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Abstract

Although 10230 terms of Recamán’s sequence have been computed, it remains a mystery.
Here three distant cousins of that sequence are described, one of which is also mysterious. (i)
{A(n), n ≥ 3} is defined as follows. Start with n, and add n+ 1, n+ 2, n+ 3, . . ., stopping after
adding n+ k if the sum n+ (n+ 1) + . . .+ (n+ k) is divisible by n+ k+ 1. Then A(n) = k. We
determine A(n) and show that A(n) ≤ n2− 2n− 1. (ii) {B(n), n ≥ 1} is a multiplicative analog
of {A(n)}. Start with n, and successively multiply by n+1, n+2, . . ., stopping after multiplying
by n+k if the product n(n+1) · · · (n+k) is divisible by n+k+1. Then B(n) = k. We conjecture
that log2B(n) = ( 1

2 + o(1)) log n log log n. (iii) The third sequence, {C(n), n ≥ 1}, is the most
interesting. Start with n, and successively concatenate the decimal digits of n, n + 1, n + 2, . . .
until the concatenation n‖n+ 1‖ . . . ‖n+ k is divisible by n+ k+ 1. Then C(n) = k. If no such
k exists we set C(n) = −1. We have found k for all n ≤ 1000 except for two cases. Some of the
numbers involved are quite large. For example, C(92) = 218128159460, and the concatenation
92‖93‖ . . . ‖(92 + C(92)) is a number with about 2 · 1012 digits. We have only a probabilistic
argument that such a k exists for all n.

1 Introduction

Recamán’s sequence {R(n), n ≥ 0} is defined by R(0) = 0 and, for n ≥ 0, R(n) = R(n−1)−n if that
number is positive and not already in the sequence, and otherwise R(n) = R(n−1)+n (in the latter

∗To whom correspondence should be addressed.
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case repeated terms are permitted). TermsR(0) throughR(11) are 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22.
The sequence was contributed by Bernardo Recamán Santos in 1991 to what is now the On-line
Encyclopedia of Integer Sequences (or OEIS) [12]. The most basic question about this sequence is
still unanswered: does every nonnegative integer appear? The fourth author (NJAS) and several
Bell Labs colleagues developed a method for speeding up the computation of the sequence, and
in 2001 Allan Wilks used it to compute the first 1015 terms. At that point every number below
852655 had appeared, but 852655 = 5 ·31 ·5501 itself was missing. Benjamin Chaffin has continued
this work, and in 2018 reached 10230 terms [2]. However, 852655 is still missing.

Thirty years ago it seemed like a very plausible conjecture that every number would eventually
appear. Today, it is not so clear. For much more about Recamán’s sequence, see entry A0051321

in [12].

A somewhat similar situation arose in connection with the third of our new sequences, {C(n)},
discussed in Sect. 4. We have no proof that C(n) exists for all n, and after reaching 1011 in our
search for C(44), we were beginning to have doubts. However, after considerably more computation
using a different algorithm (described in §4.1) we were able to show that C(44) = 2783191412912.
Similar results for other hard-to-find values of C(n) have convinced us that for this problem, C(n)
should always exist.

In Recamán’s sequence we always start by trying to subtract n from the previous term. In
the three sequences discussed here, to compute A(n), B(n), or C(n) we define an intermediate
sequence which starts with n and is extended by either adding (A(n), Section 2), multiplying by
(B(n), Section 3), or concatenating (C(n), Section 4) n+ i to the ith term to get the next term.

Notation. A centered dot (·) indicates multiplication. In Section 2, Tn denotes the triangular
number n(n + 1)/2, in Section 3 a vertical bar (|) means “divides” and ν2(n) is the maximal k
such that 2k divides n, and in Section 4, ‖ denotes decimal concatenation. Also in Section 4 we
distinguish between the number α mod γ and the congruence α ≡ β (mod γ).

2 The additive version, {A(n)}.

To find A(n), n ≥ 3, we define an intermediate sequence {an(i), i ≥ 0} by starting with an(0) = n,
and, for i ≥ 1, letting an(i) = an(i − 1) + n + i. We stop when we reach a term an(k) which is
divisible by d = n+ k+ 1, and set A(n) = k. In other words, if the number d that we are about to
add to an(k) actually divides an(k), then instead of adding it we stop.

