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THE TOPOLOGY AND GEOMETRY OF RANDOM SQUARE-TILED SURFACES

SUNROSE SHRESTHA

Abstract. A square-tiled surface (STS) is a branched cover of the standard square torus with branching over
exactly one point. In this paper we consider a randomizing model for STSs and generalizations to branched
covers of other simple translation surfaces which we call polygon-tiled surfaces. We obtain a local central
limit theorem for the genus and subsequently obtain that the distribution of the genus is asymptotically
normal. We also study holonomy vectors (Euclidean displacement vectors between cone points) on a random
STS. We show that asymptotically almost surely the set of holonomy vectors of a random STS contains the
set of primitive vectors of Z2 and with probability approaching 1/e, these sets are equal.

In this paper we will study topological and geometric statistics of a specific kind of translation surfaces
called square-tiled surfaces. Translation surfaces form an important class of metrics on two-manifolds, namely
those that admit an atlas whose transition functions are given by Euclidean translations. They can be viewed
from several other, equivalent perspectives:

• complex analysis: a translation surface is a pair (X,ω) where X is a Riemann surface and ω is
a holomorphic differential (i.e. away from finitely many singular points, ω is the pullback of the
one-form dz);

• Euclidean geometry: a translation surface is a collection of Euclidean polygons with sides glued in
parallel pairs by translations.

Translation surfaces are flat everywhere except for finitely many cone points where the angles are 2π(αi+1)
for αi ≥ 1. The number and angles of cone points is recorded as α = (α1, . . . , αs), and the collection of
surfaces sharing the same cone point data is called a stratum, denoted H(α). For instance, the surface in
Figure 1 lives in H(1, 1), as it has two cone points of angle 4π each. For any cone point data α, the stratum
H(α) has an orbifold structure with local coordinates given by holonomy vectors (Euclidean displacement
vectors between cone points.)
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Figure 1. A square-tiled surface S ∈
STS6: sides are glued in opposite pairs un-
less otherwise indicated by the letters a and
b. It is represented by the permutations σ =
(1, 2, 3, 4)(5, 6) and τ = (1, 5)(2, 6)(3, 4)
which describe the horizontal and vertical
gluings respectively. Corners indicated by
a dot are identified together and corners in-
dicated by a cross are identified together.

Translation surfaces have been widely studied and are useful
tools in related areas of study such as Teichmüller dynamics,
moduli problems on Riemann surfaces, and mathematical bil-
liards. Every stratum of translation surfaces admits an action
of SL2(R). The orbits of translation surfaces under the diagonal
subgroup of SL2(R) give rise to geodesics in Teichmüller space
under the Teichmüller metric. The stabilizer of the SL2(R)
action is called its Veech group (or group of affine homeomor-
phisms) and it encodes the symmetries of a translation surface.

A square-tiled surface (or STS for short) is a translation sur-
face (X,ω) in which the Riemann surface X covers the square
torus T = C/Z[i], branched over only one point; equivalently,
the Euclidean polygons can be taken to be unit squares. Let
STSn denote the collection of STSs with n squares.

STSs are an active area of research for numerous reasons.
First, they are easily described examples of celebrated transla-
tion surfaces known as Veech surfaces which are characterized
by having Veech group a lattice in SL2(R). Veech surfaces are
known to have very strong geometric and dynamical properties ([12, 37, 41]). For example, Veech surfaces
have so-called “optimal dynamics”: in any direction on the surface, each infinite trajectory is either periodic
or dense. The SL2(R)-orbits of Veech surfaces also project to algebraic curves in the moduli space of Riemann
surfaces. Secondly, their square structure means that their holonomy vectors lie in Z2 giving the collection
of STSs a lattice-like structure in the stratum. Under the well-known Masur-Veech volume form, STSs can
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be used to compute the volume of H1(α) (the set unit area surfaces of H(α)), just as integer points in Z2

can be used for asymptotic area calculations in R2 (Zorich [42], Eskin-Okounkov [10]). Thirdly, STSs can be
used to tackle problems in polygonal billiards as shown by Eskin–Masur–Schmoll [9] who used total counts of
primitive STSs (ones that do not cover any other STS than the square torus) in H(2) and H(1, 1) to obtain
the asymptotics for the number of closed orbits for billiards in a square table with a barrier. Fourthly, the
square structure also opens up a suite of connections to analytic number theory via modular forms. For
instance, Lelievre-Royer [20] show that orbitwise counting functions in H(2) are quasimodular.

