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Abstract. We explore the question of when an infinite staircase describes part of the
ellipsoid embedding function of a convex toric domain. For rational convex toric domains in
four dimensions, we conjecture a complete answer to this question, in terms of six families
that are distinguished by the fact that their moment polygon is reflexive. To understand
better when infinite staircases occur, we prove that any infinite staircase must have a unique
accumulation point given as the solution to an explicit quadratic equation. We then provide
a uniform proof of the existence of infinite staircases for our six families, using two tools. For
the first, we use recursive families of almost toric fibrations to find symplectic embeddings
into closed symplectic manifolds. In order to establish the embeddings for convex toric
domains, we prove a result of potentially independent interest: a four-dimensional ellipsoid
embeds into a closed symplectic toric four-manifold if and only if it can be embedded into
a corresponding convex toric domain. For the second tool, we find recursive families of
convex lattice paths that provide obstructions to embeddings. Our work contrasts the work
of Usher, who finds infinite families of infinite staircases for irrationally shaped rectangles.
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1. Introduction

In the past two decades, there has been considerable interest in and progress on the
question of whether there is an embedding

(M4
, ωM) s

↪(N4
, ωN)

preserving symplectic structures, or whether the existence of such a map is in some way
obstructed. On the one hand, Local Normal Form theorems and clever constructions like
symplectic folding and symplectic inflation allow us to find embeddings. On the other hand,
in dimension four there are well-developed tools involving pseudo-holomorphic curves that
provide numerous obstructions to these maps.

We examine this question when the target is a toric symplectic four-manifold associated to
a lattice polygon in R2

. The answers we have found are governed by beautiful combinatorics
and number theory. We begin with toric domains. A 4-dimensional toric domain X is the
preimage of a domain Ω ⊂ R2

≥0 under the moment map

µ ∶ C2
→ R2

, (z1, z2)↦ (π∣z1∣2
, π∣z2∣2).

For example, if Ω is the hypotenuse-less triangle with vertices (0, 0), (a, 0), and (0, b), then
XΩ is the open ellipsoid E(a, b):

E(a, b) = {(z1, z2) ∈ C2
∶ π (∣z1∣2

a +
∣z2∣2

b
) < 1} .

Note that B(a) = E(a, a) is an open ball of capacity a (and radius
√

a

π
). Following the

notation set forth in [6, Definition 1.1], a convex toric domain is the preimage under µ

of a closed region Ω ⊂ R2
≥0 that is convex, connected, and contains the origin in its interior.

We denote this XΩ = µ
−1(Ω) and call the region Ω the moment polygon of XΩ, in analogy

with the case of closed symplectic toric-manifolds.
There is an extensive literature on symplectic embedding problems where the domain is

an ellipsoid: [4, 5, 7, 8, 9, 10, 13, 17, 21, 22, 23, 24, 32, 33, 34, 35, 36, 37, 40]. Even in
this seemingly simple situation, there is a subtle mix of rigidity and flexibility. Our work

continues this theme. First, to fix notation, we write E
s
↪X to mean that there is a symplectic

embedding of E into X, and define the ellipsoid embedding function of X by

(1.1) cX(a) ∶= min {λ ∣ E(1, a) s
↪λX} , for a ≥ 1,

where λX represents the symplectic scaling (X,λ ⋅ ω) of (X,ω). We could have defined the
function for a > 0, but there is a symmetry across a = 1, making this redundant.

The embedding capacity function makes sense1 for any symplectic manifold X, not just
convex toric domains. Indeed, one motivation for studying convex toric domains comes from
the following result that we prove, which ties together the ellipsoid embedding functions for
closed toric manifolds and convex toric domains. This result features essentially in our proof
of Theorem 1.14 as well.

1For a general symplectic manifold target, we should replace the min in (1.1) with an inf. For a closed
toric manifold, we will see in Theorem 1.2 that we can still use the min.
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Theorem 1.2. Let Ω ⊂ R2
≥0 be a convex region that is also a Delzant polygon for a closed

toric symplectic four-manifold M . Then there exists a symplectic embedding

(1.3) E(d, e) s
↪M

if and only if there exists a symplectic embedding

(1.4) E(d, e) s
↪XΩ.

Thus, from the point of view of the function cX , convex toric domains significantly gen-
eralize closed toric manifolds. In fact, we can relate embeddings into convex toric domains
to embeddings into closed manifolds in a slightly more general context, including some well-
known examples, for example equilateral pentagon space: see Remark 3.3, Proposition 3.5,
and the accompanying Remark 3.6.

For a general convex toric domain X, the embedding function cX(a) has an interesting

qualitative structure. For a fixed X, the volume curve is the curve y =
√

a

vol
and the

constraint

cX(a) ≥
√

a

vol
holds because

E(1, a) s
↪λX ⇒ volume(E(1, a)) ≤ volume(λX)⇔ a ≤ λ

2
volume(X)⇔ λ ≥

√
a

vol
.

We will show in Proposition 2.1 that cX(a) is continuous and non-decreasing, but not gener-
ally C

1
. For sufficiently large a, we also show that the function cX(a) remains equal to the

volume curve: this is the phenomenon known as packing stability. Moreover, the function
cX(a) is piecewise linear when not equal to the volume curve, except at points that are limit
points of singular2 points of cX . We call these limit points accumulation points and they
are an important focus of this paper. We now codify this with the following definition, which
is the main topic of our investigation.

Definition 1.5. For a symplectic manifold X, we say that the ellipsoid embedding function
cX(a) has an infinite staircase if its graph has infinitely many non-smooth points, i.e.
infinitely many staircase steps.

Remark 1.6. In [4, Definition 1.1], Casals and Vianna work with a different concept, a
sharp infinite staircase. This is an infinite staircase where infinitely many of the non-
smooth points must be on the volume curve. That notion therefore excludes the J = 3 cases
(cf. Remark 1.17 and Figure 1.12(b)).

Infinite staircases can certainly exist. The landmark result about this is the celebrated
work of McDuff and Schlenk, who completely determined the ellipsoid embedding function
of the ball [35]. The function cB4(a) has an infinite staircase, the coordinates of its steps are
related to the Fibonacci numbers, and there is a unique accumulation point at an appropriate
power of the Golden Mean; the portion of the graph corresponding to this phenomenon is
often called the “Fibonacci staircase.” In the paper [13], Cristofaro-Gardiner and Kleinman
studied the ellipsoid embedding function of an ellipsoid cE(1,b)(a) and found infinite stair-

cases when b = 2 and b = 3

2
. Frenkel and Müller found an infinite staircase in the ellipsoid

2We call a non-smooth point of cX a singular point, and we use these terms interchangeably.
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embedding function for a polydisc P (1, 1) [17], where the function is governed by the Pell
numbers. Cristofaro-Gardiner, Frenkel, and Schlenk have shown that the only infinite stair-
case in the ellipsoid embedding function for polydisks P (1, b) with b ∈ N is when b = 1 [8].
By contrast, Usher studied ellipsoid embedding functions for irrational polydisks P (1, b) [40]
and found the first infinite families of infinite staircases. Usher’s families all have b quadratic
irrationalities of a special form.

Despite these myriad examples, a general theory of infinite staircases does not currently
exist, however; a goal of this paper is to lay some possible steps for such a classification.

1.1. Accumulation points of infinite staircases. Our first result is aimed at rooting
out the “germs” of infinite staircases. If the function cX(a) has an infinite staircase, then
the singular points must accumulate at some set of points, otherwise this would contradict
packing stability. We show that if an infinite staircase exists, there is in fact a unique such
accumulation point; moreover, it can be characterized as the solution to an explicit quadratic
equation over the integers determined by Ω.

We now make this precise. To a convex toric domain we can associate a blowup vector
(b; b1, b2, . . .), but not in a unique way. To do so, first we need to define a b-triangle to be
the triangle with vertices (0, 0), (b, 0) and (0, b) or any AGL(2,Z) transformation of it3.
We proceed inductively: let b > 0 be such that Ω is contained in a b-triangle. If Ω equals
that triangle, we are done. Otherwise, let b1 > 0 be such that Ω is contained in the original
b-triangle minus a b1-triangle that is removed at a corner of the b-triangle. If Ω equals this
quadrilateral, we are done. Otherwise, let b2 > 0 be such that Ω is contained in the previous
quadrilateral minus a b2-triangle that is removed at one of its corners. The removing of
the bi-triangles is reminiscent of what is done to the moment polytope when performing
equivariant symplectic blowups at fixed points, hence the name blowup vector. We note
that when Ω is a lattice polygon, this blowup process is finite.

Note that the same convex toric domain has several different possible blowup vectors: for
example, (2; 1, 1, 1) and (1) describe the same region. We can address this by picking b as
small as possible and bi as large as possible at each step; these choices give a blowup vector
that is also called the negative weight expansion in [6]. Conversely, two different convex
toric domains can have the same associated blowup vector, see Figure 1.9 for examples. We
will see in Remark 2.8 that the relevant feature of a convex toric domain in the context of
this paper is its blowup vector, and not the actual shape of Ω.

Definition 1.7. We say that a blowup vector (b; b1, b2, . . .) is finite there are finitely many
non-zero bi’s. Given a convex toric domain X with finite blowup vector (b; b1, . . . , bn) we
define:

per = 3b −
n

∑
i=1

bi

vol = b
2
−

n

∑
i=1

b
2
i

Remark 1.8. The quantities per and vol are, respectively, the affine perimeter and twice
the area of the region in R2

representing X. They are well-defined as invariants of X. In

3By AGL(2,Z) transformation we mean a GL(2,Z) transformation followed by an affine translation.
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particular, vol is the symplectic volume of X. Note also that per
2

vol
is invariant under scaling

of (the region representing) X.

(3) (4;2,2)(3;1) (4;2,2) (3;1,1) (3;1,1)

(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)(3;1,1,1)

(3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1,1)(3;1,1,1,1,1)

Figure 1.9. Regions corresponding to convex toric domains, and their blowup vec-
tors (b; b1, . . . , bn). The blowup vectors (3; 1) and (3; 1, 1) correspond to the J = 3
case and all others are J = 2; cf. Table 1.13 and Remark 1.17. Note that all of these
polygons are reflexive.

We can now state precisely our theorem about finding accumulation points.

Theorem 1.10. Let X be a convex toric domain with finite blowup vector. If the ellipsoid
embedding function cX(a) has an infinite staircase then it accumulates at a0, a real solution4

of the quadratic equation

(1.11) a
2
− (per

2

vol
− 2) a + 1 = 0.

Furthermore, at a0 the ellipsoid embedding function touches the volume curve:

cX(a0) =
√

a0

vol
.

In the face of all the examples in Figure 1.12, the power of Theorem 1.10 is that it provides
a means for showing when there is not an infinite staircase. For example in Figure 1.12(c)
below, we can see clearly that the ellipsoid embedding function is obstructed, and so a toric
domain with blowup vector (4; 2, 1) cannot have an infinite staircase. There is a similar
obstruction at Figure 1.12(d) if you zoom in sufficiently.

1.2. Reflexive polygons and infinite staircases. Having explained in the previous sec-
tion where infinite staircases must accumulate, we now turn our attention to finding them.
We begin by showing in Figure 1.12 the types of graphs we can produce of embedding func-
tions using Mathematica. These types of plots were essential in our early investigations of
infinite staircases. This is discussed further in Appendix C.

4 Note that if equation (1.11) has two distinct real solutions, then there is a unique solution greater than
1. Thus, when a0 exists as in the statement of the theorem, it is unique on the domain of cX .
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(a) Blowup vector (3;1,1,1,1).
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(b) Blowup vector (3;1).
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(c) Blowup vector (4;2,1).
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(d) Blowup vector (6;1).

Figure 1.12. Plots of ellipsoid embedding functions for domains with different
blowup vectors. The red curves are the volume curves and the vertical lines indicate
where the accumulation points would necessarily be located, if a staircase existed,
per Theorem 1.10. The top two plots have infinite staircases: in (a) we have a J = 2
case, where the inner corners touch the volume curve (a sharp infinite staircase);
and in (b) we have a J = 3 case, where the inner corners approach but do not touch
the volume curve. The plots (c) and (d) do not have infinite staircases.

Our next result identifies infinite staircases for the ellipsoid embedding functions of twelve
convex toric domains, including the already known ball, polydisk P (1, 1), and E(1, 3

2
). Our

proof of Theorem 1.14 provides a uniform approach to prove the existence of all twelve in
one fell swoop. The graphs of these functions are related to certain recurrence sequences,
which are given in Table 1.13.

Blowup vector Recurrence relation Seeds K =
per

2

vol
− 2 J a0

g(n + 2J) = Kg(n + J) − g(n) g(0), . . . , g(2J − 1)

(3) g(n + 4) = 7g(n + 2) − g(n) 2, 1, 1, 2 7 2 7+3
√
5

2

(4; 2, 2) g(n + 4) = 6g(n + 2) − g(n) 1, 1, 1, 3 6 2 3 + 2
√
2

(3; 1, 1, 1) g(n + 4) = 4g(n + 2) − g(n) 1, 1, 1, 2 4 2 2 +
√
3

(3; 1, 1, 1, 1) g(n + 4) = 3g(n + 2) − g(n) 1, 2, 1, 3 3 2 3+
√
5

2

(3; 1) g(n + 6) = 6g(n + 3) − g(n) 1, 1, 1, 1, 2, 4 6 3 3 + 2
√
2

(3; 1, 1) g(n + 6) = 5g(n + 3) − g(n) 1, 1, 1, 1, 2, 3 5 3 5+
√
21

2

Table 1.13. The key recurrence relations.
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Theorem 1.14. Let X be a convex toric domain with blowup vector (b; b1, . . . , bn) equal to

(3) , (3; 1) , (3; 1, 1) , (3; 1, 1, 1) , (3; 1, 1, 1, 1) , or (4; 2, 2).
Then the ellipsoid embedding function cX(a) has an infinite staircase which alternates be-
tween horizontal lines and lines through the origin connecting inner and outer corners

(xin0 , yin0 ), (xout1 , y
out
1 ), (xin1 , yin1 ), (xout2 , y

out
2 ), . . .

respectively with coordinates:

(xinn , yinn ) = (g(n + J) (g(n + 1) + g(n + 1 + J))
(g(n) + g(n + J)) g(n + 1) ,

g(n + J)
g(n) + g(n + J)) ,

(xoutn , y
out
n ) = (g(n + J)

g(n) ,
g(n + J)

g(n) + g(n + J)) .