An equivalent definition is that A(n) is the smallest positive integer k = k(n) such that d(n) =
n+ k + 1 divides

an(k) = (k + 1)n+
k(k + 1)

2
. (1)

If n = 3, for example, the sequence {a3(i)} is a3(0) = 3, a3(1) = 7, a3(2) = 12, and we
stop with k = 2 = A(3) since 12 is divisible by d = 3 + 2 + 1. For n = 4 the sequence {a4(i)}

1Six-digit numbers prefixed by A refer to entries in [12].
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is 4, 9, 15, 22, 30, 39, 49, 60, where we stop with k = 7 = A(4) since a4(7) = 60 is divisible by
d = 4 + 7 + 1.

Table 1 gives the values of A(n) = k(n), d(n) = n+ k(n) + 1, p(n) = an(k), and qn = p(n)/d(n)
for n = 3, 4, . . . , 17. The last column gives the values of a parameter m that will arise when we
relate this problem to triples of triangular numbers. We start the table at n = 3, because although
we can certainly define the sequence {a2(i)}, it turns out that a2(i) = Ti+2 − 1, and it is easy to
show that Ti+2 − 1 is never divisible by i+ 3. So A(2) does not exist.

On the other hand, A(n) exists for all n ≥ 3. The “high-water marks” for A(n) in the table at
n = 3, 4, 5, 8, 17 suggest that A(n) ≤ (n−1)2−2, and if we take k(n) = (n−1)2−2 for n ≥ 3 we find
from (1) that an(k) = (n+1)n(n−1)(n−2)/2, which is indeed divisible by n+k(n)+1 = n(n−1).

Table 1:

n A(n) = k(n) d(n) p(n) = an(k) qn = p(n)/d(n) m

3 2 6 12 2 3
4 7 12 60 5 6
5 14 20 180 9 10
6 3 10 30 3 6
7 6 14 70 5 8
8 47 56 1512 27 28
9 14 24 240 10 13

10 4 15 60 4 10
11 10 22 176 8 13
12 20 33 462 14 18
13 25 39 663 17 21
14 11 26 234 9 16
15 5 21 105 5 15
16 31 48 1008 21 26
17 254 272 36720 135 136

The sequences {A(n)}, {d(n)}, and {p(n)} have now been added to [12]: {A(n)} is A332542.
However, to our surprise, the {qn} sequence appeared to match an existing sequence, although with
a shift in subscripts. For n ≥ 2, let τ(n) denote the smallest k > 0 such that

Tn + Tk = Tm (2)

for some integer m. The initial values are τ(2) = 2, τ(3) = 5, τ(4) = 9, . . . (A082183) and
apparently agree with qn+1. We will show in Theorem 4 that this is true.

The representation of numbers as sums or differences of triangular numbers is a classical subject,
going back to Fermat and Gauss, and has been studied in many recent papers [1, 6, 8, 11, 13, 14,
15, 16]. However, we were unable to find Theorems 3 and 4 in the literature.

Following [8] we define a triangular triple to be an ordered triple of nonnegative integers [n, k,m]
satisfying (2). We say that a triple is trivial if any of n, k,m are zero.
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It is easy to see that τ(n) exists, since it is straightforward to check that [n, Tn − 1, Tn] is a
triangular triple for n ≥ 1. So τ(n) ≤ Tn − 1.

We will say exactly what all the triangular triples [n, k,m] are for a given n ≥ 1 (this is a
consequence of Theorem 1), and then use this to determine τ(n) (Theorem 3). The next theorem
is essentially due to Nyblom [11]. We give a proof since we will use the argument in the proof of
Theorem 3.

Theorem 1. For a given integer S ≥ 1, all pairs of nonnegative integers m, k such that

S = Tm − Tk (3)

are obtained in a unique way by factorizing 2S as a product d · e where d is odd, and taking

k =
max(d, e)−min(d, e)− 1

2
, (4)

m =
max(d, e) + min(d, e)− 1

2
. (5)

Proof. From (3) we have

2S = m(m+ 1)− k(k + 1) = (m− k)(m+ k + 1) .

Since their sum is odd, m− k and m+ k + 1 are of opposite parity, and also m− k < m+ k + 1.
Let d be the odd integer among m− k and m+ k+ 1, and e the even one. Then m− k = min(d, e),
m + k + 1 = max(d, e), and solving for k and m we get (4), (5). The uniqueness follows since
conversely k and m determine d and e.

In particular, as Nyblom [11] showed, the number of pairs (m, k) such that (3) holds is equal
to the number of odd divisors of 2S.