We’ve seen complex analytical and Euclidean geometric definitions of general translation surfaces. STSs
in STSn have a third, combinatorial, description using pairs of permutations from Sn (the symmetric group
on n letters) describing the gluings in the horizontal and vertical directions as in Figure 1. In this paper
we will consider Sn × Sn, as a combinatorial model for STSn. This allows a study of the topological and
geometric statistics.

Genus of random STSs. Let S(σ, τ) be the square-tiled surfaced associated to (σ, τ) ∈ Sn × Sn. Let

Gn : Sn × Sn → N be the random variable defined by Gn(σ, τ) = 1 − χ(S(σ,τ))
2 where χ(S) is the Euler

characteristic of S. When S(σ, τ) is connected, the genus is well-defined and Gn picks out the genus. Our
main result is a local central limit theorem for Gn. Recall that for functions f and g, f(n) ∈ O(g(n)) if there
exists M > 0 and N > 0 such that |f(n)| ≤ Mg(n) for all n > N .

Genus Theorem. Fix a ∈ R>0. Then, uniformly (i.e. with the constant in the O(
√

log(n)) term only

depending on a) for all ℓ such that n− ℓ is even and ℓ−A(n)√
B(n)

∈ [−a, a] we have,

Pr

[

Gn =
n

2
− ℓ

2
+ 1

]

=
(2 +O(

√

log(n)) exp
(

− (ℓ−A(n))2

2B(n)

)

√

2πB(n)

where A(n) =
∑n

i=1
1
i and B(n) =

∑n
i=1

1
i − 1

i2 . Hence, Gn is asymptotically normal with mean and variance
given as:

E[Gn] =
n

2
− log(n)

2
− γ

2
+ 1 + o(1); Var[Gn] =

log(n)

4
+

γ

4
− π2

24
+ o(1)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

The distribution of the genus of square-tiled surfaces was initially obtained by S. Lechner [19] using the
representation theory of the wreath product of Sn and Z/4Z. We use the representation theory of the
symmetric and alternating groups and our method allows us to obtain a stronger local central limit theorem
for the genus in comparison to Lechner’s result. We also generalize to polygon-tiled surfaces which are
branched covers of other simple translation surfaces. Moreover, our method also allows investigation of
geometric features which aren’t apparent from Lechner’s approach.

The Genus Theorem fits in well with the large body of already existing literature on the topology of
random surfaces. Gamburd-Makover [15] and Pippenger-Schleich [33] studied surfaces built out of n ideal
hyperbolic triangles and proved that the expected genus is n/4− log(n)/2 + O(1). Fleming-Pippenger [11]
generalized and studied surfaces built out of N/k k-gons and total number of sides N allowing all possible
gluings assuming that lcm(2, k) divides N . They got large deviation results and moments of the number of
vertices, a result which we will parallel in our case (Theorem 2.4), borrowing their proof ideas. Chmutov-
Pittel [5] generalized further and studied surfaces built out of n polygons with a (necessarily even) total
of N of sides, and computed the expected genus to be (N/2 − n − log(N))/2. None of these constructions
considered restricting to the case of translation surfaces. The collection of translation surfaces in their models
have 0 asymptotic density and hence the general asymptotic results do not apply to translation surfaces.

It is interesting to compare the expected value in the Genus Theorem with the general case of non-
translation gluings considered by Gamburd and others. For a surface (not necessarily translation) built out

of n squares the expected genus is n
2 − log(n)

2 − γ
2 +1− log(4)

2 which is lower than the translation case (by an

additive constant of log(4)
2 ). Heuristically, one of the reasons we “gain genus” in the translation case (apart

from the possible artefact of using a different randomization model) is the fact that all surfaces constructed
using only translation gluings necessarily have genus at least 1.
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Holonomy of random surfaces. For any translation surface (X,ω), we can write Hol(X) for its set of
holonomy vectors. In this paper we will also study holonomy vectors of STSs, all of which reside in Z2. For
instance, the holonomy vectors of the square torus T are given by the set RP := SL2(Z) · (1, 0) (denoted
RP as it is exactly comprised of those Z2 vectors which have relatively prime components). Since T does
not have any cone point, we use 0 as a marked point in order to be able to define holonomy vectors on T.
Recognizing that STSs are branched covers of the standard square torus, in this paper we investigate the
likelihood of an STS to have the holonomy vectors of the torus. We call a square-tiled surface S a holonomy
torus if Hol(S) = RP and a visibility torus if Hol(S) ⊃ RP (since the set RP is also sometimes called the
visible points of Z2.) Our main result on the geometry of random STSs considers the asymptotic densities
of holonomy and visibility tori.