Remark 1.15. The recurrence relations that appear in Table 1.13 do not immediately ap-
pear to be the ones previously associated to infinite staircases. But a quick computation
shows that for (3), this does recover the odd-index Fibonacci numbers McDuff and Schlenk
found in [35]; for (4; 2, 2) it recovers Pell and half-companion Pell numbers as found by
Frenkel and Müller [17]; and for (3; 1, 1, 1) the sequences of Cristofaro-Gardiner and Klein-
man [13]. Writing them in this uniform way simplifies the statement of Theorem 1.14.

Remark 1.16. Combining Theorems 1.2 and 1.14, we conclude that the ellipsoid embedding
function cX(a) has an infinite staircase for the compact symplectic manifolds CP 1

2 ×CP
1
2 and

CP 2
3 #kCP

2

1 for k = 0, 1, 2, 3, 4. The smooth polygons in Figure 1.9 are Delzant polygons:
they are the moment polygons of compact toric symplectic manifolds, namely for CP 1×CP 1

and CP 2
#kCP

2
for k = 0, 1, 2, 3. The only blowup vector from the list that does not have

a smooth Delzant polygon representative is (3; 1, 1, 1, 1). This manifold is well known not
to admit a Hamiltonian circle or 2-torus action [20]. We may identify this manifold as
equilateral pentagon space and as such, it is well known to admit a completely integrable
system from bending flows whose image is shown in the bottom right picture in Figure 1.9.

Remark 1.17. For each convex toric domain, the accumulation point of the infinite staircase
is on the volume curve. However, two fairly distinct behaviors can be observed, related to
the order of the recurrence relation in Table 1.13. In the J = 2 cases, the inner corners of
the infinite staircase are on the volume curve, whereas in the J = 3 cases, they approach the
volume curve but never touch it. Examples are shown in Figure 1.12(a) and (b). Wherever
the staircase hits the volume curve, it indicates that there is a full filling of the target by
the ellipsoid. The behavior when J = 3 has not previously been observed for rational convex
toric domains.

These two different behaviours can be seen explicitly in the Proof of Proposition 5.9, which
following an idea of Casals uses sequences of almost toric fibrations to construct symplectic
embeddings corresponding to the inner corners of the staircase. In the J = 2 case, the base
diagrams of the almost toric fibrations are triangles, which give full filling ellipsoids. In the
J = 3 case, the base diagrams are quadrilaterals and the embeddings are determined by the
biggest triangle contained in each quadrilateral, and therefore do not constitute a full filling.
See also [4] and the note at the end of the introduction of this manuscript.
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We complete the introduction with a conjecture that the list in Theorem 1.14 is in a
suitable sense exhaustive. Recall that a convex lattice polygon is reflexive if it has exactly
one interior lattice point; this is equivalent to requiring that its dual polygon is also a
lattice polygon. Up to AGL2(Z), the only domains which have blowup vectors listed in
Theorem 1.14 are the ones shown in Figure 1.9. These are well known as twelve of the
sixteen reflexive lattice polygons in R2

; the other four appear in Figure 6.5, and do not have
infinite staircases as part of their ellipsoid embedding function.

Conjecture 1.18. If the ellipsoid embedding function of a rational convex toric domain has
an infinite staircase, then its moment polygon is a scaling of a reflexive polygon.

In particular, if Conjecture 1.18 holds, we will see that the only rational convex toric
domains whose ellipsoid embedding function has an infinite staircase are indeed the ones from
Theorem 1.14 or any scaling of those, by ruling out the remaining four reflexive polygons.
We will give some evidence supporting Conjecture 1.18 in this paper; as further evidence,
Cristofaro-Gardiner’s paper [7] applies Theorem 1.10 to prove Conjecture 1.18 in the special
case of ellipsoids. In light of Usher’s work [40] about infinite staircases for irrational polydisks
P (1, b), it is crucial in the conjecture that the toric domain be rational.

Organization of the paper. We begin in Section 2 by reviewing the basic properties of
ellipsoid embedding functions, ECH capacities, convex lattice paths, obstructive classes, toric
manifolds, and almost toric fibrations. Next, we explore the relationship between convex toric
domains and compact toric manifolds in Section 3, proving Theorem 1.2. In Section 4, we
turn to the proof of Theorem 1.10. We are then able give our unified proof of the existence
of the infinite staircases (Theorem 1.14) in Section 5. We conclude by describing evidence
supporting our Conjecture, in Section 6, that the six examples described here are the only
examples among rational convex toric domains.

The paper also includes three appendices: the first, Appendix A, draws together some com-
binatorial data used to define families of convex lattice paths Λn needed to find obstructions
for the proof of Theorem 1.14. The second, Appendix B, describes seeds for the families of
almost toric fibrations needed to provide embeddings in the proof of Theorem 1.14. Finally,
in Appendix C, we recall the very beginning of the project, including a surprise connec-
tion to the numbered stops on a Philadelphia subway line. This appendix also contains the
Mathematica code we used to estimate ellipsoid embedding functions and search for infinite
staircases.
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Relation to [4]. This article has been posted simultaneously with that of Roger Casals and
Renato Vianna [4]. Their Theorem 1.2 coincides with our Proposition 5.9 for the blowup
vectors (3), (3; 1, 1, 1), (3; 1, 1, 1, 1), and (4; 2, 2). Both collaborations have benefitted from
our exchanges of ideas. Indeed, our initial proof relied solely on ECH capacities, but re-
quired additional technical details and guaranteed existence of an infinite staircase without
completely computing the embedding capacity function.

When Pires gave a talk on this topic at a 2017 KCL/UCL Geometry Seminar, Casals shared
his beautiful idea: that mutation sequences of ATFs provided explicit symplectic embeddings
for the Fibonacci staircase and should do the same whenever the target region Ω is a triangle,
that is, corresponding to the blowup vectors (3), (4; 2, 2) and (3; 1, 1, 1). Following this
suggestion, we were then able to implement these ATFs explicitly and uniformly for all of
our target regions, including the non-triangular ones. This greatly simplified our work and
allowed us to pin down the embedding capacity function entirely, rather than just providing
an existence proof for infinite staircases. Independently and without mutual knowledge,
Casals and Vianna went on to explore the embeddings arising from mutation sequences of
ATFs, also studying connections to tropical geometry and cluster algebras. They use tropical
techniques to go from the base diagrams to the existence of embeddings, and we tackle the
same issue by using local normal form results for toric actions on non-compact manifolds
and heavily using ECH machinery, cf. Theorem 1.2 and Remark 3.3.

2. Preliminaries and tools

2.1. Properties of the ellipsoid embedding function.

Proposition 2.1. Let X be a convex toric domain with finite negative weight expansion.
The ellipsoid embedding function cX(a)

(1) is non-decreasing;
(2) has the following scaling property: cX(t ⋅ a) ≤ t ⋅ cX(a) for t ≥ 1;
(3) is continuous;
(4) is equal to the volume curve for sufficiently large values of a;
(5) is piecewise linear, when not on the volume curve, or at the limit of singular points.

Proof. We prove only the first three points here, delaying the proof of the fourth to Section 3,
and the fifth to Section 4, because the methods used to prove it are similar to the methods
used to prove the results there. The first three properties actually hold for general symplectic
4-manifolds X.

(1) Let a1 < a2. For all λ such that E(1, a2)
s
↪λX we have E(1, a1)

s
↪E(1, a2)

s
↪λX, so

cX(a1) ≤ λ. Therefore cX(a1) ≤ cX(a2).
(2) Let t ≥ 1. For all λ such that E(1, a) s

↪λX we have E(1, ta) s
↪E(t, ta) s

↪tλX, so
cX(ta) ≤ tλ. Therefore cX(ta) ≤ tcX(a).

(3) Let (ai)i∈N be an increasing sequence converging to a, and define ti ∶=
a

ai
> 1. Using

properties (2) and (1) we have

cX(a) = cX(tiai) ≤ ticX(ai) ≤ ticX(a).
9



Dividing through by ti and letting i→∞ we conclude that limi→∞ cX(ai) = cX(a).
Now let (ai)i∈N be a decreasing sequence converging to a, and define ti ∶=

ai
a
> 1.

Using properties (1) and (2) we have

cX(a) ≤ cX(ai) = cX(tia) ≤ ticX(a).
Dividing through by ti and letting i → ∞ implies that limi→∞ cX(ai) = cX(a).
Therefore cX is continuous at a.

�

2.2. ECH capacities. Let cECH(X) = (c0(X), c1(X), c2(X), . . .) represent the non-decreasing
sequence of ECH capacities of the toric domain X, as defined in [24]. The sequence inequality

cECH(X) ≤ cECH(Y )
means that ck(X) ≤ ck(Y ) for all k ∈ N0.

The sequence of ECH capacities for an ellipsoid E(a, b) is the sequence N(a, b), where for
k ≥ 0, the term N(a, b)k is the (k+1)st

smallest entry in the array (am+ bn)m,n∈N0
, counted

with repetitions [33]. Equivalently, the terms of the sequence N(a, b) are the numbers in
Table 2.2 arranged in nondecreasing order:

+ 0 a 2a 3a . . .

0 0 a 2a 3a . . .

b b a + b 2a + b 3a + b . . .

2b 2b a + 2b 2a + 2b 3a + 2b . . .

3b 3b a + 3b 2a + 3b 3a + 3b . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Table 2.2. The terms of the sequence N(a, b), before being ordered.

Proposition 2.3. There are at most
(a+1)(b+1)

2
− 1 terms in the sequence N(a, b) that are

lesser than or equal to ab.

Proof. For a, b = 1, imagine drawing a line through two equal numbers

i1 + j1 = i2 + j2 = N

on (the interior of) Table 2.2. Any number above/on/below that line is respectively small-
er/equal/larger than N . For other values of a, b, with i1a + j1b = i2a + j2b = N , the same
holds, since we are just looking at the a = b = 1 table with several rows and columns erased.

Draw a line between the equal terms ba+0b = 0a+ab. There are at most
(a+1)(b+1)

2
−1 terms

above the line. There will be exactly that number if and only if there are no other terms on
the table equal to ab. �

We now turn to some algebraic operations on ECH capacities.
10



Definition 2.4. Let (Sk)k≥0 and (Tk)k≥0 be the sequences of ECH capacities of two convex
toric domains X and Y . We define the sequence sum and sequence subtraction as:

(S#T )k = max
m+n=k

(Sm + Tn)
(S − T )k = inf

m≥0
(Sk+m − Tm) .

Remark 2.5. In the definition of sequence subtraction above we require that T ≤ S. If
additionally

lim
k→∞

Sk − Tk =∞,

then inf can be replaced by min. This will happen in all instances in this paper, because
volume(X) > volume(Y ). See [6, Remark A.2] and [12, Theorem 1.1] for more details.

By [6, Theorem A.1], the sequence of ECH capacities of the convex toric domain X with
negative weight expansion (b; b1, . . . , bn) is obtained by the sequence subtraction

(2.6) cECH(X) = cECH (B(b)) − cECH (
n

⨆
i=1

B(bi)) = cECH (B(b)) −#icECH(B(bi)).

Since E(1, a) is a concave toric domain in the sense of [6, §1.1] and X is a convex toric
domain, the main result [6, Theorem 1.2] implies the following.

Proposition 2.7. There is a symplectic embedding E(1, a) s
↪ λX if and only if

cECH(E(1, a)) ≤ cECH(λX).
Remark 2.8. The existence of a symplectic embedding is equivalent to an inequality of ECH
capacities, which are determined by the blowup vector. Thus, the function cX(a) depends
only on the blowup vector (b; b1, . . . , bn), not on any particular shape of a region in R2

≥0 with
that blowup vector.

Combining this with the definition (1.1) of the ellipsoid embedding function cX(a), we
have

(2.9) cX(a) = sup
k

ck(E(1, a))
ck(X) .

An equivalent way to compute ECH capacities for convex toric domains uses the combi-
natorics of convex lattice paths. The definitions below are based on [6, Definitions A.6, A.7,
A.8] and can be found there in more detail.

Definition 2.10. A convex lattice path is a piecewise linear path Λ ∶ [0, c] → R2
such

that all its vertices, including the first (0, x(Λ)) and last (y(Λ), 0), are lattice points and
the region enclosed by Λ and the axes is convex. An edge of Λ is a vector ν from one vertex
of Λ to the next. The lattice point counting function L(Λ) counts the number of lattice
points in the region bounded by a convex lattice path Λ and the axes, including those on
the boundary.

Let Ω ⊂ R2
≥0 be a convex region in the first quadrant. The Ω-length of a convex lattice

path Λ is defined as

(2.11) `Ω(Λ) = ∑
ν∈Edges(Λ)

det [ν pΩ,ν] ,

11



where for each edge ν we pick an auxiliary point pΩ,ν on the boundary of Ω such that Ω lies
entirely “to the right” of the line through pΩ,ν and direction ν.

Convex lattice paths provide a combinatorial way of computing ECH capacities of a convex
toric domain, which we will use to prove Proposition 5.6.

Theorem 2.12. [6, Corollary A.5] Let X be the toric domain corresponding to the region

Ω. Then its k
th

ECH capacity is given by:

ck(X) = min {`Ω(Λ) ∶ Λ is a convex lattice path with L(Λ) = k + 1} .
Hutchings indicates [26, Ex. 4.16(a)] that the minimum can be taken over those lattice

paths Λ that have edges parallel to edges of the region Ω. This simplifies the search for
obstructing paths Λ and explains why the lattice paths in Figure A.1 look similar to some
of the domains in Figure 1.9.

2.3. Obstructive classes. To find classes that obstruct the ellipsoid embedding question
for E(1, a), we must introduce the weight expansion (a1, . . . , an) of the rational number
a ≥ 1. The definition is recursive and can be found in [35, Definition 1.2.5] where it is called
“weight sequence.” When a is irrational, we may still define the weight expansion in the
same recursive way. It has infinite length.

We recall here the essential properties of weight expansions that we use later in Section 4.

Lemma 2.13. [35, Lemma 1.2.6] Let (a1, . . . , an) be the weight expansion of a = p

q
≥ 1,

where a is expressed in lowest terms. Then:

(1) an =
1
q ;

(2)
n

∑
i=1

a
2
i = a; and

(3)
n

∑
i=1

ai = a + 1 −
1
q .

Let (b; b1, . . . , bN) be the negative weight expansion of the convex toric domain X. The
weight expansion of a is related to the problem of embedding the ellipsoid E(1, a) into λX
in the following way, following [6, Theorem 2.1]:

(2.14) E(1, a) s
↪λX ⟺

n

⨆
j=1

B(aj)
s
↪λX ⟺

n

⨆
j=1

B(aj) ⊔
N

⨆
i=1

B(λbi)
s
↪B(λb).