We now take S = Tn. Theorem 1 gives all triangular triples [n, k,m] containing n. There are
always two obvious factorizations, 2Tn = 1·n(n+1) with d = 1 and e = n(n+1), and 2Tn = n·(n+1),
with {d, e} = {n, n + 1}. The first case leads to the triple [n, Tn − 1, Tn] already mentioned, and
the second leads to the trivial solution [n, 0, n]. It follows that the number of nontrivial triangular
triples for a given n (see A309507) is equal to the number of odd divisors d > 1 of 2Tn. This result
is reminiscent of the fact that the number of primitive Pythagorean triples with an even leg 2uv is
equal to the number of odd divisors of 2uv (cf. [14], A024361).

The nontrivial triangular triples [n, k,m] sorted into lexicographic order are given by

[n,A333530(n), A333531(n)] ,

or by [n,A198455(n), A198456(n)] if we impose the restriction that k ≥ n. (Lee and Zafrullah [8]
also give some tables of triangular triples.) The numbers n such that there is a triple [n, n,m] are
listed in A053141.

The following property and its elegant proof are due to Bradley Klee (personal communication).

4

http://oeis.org/A309507
http://oeis.org/A024361
http://oeis.org/A333530
http://oeis.org/A333531
http://oeis.org/A198455
http://oeis.org/A198456
http://oeis.org/A053141


Theorem 2. If [n, k,m] is a triangular triple, then

n+ k ≥ m. (6)

Equality holds if and only if n = 0 or k = 0.

Proof. If we set x = 2n+ 1, y = 2k + 1, z = 2m+ 1 then (2) becomes

x2 + y2 = z2 + 1 .

Certainly [x, y, z] is not (quite) a Pythagorean triple, but this equation does suggest using the
triangle inequality, which yields

x+ y ≥
√
z2 + 1 ≥ z ,

and so

n+ k ≥ m− 1

2
,

and (6) follows since all the quantities are integers. If equality holds in (6) then n2 +k2 = m2 (from
(2)) and so kn = 0.

We can now apply Theorem 1 to determine τ(n).

Theorem 3. For n ≥ 2, τ(n) is obtained by choosing that odd divisor d of n(n + 1) which is
different from n and n+ 1, and minimizes∣∣∣∣d − n(n+ 1)

d

∣∣∣∣ . (7)

Then τ(n) is is the value of k given by (4) with this value of d and e = n(n+ 1)/d.

Proof. From (4) we see that the minimal k is obtained by choosing d and e so as to minimize
max(d, e)−min(d, e). But d and e are constrained by d · e = n(n + 1). So we must minimize (7).
Since we require k > 0, we must avoid d = n and d = n+ 1.

Remark. In a few cases there is no need to do any minimization. For if n is a Mersenne prime,
or if n+ 1 is a Fermat prime, then the only odd divisor of n(n+ 1) apart from n or n+ 1 is d = 1,
and we get τ(n) = Tn − 1.

We now return to our study of {A(n)}, and explain the connection with triangular triples. The
agreement of qn and τ(n− 1) is no coincidence.

Theorem 4. For n ≥ 3, qn = τ(n− 1).

Proof. Note that R is a triangular number if and only if 8R + 1 is the square of an odd integer.
Indeed, 8Tn + 1 = 4n2 + 4n+ 1 = (2n+ 1)2. The proof of the theorem is in two parts.
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(i) Given n ≥ 3, let k denote the smallest nonnegative integer such that d = n+ k + 1 divides

p = (k + 1)n+
k(k + 1)

2
.

Then

q =
(k + 1)n+ k(k+1)

2

n+ k + 1
(8)

is such that R = Tn−1 + Tq is a triangular number. Indeed2, 8R+ 1 = (α/d)2, where

α = 2n2 + 2kn+ k2 + n+ 2k + 1 = (2n+ 2k + 1)d− 2p ,

which is certainly divisible by d. This proves that τ(n− 1) ≤ qn.

(ii) Conversely, suppose n ≥ 3 and q = τ(n− 1) is such that

Tn−1 + Tq = Tm (9)

for some integer m. For given values of n and q, (8) is a quadratic equation for k, and the unique
solution with k ≥ 0 is

k = −n+ q − 1

2
+

1

2

√
4n2 + 4q2 − 4n+ 4q + 1 .

Using (9) we can rewrite this as
k = q +m− n ,

from which we get

p = (k + 1)n+
k(k + 1)

2
=

(q +m+ n)(q +m− n+ 1)

2
= q (n+ k + 1).

This proves that qn ≤ τ(n− 1).

In row n of Table 1, A(n) corresponds to to the triangular triple [n−1, qn,m], where m is given
in the final column.

