1 for G(x1,...,xr)(y), substitute the result into the polynomial satisfied by

G(x1,...,xr)(y), and clear denominators in order to obtain a polynomial equation of the form

Q(Ix1,...,xr(z, y), Ix1,...,xr(z, 0), z, y) = 0.

This is a polynomial equation with one “catalytic variable” y. Therefore, the next result follows
immediately from Theorem 3 in [14].

Corollary 9.2. Preserve the notation from above. If G(x1,...,xr)(y) is algebraic over K(y), then
Ix1,...,xr(z, y) is algebraic over K(z, y) and, consequently, Ix1,...,xr(z, 0) is algebraic over K(z).

The preceding corollary yields the algebraicity of several generating functions associated to
troupes. For specific examples, suppose T and f1, . . . , fr are as in one of the Examples 4.6, 4.7,
4.10, or 4.12. In each of these cases, we saw that the generating function G(x1,...,xr)(y) is algebraic
over K(y), so it follows that Ix1,...,xr(z, 0) is algebraic over K(z). To make this even more concrete,
we will show how to use the methods from [14] to find an explicit algebraic equation satisfied by
Ix1,...,xr(z, 0) when T = FBPT and r = 0. In this case,

Ix1,...,xr(z, 0) = I(z, 0) =
∑
n≥0

|P−1(Avn(231)) ∩ DFBPT|zn.

Note that s−1(Avn(231)) = s−1(W1(n)) = W2(n). Using (7), we find that the in-order reading
gives a bijection between P−1(Avn(231))∩DFBPT and the set W2(n)∩ALT when n is odd. Thus,
I(z, 0) is the generating function for (standardized) 2-stack-sortable alternating permutations of
odd length.

Corollary 9.3. Let

I(z, 0) =
∑
n≥0

|P−1(Avn(231)) ∩ DFBPT|zn =
∑
k≥0

|W2(2k + 1) ∩ALT |z2k+1

be the generating function that counts (standardized) 2-stack-sortable alternating permutations of
odd length. Then R(I(z, 0), z) = 0, where

R(v, z) = (−z + 27z3) + (1− 33z2)v + (4z + 33z3)v2 + (6z2 + z4)v3 + 4z3v4 + z4v5.

Proof. We have G` = |FBPT`| = C(`−1)/2, so

G(y) =
∑
`≥0

G`y
` =

∑
k≥0

Ckz
2k+1 =

1−
√

1− 4z2

2z
.
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Therefore, yG(y)2 + y−G(y) = 0. We can solve the equation in Theorem 9.1 for G(y), substitute
the result into the identity yG(y)2 + y −G(y) = 0, and clear denominators to find that

(57) Q(I(z, y), I(z, 0), z, y) = 0,

where

Q(u, v, z, y) = (1− uz + vz)2y2 − (1− uz + vz)(vz − u2zy + u(y + z(−1 + vy)))

+ (vz − u2zy + u(y + z(−1 + vy)))2.

Let Q′u =
∂

∂u
Q(u, v, z, y). There is a unique fractional power series (Puiseux series) Y = Y (z)

such that Y (z) = z +O(z2) and

(58) Q′u(I(z, Y ), I(z, 0), z, Y ) = 0.

Indeed, one can calculate the coefficients of Y (z) one at a time from the equation (58) after initially
computing sufficiently many terms of I(z, y) via its combinatorial definition. Let ∆uQ(v, z, y) be
the discriminant of Q(u, v, z, y) with respect to the variable u. Using Mathematica, we find that

this discriminant is ∆uQ(v, z, y) = z6(1− 4y2)2y3“Q(v, z, y), where“Q(v, z, y) = − 4z3 + yz2(−3 + vz)2 + y3(1 + 2vz + z2 + v2z2)2

+ 2y2z(−3 + 5z2 − v2z2 + v3z3 + vz(−5 + z2)).