Equation (2.14) highlights how the problem of embedding an ellipsoid E(1, a) into a scaling
of a convex toric domain X is similar to the problem of embedding it into a scaling of a
ball studied in [35]: both boil down to the problem of embedding a disjoint union of balls
into another ball. Therefore it is no surprise that our proof uses similar tools to those in
[35], adapted to this more general case. In particular we use classes (d; m), which for us are
tuples of non-negative integers of the form

(2.15) (d; m) = (d; m̃1, . . . , m̃N ,m1, . . . ,mn)
12



that satisfy the following Diophantine equations (cf. [35, Proposition 1.2.12(i)]):

∑ m̃i +∑mj = 3d − 1(2.16)

∑ m̃
2
i +∑m

2
j = d

2
+ 1.(2.17)

Fix a convex toric domain X and its negative weight expansion (b; b1, . . . , bN). Each class
(d; m) determines a function µ(d;m) as follows. First, pad the tuple (d; m) with zeros on the
right in order to make it infinitely long. Then, for a ∈ Q with weight expansion (a1, . . . , an)
we define:

(2.18) µ(d;m)(a) ∶=
∑mjaj

d b −∑ m̃ibi
.

Formula (2.18) also makes sense for irrational values of a; as above, these have weight
expansions of infinite length.

The following is analogous to [35, Corollary 1.2.3]:

Proposition 2.19. Let (a1, . . . , an) be the weight expansion of a ∈ Q and (b; b1, . . . , bN) be
the negative weight expansion of X.

If the ellipsoid E(1, a) embeds symplectically into X, then either

cX(a) =
√

a

vol

or there exists a class (d; m) satisfying conditions (2.16) and (2.17) such that

(2.20) µ(d;m)(a) >
√

a

vol
.

In the latter case, cX(a) = max
(d;m)

{µ(d;m)(a)}.

A class (d; m) satisfying (2.20) (in addition to (2.16) and (2.17)) is called an obstructive
class and the corresponding function µ(d;m) is called an obstruction.

Proof. Hutchings’ survey article [23] gives a nice overview of these ideas. By [35, Theo-
rem 1.2.2, Proposition 1.2.12], for an embedding as in the rightmost side of (2.14) to exist,
we must have

∑ m̃i

bi
b
+∑mj

aj
λb

< d

for all obstructive classes (d; m). Rearranging, this is equivalent to the condition that

λ >
∑mjaj

db −∑ m̃ibi

hence the lemma. �

The length `(m) of the class (d; m) = (d; m̃1, . . . , m̃N ,m1, . . . ,mn) is the number of
nonzero mj’s (not the m̃i’s). For a rational number a ∈ Q, its length `(a) is the number n
of entries in the weight expansion (a1, . . . , an) of a.

Lemma 2.21. Let X be a convex toric domain and (b; b1 . . . , bN) its negative weight expan-
sion. Then,

(1) If `(a) < `(m) then µ(d;m)(a) ≤
√

a

vol
.
13



(2) For all a for which the right hand side is defined,

(2.22) µ(d;m)(a) ≤
√

a

vol

⎛
⎜⎜⎜
⎝

√
b2 −∑ b2

i√
b2 d2

d2+1
−∑ b2

i

⎞
⎟⎟⎟
⎠
.

Proof. First assume that `(a) < `(m), and therefore not all mj’s appear in the sum ∑mj aj.
Then we have

µ(d;m)(a) =
∑mj aj

d b −∑ m̃i bi

≤

√
∑aj≠0m

2
j

√
∑ a2

j

d b −∑ m̃i bi
(by Cauchy-Schwarz)

≤

√
∑m2

j − 1
√
∑ a2

j

d b −∑ m̃i bi
(because at least one mj ∈ Z was excluded)

=

√
d2 −∑ m̃2

i

√
a

d b −∑ m̃i bi
(by (2.17))

The light-cone inequality (an analogue of the Cauchy-Schwarz inequality for the Lorentz
product, [38, Problem 4.5]) guarantees that

√
d2 −∑ m̃2

i

√
b2 −∑ b2

i ≤ d b −∑ m̃i bi,

so we obtain the desired inequality:

µ(d;m)(a) ≤
√
a√

b2 −∑ b2
i

=

√
a

vol
.

To prove (2.22) for general a we repeat the argument above – minus the line where we
used the fact that at least one mj was excluded – and conclude that

µ(d;m)(a) ≤
√

1 + d2 −∑ m̃2
i

√
a

d b −∑ m̃i bi
.

The light-cone inequality from above guarantees that

√
1 + d2 −∑ m̃2

i

√

b2 d2

d2 + 1
−∑ b2

i ≤ d b −∑ m̃i bi,

which gives us the desired bound

µ(d;m)(a) ≤
√
a√

b2 d2

d2+1
−∑ b2

i

.

�

Proposition 2.23. An obstruction µ(d;m) is continuous and piecewise linear. Furthermore,

on each maximal interval I where µ(d;m)(a) >
√

a

vol
, the obstruction µ(d;m) has a unique

non-differentiable point, and it is at a value a such that `(a) = `(m).
14
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x

o⃝ i⃝

o⃝ i⃝

i⃝

(3) (3;1) (4;2,2) (3;1,1) (3;1,1,1) (3;1,1,1,1)

√
a

vol

µ(d;m)(a)

a

:

:

Figure 2.24. The graph of an obstruction function µ(d;m)(a), together with the

volume curve
√

a
vol

in red. The marked :s represent the unique singular points

guaranteed in Proposition 2.23.

Proof. Let I be a maximal interval where µ(d;m)(a) >
√

a

vol
. Then by Lemma 2.21, `(a) ≥

`(m) for all a ∈ I. Assume towards a contradiction that `(a) > `(m) for all a in I. Then in
particular 1 ∉ I because `(1) = 1.

As in [35, Lemma 2.1.3], the i
th

weight in the weight expansion of a, considered as a
function of a, is linear on any open interval that does not contain a point whose weight
expansion has length less than or equal to i. Thus, with `(a) > `(m) for all a in I, the
function µ(d;m)(a) would be linear on I. But this is impossible: the volume curve is concave
and the interval I is necessarily bounded above (and below by 1), as the graph of cX(a)
is equal to the volume curve for sufficiently large a. Thus, there is some point ã with
`(ã) = `(m).

The uniqueness follows from Lemma 2.21 together with the following basic fact about
weight expansions, proved in [35, Proof of Lemma 2.1.3]: if b > a are two rational numbers
and `(a) = `(b), then there must be some number y ∈ (a, b) with `(y) < `(a) = `(b).

We conclude that µ(d;m)(a) is piecewise linear on I, with ã the unique singular point. �

2.4. Toric manifolds and almost toric fibrations. A toric symplectic manifold
is a symplectic manifold M equipped with an effective5 Hamiltonian T action satisfying
dim(T ) =

1

2
dim(M). Delzant established a one-to-one correspondence between compact

toric symplectic manifolds (up to equivariant symplectomorphism) and Delzant polytopes
(up to AGLn(Z) equivalence).

A polytope ∆ in Rn
may be defined as the convex hull of a set of points, or alternatively

as a (bounded) intersection of a finite number of half-spaces in Rn
. We say ∆ is simple

if there are n edges adjacent to each vertex, and it is rational if the edges have rational
slope relative to a choice of lattice Zn ⊂ Rn

. For a vector with rational slope, the primitive
vector with that slope is the shortest positive multiple of the vector that is in the lattice
Zn ⊆ Rn

. A simple polytope is smooth at a vertex if the n primitive edge vectors emanating

5An action is effective if no positive dimensional subgroup acts trivially.
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from the vertex span the lattice Zn ⊆ Rn
over Z. It is smooth if it is smooth at each vertex.

A Delzant polytope is a simple, rational, smooth, convex polytope.
To each compact toric symplectic manifold, the polytope we associate to it is its mo-

ment polytope. There is a more complicated version of this classification theorem for toric
symplectic manifolds without boundary which are not necessarily compact. In this case,
polytopes are replaced by orbit spaces, which are possibly unbounded. Given such an orbit
space, the manifold M is not unique but determined by a choice of cohomology class in

H
2(M/T ;Zn × R).

For further details, the reader should consult [1, Chapter VII] and [28, Theorem 1.3].

Remark 2.25. Note that when M/T is contractible, the above cohomology group is trivial
and the corresponding T -space is unique. For example, Euclidean space Cn

equipped with
the coordinate T

n
action

(t1, . . . , tn) ⋅ (z1, . . . , zn) = (t1 ⋅ z1, . . . , tn ⋅ zn)
is a toric symplectic manifold. The moment map is

µ ∶ Cn
→ Rn

, (z1, . . . , zn)↦ (π∣z1∣2
, . . . , π∣zn∣2),

with image the positive orthant in Rn
. Note that Cn/T n is equal to this positive orthant,

which is contractible and so by [28, Theorem 1.3], this is the unique toric symplectic manifold
with this moment map image.

More generally, for any relatively open subset Ω ⊂ Rn
≥0, the toric domain XΩ = µ

−1(Ω)
inherits a linear symplectic form and Hamiltonian torus action from Cn

. Thus endowed, XΩ

is a (non-compact) toric symplectic manifold with XΩ/T = Ω. When Ω is contractible, for

example, the cohomology group H
2(XΩ/T ;Zn × R) = 0 and in this case, XΩ is the unique

toric symplectic manifold with moment map image Ω.

The moment map on a toric symplectic manifold M is a completely integrable system
with elliptic singularities. We now focus on four-dimensional manifolds. An almost toric
fibration or ATF is a completely integrable system on a four-manifold M with elliptic and
focus-focus singularities. An almost toric manifold is a symplectic manifold equipped
with an almost toric fibration. These were introduced by Symington [39], building on work
of Zung [43]. Almost toric fibrations on compact four-manifolds without boundary were
classified by Leung and Symington in [30] in terms of the base diagram, which includes the
image of the Hamiltonians with decorations to indicate the focus-focus singularities. Evans
gives a particularly nice exposition of these ideas [16].

For a toric symplectic M , we can identify the singular points of the Hamiltonians in terms
of the moment map image. In the four dimensional case, the preimage of each vertex in the
moment polygon is a single point for which the moment map has an elliptic singularity of
corank two. The preimage of a point on the interior of an edge is a circle, for each point of
which the moment map has an elliptic singularity of corank one. The preimage of a point
on the interior of the polygon is a 2-torus, of which each point is a regular point. Thus, in
Figure 2.26(a), there are three corank two elliptic singularities, three open intervals’ worth
of circles of corank two elliptic singularities, and a disc’s worth of tori of regular points.
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×

× ×

(a) (b) (c) (d)

Figure 2.26. Figure (a) is the Delzant polygon for the standard T -action on CP 2
3

(where the line has symplectic area 3). From (a) to (b), we perform a nodal trade
at the top vertex. From (b) to (c), we perform a nodal slide. From (c) to (d), we
perform a mutation on the base diagram. In (d), the light gray portion is just the
shadow of portion of the triangle that has changed, it is not part of of the new base
diagram, which is outlined in black. Thus, each of these figures represents an almost

toric fibration on CP 2
3 . Note that the last figure allows us to find an embedding from

E(3
2
, 6) into CP 2

3 , which gives E(1, 4) s↪B(2). This embedding is only as explicit as

the diffeomorphisms described here pictorially (which is to say, not explicit!).

There are three important operations on the base diagram of an almost toric manifold that
fix the symplectomorphism type of the manifold (cf. [16, 30, 39, 41]). The first is a nodal
trade. Geometrically, this involves excising the neighborhood of a fixed point and gluing
in a local model of a focus-focus singularity. This does not change the underlying manifold,
but it does change the Hamiltonian functions. The effect on the base diagram is that we
must insert a ray with a mark for the focus-focus singularity thereon. In Figure 2.26, such a
ray has appeared in (b). The singularities of the Hamiltonian function are still recorded in
the base diagram. Above the marked point on the ray, there is a pinched torus. The pinch
point is a focus-focus singularity for the new Hamiltonians; the other points on the pinched
torus are regular. Everything else is as before except for the vertex that anchors the ray.
This has been transformed into a circle, for each point of which the new Hamiltonians have
an elliptic singularity of corank one.

The second operation is a nodal slide. The local model for a focus-focus singularity has
one degree of freedom. A shift in that degree of freedom moves the focus-focus singularity
further or closer to the preimage of the corner where the ray is anchored. In the base diagram,
the marked point moves along the ray. Such a slide is occurring in Figure 2.26 from (b) to
(c). The singularities remain as they were.

The third operation is a mutation with respect to a nodal ray of the base diagram. This
changes the shape of the base diagram as follows. The base diagram is sliced in two by
the nodal ray. One piece remains unchanged and the other is acted on by an affine linear
transformation in ASL2(Z) that
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• fixes the anchor vertex;
• fixes the nodal ray; and
• aligns the two edges emanating from the anchor vertex.

The operation creates a new (anchor) vertex and nodal ray (in the opposite direction from
before) in the base diagram. This result is shown in Figure 2.26 from (c) to (d). As before,
the preimage of the anchor vertex is a circle, for each point of which the new Hamiltonians
have an elliptic singularity of corank one. The old anchor vertex is now in the interior of an
edge, and its preimage remains a circle of corank one elliptic singularities.

It is important to note that a mutation is only allowed when the nodal ray hits

• the interior of an edge; or
• a vertex which is the anchor of a nodal ray in the opposite direction.

In the latter case, the marked points accumulate on the nodal ray. See, for example, the
sequence of mutations described in Figure B.4 where many nodes have accumulated.

Proposition 2.27. Suppose that a symplectic manifold M is equipped with an almost toric
fibration with base diagram ∆M that consists of a closed region in R2

≥0 that is bounded by
the axes and a convex (piecewise-linear) curve from (a, 0) to (0, b), for a, b ∈ R+. Suppose
in addition that there is no nodal ray emanating from (0, 0). Then there exists a symplectic
embedding of the ellipsoid (1 − ε)E(a, b) into M for any 0 < ε < 1.

Proof. The region ∆M resembles Figure 2.28(a). We slide all nodes so that they are contained
in small neighborhoods of the vertices from which their rays emanate. The neighborhoods
should be sufficiently small so that they are disjoint from the triangle with vertices (0, 0),
((1 − ε) ⋅ a, 0), and (0, (1 − ε) ⋅ b). The result now resembles Figure 2.28(b).

×

×

×
××

××

× ×
××
×

× × ×

× ×
×

×

(a) (b)
(a, 0)

(0, b)

Figure 2.28. Figure (a) is a base diagram satisfying the hypotheses of Proposi-
tion 2.27. Figure (b) shows the new base diagram after nodal slides. The nodal rays
are contained in the small disks indicated at the corresponding vertices.