3 The multiplicative version, {B(n)}.

For the multiplicative version we replace the addition of n + i in the definition of an(i) by multi-
plication, keeping the stopping rule. So we define B(n) for n ≥ 1 by introducing an intermediate
sequence {bn(i), i ≥ 0} which starts with bn(0) = n, and, for i ≥ 1, satisfies bn(i) = bn(i−1) ·(n+i).
We stop when we reach a term bn(k) which is divisible by d = n + k + 1, and set B(n) = k. In
other words, if the number d that we are about to multiply bn(k) by actually divides bn(k), then
instead of multiplying by it we stop.

2These calculations were performed in Maple, but they can easily be verified by hand.
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An equivalent definition is that B(n) is the smallest positive integer k = k(n) such that d(n) =
n+ k + 1 divides

bn(k) =
(n+ k)!

(n− 1)!
. (10)

When n = 1, for example, the sequence {b1(i)} is 1, 2, 6, 24, 120, and we stop with k = 4 = B(1)
since 120 is divisible by d = 1 + 4 + 1. For n = 4, the sequence {b4(i)} is 4, 20, 120, 840, and we
stop with k = 3 = B(4) since 840 is divisible by d = 4 + 3 + 1.

Table 2 gives the values of B(n) = k(n), d(n) = n+ k(n) + 1, p(n) = bn(k), and qn = p(n)/d(n)
for n = 1, 2, . . . , 12.

Table 2:

n B(n) = k(n) d(n) p(n) = bn(k) qn = p(n)/d(n)

1 4 6 120 20
2 3 6 120 20
3 2 6 60 10
4 3 8 840 105
5 4 10 15120 1512
6 5 12 332640 27720
7 4 12 55440 4620
8 3 12 7920 660
9 5 15 2162160 144144

10 4 15 240240 16016
11 6 18 98017920 5445440
12 5 18 8910720 495040

The sequences {B(n)}, {d(n)}, {p(n)}, {qn} have now been added to [12]: {B(n)} is A332558.
Just as in the additive version, there is a close match with an existing sequence in [12]. If we add
1 to the values of k(n) we get 5, 4, 3, 4, 5, 6, . . ., which appears to match the entry for A061836,
although the definitions are different. The older sequence, which we will denote by {β(n)}, has a
more natural definition: β(n) for n ≥ 0 is defined to be the smallest integer κ > 0 such that n+ κ
divides κ!.

Theorem 5. For n ≥ 1, β(n) = B(n) + 1.

Proof. By definition, B(n) is the smallest k > 0 such that

n+ k + 1 | n(n+ 1)(n+ 2) · · · (n+ k) , (11)

whereas β(n) is the smallest κ > 0 such that

n+ κ | 1 · 2 · 3 · · ·κ ,

or, replacing κ by k + 1, the smallest k such that

n+ k + 1 | 1 · 2 · 3 · · · (k + 1). (12)
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The ratio of the right-hand sides of (11) and (12) equals
(
n+k
k+1

)
which is an integer, thus the right-

hand side of (12) divides the right-hand side of (11). So the value of k defined by (11) is less
than or equal to the value defined by (12). To complete the proof, it is enough to show that if
n + k + 1 divides n(n + 1)(n + 2) · · · (n + k) then it divides (k + 1)!. But n + k + 1 also divides
(σ + n)(σ + n + 1)(σ + n + 2) · · · (σ + n + k) for any σ that is a multiple of n + k + 1. Taking
σ = −(n+ k + 1), that expression becomes (−1)k+1(k + 1)!.

We do not know of any simple formula for B(n) in terms of n. The following is a weak upper
bound, which at least shows that B(n) always exists.

Theorem 6. For n ≥ 3, B(n) ≤ n− 1.

Proof. Substituting k = n− 1 in (10), we get bn(n− 1) = (2n− 1)!/(n− 1)!, which is divisible by
n+ k + 1 = 2n for n ≥ 3.

3.1 Asymptotic growth of B(n).

We conjecture that as n goes to infinity,

B(n) = exp
(

(c+ o(1))(log n)1/2(log log n)1/2
)
, (13)

with c = 1/
√

2 = 0.7071 . . . In the rest of this section we sketch some arguments that support the
conjecture.3

Since B(n) = β(n)− 1 from Theorem 5, we study the asymptotic growth of β(n) instead. Let
β′(n) be the smallest integer k ≥ 1 such that n+k is k-smooth (i.e., it has only factors less than or
equal to k). Since k! is k-smooth, clearly β′(n) ≤ β(n). The converse is not always true: β(2) = 4
but β′(2) = 2 since 2 + 2 is 2-smooth. However for large n this phenomenon becomes increasingly
rare. For 108 ≤ n < 2 · 108, only 5.7% of the values of n are such that β′(n) < β(n), and for
109 ≤ n < 2 · 109 the proportion decreases to 4.2%. Our first unproved assumption is that β(n)
and β′(n) have the same asymptotic behavior, so that it suffices to study the asymptotic behavior
of β′(n).