We now use Theorem 146 from the paper [14], which allows us to deduce from (57) and (58)
that y = Y (z) is a repeated root of ∆uQ(I(z, 0), z, y). Since Y (z) = z + O(z2), we know that

z6(1−4Y 2)2Y 3 6= 0. Consequently, y = Y (z) is a repeated root of “Q(I(z, 0), z, y). The discriminant

of a polynomial with a repeated root must be 0. This means that ∆y
“Q(I(z, 0), z) = 0, where

∆y
“Q(v, z) is the discriminant of “Q(v, z, y) with respect to y. Computing ∆y

“Q(v, z) explicitly and
ignoring extraneous factors, we find that R(I(z, 0), z) = 0, where R(v, z) is as in the statement of
the corollary. �

Remark 9.4. Using the techniques from [35, Chapter VII], one can deduce from Corollary 9.3 that
for odd n, the number |W2(n) ∩ ALT | of 2-stack-sortable alternating permutations in Sn satisfies
the asymptotic formula

|W2(n) ∩ALT | ∼ βn−5/2γn,

where β ≈ 0.68444 and γ ≈ 4.10868. The exponential growth rate for the number of 2-stack-sortable
permutations in Sn is lim

n→∞
|W2(n)|1/n = 6.75, so the probability that a randomly-chosen 2-stack-

sortable permutation in Sn is alternating is roughly (γ/6.75)n ≈ 0.60869n. On the other hand, the
probability that a randomly-chosen permutation in Sn is alternating is roughly (2/π)n ≈ 0.63662n.
Therefore, if we choose π ∈ Sn uniformly at random, where n is large and odd, then the events “π
is 2-stack-sortable” and “π is alternating” are negatively correlated. 4

Next, suppose T = Mot. Set r = 0 so that

I(z, 0) =
∑
n≥0

|P−1(Avn(231)) ∩ DMot|zn.

Note that the in-order reading gives a bijection from P−1(Avn(231))∩DMot to the setW2(n)∩EDP
of 2-stack-sortable permutations in Sn in which every descent is a peak.

6In the notation of [14], we are applying Theorem 14 with k = 1. Our polynomial Q(u, v, z, y), power series I(z, y),
and power series I(z, 0) are playing the roles of P (x0, . . . , xk, t, v), F (t, u), and F1(t), respectively, from that article.
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Corollary 9.5. Let

I(z, 0) =
∑
n≥0

|P−1(Avn(231)) ∩ DMot|zn =
∑
n≥0

|W2(n) ∩ EDP |zn

be the generating function the counts (standardized) 2-stack-sortable permutations whose descents
are all peaks. Then R(I(z, 0), z) = 0, where

R(v, z) = (−z + 3z2 + 24z3 + z4) + (1− 4z − 27z2 + 26z3 + 4z4)v + (4z − 4z2 + 29z3 + 7z4)v2

+(6z2 + 4z3 + 7z4)v3 + 4(z3 + z4)v4 + z4v5.

Proof. We have G` = |Mot`| = M`−1, so

G(y) =
∑
`≥0

G`y
` =

∑
`≥0

M`−1y
` =

1− y −
√

1− 2y − 3y2

2y
.

It follows that yG(y)2 + (y− 1)G(y) + y = 0. We can solve the equation in Theorem 9.1 for G(y),
substitute the result into the identity yG(y)2 + (y − 1)G(y) + y = 0, and clear denominators to
find that Q(I(z, y), I(z, 0), z, y) = 0, where

Q(u, v, z, y) = y2(1− uz + vz)2 + (−1 + u)(−1 + uz − vz)(−vz + u2yz − u(y − z + vyz))

+ (vz − u2yz + u(y − z + vyz))2.

We now proceed exactly as in the proof of Corollary 9.3, computing the discriminant ∆uQ(v, z, y)

= z6y3(−1 + 2y + 3y2)2“Q(v, z, y), where“Q(v, z, y) = − 4z3 + yz2(9 + (2− 6v)z + (1 + v)2z2) + y3(1 + z + 2vz + (1 + v + v2)z2)2

+ 2y2z(−3− (2 + 5v)z − (−4 + v2)z2 + (1 + 2v + 2v2 + v3)z3),

and deducing that ∆y
“Q(I(z, 0), z) = 0. Computing ∆y

“Q(v, z) explicitly and ignoring extraneous
factors, we find that R(I(z, 0), z) = 0, where R(v, z) is as desired. �

Remark 9.6. Using the techniques from [35, Chapter VII], one can deduce from Corollary 9.5 that
the number |W2(n) ∩ EDP | of 2-stack-sortable permutations in Sn whose descents are all peaks
satisfies the asymptotic formula

|W2(n) ∩ EDP | ∼ βn−5/2γn,

where β ≈ 0.42022 and γ ≈ 5.46152. Since lim
n→∞

|W2(n)|1/n = 6.75, the probability that a randomly-

chosen 2-stack-sortable permutation in Sn is in EDP is roughly (γ/6.75)n ≈ 0.80911n. On the other

hand, the probability that a randomly-chosen permutation in Sn is in EDP is roughly