We now remove the small disks from the base diagram to produce a non-compact region
Ω. We also remove the corresponding neighborhoods from M to produce a non-compact
symplectic manifold MΩ ⊂M with a pair of Poisson-commuting Hamiltonian functions that
have only elliptic singularities. Thus, MΩ is actually a toric symplectic manifold. Because
Ω is contractible, following Remark 2.25, MΩ is the unique toric symplectic manifold with
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this moment map image. The preimage of the origin is a fixed point. Because Ω contains
the dark, closed triangle in Figure 2.28(b) with vertices

(0, 0) , ((1 − ε) ⋅ a, 0) , and (0, (1 − ε) ⋅ b),
the Local Normal Form theorem [28, Theorem B.3] now guarantees that for the fixed point
above (0, 0), there is an equivariant neighborhood that is symplectomorphic to the closed

ellipsoid (1−ε)⋅E(a, b). This guarantees that for any ε > 0, there is a symplectic embedding

(1 − ε) ⋅ E(a, b) s
↪MΩ ⊂M (centered at the fixed point), as desired. �

3. Passing to closed symplectic manifolds

We will see in this section how ellipsoid embeddings into compact target spaces, including
CP 2

blown up 0 to 4 times and CP 1 ×CP 1
, are equivalent to ellipsoid embeddings into ap-

propriate convex toric domains. We begin with the compact targets that are toric symplectic
manifolds, the context for Theorem 1.2.

(3) (3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)

(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)

(3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1,1)

x
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x
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x

x
x

x

x

x

x

o⃝ i⃝

o⃝ i⃝
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(3) (3;1) (4;2,2) (3;1,1) (3;1,1,1) (3;1,1,1,1)

(a) (b) (c) (d) (e)

Figure 3.1. The regions in R2
≥0 that are Delzant polygons and whose convex toric

domains admit infinite staircases. These polygons correspond to (a) CP 2
; (b)

CP 2
#CP

2
; (c) CP 1 × CP 1

; (d) CP 2
#2CP

2
; and (e) CP 2

#3CP
2
.

Proof of Theorem 1.2. (⟸) First suppose we have an embedding E(d, e) s
↪XΩ. The ellip-

soid E(d, e) is an open ellipsoid, so the image of the symplectic embedding is contained
in int(XΩ). Because the Delzant polygon for M coincides with Ω, we have an inclu-

sion int(XΩ)
s
↪M . Indeed, this is a symplectic embedding, so we may simply compose

E(d, e) s
↪ int(XΩ)

s
↪M to get an embedding (1.3).

(⟹) For the other direction, suppose that M is a toric symplectic manifold whose moment
map image is a Delzant polygon (these are shown in Figure 3.1). Assume there is an em-

bedding E(d, e) s
↪M . To show that there is an embedding E(d, e) s

↪XΩ, [6, Corollary 1.6]

establishes that it is sufficient to produce embeddings of closed ellipsoids (1−ε)E(d, e) s
↪XΩ

for any 0 < ε < 1. Given such an ε, we first choose d
′
, e
′
so that e

′/d′ is rational and

(1 − ε)E(d, e) ⊂ E(d′, e′) ⊂ E(d, e).
In particular, because E(d, e) s

↪M , there is also a symplectic embedding of the closed ellipsoid

E(d′, e′)→M .
A closed toric symplectic four-manifold M is either a product of two symplectic two-

spheres, or can be obtained from CP 2
by a series of equivariant blowups, see for example
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[27, Corollary 2.21]. In Figure 3.1, the square in (c) corresponds to S
2 × S2

with symplectic

form that has area 2 on each S
2
. The polygons in Figure 3.1(a), (b), (d), and (e) are

the polygons for those that are equivariant blowups of CP 2
. We consider these two cases

separately.

Case 1: Blowups of CP 2
.

Assume first that M is obtained from CP 2
by a series of equivariant symplectic blowups;

as in the proof of [27, Corollary 2.21], these equivariant blowups correspond to corner chops
on the polygon, resulting finally in Ω. As has been our convention, we may assume that we
choose the blowup vector for Ω with b as small as possible and the bi as large as possible at
each step, resulting in the negative weight expansion (b; b1, . . . , bn) (where here 0 ≤ n ≤ 3).

We have E(d′, e′) ⊂M . Because e
′/d′ is rational, this ellipsoid has a finite weight expansion

(a1, . . . , am). We may use this weight expansion to blow up along that closed ellipsoid (as
in [6, §2.1] or [32]). Together with the negative weight expansion for Ω, this sequence of
blowups yields a symplectic form on

(3.2) CP 2
#nCP

2
#mCP

2
.

Specifically, we think of the first n CP
2

factors as corresponding to the n blowups required

to produce M , and we think of the remaining m factors as those required to blowup E(d′, e′);
The symplectic form on (3.2) satisfies

PD[ω] = bL −
n

∑
i=1

biEi −
m

∑
j=1

ajEj

and

PD(−c1(TM)) = −3L +
n

∑
i=1

Ei +
m

∑
j=1

Ej.

These two equations are analogues of [23, Equations [6] & [7]] (where we have normalized
the line to have symplectic area b).

By [23, Proposition 6], having such a blowup symplectic form is equivalent to a symplectic
embedding

m

⨆
i=1

B(ai) ⊔
n

⨆
i=1

B(bi)
s
↪B(b).

This immediately implies that the open balls embed
m

⨆
i=1

B(ai) ⊔
n

⨆
i=1

B(bi)
s
↪B(b),

which allows us to use [6, Theorem 2.1] to deduce that there is a symplectic embedding

E(d′, e′) s
↪XΩ,

and hence the desired embedding (1 − ε)E(d, e) s
↪XΩ exists.
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Case 2: M = CP 1 × CP 1
.

If M is a product of two symplectic two-spheres, we use the trick that after performing a
single (arbitrarily small) blowup, we are back in Case 1. Using the same notation as before,

we first find a small embedded B(δ) disjoint from the image of E(d′, e′). Blow up along this
ball, let F denote the homology class of the exceptional fiber, and let S1 and S2 denote the
homology classes of the spheres. There is a diffeomorphism from the resulting manifold M̂

to CP 2
#2CP

2
mapping

F ↦ L − E1 − E2 , S1 ↦ L − E1 , S2 ↦ L − E2.

This is described, for example, in [17]. The canonical class gets mapped

−c1(TM)↦ −3L + E1 + E2

and there is an embedding E(d′, c′) → M̂ , and so we can repeat the argument from Case
1 above. More precisely, if the spheres have areas b1 and b2, respectively, then under this

diffeomorphism the symplectic form on M̂ induces a symplectic form on CP 2
#2CP 2 that is

obtained from CP 2
, normalized so that the line class has area b1 + b2 − δ, by blowups of size

b1 − δ and b2 − δ. The triple (b1 + b2 − δ; b1 − δ, b2 − δ) is the negative weight expansion for a
rectangle of side lengths b1 and b2 with its top right corner removed, so the argument from
Case 1 gives an embedding of E(d, e) into this toric domain, which in turn embeds into the
toric domain associated to a rectangle of side lengths b1 and b2. �

Remark 3.3. One of the toric domains, shown in Figure 3.4, is the image of an inte-
grable system on a smooth, compact manifold Po`(1, 1, 1, 1, 1) that is not toric. Indeed,
Po`(1, 1, 1, 1, 1) is known not to admit any Hamiltonian circle action [20, Theorem 3.2],
even though Po`(1− δ, 1+ δ, 1, 1− δ, 1+ δ) is a toric symplectic manifold for any 0 < δ < 1.

Nevertheless, the Proof of Theorem 1.2 does in fact apply to this example Po`(1, 1, 1, 1, 1).
The integrable system in question is know as the “bending flow” on the polygon space. This
integrable system does come from a toric action on an open dense subset of Po`(1, 1, 1, 1, 1):
we must simply remove two Lagrangian S

2
s that live above the points (2, 1) and (1, 2) in

the Figure 3.4. These Lagrangian S
2
s are the loci of points where the “bending diagonals”

vanish. The dense subset has moment image the polytope in Figure 3.4 with the two points
removed. The Local Normal Form theorem [28, Theorem B.3] now guarantees that the
relevant int(XΩ) is in fact a subset of Po`(1, 1, 1, 1, 1). This allows us to conclude that if

an ellipsoid E(d, e) s
↪XΩ, it must also embed in Po`(1, 1, 1, 1, 1).

On the other hand, to prove that if E(d, e) s
↪Po`(1, 1, 1, 1, 1), it also embeds into XΩ,

we use the same argument in the Proof of Theorem 1.2, Case 1, because we may identify

Po`(1, 1, 1, 1, 1) ≅ CP 2
3 #4CP

2

1.

(3) (3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)

(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)

(3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1,1)

x
x

x

x

x

x
x

x

x
x

x

x

x

x

o⃝ i⃝

o⃝ i⃝

i⃝

(3) (3;1) (4;2,2) (3;1,1) (3;1,1,1) (3;1,1,1,1)

Figure 3.4. The image of the “bending flow” integrable system on equilateral

pentagon space Po`(1, 1, 1, 1, 1) = CP 2
3 #4CP

2
1.
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The second half of the argument in the proof of Theorem 1.2 also guarantees the following.

Proposition 3.5. Let (b; b1, b2, . . . , bn) be a vector of non-negative integers that both repre-

sents a blowup symplectic form on an n-fold blowup of projective space, M = CP 2
b #i CP

2

bi,
and also is the negative weight expansion of a convex toric domain XΩ. Then

E(c, d) s
↪M ⟹ E(c, d) s

↪XΩ.

Remark 3.6. The argument in the proof of Theorem 1.2 also implies that to produce
a symplectic embedding of E(a, b) into a convex toric domain XΩ with negative weight
expansion (a + b; a, b, c1, c2, . . .), it is enough to find an embedding into a closed symplectic
manifold that is obtained from CP 1

a ×CP 1
b by symplectic blowups of size (c1, c2, . . .). Indeed,

just as in the proof of Case 2 above, we can find a small embedded B(δ) disjoint from the

image of E(d′, c′), blow up, and then reduce to the case of blow-ups of CP 2
.

We now also give the promised proof of the fourth item in Proposition 2.1, which uses
some of the same ideas in the of proof of Theorem 1.2 .

Proof of Proposition 2.1(4). Recall from (2.14) that finding an embedding E(1, a) s
↪XΩ is

equivalent to finding a ball-packing

(3.7)
n

⨆
i=1

B (ai
λ
) ⊔

N

⨆
j=1

B(bj)
s
↪B(b).

As in the proof of Theorem 1.2 and by the argument6 for [6, Corollary 1.6], in order to find
an embedding (3.7), it suffices to find, for any 0 < ε < 1, an embedding

(3.8)
n

⨆
i=1

B ((1 − ε)ai
λ
) ⊔

N

⨆
j=1

B((1 − ε)bj)
s
↪B(b).

We will find this embedding by looking at the closed symplectic manifold (M,ω) which
is the N -fold blowup of CP 2

b with blowups of sizes (1 − ε)bj. By the strong packing sta-
bility property [3, Theorem 1], there is some number δ associated to M such that the only
obstruction to embedding any number of (open) balls of parameter less than δ is given by
the volume constraint. Now choose a sufficiently large, so that each ai

λ
above is smaller than

δ, where λ =
√

a

vol
; we can do this, because each ai is bounded above by 1. Then, strong

packing stability applies to find an embedding of these balls into M ; we can then find an

embedding of closed balls B ((1 − ε)ai
λ
) as well. As in the proof of Theorem 1.2 above, we

can then blow down to get an embedding of the desired form (3.8). �

4. Pinpointing the location of the accumulation point

In this Section we prove Theorem 1.10. We will first collect several equations below, with
the idea of highlighting how the accumulation point arises in the problem. We then complete
the proof of the theorem, using the key equality (4.4).

6The result [6, Corollary 1.6] is stated for a single domain, but as was already observed by Gutt-Usher
[18, §3] the proof works just as well for disjoint unions.
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To prove Theorem 1.10, it is convenient to introduce further notation. Let a ≥ 1 be a
rational number with weight expansion (a1, . . . , an) and X be a convex toric domain with

negative weight expansion (b; b1, . . . , bN). Let also λa =
√

a

vol
. We introduce the vector

w = (λab1, . . . , λabN , a1, . . . , an)
and use it to define the error vector εεε following [35, (2.1.1)] by

(4.1) m =
d

λab
w + εεε,

where (d; m) is a class as in equation (2.15) satisfying (2.16) and (2.17). Furthermore, it
can be checked that (d; m) satisfies (2.20) and is thus called an obstructive class if and only
if the inner product

(4.2) εεε ⋅w > 0.

We can now derive the key equality (4.4) below, which highlights why the accumulation
point arises in this context. We know that

(4.3) − εεε =
d

λab
w −m.

Let (d; m) be an obstructive class and let si denote the entries in w. Then combining
equation (4.3) with (2.16) gives

−∑
i

εi =
d

λab
(∑

i

si) − (3d − 1)

= 1 +
d

λab
((∑

i

si) − 3λab) .

Using Lemma 2.13(3) and taking the absolute value of both sides, we can further rewrite the
above as

(4.4)
»»»»»»»»»
−∑

i

εi

»»»»»»»»»
=

»»»»»»»»»
1 +

d

λab
(a + 1 + (∑

i

λabi) − 3λab −
1
q)

»»»»»»»»»
.

This is the genesis of the quadratic equation (1.11). Essentially, we would like to know when

»»»»»»»»»
a + 1 + (∑

i

λabi) − 3λab −
1
q

»»»»»»»»»
> 0,

since this will eventually give us a bound on d, which will bound the number of obstructive
classes and therefore the complexity of the graph of cX(a). Intuitively, since q can be made
arbitrarily large by small perturbation of a, the contribution of the term 1

q
is negligible, so

the interesting behavior is determined by
»»»»»»»»»
a + 1 +∑

i

λabi − 3λab
»»»»»»»»»
.

Now, to actually use (4.4) to bound d, we need a bound on ∣∑i εi∣. We get this by adapting
a strategy from McDuff-Schlenk, cf [35, Lemma 2.1.3].
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Proof of Theorem 1.10. Step 0: Ordering the class. We now assume here and below that
the entries of m satisfy m̃i ≥ m̃j and mi ≥ mj, whenever i ≤ j. In other words, we will
only analyze classes m for which this property holds; we call such an m ordered. The
motivation for doing this is that if we have an arbitrary m, and we permute its entries to
make it ordered, then the left hand side of (2.20) for the permuted m will be at least as
much as the value for the original m. Hence, in computing µ(d;m)(a), we can restrict to
ordered m.

Step 1: A preliminary estimate. The purpose of this step is to prove a basic, but very
important, estimate on any obstructive class, namely (4.5) below.