The number Ψ(n, k) of k-smooth numbers ≤ n is given by Dickman’s ρ function:

Ψ(n, k)

n
≈ ρ(u),

where u = log n/ log k [4, 5]. As u goes to infinity, we have [5, Eq. (1.6)]:

ρ(u) = u−u+o(u) . (14)

However, what we want is the local density Ψ′(n, k) around n. This is studied in Kruppa’s
Ph. D. thesis [7, formula (5.6)], where it is shown that

Ψ′(n, k)

n
≈ ρ(u)− γ ρ(u− 1)

log n
, (15)

3A proof of Equation (13) might be possible using the techniques of [9].

8



γ being the Euler-Mascheroni constant. In our case the local density is close to the global density.
For example for n = 1025 + 2554 we have β′(n) = 29972, thus u ≈ 5.584, which yields ρ(u) ≈
6.7 · 10−5, and γρ(u − 1)/ log n ≈ 1.1 · 10−5. Our second unproved assumption is that the local
density is ≈ ρ(u) asymptotically. The expected distance between two k-smooth numbers around n
being ≈ 1/ρ(u), the expected distance between a random n and the next k-smooth number is thus
≈ 1/(2ρ(u)).

The above arguments, together with (14), combine to suggest that B(n) is approximately equal
to the solution k of the equations

k ≈ uu

2
, u =

log n

log k
. (16)

We have

log k ≈ u log u ≈ log n

log k
(log log n− log log k) ,

(log k)2 ≈ log n (log log n− log log k) ,

2 log log k ≈ log logn ,

and so

(log k)2 ≈ 1

2
log n log logn ,

which gives (13).

Figure 1: The first 1000 terms of B(n) and (the blue line) B(n).

Let

B(n) := exp

(
1√
2

(log n)1/2(log log n)1/2
)

(17)

denote the main term on the right-hand side of (13). B(n) is a reasonably good fit to B(n), even
for small n. The graph in Fig. 1 shows the first 1000 terms of B(n) and (the blue line) B(n). We
find that B(n) is still a reasonably good fit to B(n), even out to n = 1030. Furthermore, it appears
that limn→∞B(n) is also given by the right-hand side of (13). It would be nice to know more about
the asymptotic behavior of B(n).
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4 The concatenation version, {C(n)}.

For the third version we replace addition and multiplication by concatenation, but again keep the
same stopping rule. We define C(n) for n ≥ 1 by introducing an intermediate sequence {cn(i), i ≥ 0}
which starts with cn(0) = n, and, for i ≥ 1, satisfies cn(i) = cn(i − 1)‖(n + i), where r‖s denotes
the number whose decimal expansion is the concatenation of the decimal expansions of r and s.
We stop if and when we reach a term cn(k) which is divisible by d = n+ k + 1, and set C(n) = k.
In other words, if the number d that we are about to concatenate to cn(k) actually divides cn(k),
then instead of multiplying by it we stop. In contrast to the first two versions, here we do not have
a proof that such a k always exists. It is theoretically possible that the sequence cn(i) never stops,
in which case we define C(n) to be −1.

Table 3:

n C(n) n C(n) n C(n) n C(n)

1 1 26 33172 51 2249 76 320
2 80 27 9 52 21326 77 59
3 1885 28 14 53 53 78 248
4 6838 29 317 54 98 79 31511
5 1 30 708 55 43 80 20
6 44 31 1501 56 20 81 5
7 13 32 214 57 71 82 220
8 2 33 37 58 218 83 49
9 1311 34 34 59 91 84 12

10 18 35 67 60 1282 85 25
11 197 36 270 61 277 86 22
12 20 37 19 62 56 87 105
13 53 38 20188 63 47 88 34
14 134 39 78277 64 106 89 4151
15 993 40 10738 65 1 90 1648
16 44 41 287 66 890 91 2221
17 175 42 2390 67 75 92 218128159460
18 124518 43 695 68 280 93 13
19 263 44 2783191412912 69 19619 94 376
20 26 45 3 70 148 95 23965
21 107 46 700 71 15077 96 234
22 10 47 8303 72 64 97 321
23 5 48 350 73 313 98 259110640
24 62 49 21 74 34 99 109
25 15 50 100 75 557 100 346