Ç
3
√

3

2π

ån
≈

0.82699n. Therefore, if we choose π ∈ Sn uniformly at random, where n is large, then the events
“π is 2-stack-sortable” and “every descent of π is a peak” are negatively correlated. 4

Remark 9.7. One could easily refine Corollary 9.5 by taking into account the statistic des. This
would simply amount to replacing the generating function G(y) =

∑
`≥0M`−1y

` with G(x1)(y) =∑
`≥0M`−1(x1)y`, where M`−1(x1) denotes a Motzkin polynomial. 4

We end this section with a theorem about postorder preimages of 2-stack-sortable permuta-
tions. Using the in-order reading, one can transfer the statement of the theorem to a statement
about the enumeration of 3-stack-sortable permutations associated to troupes. For example, taking
T = FBPT, one obtains a recurrence for counting 3-stack-sortable alternating permutations of odd
length.
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Theorem 9.8. Let T be a troupe, and let f1, . . . , fr be insertion-additive tree statistics. Let

G` = G`(x1, . . . , xr) =
∑
T∈T`

x
f1(T )
1 · · ·xfr(T )

r .

If n ≥ 1, then ∑
T ∈P−1(W2(n))∩DTn

x
f̈1(T )
1 · · ·xf̈r(T )

r =
n+1∑
g=1

E
(g)
≥0(n),

where E
(g)
≥` (n) = E

(g)
≥` (n)(x1, . . . , xr) are polynomials in C[x1, . . . , xr] satisfying the following rela-

tions. We have E
(0)
≥` (n) = 0 and

E
(g)
≥` (1) =

{
0, if g 6= 2;

G`+1, if g = 2.

If n, g ≥ 1 and ` ≥ 0, then

E
(g)
≥` (n+ 1) =

∑̀
j=1

Ñ
n∑
a=2

g−1∑
b=max{2,g−a}

n−b+1∑
i=a−1

E
(a)
≥j−1(i)E

(b)
≥`−j+1(n− i) + E

(g−1)
≥j−1 (n)G`−j+1

é
+E

(g−1)
≥`+1 (n).

Proof. This theorem appears as Theorem 5.3 in [20] in the specific case in which T = BPT, f1(T ) =
des(T )+1, and f2(T ) = peak(T )+1, although it is phrased in terms of stack-sorting in that article.
The exact same proof applies, mutatis mutandis, in this more general setting. The main difference
is that one must now use the Refined Tree Decomposition Lemma (Theorem 3.1) instead of the
Refined Decomposition Lemma (Corollary 3.4). We omit the details. �

10. The Troupe Transform

We saw in Theorem 2.3 that a troupe T is completely determined by its set of branch generators
T ∩ Branch. We would like to know more about the enumerative relationships between a troupe
and its set of branch generators. As a starting point, let us prove that the sequence (|Tn|)n≥0 is
determined by the sequence (|Tn ∩ Branch|)n≥0.

Theorem 10.1. Let T and ‹T be troupes. If |Tn ∩ Branch| = |‹Tn ∩ Branch| for all n ≥ 0, then

|Tn| = |‹Tn| for all n ≥ 0.

Proof. Given a colored binary plane tree T with n vertices, we can view the postorder as a total
ordering on the set of vertices of T . More precisely, the vertex of T that is read ith in postorder is the
vertex with label i in the unique decreasing colored binary plane tree T̈ that satisfies skel(T̈ ) = T

and P(T̈ ) = 123 · · ·n. Let Tp
n (respectively, ‹Tp

n) be the set of vertices in Tn (respectively, ‹Tn)

in which exactly p vertices have 2 children. Let us say two trees T and ‹T with n vertices have
the same shape if for every i ∈ [n], the vertex of T that is read ith in postorder has the same

number of children as the vertex of ‹T that is read ith in postorder. We say a map ϕ : Tp
n → ‹Tp

n

is shape-preserving if for every T ∈ Tp
n, the trees T and ϕ(T ) have the same shape. We will prove

that for all n, p ≥ 0, there is a shape-preserving bijection ϕpn : Tp
n → ‹Tp

n. When p = 0, this is

immediate from the hypothesis that |Tn ∩ Branch| = |‹Tn ∩ Branch| for all n ≥ 0. We now proceed
by induction on p.
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Let T ∈ Tp
n for some p ≥ 1. Among the p vertices of T that have 2 children, let v∗ be the one

that is read last in postorder. Let ∆v∗(T ) = (T1, T2). Because T is decomposition-closed, we have

T1 ∈ Tp1
n1

and T2 ∈ Tp2
n2

for some n1, n2 < n and p1, p2 < p. Let ‹T1 = ϕp1n1
(T1) and ‹T2 = ϕp2n2

(T2). Let

v be the left child of v∗ in T . Then v is also a vertex in T1; say it is the vertex of T1 that is read rth

in postorder. Let ṽ be the vertex of ‹T1 that is read rth in postorder. Let ϕpn(T ) = ‹T = ∇ṽ(‹T1, ‹T2).