Let m be an ordered obstructive class, and let p0 be the unique point from Proposition 2.23
where `(p0) = `(m). Write p0 = p/q, where p and q are in lowest terms. Assume that p0 ≠ 1.
We know from Lemma 2.13(1) that the smallest weight of p0 must be 1/q. Moreover, we
know that E(1, p0) is not a ball. Hence, the smallest weight of p0 must repeat at least twice.
We now claim that we must have

(4.5)
d

qλab
> 1/4.

To see why, first note that by condition (2.17) and equation (4.1), we have

d
2
+ 1 = m ⋅m

= ( d

λab
w + εεε) ⋅ ( d

λab
w + εεε)

=
d

2

λ2
ab

2
w ⋅w + 2

d

λab
w ⋅ εεε + εεε ⋅ εεε.

We know that w ⋅w = a+λ2
a(b2− vol). Noting that λ

2
a =

a

vol
, this simplifies to w ⋅w = λ

2
ab

2
,

and so

d
2
+ 1 = d

2
+ 2

d

λab
w ⋅ εεε + εεε ⋅ εεε.

Now recalling that (4.2) says w ⋅ εεε > 0, we conclude that

(4.6) ∑
i

ε
2
i < 1.

Hence, in particular, each εi must be less than 1. Remember now that we have

m = ( m̃1 , . . . , m̃N , m1 , . . . , mn )
w = ( λab1 , . . . , λabN , a1 , . . . , an )

where the entries in each box are in decreasing order, the mi are positive integers, and the
ai are the weight expansion for a. In particular, we must have an−1 = an =

1

q
where a = p

q

in lowest terms. Thus, examining εεε = m − d

λab
w, the last two entries are mn−1 −

d

λabq
and

mn−
d

λabq
. Because εi < 1, we must have mn−1 = mn = 1. If contrary to the assumption (4.5)

we had d

qλab
≤

1

4
, then each of these last two terms would be at least 3

4
, and so we would

conclude that
∑
i

ε
2
i ≥ 9/16 + 9/16 > 1,
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contradicting (4.6).

Step 2. The key estimate. We can now prove a strong estimate on d, namely (4.8) below.
We do this, using the estimate (4.5), as follows. Recall that

−∑
i

εi = 1 +
d

λab
(a + 1 + (∑

i

λabi) − 3λab −
1
q) .

Let L be the length of the weight expansion of p0, plus a finite number N of terms corre-
sponding to the number of bi. Applying Cauchy-Schwarz to εεε and the vector (1, . . . , 1) of
length L, and using (4.6), we know that

»»»»»»»»»
∑
i

−εi
»»»»»»»»»
<

√
L.

The triangle inequality guarantees that
»»»»»»»»»
−1 −∑

i

εi

»»»»»»»»»
≤ 1 +

»»»»»»»»»
−∑

i

εi

»»»»»»»»»
.

We therefore get that

»»»»»»»»»
−1 −∑

i

εi

»»»»»»»»»
=

d

λab
(
»»»»»»»»»
p0 + 1 + (∑

i

λabi) − 3λab −
1
q

»»»»»»»»»
) ≤ 1 +

√
L.

We now want to bound L, using the fact that the length of p0 is bounded. It is a basic fact
about weight expansions, see [35, Lemma 5.1.1], that the length of the weight expansion for
p0 is bounded from above by q where p0 =

p

q
in lowest terms. To simplify the notation, define

(4.7) f(a) = a+ 1+ (∑
i

λabi)− 3λab = (a+ 1)− (λa ⋅ (3b −∑
i

bi)) = a+ 1−

√

a ⋅
per2

vol
.

We note that f(a) = 0 has the same solutions as (1.11), as can be seen by multiplying both

sides of the equation f(a) = 0 by (a + 1 +
√
a ⋅ per2

vol
); we will use this fact below.

We thus get
d

λab
(
»»»»»»»
f(p0) −

1
q

»»»»»»»
) ≤ 1 +

√
N + q.

Rearranging (4.5), we have

q <
4d

λab
.

Hence, we get

(4.8)
d

λab
(
»»»»»»»
f(p0) −

1
q

»»»»»»»
) ≤ 1 +

√
N + 4

d

λab
.

The key point is now that if f(p0) − 1/q is nonzero, then clearly there are only a finite
number of d satisfying (4.8). (If p0 = 1, then this is still true, even though we assumed
p0 ≠ 1 to prove (4.5); one can make a similar argument, which we omit for brevity.)

25



Step 3. Capacity function at accumulation equals volume. Recall that a point a at which the
graph of cX is not smooth is called a singular point. Assume that there exists an infinite
sequence of distinct singular points z1, z2, . . . . If a is sufficiently large, then cX(a) lies on the
volume curve by Proposition 2.1(4); hence, the zi must converge to some finite z∞; we can
assume that z∞ ≠ zi for all i. We will eventually want to conclude that z∞ = a0 where a0 is
the solution to (1.11).

We begin with the following two observations, which we will use repeatedly in this step
and the next. We remind the reader, for motivation, that at any point p with cX(p) greater
than the volume bound, the number cX(p) is the supremum of the obstructions over all
obstructive classes, by Proposition 2.19.

(1) Any obstructive class is obstructive on finitely many intervals, on which it is linear.
(2) There are only finitely many obstructive classes with d less than any fixed number.

The first observation holds because for any obstructive class (d; m), there are only finitely
many values a with `(a) = `(m), and by Proposition 2.23 any such interval must have such
a point. For the second, we note that a bound on d bounds the individual entries m̃k and
mk, as well as the total number of nonzero entries, as a result of (2.17). But we are assuming
from Step 0 that our classes are ordered, so once d is bounded, there are only finitely many
possibilities.

Now we show that cX(z∞) lies on the volume curve. Otherwise, by continuity, there is
some neighborhood of z∞ in which cX(a) is some uniformly bounded distance above the
volume curve. However, this cannot occur: in this neighborhood, any obstructive class
whose obstruction gives cX(a) must have a uniform bound on d, using (2.22). Hence the two
observations above would apply to give a contradiction, since a finite number of obstructions
satisfying the conclusions of observation (1) could not generate the infinitely many singular
points in this neighborhood.

Step 4. Accumulation point must be a0. With the key estimate (4.8), we can complete the
proof of Theorem 1.10. We now assume that z∞ ≠ a0 and, noting as above that a0 is a zero
of the function f from (4.7), we will derive a contradiction. We assume first that the zi are
converging to z∞ from the left; the argument in the case where the zi are converging from
the right will be essentially the same. We pass to a subsquence of zi that increase to z∞
(from the left).

Take a sequence of obstructive classes (di; mi) that are obstructive at points z
′
i within

distance
∣zi−z∞∣
i+1

of zi; we know that such a sequence exists because otherwise cX(a) would
lie on the volume curve on an open neighborhood of zi, and so zi would not be a singular
point. In addition, choose the (di; mi) so that infinitely many of these (di; mi) are distinct.
We know that we can do this, because otherwise only finitely many obstructive classes would
determine the behavior of cX in open neighborhoods of zis, and by observation (1) above
this could not generate infinitely many singular points. We again pass to a subsequence so
that all of the (di; mi) are distinct.

Now for each (di,mi), let ai be the unique point corresponding to z
′
i with `(ai) = `(mi),

whose existence is guaranteed by Proposition 2.23. We will show the following: it cannot be
the case that infinitely many ai ≥ z

′
i; and, it cannot be the case that infinitely many ai < z

′
i.

This will give the desired contradiction.
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Case 1: ai ≥ z
′
i

We first establish a contradiction in the case where infinitely many of the ai satisfy ai ≥ z
′
i.

Under this assumption, again pass to a subsequence so that all ai have this property.
We must have ai < z∞, since cX(a) is obstructed on [z′i, ai] but cX(z∞) lies on the volume

curve. Thus, in this case, the ai must also be converging to z∞ from the left. By our
assumption that z∞ ≠ a0 is not a solution of the quadratic equation (1.11), we know that
δ ∶= ∣f(z∞)∣ > 0, where f is as in (4.7). There are only finitely many rational numbers

p/q with 1/q > δ/4, so for sufficiently large i,
»»»»»»f(ai) −

1

qi

»»»»»» has a positive lower bound,

independent of i, where ai =
pi
qi
. Hence, by (4.8) there is therefore a uniform upper bound on

di across all (di,mi), hence only finitely many possible (di,mi), by the second observation
above. However, we are assuming that the (di,mi) are all distinct, providing a contradiction.

Case 2: ai < z
′
i

We now establish a contradiction in the case where infinitely many of the ai satisfy ai < z
′
i.

Under this assumption, pass again to a subsequence so that all ai have this property.
Because ai < z

′
i, the function µ(di,mi)(a) is linear on the maximal interval [z′i, z∗i ) on which

(di,mi) is obstructive. These points z
∗
i satisfy z

∗
i ≤ z∞, because we showed above that

cX(z∞) lies on the volume curve and we know that z
′
i < z∞. As the zi are converging to z∞,

it then follows that the z
∗
i must be as well; it therefore follows that the slope of the volume

curve at z
∗
i is converging to the slope of the volume curve at z∞. Now the line segment from

(ai, µ(di,mi)(ai)) to (z∗i ,
√

z∗i
vol

) lies above the volume curve. So this line segment must also be

above the tangent line to the volume curve at z
∗
i on the interval (ai, z∗i ), because the volume

curve is concave. Regarding the points ai, we now split into two subsequences, one where
the ai are uniformly bounded away from z∞ and the other where the ai converge to z∞. On
a subsequence of the ai which are uniformly bounded away from z∞, we must have a uniform
bound on di across the (di,mi), by (2.22). This follows because the length of the interval

(ai, z∗i ) is also uniformly bounded from below, so
»»»»»µ(di,mi)(ai) −

√
ai
vol

»»»»» is uniformly bounded

from below as well, as a consequence of the upper bound on the slope of the line segment
described above. On the other hand, on any subsequence of the ai converging to z∞, we must
also have a uniform bound on di, by the same argument as in the case where ai ≥ zi. Thus,
in both cases, the uniform bounds on the di mean we have only finitely many obstructive
classes by observation (2) above; but we are assuming that the (di,mi) are distinct, which
is a contradiction.

When the zi are converging to z∞ from the right, we can argue completely analogously:
when ai < z

′
i, ai is sandwiched between z∞ and zi, and when ai > z

′
i, we can repeat the

argument from Case 2 above. �

Remark 4.9. It would be interesting to understand whether an analogue of Theorem 1.10
still holds, without the assumption of finitely many bi; this could be useful for understanding
embeddings into an irrational ellipsoid, for example. Most of the above argument should
go through, except that now the number N in (4.8) would be infinite. It is nevertheless
plausible that there is a way around this.
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Remark 4.10. We could alternatively think about Theorem 1.10 from the point of view of
the ECH capacities reviewed in §2.2. This works as follows.

Normalize the domain to have the same volume as the target; in other words, consider the

problem of embedding an E (
√

vol

a
,
√
a vol) into X. If we assume that a is irrational, and set

the perimeter of the domain and the target equal to each other, we get the equation

(4.11)

√
vol
a +

√
a vol = per,

which can be rearranged to (1.11).
There is in turn a heuristic for why (4.11) is natural to consider in view of the question

of finding infinite staircases for this problem from the point of view of ECH capacities.
The justification for normalizing the volumes to be equal is as follows: by packing stability
(Proposition 2.1(4)), an infinite staircase must accumulate at some point s0. It’s not hard
to show in addition that the embedding function at s0 must lie on the volume curve, as in
Step 3 of the Proof of Theorem 1.10 above.

Now, it has been shown [12, Theorem 1.1] that for the manifolds we consider here, asymp-
totically ECH capacities recover the volume; moreover, the subleading asymptotics have
recently been studied, see for example [15, Theorem 3], and in the present situation these
next order asymptotics are well-understood as well. These can be interpreted as recovering
the perimeter (see [15, Proposition 16]). These asymptotics dominate when we normalize
the leading asymptotics, which are the volume.

With all of this understood, here is the promised heuristic: if the subleading asymptotics
of the domain are larger than the subleading asymptotics of the target (which happens when
s0 irrational is smaller than the solution to (4.11)), then no volume preserving embedding
can exist. On the other hand, if the subleading asymptotics of the domain are smaller than
the subleading asymptotics of the target (which happens when s0 irrational is larger than
the solution to (4.11)), then only finitely many ECH capacities can give an obstruction, and
these are not enough to generate an infinite staircase. Thus, the only possibility is that the
accumulation point is actually given by the relevant solution to (4.11).

Note, however, that this is quite different than the proof we give above for Theorem 1.10.
It is easy to make the heuristic above rigorous concerning the case where the subleading
asymptotics of the domain are smaller than the subleading asymptotics of the target; but to
make the other case rigorous, one would want a uniform bound on the maximal number of
obstructive ECH capacities close to s0; it might be possible to get this, but it is potentially
delicate. Another issue is that if a is rational instead of irrational, then the perimeter of the
domain is different than what is said above, so (4.11). This is why we give a rather different
argument, inspired by the work of McDuff and Schlenk in [35].

We now also give the promised proof of the fifth item in Proposition 2.1, which uses some
of the same ideas as in the proof of Theorem 1.10.

Proof of Proposition 2.1(5). Let ã be a point which is not a limit of singular points. Then,
there is some open interval I = (m,n) containing ã on which the only possible singular point
of cX(a) is ã itself. If cX(a) is equal to the volume obstruction on I, then the conclusion of
the proposition holds near ã. Thus we can assume there is some point y in I on which cX(y)
is strictly greater than the volume obstruction; without loss of generality, assume that y < ã.
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As in Step 3 of the proof of Theorem 1.10 above, there is now some subinterval I
′
⊂ I,

containing y, on which cX(a) is the supremum of finitely many obstructive classes, each of
which is piecewise linear on I

′
, with at most one singular point. It follows that cX is piecewise

linear on I
′
; since ã is the only possible singular point of cX(a) on I, it follows that in fact

cX(a) is linear on (m, ã]. We now apply the same argument to the interval (ã, n). Namely, if
cX(a) is the volume on (ã, n), then the conclusion of the proposition holds near ã, so we are
done. Otherwise, we can assume there is some point y

′
in (ã, n) such that cX(y′) is strictly

greater the volume obstruction. Then, as in the y < ã case, cX(a) is linear on [ã, n), as
desired. �

5. The existence of the Fano staircases

To prove Theorem 1.14, we begin by showing that the purported x-coordinates intertwine:
x

out
n < x

in
n < x

out
n+1. We then take a limit as n→∞, verifying that the x-coordinates x

out
n tend

to a0 (and therefore also x
in
n tend to a0 as well) and y

out
n = y

in
n tend to

√
a0

vol
. Next we show

that y
out
n ≤ cX(xout

n ) and that cX(xin
n ) ≤ yin

n . For the first inequality, we find an obstruction,
and for the second, we produce an explicit embedding. Finally, we use the fact that cX(a)
is continuous, non-decreasing, and has the scaling property to conclude that the graph of
the function must consist of line segments alternately joining points of the two sequences
(xin

n , y
in
n ) and (xout

n , y
out
n ), and that these line segments alternate: some are horizontal and the

others, when extended to be lines, pass through the origin. This is illustrated in Figure 5.1.