When n = 1, for example, the sequence {c1(i)} is c1(0) = 1, c1(1) = 1‖2 = 12, and we stop
with k = 1 = C(1) since 12 is divisible by d = 1 + 1 + 1.
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For n = 7, the sequence {c7(i)} is

7, 78, 789, 78910, 7891011, . . . , 7891011121314151617181920 ,

and after concatenating 20 we stop with k = 13 = C(7), since the last number there, which is
c7(13), is a multiple of 21.

For n = 2 the sequence {c2(i)} is 2, 23, 234, . . . and stops with k = 80 = C(2) at the 154-digit
number

c2(80) = 234567891011121314151617181920 . . . 6970717273747576777879808182 ,

which is divisible by 83.

Although a purist may be unhappy because its definition involves base 10 arithmetic,4 we find
{C(n)} more interesting than {A(n)} and {B(n)} because its behavior is so erratic for such a simple
rule, and there is currently no theory to explain this mixture of very small and very big numbers.

Table 3 gives the values of C(n) for n ≤ 100. The values up to about 2 · 105 were found by
straightforward direct search, but for the larger values we used the sieving algorithm described
in §4.1. At the present time we have found the exact value of C(n) for all n ≤ 1000 except for
n = 539, where we only have upper and lower bounds, and n = 158, where we have searched up to
1014 without success, and it is possible that c158(i) does not terminate. The entry for C(n) in [12],
A332580, includes a table for n ≤ 1000.

Although we do not have a proof that the sequence {cn(i)} always terminates, the following
heuristic argument suggests that it should. After k steps, we test cn(k) for divisibility by d =
n + k + 1. There are three obvious cases when the division is impossible: (i) when n + k + 1 is
even, since cn(k) ≡ n + k (mod 10) is odd and cannot be divisible by an even number; (ii) when
n+ k+ 1 is a multiple of 5, since then cn(k) ≡ 4 or 9 (mod 10) cannot be divisible by 5; (iii) when
n+ k+ 1 is a multiple of 3 in the case when n ≡ 2 (mod 3). Apart from this, cn(k) is essentially a
very large random number.5 The chance that cn(k) is divisible by d is roughly 1/d, and since for a
fixed n the sum

∑∞
k=1 1/(n+ k + 1) diverges, we expect one of the divisions to succeed. However,

we must admit that even when we try to make this argument more precise by taking into account
conditions (i), (ii), (iii), the results do not fully explain the extreme irregularities in the values of
C(n) that can be seen in Table 3. This sequence is still very mysterious.

4.1 A sieving algorithm for C(n).

In this section we describe a sieving algorithm for C(n) which we used to obtain

C(44) = 2783191412912, C(92) = 218128159460, C(494) = 2314160375788,

1014 < C(539) ≤ 887969738466613, C(761) = 615431116799,

C(854) = 440578095296, and C(944) = 1032422879252. (18)

4There is also a base-2 version, although we will not discuss it here: see A332563.
5If k has j digits, cn(k) has about jk digits, and we routinely search for k up to 1011.

11

http://oeis.org/A332580
http://oeis.org/A332563


p p divides n+ k + 1 p divides cn(k) p divides both

3 0 2 ∅
5 0 1 ∅
7 4 0, 2 ∅
11 10 0, 10 10
17 6 0− 1, 3− 16 6

Figure 2: For n = 44, and certain primes p, values of k mod p satisfying the constraints (c1) and
(c2), for 100 ≤ n+ k < 1000 (∅ denotes the empty set).

The idea behind the algorithm is the following. Assume C(n) = k, which implies that n+ k+ 1
divides cn(k), and let p be a prime factor of n + k + 1. Then p must simultaneously satisfy two
constraints: (c1) p must divide n+k+1, and (c2) p must divide cn(k). If we consider numbers n+k
that have the same number of digits, each of these constraints reduces to requiring that k is in S for
some (possibly empty) set S. Consider for example n = 44, with 100 ≤ n+k < 1000. Figure 2 shows
the modular classes k mod p that satisfy (c1), (c2), and both (c1) and (c2), for certain primes p.
We shall see in §4.2 and §4.3 how to efficiently compute the set S given a prime p or prime power q.
This leads to Algorithm 1, where the output value FAIL means that C(n) /∈ [L/10− n,L− n− 1].