Let ṽ∗ be the parent of ṽ in ‹T . By the induction hypothesis, ϕp1n1
and ϕp2n2

are shape-preserving.

This means that T1 and ‹T1 have the same shape and that T2 and ‹T2 have the same shape. Notice

that v∗ is the vertex of T read (r + n2 + 1)th in postorder and that ṽ∗ is the vertex of ‹T read

(r + n2 + 1)th in postorder. It follows that T and ‹T have the same shape, so the resulting map

ϕpn : Tp
n → ‹Tp

n is shape-preserving. Furthermore, among the p vertices of ‹T that have 2 children,
ṽ∗ is the one that is read last in postorder.

By induction, the maps ϕp
′
n with p′ < p are bijections; let ψp

′
n denote their inverses. If we perform

the same construction as above, except with the roles of T and ‹T switched and with the maps ϕp
′
n

with p′ < p replaced by the maps ψp
′
n , then we obtain a map ψpn : ‹Tp

n → Tp
n. Using the observation

made in the last sentence of the preceding paragraph, we find that ψpn is the inverse of ϕpn. �

The preceding theorem yields a new transform on sequences of nonnegative integers, which we
call the troupe transform. Indeed, for any sequence of nonnegative integers (ωn)n≥0, we can find
a set B of branches that has ωn elements with n vertices for all n ≥ 0. For this, we might have
to use an infinite set of colors, but this won’t cause any harm as long as there are only finitely
many elements of B with each fixed number of vertices. We can then consider the troupe Ins(B)
generated by B and define the new sequence (qωn)n≥0 by letting qωn be the number of elements of
Ins(B) with n vertices. For example, if (ωn)n≥0 = 1, 1, 2, 4, 8, 16, . . . is the sequence enumerating
the set BPT∩Branch, then (qωn)n≥0 = 1, 1, 2, 5, 14, 42, . . . is the sequence enumerating BPT. Similar
considerations for the troupes FBPT, Mot, and Sch show that 0, 1, 0, 0, 0, 0, . . . transforms into the
sequence 0, 1, 0, 1, 0, 2, 0, 5, . . . of aerated Catalan numbers, that 0, 1, 1, 1, 1, 1, . . . transforms into
the sequence 0, 1, 1, 2, 4, 9, . . . of Motzkin numbers, and that 0, 2, 6, 18, 54, 162, . . . (whose nth term
is 2 · 3n−1 for n ≥ 1) transforms into the sequence 1, 2, 6, 22, 90, 394, . . . of large Schröder numbers.

11. Concluding Remarks and Open Problems

In Section 2.1, we defined insertion and decomposition, with which we initiated the development
of a theory of troupes. We believe that there is likely much more to be done in this line of work.
Here, we state some specific open problems and conjectures.

We saw in Theorem 10.1 that the sequence that enumerates a troupe T is determined by the
sequence that enumerates the set T ∩ Branch of branch generators of T. This led us to define the
troupe transform of a sequence of nonnegative integers. It would interesting to have a better under-
standing of this transform, especially on the level of generating functions. In view of Corollary 9.2,
we are also interested in the algebraicity of the generating function that enumerates a troupe.

Question 11.1. Let T be a troupe. What can we deduce about the generating function
∑
n≥0

|Tn|zn

from the generating function
∑
n≥0

|Tn ∩ Branch|zn? Under what conditions will the former be alge-

braic?
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There has been interest in binary plane trees and decreasing binary plane trees in algebraic
settings [39,47,48]. It could be interesting to see if there are algebraic aspects of the insertion and
decomposition operations or of troupes.