(3) (3;1) (4;2,2) (4;2,2) (3;1,1) (3;1,1)

(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)

(3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1,1)

x
x

x

x

x

x
x

x

x
x

x

x

x

x

o⃝ i⃝

o⃝ i⃝

i⃝

Figure 5.1. The inner corners are marked i○ and the outer corners are marked o○.

The exed out lines represent the inequalities y
out
n ≤ cX(xout

n ) and cX(xin
n ) ≤ yin

n . The
properties of the embedding capacity function then imply that its graph consists of
line segments between the corners.

Before we begin, it will be convenient to catalogue certain combinatorial identities that
hold for our sequences. These will be essential for the inductive proofs that follow.

Lemma 5.2. Let X be a convex toric domain with blowup vector (b; b1, . . . , bn) equal to

(3) , (3; 1) , (3; 1, 1) , (3; 1, 1, 1) , (3; 1, 1, 1, 1) , or (4; 2, 2).
When J = 2, that is, for the sequences with recurrence relation g(n+ 4) = Kg(n+ 2)− g(n),
the following identities hold:

(♣) g(n) + g(n + 2) = βn+1g(n + 1)
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(♦) g(n)2
+ g(n + 2)2

−Kg(n)g(n + 2) = −αβn+1,

(♥) g(n)g(n + 3) = g(n + 1)g(n + 2) + α
where K = vol − 2, the sequence seeds, α, and βn are:

Blowup vector K Seeds α βn

(3) 7 2, 1, 1, 2 3 3

(4; 2, 2) 6 1, 1, 1, 3 2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, n odd

4, n even

(3; 1, 1, 1) 4 1, 1, 1, 2 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, n odd

3, n even

(3; 1, 1, 1, 1) 3 1, 2, 1, 3 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n odd

5, n even

When J = 3, that is, for the sequences with recurrence relation g(n+6) = Kg(n+3)−g(n),
the following identities hold:

(♣ for (3;1)) g(n) + g(n + 3) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g(n + 1) + g(n + 2), n ≡ 0 mod 3

2g(n + 1) + g(n + 2), n ≡ 1 mod 3

g(n + 1) + 2g(n + 2), n ≡ 2 mod 3

(♣ for (3;1,1)) g(n) + g(n + 3) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g(n + 1) + g(n + 2), n ≡ 0 mod 3

g(n + 1) + 2g(n + 2), n ≡ 1 mod 3

2g(n + 1) + g(n + 2), n ≡ 2 mod 3

(♦) g(n)2
+ g(n + 3)2

−Kg(n)g(n + 3) = −βn+1,

(♥.1) g(n)g(n + 4) = g(n + 1)g(n + 3) + δn
(♥.2) g(n)g(n + 5) = g(n + 2)g(n + 3) + µn
where K = vol − 2, the sequence seeds, βn, δn and µn are:

Blowup vector K Seeds βn δn µn

(3; 1) 6 1, 1, 1, 1, 2, 4

⎧⎪⎪⎪⎨⎪⎪⎪⎩

4, n ≡ 1 mod 3

7, n ≡ 0, 2 mod 3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n ≡ 0, 2 mod 3

2, n ≡ 1 mod 3
3

(3; 1, 1) 5 1, 1, 1, 1, 2, 3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

3, n ≡ 1 mod 3

5, n ≡ 0, 2 mod 3
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2, n ≡ 0, 1 mod 3

3, n ≡ 2 mod 3

Proof. These identites can be proved by induction for each congruence class of n. For the
J = 2 cases it is useful to note that βnβn+1 = vol = K + 2. �
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We now use the identities in Lemma 5.2 to establish the relationships among the the x-
and y-coordinates of purported corners of the ellipsoid embedding functions.

Proposition 5.3. The recurrence relations above define inner and outer corners respectively
with coordinates:

(xinn , yinn ) = (g(n + J) (g(n + 1) + g(n + 1 + J))
(g(n) + g(n + J)) g(n + 1) ,

g(n + J)
g(n) + g(n + J)) ,

(xoutn , y
out
n ) = (g(n + J)

g(n) ,
g(n + J)

g(n) + g(n + J)) .

These coordinates satisfy:

(1) x
out
n < x

in
n < x

out
n+1 ;

(2) lim
n→∞

x
out
n = lim

n→∞
x
in
n = a0 ; and

(3) lim
n→∞

y
out
n = lim

n→∞
y
in
n =

√
a0

vol
.

Proof. For (1): Both inequalities boil down to showing that

g(n + 1)g(n + J) < g(n)g(n + J + 1),
which follows immediately from the identities (♥) in Lemma 5.2.

For (2): In view of (1), it suffices to show that lim
n→∞

x
out
n = a0. The linear recurrence relation

g(n + 2J) = Kg(n + J) − g(n)
is of order 2J but can be replaced by J linear recurrence relations of order 2, one for each
of the J subsequences of g(n) with n ≡ j (mod J), for j = 0, 1, . . . , J − 1. Each of these
subsequences has the recurrence relation

(5.4) gj(n + 2) = Kgj(n + 1) − gj(n),
where gj(n) = g(Jn + j).

We can get a closed form for gj(n) by solving the polynomial equation λ
2
= Kλ − 1. Let

λ1, λ2 be the roots of this equation, we note that in each of the cases we are considering we
have λ1 > 1 > λ2 > 0. Then for appropriate coefficients Dj, Ej depending on the seed of the
sequences,

(5.5) gj(n) = Djλ
n
1 + Ejλ

n
2 .

For each j = 0, 1, . . . , J − 1 we have

lim
n→∞

gj(n + 1)
gj(n)

= lim
n→∞

Djλ
n+1
1 + Ejλ

n+1
2

Djλ
n
1 + Ejλ

n
2

= λ1.

Noting that a0 is exactly λ1, the larger solution of λ
2 −Kλ + 1 = 0, we conclude as desired

that limn→∞ xn = λ1 = a0.
Finally, for (3): In view of the fact that y

out
n = y

in
n , it suffices to show that

lim
n→∞

y
out
n =

√
a0

vol
.
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Indeed we have

lim
n→∞

1

yout
n

= lim
n→∞

( 1

xout
n

+ 1) = 1
a0
+ 1 =

√
vol
a0
,

the last equality uses the facts that a
2
0 −Ka0 + 1 = 0 and vol = K + 2. This completes the

proof. �

Next, we show that at the outer corners, the ellipsoid embedding function is indeed ob-
structed in all of our six examples.

Proposition 5.6. Let X be a convex toric domain whose blowup vector (b; b1, . . . , bn) is

(3) , (3; 1) , (3; 1, 1) , (3; 1, 1, 1) , (3; 1, 1, 1, 1) , or (4; 2, 2).
For each (xoutn , y

out
n ) = (g(n+J)

g(n) ,
g(n+J)

g(n)+g(n+J)), we have y
out
n ≤ cX(xoutn ).

Proof. Recall that N(a, b)k denotes the k
th

ECH capacity of E(a, b) and ck(X) denotes the

k
th

ECH capacity of X. Let kn ∶=
(g(n)+1)(g(n+J)+1)

2
− 1. If we prove that

(5.7) g(n + J) ≤ N(1, xout
n )kn and g(n) + g(n + J) ≥ ckn(X),

then we have the desired inequality:

y
out
n =

g(n + J)
g(n) + g(n + J) ≤

N(1, xout
n )kn

ckn(X) ≤ sup
k

N(1, xout
n )k

ck(X) = cX(xout
n ).

The first part of (5.7) can be rewritten as

g(n)g(n + J) ≤ N(g(n), g(n + J))kn ,
and by Proposition 2.3 it is indeed true that there are at most kn terms of the sequence
N(g(n), g(n + J)) strictly smaller than g(n)g(n + J).

Next, we tackle the second part of (5.7):

g(n) + g(n + J) ≥ ckn(X).
By Theorem 2.12, it suffices to find a convex lattice path Λn that encloses kn + 1 lattice
points and has Ω-length equal to g(n) + g(n + J):

(5.8) L(Λn) =
(g(n) + 1)(g(n + J) + 1)

2
and `Ω(Λn) = g(n) + g(n + J).

We do this separately for each of the six cases under consideration in Appendix A.
The convex lattice paths Λn for each case (and sub-case) can be found in Figure A.1, while

the formulæ for sn and tn are provided in (A.2). Using the identities (♦) in Lemma 5.2 and
induction we conclude that sn and tn are indeed integers.

Formulæ for the number of lattice points L(Λn) enclosed by the path and its Ω-length
`Ω(Λn) are provided in Table A.5 for each case and sub-case. As discussed after Table A.5,
it is a computational check that these give the correct numbers that satisfy (5.8). �

Next, we show that at the inner corners, there are explicit ellipsoid embeddings realizing
the purported value of the ellipsoid embedding function. We do this by exploring recursive
families of ATFs, following a suggestion of Casals. The idea that the recurrence sequences
involved in the coordinates of the corners of the infinite staircases may be related to the
Markov-type equations that show up when performing ATF mutations was first mentioned
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to us by Smith and is studied in detail by Maw for symplectic del Pezzo surfaces [31]. This
procedure is explained nicely in Evans’ lecture notes [16, Example 5.2.4]. We use a series
of mutations first described by Vianna [41, §3] on the compact manifolds corresponding to
our blowup vectors with J = 2. The J = 3 ATFs have base diagram a quadrilateral and do
not seem to have been explicitly used before, though Vianna has introduced quadrilateral
based ATFs in [41, Figs 7 and 8]. It could be interesting to explore the number theory and
exotic Lagrangian tori that these produce. In algebraic geometry (and looking at the dual
lattice), one can also study a related operation also called mutation, which is a combinatorial
operation arising from the theory of cluster algebras. This is explored in [29]; in particular
see Example 1.2 and references therein.

Proposition 5.9. Let X be a convex toric domain whose blowup vector (b; b1, . . . , bn) is

(3) , (3; 1) , (3; 1, 1) , (3; 1, 1, 1) , (3; 1, 1, 1, 1) , or (4; 2, 2).
For each (xinn , yinn ) = (g(n+J)(g(n+1)+g(n+1+J))

(g(n)+g(n+J))g(n+1) ,
g(n+J)

g(n)+g(n+J)), there is a symplectic embedding

(5.10) E(1, xinn )
s
↪y

in
n X,

which forces cX(xinn ) ≤ yinn .

Proof. We use Theorem 1.2 and Proposition 2.27 to prove that there is an embedding

(5.11) E (g(n) + g(n + J)
g(n + J) ,

g(n + 1) + g(n + 1 + J)
g(n + 1) ) s

↪X,

which is equivalent to (5.10). By definition of cX(a), this implies the desired inequality.
The proof consists of applying successive mutations to base diagrams, beginning with a
Delzant polygon. This allows us to use Proposition 2.27 to find ellipsoids embedded in
compact manifolds. Theorem 1.2 then allows us to deduce that those ellipsoids must also be
embedded in the corresponding convex toric domain. Since two convex toric domains with
the same blowup vectors have identical ellipsoid embedding functions (see Remark 2.8), it
suffices to exhibit the embeddings for one convex toric domain per blowup vector. We must
take particular care with the blowup vector (3; 1, 1, 1, 1), making use of Remark 3.3.

We begin by producing ATFs on the compact manifolds M corresponding to our blowup
vectors. The manifolds are

CP 2
3 ; CP 2

3 #CP
2

1 ; CP 2
3 #2CP

2

1 ; CP 2
3 #3CP

2

1 ;

CP 2
3 #4CP

2

1 ; and CP 1
2 × CP 1

2 .

Except for CP 2
3 #4CP

2

1, these manifolds may be endowed with toric actions. The corre-
sponding Delzant polygons are displayed in Figure 3.1. Our first step is to apply mutations
to the Delzant polygons to produce a base diagram that is a triangle with two nodal rays

when J = 2 and a quadrilateral with three nodal rays when J = 3. For CP 2
3 #4CP

2

1, we use
Vianna’s trick [41, §3.2] to find an appropriate ATF on this manifold. Specifically, we begin

with the ATF on CP 2
3 #3CP

2

1 given in Figure B.4(e). This ATF has a smooth toric corner
at the origin where we may perform a toric blowup of symplectic size 1, resulting in an ATF

on CP 2
3 #4CP

2

1. These initial maneuvers are described in Appendix B and the results are
shown in Figure 5.12.
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3 #CP 2
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1 CP 2
3 #4CP 2

1 CP 1
2 × CP 1

2

Figure 5.12. The base diagrams for ATFs on our manifolds. These are a triangle
with two nodal rays when J = 2 and a quadrilateral with three nodal rays when
J = 3.

We now want to show that for any 0 < ε < 1,

(5.13) (1 − ε) ⋅ E (g(n) + g(n + J)
g(n + J) ,

g(n + 1) + g(n + 1 + J)
g(n + 1) ) s

↪M,

where M is the compact manifold from our list. We achieve this by showing that the base
diagram obtained at each additional mutation contains the triangle with vertices (0, 0),
(g(n)+g(n+J)

g(n+J) , 0) , (0,
g(n+1)+g(n+1+J)

g(n+1) ). We proceed by induction. In Table 5.14, we record the

additional data we will need for our recursive mutation procedure.
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Blowup vector J σn

(3) 2 1

(3; 1, 1, 1) 2 {
2, n odd

3, n even

(3; 1, 1, 1, 1) 2 {
1, n odd

5, n even

(3; 1) 3 1

(3; 1, 1) 3 {
2, n ≡ 0 mod 3

1, n ≡ 1, 2 mod 3

(4; 2, 2) 2 {
1, n odd

2, n even

Table 5.14. Additional data, by blowup vector.