Holonomy Theorem. Let S(σ, τ) ∈ STSn given by (σ, τ) ∈ Sn × Sn. Then, as n → ∞,

Pr[S(σ, τ) is a holonomy torus ] =
1

e
+O(n−1); Pr[S(σ, τ) is a visibility torus ] = 1−O

( n

2n/2

)

There reason why the constant 1/e appears as the limiting proportion of holonomy tori is easily described
— (connected) holonomy tori of genus greater than one are precisely those STSs which have cone points at
each corner of each square. These are in turn characterized by the pairs (σ, τ) for which the commutator
[σ, τ ] is a derangement (i.e. contains no fixed points). The density of such permutations turns out to be
precisely 1/e.

The Holonomy Theorem is another result in the already existing sea of literature on the geometry of
random surfaces. Brooks-Makover [3] use random cubic graphs with random orientation as their model for
random surfaces built out of ideal hyperbolic triangles and show that almost all such surfaces have large first
eigenvalues, large Cheeger constants and large embedded hyperbolic balls. Additionally, Guth-Parlier-Young
[16], Mirzakhani-Petri [26], Petri [31, 30], Petri-Thale [32] and others have studied geometric properties such
as length of systoles, length spectrum, pants length etc. of random (not necessarily translation) surfaces.
Masur-Rafi-Randecker [24] on the other hand study the expected diameter of a translation surface in the
stratum H1(2g − 2) with respect to the Masur-Veech volume form and obtain it is bounded above by a

uniform multiple of
√

log(g)/g.
Saddle connections on translation surfaces have also been well-studied before. For instance, Masur [22, 23],

showed that for a fixed translation surface S there are quadratic lower and upper bounds on the number
of saddle connections up to length R depending on S. Eskin-Masur [8] improved on that result by showing
that in any fixed stratum, almost every surface (with respect to the Masur-Veech measure) has an exact
quadratic asymptotic for the growth rate of saddle connections up to length R, with the constant solely
depending on the stratum. We note that this latter result does not cover STSs since they form a measure
zero set with respect to the Masur-Veech measure in any stratum. Hence, theorem can be seen as a finer,
complimentary result to Eskin and Masur’s theorems.

In previous work with Wang [35] we proved that for a fixed stratum, a random STS is asymptotically
almost surely not a visibility torus. The Holonomy Theorem sounds quite different, but not a contradiction
since in this case the stratum is not fixed. Furthermore, the Holonomy Theorem immediately implies that a
random STS asymptotically almost surely has a unit holonomy vector, which is shown in [35] to not be the
case if we restrict to the stratum H(2).

Our paper is organized the following way. In Section 1 we give the necessary background on translation
surfaces, square-tiled surfaces and the generalization to polygon-tiled surfaces. We also state some theorems
and preliminary propositions pertaining to permutation statistics and representation theory of the symmetric
and alternating groups. Section 2 will be devoted to the proof of results on the topology of random STSs,
including the Genus Theorem. Section 3 will contain the proof of the Holonomy Theorem. In Section 4 we
will generalize results from Section 2 to polygon-tiled surfaces. We decided to postpone the general results to
the last section since the proofs for the square-tiled case essentially consist of all the key ideas of the general
case. Moreover, the general proofs for polygon-tiled surfaces need to be divided into even and odd cases
which makes the exposition cumbersome to read while the square-tiled case is free of this issue. Hence, the
reader who is interested in simply the square-tiled case (which is the more popular case) can skip the last
section entirely. Finally, we also include an Appendix that contains some basic background on combinatorial
tools used.
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1. Background

1.1. Translation surfaces and their moduli spaces. A translation surface can be defined geometri-
cally as a collection of polygons in the plane with sides identified in parallel opposite pairs by translation,
up to equivalence by cut and paste operations. They can also be defined as pairs (X,ω) where ω is a holo-
morphic one-form on the Riemann surface X . Translation surfaces are locally flat except at finitely many
cone points or singularities where they have a cone angle of 2πℓ for some integer ℓ ≥ 2. A cone point of
angle 2πℓ will correspond to a zero of the one-form ω of order ℓ − 1. The group SL2(R) acts on translation
surfaces via its linear action on R2 — for A ∈ SL2(R), and X a translation surface, A · X is obtained by
acting on the polygons of X linearly. This preserves the number and order of the cone points.