Algorithm 1 Sieving Algorithm for C(n)

Input: an integer n, and an upper bound L = 10`

Output: either C(n) = k with L/10 ≤ n+ k < L, or FAIL
1: initialize an array T [n+ k] = 1 for n+ k < L
2: for each odd prime p ≤ L do
3: for each prime power q = pj ≤ L do
4: compute the smallest k such that n+ k ≥ L/10 and q divides n+ k + 1
5: compute µ := (cn(k) mod q) [see §4.2]
6: compute a, b from L, q [see Lemma 7]
7: while n+ k < L do
8: if µ ≡ 0 (mod q) then
9: T [n+ k]← p · T [n+ k]

10: k ← k + q, µ← (aµ+ b mod q)

11: for n+ k < L do
12: if T [n+ k] = n+ k + 1 then
13: return C(n) = k

14: return FAIL

In line 4 of Algorithm 1, the computation of k is easy: choose t ≡ (−1 − L/10) (mod q) such
that 0 ≤ t < q, and set k = L/10− n+ t. Then n+ k + 1 ≡ 0 (mod q).

We discuss the computation of µ := (cn(k) mod q) (at line 5) in §4.2, and the computation of the
constants a, b that enable us to update µ from k to k+q (at line 10) in Lemma 7 (§4.3). We will use
as a running example the case n = 44 and L = 1013, which we used to find C(44) = 2783191412912.
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4.2 Initial computation of c(n)

We consider a given ‘decade’ where the integers n+ k have exactly ` digits. Let L = 10`. Consider
two numbers k and k′ = k + δ, δ ≥ 1, in that decade, i.e., L/10 ≤ k < k′ < L. Then cn(k′) can be
computed efficiently from cn(k) as the sum of three terms xn, yn, and zn (which depend on both n
and k):

• xn(k + δ) corresponds to the concatenation n‖n+ 1‖ · · · ‖n+ k‖000‖000‖ · · · ‖000, where the
string 000 stand for ` consecutive zeros, and there are k′ − k = δ such strings. Therefore

xn(k + δ) = Lδcn(k). (19)

• The second term yn(k + δ) corresponds to the concatenation 0‖ · · · ‖0‖n + k + 1‖n + k +
1‖ · · · ‖n + k + 1, where we have k + 1 initial zeros, followed by δ copies of n + k + 1, each
having ` digits. Therefore

yn(k + δ) = (n+ k + 1)
Lδ − 1

L− 1
. (20)

• The last term zn(k + δ) corresponds to the concatenation 0‖ · · · ‖0‖0‖1‖ · · · ‖δ − 1, where we
have k + 2 initial zeros, followed by δ − 1 nonzero terms. Therefore

zn(k + δ) =
δ−1∑
i=1

iLδ−1−i =
Lδ − δL+ δ − 1

(L− 1)2
. (21)

Then cn(k + δ) = xn(k + δ) + yn(k + δ) + zn(k + δ). Although Equations (19), (20), (21) are valid
over the integers, we will use them to compute µ := (cn(k) mod q) in line 5 of Algorithm 1. It is
therefore enough to evaluate (19), (20), (21) modulo q. Equation (19) reduces to exponentiation
modulo q. For (20), we know that Lδ − 1 is an integral multiple of L − 1, so we may compute it
modulo q(L− 1), divide the result by L− 1, and then multiply by n+ k + 1. For (21) we proceed
similarly, computing modulo q(L− 1)2.

To illustrate, suppose n = 44, L = 1013, and q = 61. We start with cn(0) := 44 mod 61, and
use Equations (19), (20), (21) to compute cn(55) mod 61, where 44 + 55 = 99 is the last number
of the decade [10, 99]. We then compute cn(955) mod 61, where 44 + 955 = 999 is the last number
of the decade [100, 999]. And so on, until we reach k = 1012 − 42, for which we get n + k + 1 ≡ 0
(mod q), and cn(k) = 54.

4.3 Incremental computation of c(n)

In this section, for a prime power q, we show that we can efficiently compute cn(k+ q) mod q from
cn(k) mod q in the special case where n+ k+ 1 ≡ 0 (mod q), which is the one we are interested in.

Lemma 7. Assume L/10 ≤ k < k+q < L for L = 10`, where q is a prime power dividing n+k+1.
Then cn(k + q) = acn(k) + b mod q, where a = Lq mod q and

b =
Lq − qL+ q − 1

(L− 1)2
mod q.
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Proof. Since q divides n+k+1, it follows from Eq. (20) that yn(k+ δ) ≡ 0 (mod q), so cn(k+ δ) ≡
xn(k + δ) + zn(k + δ) (mod q). The rest follows by replacing δ by q in Eq. (19) and (21).