We now treat separately the cases where J = 2 and J = 3, starting with J = 2. In
this case, starting with base diagrams in Figure 5.12 and continuing to apply mutations, all
further base diagrams will be triangles. The induction hypothesis is that the triangle ∆n has
side lengths an, bn, cn, nodal rays vn and un and hypotenuse direction vector wn as shown in
Figure 5.15(a) , and that the matrix that takes ∆n to ∆n+1 is Mn:

vn = ( g(n+1)
−g(n+3) ), un = ( −g(n)

g(n+2) ), wn = ( σn+1g(n+1)2

−σn+2g(n+2)2 ),

an =
g(n + 1) + g(n + 3)

g(n + 1) , bn =
g(n) + g(n + 2)

g(n + 2) ,

and Mn =

⎛
⎜
⎝
−σn+2 g(n + 2)2 −σn+1 g(n + 1)2

σn+3 g(n + 3)2
2 + σn+2 g(n + 2)2

⎞
⎟
⎠
,

where σn is as in Table 5.14.
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(b)

Figure 5.15. The general base diagrams (a) ∆n for the cases when J = 2; and (b)
□n for the cases when J = 3.

The base case is immediate from Figure 5.12. For the induction step, we must check first
that the matrix Mn is indeed performing the mutation from ∆n to ∆n+1, that is:

(1) Mnvn = vn ,
(2) Mnwn = ( 0

1 ) , and
(3) det(Mn) = 1.

We must also check that this transformation gives rise to the new data of ∆n+1:

(4) wn+1 =Mn( −1
0 ) ,

(5) vn+1 =Mnun ,
(6) un+1 = −vn ,
(7) an+1 = an + cn ,

(8) bn+1 = an
1

st
entry of vn

2nd entry of vn
, and

(9) cn+1 = bn − bn+1.

The proof of these uses the identities in Lemma 5.2. Finally, we note that at each step,

the base diagram ∆n is exactly the triangle with vertices (0, 0) , (g(n)+g(n+2)
g(n+2) , 0) = (bn, 0) and

(0, g(n+1)+g(n+3)
g(n+1) ) = (0, an), which is what we wanted to prove.

Next we tackle the J = 3 case. Here, the base diagram never becomes a triangle, instead
it is always a quadrilateral. Figure 5.15(b) and the formulas below give the relevant data of
the base diagram □n:

un = ( −g(n)
g(n+3) ), wn = ( g(n+1)

−g(n+4) ), sn = ( σn+1g(n+1)2
1−σn+1g(n+1)g(n+4) ), rn = ( σng(n)g(n+3)−1

−σn+3g(n+3)2 ),

an =
g(n + 1) + g(n + 4)

g(n + 1) , bn =
g(n) + g(n + 3)

g(n + 3) ,
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and Mn =

⎛
⎜
⎝

1 − σn+1 g(n + 1)g(n + 4) −σn+1 g(n + 1)2

σn+4 g(n + 4)2
1 + σn+1 g(n + 1)g(n + 4)

⎞
⎟
⎠
,

where σn is again as in Table 5.14.
Performing a mutation on □n uses the matrix Mn and yields □n+1. The matrix Mn satisfies

(1) Mnwn = wn
(2) Mnrn = ( 0

1 )
(3) det(Mn) = 1

and the data for □n+1 is obtained via

(4) rn+1 =Mnsn
(5) sn+1 =Mn( −1

0 )
(6) vn+1 =Mnun and wn+1 =Mnvn, or simply wn+1 =MnMn−1un−1

(7) un+1 = −wn
(8) an+1 = an + dn
(9) dn+1 = cn

(10) bn+1 = −an
1

st
entry of wn

2nd entry of wn

(11) cn+1 = bn − bn+1.

The proof of these relations uses the identities in Lemma 5.2. Finally, we note that the

triangle with vertices (0, 0) , (g(n)+g(n+3)
g(n+3) , 0) = (bn, 0) and (0, g(n+1)+g(n+4)

g(n+1) ) = (0, an) fits in

the base diagram □n for each n, which is what we wanted to prove.
The ATFs described above and Proposition 2.27 allow us to conclude that we have the

desired embeddings (5.13) with target the compact manifold M . We now argue that there are
also such embeddings with target a convex toric domain. Suppose that X is the convex toric
domain with the same blowup vector as M . By Theorem 1.2, we then have an embedding

(1 − ε) ⋅ E (g(n) + g(n + J)
g(n + J) ,

g(n + 1) + g(n + 1 + J)
g(n + 1) ) s

↪X

for every 0 < ε < 1. Now note that

(1 − ε) ⋅ E(a, b)⊂ (1 −
ε

2
) ⋅ E(a, b),

so we may conclude that we have symplectic embeddings of the closed ellipsoids

(1 − ε) ⋅ E (g(n) + g(n + J)
g(n + J) ,

g(n + 1) + g(n + 1 + J)
g(n + 1) ) s

↪X

for every 0 < ε < 1. We may now apply [6, Cor. 1.6] to deduce that there is a symplectic
embedding of the form (5.11), as desired. In fact, we may also apply Theorem 1.2 one more
time to deduce that

E (g(n) + g(n + J)
g(n + J) ,

g(n + 1) + g(n + 1 + J)
g(n + 1) ) s

↪M.

Thus we have shown that there are ellipsoid embeddings representing the purported interior
corners. �

We now have all of the ingredients in place to complete the proof that the Fano infinite
staircases exist.
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Proof of Theorem 1.14. We know from Propositions 5.6 and 5.9 that y
out
n ≤ cX(xout

n ) and

cX(xin
n ) ≤ yin

n .

Now we use Proposition 5.3. Since x
out
n < x

in
n and y

out
n = y

in
n , because cX(a) is continuous

and non-decreasing, it must be constant and equal to y
out
n between x

out
n and x

in
n . Furthermore,

since x
in
n < x

out
n+1 and the points (0, 0), (xin

n , y
in
n ) and (xout

n+1, y
out
n+1) are colinear, the scaling

property of cX(a) implies that between each x
in
n and x

out
n+1, the graph of cX(a) consists of a

straight line segment (which extends through the origin). We thus have an infinite staircase
in each of the cases studied.

Finally, by continuity and because x
out
n → a0, x

in
n → a0, and y

out
n = y

in
n →

√
a0

vol
as n →∞,

we know that the infinite staircase accumulates from the left at (a0, cX(a0) =
√

a0

vol
), which

completes the proof of the theorem. �

Remark 5.16. One must take care to interpret the base diagrams in Figure 5.12 correctly.
These represent almost toric fibrations on smooth manifolds, not moment map images of
toric orbifolds.

6. Conjecture: why these may be the “only” infinite staircases

Each of the convex toric domains in Theorem 1.14 has a finite blowup vector with all
integer entries. A toric domain with this property is called rational. In this section we
describe some evidence towards Conjecture 1.18, which speculates that the only rational
convex toric domains that admit an infinite staircase are those whose moment polygon, up
to scaling, is AGL2(Z)-equivalent to one in Figure 1.9.

In light of Usher’s work [40] about infinite staircases for irrational polydisks P (1, b), it is
crucial in the conjecture that the toric domain be rational. Let XΩ be a rational convex toric
domain with negative weight expansion (b; b1, b2, . . . , bn). The ellipsoid embedding function
of the scaling of a convex toric domain is a scaling of the ellipsoid embedding function of the
original domain. Thus, we may assume that the negative weight expansion of XΩ is integral.

By Theorem 1.10, if the ellipsoid embedding function of XΩ has an infinite staircase, then

cXΩ
(a0) =

√
a0

vol
. This implies that

E(1, a0)
s
↪

√
a0

vol
XΩ,

which by Proposition 2.7 and conformality of ECH capacities is equivalent to an inequality
of sequences of ECH capacities:

(6.1) cECH(E(
√

vol
a0
,
√
a0vol)) ≤ cECH(XΩ).

To rewrite this inequality we introduce the cap function of a convex toric domain X, for
T ∈ N:

(6.2) capX(T ) ∶= #{k ∶ ck(X) ≤ T}.

With u =
√

vol

a0
and v =

√
a0vol, the inequality (6.1) is equivalent to:

(6.3) capE(u,v)(T ) ≥ capXΩ
(T ), for all T ∈ N.
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We first look at the right hand side of inequality (6.3). In [42, Lemma 5.9], Wormleighton
proves that if XΩ belongs to a certain class of convex toric domains, then its cap function is
eventually equal to a quasipolynomial:

capXΩ
(T ) = 1

2vol
T

2
+

per

2vol
T + Γr,

where r ∈ {0, . . . , vol − 1} is a congruence class of T (mod vol) and each Γr is a constant.
Furthermore, [42, Lemma 5.6] states that if one of the bi’s in the negative weight expansion
of XΩ is equal to 1 then XΩ is in that class, and [42, Conjecture 5.7] hypothesizes that if
gcd(b, b1, . . . , bn) = 1 then that is also true. Because we study negative weight expansions
up to scaling, the latter coprimality assumption holds here.

Next, we look at the left hand side of inequality (6.3). For a general ellipsoid E(u, v), the
cap function equals the Ehrhart function of the triangle ∆u,v, with vertices (0, 0), (1/u, 0),
and (0, 1/v):

capE(u,v)(T ) = #{k ∶ ck(E(u, v)) ≤ T})
= #{k ∶ N(u, v)k ≤ T}
= # (T∆u,v ∩ Z2)
= ehr∆u,v

(T ).
In the particular case of the ellipsoid in (6.3), since a0 is irrational and vol is not, both

u =
√

vol

a0
and v =

√
a0vol are irrational, and their ratio is irrational as well. We thus satisfy

the conditions of [14, Lemma 2], which allows us to write:

capE(u,v)(T ) = ehr∆(u,v) =
1

2vol
T

2
+

per

2vol
T + d(T ),

where d(T ) is asymptotically o(T ). We use here the fact that (1.11) implies

(6.4)
1
u +

1
v =

per

vol
.

Based on experimental evidence and [19], we conjecture that unless the term d(T ) is
periodic, its asymptotic behavior is actually O(±log(T )), and therefore d(T ) is unbounded
above and below. This unboundedness would then imply that (6.3) holds exactly when
ehr∆(u,v) is a quasipolynomial. Following [14, Theorem 1(i)] and using (4.11) and (6.4), the

Ehrhart function ehr∆(u,v) is a quasipolynomial if and only if both per

vol
and per

2

vol
are in N.

Consider now the scaled convex toric domain X̃ =
per

vol
XΩ, whose corresponding region Ω̃

is a scaling of the original Ω by the same factor per

vol
. The region Ω̃ is still a lattice polygon,

with

area =
ṽol

2
=

per
2

vol
and # of boundary lattice points = p̃er =

per
2

vol
,

and by Pick’s Theorem

area = # of interior lattice points +
# of boundary lattice points

2
− 1

we conclude that Ω̃ has exactly one interior lattice point: that is, it is a reflexive polygon.
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Up to AGL2(Z) equivalence, there are exactly sixteen reflexive polygons: the twelve in
Figure 1.9 plus the four in Figure 6.5, with reduced blow-up vectors (3; 1, 1, 1, 1, 1) and
(3; 1, 1, 1, 1, 1, 1). Solving the quadratic equation (1.11) in these two cases, we obtain a0 = 1
and a0 ∈ C respectively, and plotting the corresponding embedding capacity functions we
confirm that they do not have infinite staircases.

(3) (4;2,2)(3;1) (4;2,2) (3;1,1) (3;1,1)

(3;1,1,1) (3;1,1,1) (3;1,1,1) (3;1,1,1,1) (3;1,1,1,1)(3;1,1,1)

(3;1,1,1,1,1) (3;1,1,1,1,1) (3;1,1,1,1,1,1)(3;1,1,1,1,1)

Figure 6.5. The remaining four reflexive polygons.
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Appendix A. Lattice Paths

In this appendix, we compile the combinatorial data we need for Proposition 5.6.

}
sn

(3)

}
(4;2,2)
n odd }

}
tn

(4;2,2)
n even }

tn-1

(3;1)

}tn }
sn

(3;1,1,1,1)

}

tn }

(3;1,1)

}
tn } sn

(mod 3)
n≡1 , 2

tn

}(3;1,1)

}

tn } sn
(mod 3)
n≡ 0

tn-1

}

sn

}
}}tn

tn tn

(3;1,1,1)

}

tn }n odd

tn }
tn

sn

}(3;1,1,1)

}

tn }
tn

tn+1

sn

}
}(mod 4)

n≡ 0 tn }
tn } sn

}(3;1,1,1)

}

(mod 4)
n≡ 2

tn-1

sn
}

sn

}
tn

tn

Figure A.1. The lattices paths Λn. All triangles drawn with size sn or tn on one
of their sides are right-angle equilateral triangles (in the “length” that counts lattice
points).

The sequences sn and tn that determine the paths Λn have formulæ in terms of their
blowup vectors. In all six cases, the blowup vector is of the form (B; b, . . . , b). In terms of
those B and b, we have

(A.2) sn =
B ⋅ (g(n) + g(n + J)) + cn

vol
and tn =

b ⋅ (g(n) + g(n + J)) + dn
vol

,

where cn and dn are given in Table A.4. We also have, in terms of B, b, and k the number
of bs,

(A.3) `Ω(Λn) = B ⋅ sn + kb ⋅ tn + en.
The en are given explicitly in Table A.4 and implicitly in Table A.5.
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(B; b, . . . , b) vol cn dn en

(3) 9 0 ∄dn 0

(4; 2, 2) 8 0
4 n even

0 n odd

2 n even

0 n odd

(3; 1) 8

2 n ≡ 0 mod 6

−1 n ≡ 1

1 n ≡ 2

−2 n ≡ 3

1 n ≡ 4

−1 n ≡ 5

6 n ≡ 0 mod 6

−3 n ≡ 1

3 n ≡ 2

−6 n ≡ 3

3 n ≡ 4

−3 n ≡ 5

0

(3; 1, 1) 7

1 n ≡ 0 mod 6

−2 n ≡ 1

2 n ≡ 2

−1 n ≡ 3

2 n ≡ 4

−2 n ≡ 5

5 n ≡ 0 mod 6

−3 n ≡ 1

3 n ≡ 2

2 n ≡ 3

3 n ≡ 4

−3 n ≡ 5

0 n ≡ 0 mod 3

1 n ≡ 1, 2

(3; 1, 1, 1) 6

0 n ≡ 0 mod 4

3 n ≡ 1

0 n ≡ 2

−3 n ≡ 3

−2 n ≡ 0 mod 4

3 n ≡ 1

2 n ≡ 2

−3 n ≡ 3

−1 n ≡ 0 mod 4

0 n ≡ 1, 3

1 n ≡ 2

(3; 1, 1, 1, 1) 5

4 n ≡ 0 mod 4

0 n ≡ 1

−4 n ≡ 2

0 n ≡ 3

3 n ≡ 0 mod 4

0 n ≡ 1

−3 n ≡ 2

0 n ≡ 3

0

Table A.4. The constants cn and dn used in the formulæ in (A.2), by blowup
vector; and the constants en for (A.3).
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(B; b, . . . , b) L(Λn) `Ω(Λn)

(3) (sn+1)(sn+2)
2

3sn

(4; 2, 2)
(sn+1)(sn+2)−tn(tn+1)−tn(tn−1)

2
n even

(sn+1)(sn+2)−2⋅tn(tn+1)
2

n odd

2(sn − (tn − 1)) + 2(sn − tn) n even

2(sn − tn) + 2(sn − tn) n odd

(3; 1) (sn+1)(sn+2)−tn(tn+1)
2

2(tn) + 3(sn − tn)

(3; 1, 1)
(sn+1)(sn+2)−2⋅tn(tn+1)

2
n ≡ 0 mod 3

(sn+1)(sn+2)−tn(tn+1)−tn(tn−1)
2

n ≡ 1, 2 mod 3

2tn + 3(sn − 2tn) + 2tn n ≡ 0 mod 3

2tn + 3(sn − 2tn + 1) + 2(tn − 1) n ≡ 1, 2 mod 3

(3; 1, 1, 1)

(sn+1)(sn+2)−2tn(tn+1)−(tn+1)(tn+2)
2

n ≡ 0 mod 4

(sn+1)(sn+2)−3tn(tn+1)
2

n ≡ 1, 3 mod 4

(sn+1)(sn+2)−2tn(tn+1)−(tn−1)tn
2

n ≡ 2 mod 4

tn + 3(sn − 2tn − 1) + 2(tn + 1) n ≡ 0 mod 4

tn + 3(sn − 2tn) + 2tn n ≡ 1, 3 mod 4

tn + 3(sn − 2tn + 1) + 2(tn − 1) n ≡ 2 mod 4

(3; 1, 1, 1, 1) (sn+1)(sn+2)−4tn(tn+1)
2

tn + 3(sn − 2tn) + tn
Table A.5. The quantities L(Λn) and `Ω(Λn), by blowup vector. The first, L(Λn), counts lattice points enclosed by
Λn. The second, `Ω(Λn), is a notion of length of the path, defined in (2.11); the constant term in each expression is en
in (A.3).