A Gauss-Bonnet type theorem holds for (connected) translation surfaces: if g is the genus of the surface and
α1, . . . , αs are the degrees of the zeros of the one-form, then the surface must satisfy the relation

∑s
i=1 αi =

2g−2. Genus g translation surfaces then fall into finitely many strata H(α) where α = (α1, . . . , αs) describes
the orders of the zeros of the one-form, s zeros of orders α1, . . . , αs. For any g, H(2g−2) is called a minimal

stratum and H(

2g−2
︷ ︸︸ ︷

1, . . . , 1) is called a principal stratum. Although we will deal with surfaces with multiple
connected components, the strata H(α) will only contain connected surfaces.

Figure 2. Saddle connections on
S ∈ H(1, 1) built out of unit
squares. The holonomy vector of
the red (solid) saddle connection is
(1,1) , and the holonomy vector of
the blue (dashed) saddle connection
is (2,1).

On a given translation surface, a saddle connection is a straight-
line local geodesic segment whose endpoints are cone points but with no
cone points on the interior. If there are no cone points on a connected
component of the surface, then we mark a point and look at segments
from the marked point to itself as saddle connections. The holonomy

of a saddle connection is the corresponding Euclidean displacement
vector. See Figure 2 for some examples. The collection of holonomy
vectors of a translation surface (X,ω) will be denoted Hol(X). If X
has multiple connected components, then Hol(X) is the union of the
holonomy vectors of each of the connected components.

1.2. Square-tiled surfaces. Square-tiled surfaces (STSs) are trans-
lation surfaces that are branched covers of the standard square torus
C/Z[i] with branching over exactly one point. Geometrically, STSs
are constructed from finitely many squares with sides glued in parallel
opposite pairs. The number of squares is equal to the degree of the
branched cover over T. We denote the collection of STSs built out of n squares as STSn. Note that STSn

also contains surfaces with multiple connected components. The natural action of SL2(R) on translation
surfaces restricts to an action of SL2(Z) on STSs which preserves the number of squares and the cone point
data.

Recall from introduction that an STS is a holonomy torus if Hol(S) = RP := SL2(Z) · (1, 0) and a
visibility torus if Hol(S) ⊃ RP. The set RP ⊂ Z2 is characterized by having relatively prime components
and is sometimes referred to as the primitive vectors or visible points of Z2. See Figure 3 for holonomy and
visibility tori examples and non-examples in H(2).

Note that since Hol(S) of a surface S with multiple connected components is the union of the holonomy
sets of the components, if S has a square torus connected component, then the holonomy set of the square
torus component is defined to be RP (by marking a point), and consequently S is a visibility torus. If in
addition, the holonomy set of each component is RP, then S is a holonomy torus. The following proposition,
first proved with Wang for connected surfaces, then gives an alternate characterization of holonomy tori
which will be useful.

Proposition 1.1 (Shrestha-Wang [35]). S ∈ STSn is a holonomy torus if and only if every corner of every
square is either a singularity or a non-singular point in a square torus component.
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a b

ab

Figure 3. Examples in H(2). Unless otherwise indicated, sides are glued in opposite pairs.
Left : A holonomy torus in H(2). Using Proposition 1.1, we see it is indeed a holonomy
torus. Center : A visibility torus that is not a holonomy torus in H(2). Since it contains
(2, 0) in its holonomy set, it is not a holonomy torus, but using Proposition 1.2, we can
verify it is a visibility torus. Right : A non-visibility STS in H(2). Checking visually, we see
that (1, 0) is not in its holonomy set.

Proof. If S is not a holonomy torus, then it has a vector not in RP which is the holonomy vector of a saddle
connection. This saddle connection then must go through a corner of a square that is neither a singularity
nor a marked point in a T component. Conversely, if there exists a corner of a square that is not a singularity
(nor a marked point), then extending a line segment through this point in any rational slope direction yields
a non-primitive vector as a saddle connection and hence the surface is not a holonomy torus. �

With Wang, we also obtained a characterization of visibility tori in terms of the SL2(Z) action on STSn.