It would certainly be interesting to prove any of Conjectures 7.13, 7.18, 7.23, or 7.27, which
concern the real-rootedness of the polynomials that count specific families of decreasing colored
binary plane trees according to the number of descents in their postorder readings. In fact, it would
be nice just to have a proof that one of these polynomials has unimodal coefficients. In general,

there exist troupes T and positive integers n such that the polynomials
∑

T ∈DTn−1

xdes(P(T ))+1 do

not have unimodal coefficients and, consequently, have some nonreal roots. For an example, let
Υ be the set of branches with 7 vertices in which each vertex is either black or white. Let T be
the troupe whose branch generators are the elements of Υ and the tree consisting of a single black
vertex. Then T7 = Υ ∪ FBPT7, and one can compute that∑

T ∈DT7

xdes(P(T ))+1 = 8197x+ 71x2 + 140x3 + 56x4.

To produce this example, we have exploited our freedom to color vertices. Thus, we have the
following question concerning troupes whose trees only have black vertices.

Question 11.2. Does there exist a troupe T ⊆ BPT and a positive integer n such that the coeffi-

cients of
∑

T ∈DTn−1

xdes(P(T ))+1 are not unimodal?

Recall Conjecture 7.11, which states that the random variables Dn are asymptotically normally
distributed. While explaining a potential approach to this conjecture (which is likely to fail), we

observed the strange fact that lim
n→∞

E(Dn,1) = lim
n→∞

E(Dn)

n
(see (36)). This says that if σ ∈ Sn−1 is

chosen uniformly at random, then the probability that 1 is a descent of s(σ) is asymptotically equal
to the probability that a random index i ∈ [n− 2] is a descent of s(σ). This is suspiciously similar
to the fact that if π is chosen uniformly at random from the set of uniquely sorted permutations in
S2k+1, then the expected value of the first entry of π is k+1 (this follows from Theorem 5.7 in [29]),
which is also the expected value of a random entry of π. It would be very interesting to provide a
deeper explanation for these observations. On the other hand, we mentioned in Remark 7.17 that
the analogue of (36) for FBPT does not hold. We also saw in Remarks 7.22 and 7.26 that analogues
of (36) for Mot and Sch are probably false as well.

Question 11.3. Suppose we choose T ∈ DMotn−1 uniformly at random. As n → ∞, does the
probability that 1 is a descent of T approach a limit? If so, what is its value?

Question 11.4. Suppose we choose T ∈ DSchn−1 uniformly at random. As n → ∞, does the
probability that 1 is a descent of T approach a limit? If so, what is its value?

Define the fertility distribution on Sn−1 to be the probability distribution on Sn−1 in which the
probability of a permutation π is |s−1(π)|. With this alternative terminology, one can view the
results in Section 7.3 as an analysis of the distribution of the descent statistic with respect to the
fertility distribution. It could be interesting to consider the distributions of other permutation
statistics with respect to this distribution.

It is likely that several of the results concerning the stack-sorting map, especially those in [20–
22, 24, 28], could be generalized to the setting of troupes using the Refined Tree Decomposition
Lemma and the Refined Tree Fertility Formula. We illustrated this in Section 9, but it is possible
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that pushing this line of work further could lead to some interesting results. For example, it should
be possible to enumerate standardized permutations π whose descents are all peaks and with the
property that s(π) avoids some collection of patterns (say, 132 and 231).

Recall from Theorem 7.7 that Lassalle’s sequence counts uniquely sorted permutations. Lassalle
[44] proved that for k ≥ 3, the number Ak is odd if and only if k + 1 is a power of 2. This is
analogous to our Conjecture 7.5, which states that if n ≥ 3, then |VHC(Sn−1)| is odd if and only
if n + 1 is a power of 2. It would be interesting to have a combinatorial proof of Lassalle’s result
and/or Conjecture 7.5.

Finally, let us recall Problem 4.9 and Remark 8.3. The former asks for a formula for the number
of alternating permutations in s−1(π) when π has even length. The latter asks for alternative
methods for computing the numbers |L(K(η))| for η ∈ NC(n).
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[10] M. Bóna, Limiting probabilities for vertices of a given rank in 1-2 trees. Electron. J. Combin., 26 (2019).
[11] M. Bousquet-Mélou, Algebraic generating functions in enumerative combinatorics and context-free languages.

In STACS 2005: Annual Symposium on Theoretical Aspects of Computer Science, V. Diekert and B. Durand
(eds.). Springer-Verlag, 2005.

[12] M. Bousquet-Mélou, Multi-statistic enumeration of two-stack sortable permutations. Electron. J. Combin., 5
(1998).

[13] M. Bousquet-Mélou, Sorted and/or sortable permutations. Discrete Math., 225 (2000), 25–50.
[14] M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic variable, algebraic series and map

enumeration. J. Combin. Theory Ser. B, 96 (2006), 623–672.
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