To prove Proposition 5.6, these quantities L(Λn) and `Ω(Λn) must satisfy (5.8). Using the definitions of sn and tn, as well as

the properties ♡ and ♣ of Lemma 5.2, one can argue directly that L(Λn) = (g(n)+1)(g(n+J)+1)
2

. We also have

`Ω(Λ) = B ⋅ sn + kb ⋅ tn + en =
(B2 − kb2)(g(n) + g(n + J)) +Bcn − bkdn

vol
+ en = g(n) + g(n + J) +

Bcn − bkdn + vol ⋅ en
vol

.

Checking that Bcn − kbdn + vol ⋅ en = 0 for all cases and all moduli of n then guarantees `Ω(Λ) = g(n)+ g(n+ J), as desired.
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Appendix B. ATFs

In this appendix, we describe the initial ATF maneuvering required to produce ATFs on
the manifolds

CP 2
3 ; CP 2

3 #CP
2

1 ; CP 2
3 #2CP

2

1 ; CP 2
3 #3CP

2

1 ;

CP 2
3 #4CP

2

1 ; and CP 1
2 × CP 1

2

that have base diagram a triangle with two nodal rays when J = 2 and a quadrilateral with
three nodal rays when J = 3.

For CP 2
3 , J = 2 and the moment image is already a triangle. We must simply apply nodal

trades to add nodal rays at the two corners not at the origin. See Figure B.1.
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××
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×

×

×

×

×
×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

(a) (b)
Figure B.1. In (a), we see the Delzant polygon for CP 2

3 . From (a) to (b), we have
applied two nodal trades to add two singular fibers, creating a new almost toric

fibration on CP 2
3 .

For CP 2
3 #CP

2

1, J = 3 and the moment image is already a quadrilateral. We must simply
apply nodal trades to add nodal rays at the three corners not at the origin. See Figure B.2.

×

××

×

××

×

×

×

×

×
×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

××

×

(a) (b)

Figure B.2. In (a), we see the Delzant polygon for CP 2
3 #CP

2
1. From (a) to (b), we

have applied three nodal trades to add three singular fibers, creating a new almost

toric fibration on CP 2
3 #CP

2
1.
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For CP 2
3 #2CP

2

1, J = 3 and the moment image is a pentagon. There is a sequence of ATF
moves that achieves a quadrilateral. See Figure B.3.

×

××

×
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×

×

×

×

×
×

×

×

×

×

×

×

××

×

×

×

×

××

×

×

(a) (b) (c)

Figure B.3. In (a), we see the Delzant polygon for CP 2
3 #2CP

2
1. From (a) to (b),

we have applied four nodal trades to add four singular fibers, creating a new almost

toric fibration on CP 2
3 #2CP

2
1. Finally, from (b) to (c), we apply a mutation, with

resulting base diagram a quadrilateral with three nodal rays, as desired. In (c), two
of the nodal rays have a single singular fiber and the third has two singular fibers.

This is yet a third almost toric fibration on CP 2
3 #2CP

2
1.
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For CP 2
3 #3CP

2

1, J = 2 and the moment image is a hexagon. There is a sequence of ATF
moves that achieves a triangle. See Figure B.4.
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(a) (b) (c)

(d) (e)

Figure B.4. In (a), we see the Delzant polygon for CP 2
3 #3CP

2
1. From (a) to (b),

we have applied five nodal trades to add five singular fibers, creating a new almost

toric fibration on CP 2
3 #3CP

2
1. From (b) to (c), we apply a mutation, with resulting

base diagram a pentagon with four nodal rays. From (c) to (d), we apply another
mutation, with resulting base diagram a quadrilateral with three nodal rays. Finally,
from (d) to (e), we perform a third mutation, with resulting base diagram the desired
triangle with two nodal rays. In (e), one of the nodal rays has two singular fibers
and the other has three singular fibers.
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For CP 2
3 #4CP

2

1, J = 2 but the manifold is not toric. We begin by using Vianna’s trick
[41, §3.2] to find an appropriate ATF on this manifold. Specifically, we begin with the ATF

on CP 2
3 #3CP

2

1 given in Figure B.4(e). This ATF has a smooth toric corner at the origin
where we may perform a toric blowup of symplectic size 1. In terms of the base diagram,
this corresponds to chopping off a 1× 1 triangle at the origin. This results in a quadrilateral

with two nodal rays representing an ATF on CP 2
3 #4CP

2

1, shown in Figure B.5(b). There is
then a sequence of ATF moves that achieves a triangle with two nodal rays. See Figure B.5.
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(a) (b)

(c) (d) (e)

Figure B.5. In (a), we see the base diagram for an ATF on CP 2
3 #3CP

2
1. From (a)

to (b), we have applied a toric blowup of size 1 at the origin, resulting in an almost

toric fibration on CP 2
3 #4CP

2
1. From (b) to (c), we apply one nodal trade. From (c)

to (d), we apply mutation, with resulting base diagram a quadrilateral with three
nodal rays. Finally, from (d) to (e), we perform a second mutation, with resulting
base diagram the desired triangle with two nodal rays. In (e), one of the nodal rays
has one singular fiber and the other has five singular fibers.
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For CP 1
2 × CP 1

2 , J = 2 and the moment image is a quadrilateral. There is a sequence of
ATF moves that achieves a triangle, shown in Figure B.6
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(a) (b) (c)
Figure B.6. In (a), we see the Delzant polygon for CP 1

2 ×CP 1
2 . From (a) to (b), we

have applied three nodal trades to add three singular fibers, creating a new almost

toric fibration on CP 1
2 × CP 1

2 . Finally, from (b) to (c), we apply a mutation, with
resulting base diagram a triangle with two nodal rays, as desired. In (c), one of the
nodal rays has a single singular fiber and the other has two singular fibers.
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Appendix C. Behind the scenes

In this section, we give an account of how we found the six blowup vectors that appear
in Theorem 1.14. At the beginning of this project, the ellipsoid embedding functions for the
ball, polydisk, and ellipsoid E(2, 3) were known to have infinite staircases. These correspond
to the blowup vectors (1), (4; 2, 2), and (3; 1, 1, 1).

By Theorem 1.10, we knew where the accumulation point would occur for any domain, if an
infinite staircase were to exist. We wrote Mathematica code that generates an approximation
of the graph of cX(a) for a given X, and started by trying a number different integer blowup
vectors. By chance, we first tried (3; 1) and found an infinite staircase. The vector (3; 1, 1)
admitted one too, and we were off, trying to prove that there was always an infinite staircase.
The actual answer, of course, has turned out to be more subtle. The code we used in our
early searches is included below and the notebook is available online at [11].

The idea behind the code is that the ellipsoid embedding function can be computed as
the supremum of ratios of ECH capacities, as in equation (2.9). We compute a large (but
finite!) number of ECH capacities of the domain X using the sequence subtraction operation
of Definition 2.4. We also compute a large but finite number of ECH capacities of E(1, ai),
for equally spaced values ai within a given range. Next, for each ai we find the maximum of
the ratios of the computed ECH capacities, obtaining a list of points (ai, c̃X(ai)). Our code
then approximates the graph by connecting the dots. Figure 1.12 illustrates four examples.

The graph of c̃X(a) is an approximation of the graph of the embedding function cX(a) in
two senses: we are only using a finite number of points in the domain, and the the computed
values c̃X(ai) are not completely accurate because we have restricted to a finite list of ECH
capacities. Nonetheless, the approximation does allow us to visually rule out certain domains
from the possibility of having an infinite staircase. For example, in the bottom left graph
in Figure 1.12, there clearly exists an obstruction where the infinite staircase would have to
accumulate, so that blowup vector must not admit an infinite staircase. In cases where it
is more ambiguous, we change the range of points ai, ask the code to compute more ECH
capacities, and hence zoom in on the graph to probe further. For example, zooming in on
the bottom right example in Figure 1.12 shows that in fact there exists an obstruction at
the potential accumulation point.

Whenever this zooming in process suggested that there indeed exists an infinite staircase
for that domain, the next step was to find the coordinates of the inner and outer corners
of the staircase. Recall that in the ball case these are ratios of certain Fibonacci numbers,
so we were interested in obtaining a recurrence sequence from the numerators and denomi-
nators of these coordinates. We used the Mathematica function Rationalize to approximate
the values c̃X(ai) by fractions with small denominators and then fed the integer sequences
obtained into OEIS, the Online Encyclopedia of Integer Sequences, sometimes unearthing
unexpected connections7. Eventually we switched to using the function FindLinearRecur-
rence on Mathematica to find the linear recurrence for the sequences found.

7In one instance, the integer sequence that came up on the OEIS search engine was sequence A007826:
numbered stops on the Market-Frankford rapid transit (SEPTA) railway line in Philadelphia, PA USA. This
constitutes possibly the first ever application of symplectic geometry to mass transit.
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The Mathematica Code.

List of first ( (⌊ ka
b
⌋+1)(k+1)

2
− 1) ECH capacities of the ellipsoid E(a, b), we usually set k = 100:

ECHel l ipso id [ a , b , k ] :=

Module [{ l = Floor [ ( k + 1) Floor [ 1 + k a/b ] / 2 ] − 1} ,
Take [ Sort [ Flatten [Table [N[m a + n b ] , {m, 0 , k} , {n , 0 , k } ] ] ] , l ] ] ;

List of first ( (k−1)2
2

) ECH capacities of the ball E(1, 1), usually we set k = 100:

ECHball [ k ] :=

Take [ Sort [ Flatten [N[Array [Array [ k − # &, #] &, k ] ] ] ] ,

Floor [ ( k − 1 ) ˆ 2 / 2 ] ] ;

Sequence subtraction operation:

a u x l i s t [ l i s t 1 , l i s t 2 , i ] :=

Block [{ a = l i s t 1 , b = l i s t 2 , l } , l = Min [Length [ a ] , Length [ b ] ] ;

Array [ a [ [ i + #]] − b [ [# ] ] &, l − i ] ] ;

minus [ l i s t 1 , l i s t 2 ] :=

Block [{ a = l i s t 1 , b = l i s t 2 , l } , l = Min [Length [ a ] , Length [ b ] ] ;

Array [Min [ a u x l i s t [ a , b , # − 1 ] ] &, l ] ] ;

Ellipsoid embedding function cX(a) where ECHlist is (the beginning of) the sequence of
ECH capacities of X:

c [ a , ECHlist ] := Module [{p = Length [ ECHlist ] , k , l , nn} ,
k = Floor [ ( Sqrt [ aˆ2 + 6 a + 1 + 8 a p ] − 1 − a ) / 2 ] ;

nn = ECHel l ipso id [ 1 , a , k ] ;

l = Min [ p , Length [ nn ] ] ;

Max[Array [ nn [ [# + 1 ] ] / ECHlist [ [# + 1 ] ] &, l − 1 ] ] ] ;

Creates a list of points (ai, cX(ai)) where ECHlist is (the beginning of) the sequence of ECH
capacities of X:

c l i s t [ amin , amax , astep , ECHlist ] :=

Block [{ l = Floor [ ( amax − amin )/ astep ]} ,

Array [{ amin + (# − 1) astep , c [ amin + (# − 1) astep , ECHlist ]} &,

l ] ] ;

Plots the volume curve, plus a vertical line at the location of the potential accumulation
point:

c on s t r a i n t [ amin , amax , vo l , a cc ] :=

Plot [ Sqrt [ t / vo l ] , { t , amin , amax} , PlotStyle −> Red,

Epilog −> { I n f i n i t e L i n e [{ acc , 0} , {0 , 1 } ] } ] ;

Example C.1. Let X have blowup vector (4; 2, 1). Make changes as necessary. Accpoint
gives the location of the potential accumulation point, so that one can choose the range of
points to plot. The output of this example is in Figure 1.12.

ECHcap = Block [{ seq = ECHball [ 1 0 0 ] } , minus [ minus [ 4∗ seq , 2∗ seq ] , seq ] ] ;

per = 3∗4 − 2 − 1 ; (∗ per = 3 b − sum b i ∗)
vo l = 4ˆ2 − 2ˆ2 − 1ˆ2 ; (∗ vo l = bˆ2 − sum b i ˆ2 ∗)
accpo int = x / . NSolve [ xˆ2 + (2 − per ˆ2/ vo l ) x + 1 == 0 , x ] [ [ 2 ] ]

5 .17022
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aamin = 1 ;

aamax = 6 ;

aastep = 0 . 0 1 ;

Show [{ c on s t r a i n t [ aamin , aamax , vol , accpo int ] ,

ListPlot [ c l i s t [ aamin , aamax , aastep , ECHcap ] , Joined −> True ] } ]
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