Proposition 1.2 (Shrestha-Wang [35]). S ∈ STSn is a visibility torus if and only if every surface in the
SL2(Z) orbit of S has a unit length horizontal saddle connection.

We next state a theorem proved with Wang which asserts that the visibility properties of STSs in a fixed
stratum are governed by the number of squares. We will use part (3) of this theorem in our proof of the
Holonomy Theorem.

Theorem 1.3 (Shrestha-Wang [35]). For a fixed stratum H(α) = H(α1, . . . , αs), the visibility properties of
STSs in the stratum are governed by their number of squares, n, in the following way, illustrated in the figure
below:

(1) There are no STSs in H(α) with fewer than 2g + s− 2 squares.
(2) An STS S has n = 2g + s− 2 squares if and only if Hol(S) = RP for all S ∈ H(α) ∩ STSn.
(3) If 2g + s− 2 < n ≤ 4g + 2s− 5, then all S ∈ H(α) ∩ STSn are visibility tori; in fact RP ( Hol(S).
(4) If n = 4g + 2s− 4, then there exists S ∈ H(α) ∩ STSn that is not a visibility torus.
(5) There exists N(α) such that if n > N(α) then all S ∈ H(α) ∩ STSn are non-visibility tori, i.e. for

all such STSs, there exists v ∈ RPr Hol(S).

H(α)

0

STSn ∩H(α) = ∅ RP = Hol(S) RP ( Hol(S) RPr Hol(S) 6= ∅

Number of squares

2g + s− 2 4g + 2s− 5 N(α)

1.3. Surfaces tiled by polygons with 2k sides. One can easily generalize the construction of square-tiled
surfaces from squares to other even polygons. For a fixed integer k ≥ 2, one can build a surface by taking
finitely many regular unit area 2k-gons and gluing the sides in parallel opposite pairs. Such a surface is
called a polygon-tiled surface. These surfaces were initially studied in [1] as examples of platonic solids
with a choice of horizontal direction. We denote by PTSn,2k the collection of polygon-tiled surfaces built
out of n 2k-gons. Note that STSn = PTSn,4. Figures 4 show examples for k = 3, 4. Also note that when
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considering the polygons, we fix (only up to translation) an embedding in the plane so that two of the sides
of each polygon are vertical.

32
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1

ba

c
e

db e

d

f

c

a

f
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Figure 4. Examples of polygon-tiled surfaces. Unless otherwise indicated, sides are glued
in opposite pairs. Left: A surface in PTS5,6 given by permutations σ1 = (1)(2, 3)(4)(5),
σ2 = (1, 5, 4, 3, 2) and σ3 = (1, 5, 4, 2)(3). It belongs to the stratum H(4, 1, 1). Right: A
surface in PTS4,8 given by permutations σ1 = (1, 3, 4)(2), σ2 = (1)(2, 3)(4), σ3 = (1, 3, 4)(2),
σ4 = (1, 2)(3, 4). It belongs to stratum H(5, 5). The procedure to associate permutations
to encode the gluings is described generally in Section 4.1.

1.4. Randomizing model for STSn. Given a square-tiled surface S ∈ STSn, first label the squares
{1, . . . , n}. We can then read off a pair of permutations σ, τ ∈ Sn which describe the horizontal and
vertical gluings respectively — σ and τ are defined so that for any square labeled i, the square labeled σ(i)
has its left side glued to the right side of i and τ(i) has its bottom side glued to the top of i. For example,
from the square-tiled surface in Figure 1 we obtain σ = (1, 2, 3, 4)(5, 6) and τ = (1, 5)(2, 6)(3, 4). Relabeling
the surface corresponds to simultaneous conjugation of the permutation pair by the relabeling permutation.

Conversely, given a pair of permutations, (σ, τ) ∈ Sn × Sn, one can associate a labeled square-tiled
surface S(σ, τ) ∈ STSn. This surface is connected if and only if the subgroup generated by the permutations
〈σ, τ〉 ⊂ Sn, is a transitive subgroup. By a classical theorem of Dixon [7], the probability that a random
pair of permutations in Sn generates a transitive subgroup is at least 1− 1/n+O(n−2). Hence, a uniformly
distributed pair of permutations in Sn gives a connected surface asymptotically almost surely as n → ∞.
So, Sn × Sn with the uniform measure is a combinatorial model for random STSs built out of n squares.