Depending on the value of q, we may be able to further simplify the expressions for a and
b. The most common case is when q is prime and coprime to L − 1. In that case we have
a ≡ L (mod q), b ≡ 1/(L − 1) (mod q), and the values of µ at line 8 of Algorithm 1 satisfy
the affine recurrence µi+1 ≡ aµi + b (mod q), with µ0 ≡ cn(k). Let µ′i := µi + λ mod q, where
λ = b/(a − 1) ≡ 1/(L − 1)2 (mod q). Then the sequence {µ′i} satisfies the linear recurrence
µ′i+1 = aµ′i mod q, with µ′0 ≡ cn(k) + λ, and we can replace the test µ ≡ 0 (mod q) by µ′ ≡ λ
(mod q). If k0 is the value computed at line 4, and k = k0 + iq in the inner loop, the test in line 8
then becomes aiµ′0 ≡ λ (mod q), which is a discrete logarithm equation for i. We can find a first
solution i0 —if one exists—using Shanks’s baby-step giant-step algorithm [3, §5.4.1], and then the
other solutions are i0 + g, i0 + 2g, ... where g is the multiplicative order of a mod q, which can also
be efficiently computed.

It thus follows from Lemma 7 that the set S—outlined in the beginning of this section—of values
of k such that p divides both n+ k + 1 and cn(k) is either empty, or is an arithmetic progression.

The correctness of Algorithm 1 follows from the fact that when we enter line 11, we have
T [n + k] = gcd(cn(k), n + k + 1). Indeed, if a prime p divides both cn(k) and n + k + 1, then for
each prime power q = pj ≤ n+ k + 1 dividing both cn(k) and n+ k + 1, T [n+ k] is multiplied by
a factor p.

For our running example, with n = 44 and q = 61, we had found k0 := k = 1012 − 42 in line 4
of Algorithm 1, and µ = cn(k) = 54 in line 5. Lemma 7 gives a = 31 and b = 59. This yields λ = 4,
and the recurrence µ′i+1 ≡ 31µ′i (mod q) for k = k0 + iq. The initial value is µ′0 ≡ 54 + 4 ≡ 58
(mod q), and we are looking for µ′i ≡ 4 mod q. We easily find the first solution i0 = 34, and since
the multiplicative order of 31 modulo 61 is g = 60, the solutions are exactly i = 34 + 60j for
j ≥ 0, which correspond to k = k0 + (34 + 60j)q. Algorithm 1 will thus multiply T [n+ k] by q for
k = k0 + 34q, and then for k0 + 94q, k0 + 154q, ...

We conclude with a few further remarks about Algorithm 1:

• We store in T [n+ k] the product of prime powers dividing both cn(k) and n+ k + 1. Those
products can be as large as n+ k + 1. For the record values we have obtained, this requires
a 64-bit type per entry, i.e., 8 bytes. To save memory, we rely on a classical trick used in
integer factorization. Let g = gcd(cn(k), n+ k+ 1). Instead of storing g in T [n+ k], we store
an approximation of log g/ log r in some well-chosen radix r such that the obtained values do
not exceed 255, and the array T may be implemented as a byte array.

• Instead of bounding p and q by L in lines 2 and 3, we can use a smaller bound. In that case,
if we find a solution k, this will prove only that C(n) ≤ k. This is what we did for n = 539,
taking the bound to be 5 · 109.

• Algorithm 1 can be trivially parallelized on t cores, with each core dealing with different
primes p. However a lock is required for the accesses to the array T .
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• If memory is a bottleneck, Algorithm 1 can be called several times on sub-intervals of n+k ∈
[L/10, L − 1], since the main memory usage (the sieve array T ) is proportional to the sub-
interval length. We used this for n = 44, 494, and 539, with sub-intervals of length 2 · 1012.
And by storing only even values of T [n+ k] we get a factor of 2 gain.

Algorithm 1 was implemented in the C language, using the GMP library for the large integer
operations, and OpenMP for the parallel code. The locks for accesses to T use the OpenMP
atomic update instruction. On a processor with 112 hyperthreaded cores, this implementation
takes about 100 seconds (of wall-clock time) to find C(98) = 259110640 with L = 109, and 13 hours
20 minutes to find C(44) ≤ 2783191412912 with sub-interval [1012, 2783191412958].
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