1.5. Genus of STSs from the randomizing model. To determine the genus of a random STS using the
random model, we start with the Euler characteristic formula: 2 − 2g = V − E + F . For a surface with n
squares, F = n and E = 2n and hence the genus is given by, g = n

2 − V
2 +1. So, the problem of determining

the genus boils down to computing the number of equivalence classes of vertices under the gluing. Note that
a vertex need not be a cone point. The following proposition from folklore gives a combinatorial condition
allowing us to count the number of such equivalence classes simply from the combinatorial information.

Proposition 1.4 (Combinatorial condition for identifying vertices). Let S ∈ STSn be given by (σ, τ) ∈
Sn × Sn. Let c = στσ−1τ−1 be the commutator of σ and τ . Then, the bottom left corner of square i is
identified with the bottom left corner of square j if and only if i and j are in the same cycle of c. Hence, the
number of equivalence classes of bottom left corners is equal to the number of cycles of c.

Proof. First label the edges of each of the squares as e1, . . . , e4 so that e1 is the right vertical edge, e2 is the
top edge, e3 the left edge, and e4 the bottom one.

(⇐) Assume i and j are in the same cycle of c. If i = j there is nothing to show. So assume i 6= j and
that there exists ℓ ≥ 1 such that cℓ(i) = j. We then proceed by induction on ℓ. We start with the base case
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ℓ = 1 so that c(i) = στσ−1τ−1(i) = j. See Figure 5 for an illustration of the proof. By definition of σ and τ ,

edge e4 of i ∼ edge e2 of τ−1(i) =⇒ bottom left corner of i ∼ top left corner of τ−1(i)

edge e3 of τ−1(i) ∼ edge e1 of σ−1τ−1(i) =⇒ top left corner of τ−1(i) ∼ top right corner of σ−1τ−1(i)

edge e2 of σ−1τ−1(i) ∼ edge e4 of τσ−1τ−1(i) =⇒ top right corner of σ−1τ−1(i)

∼ bottom right corner of τσ−1τ−1(i)

edge e1 of τσ−1τ−1(i) ∼ edge e3 of c(i) = j =⇒ bottom right corner of τσ−1τ−1(i)

∼ bottom left corner of c(i) = j

Now assume as induction hypothesis that cℓ(i) = j implies that i and j have their bottom left corners

i e1

e2

e3

e4

τ−1(i)

e2

e3σ−1τ−1(i)

τσ−1τ−1(i) c(i) = j

Figure 5. Proof Illustration: Action of the commutator c corresponds to going around a
vertex clockwise starting at the bottom left corner of i and ending at the bottom left corner
of c(i) = j.

identified. Then, if cℓ+l(i) = cℓ(c(i)) = j, by induction hypothesis, c(i) and j have their bottom left corners
identified. By the base case, i and c(i) have their bottom left corners identified which implies the same for
i and j.

(⇒) Now assume that i and j have their bottom left corners identified. Call the vertex represented by the
bottom left corner of i to be v. Let 2πℓ be the angle around v. We will proceed via induction on ℓ. When
ℓ = 1, v is not a cone point, and is made up of the bottom left of i, the top left of τ−1(i), the top right of
σ−1τ−1(i) and the bottom right of τσ−1τ−1(i) each of which contribute π/2 angle. This implies that i = j,
and hence i and j are in the same cycle of c vacuously. As induction hypothesis, assume that for any STS,
S(σ′, τ ′), whenever i and j have their bottom left corners identified and the angle at the vertex represented
is 2πℓ then i and j are in the same cycle of the commutator [σ′, τ ′]. Now, assume the angle around v is
2π(ℓ+1). Let (i, c(i), . . . , cr(i)) be the cycle of c containing i. Note that by definition, edge e1 of τσ−1τ−1(i)
is identified with edge e3 of c(i) and edge e1 of σ−1(i) is identified with edge e3 of i. Then define a new
surface S′ from S with all the same edge gluings except swapping these two edge identifications — now edge
e1 of τσ−1τ−1(i) is identified to edge e3 of i and edge e1 of σ−1(i) is identified to edge e3 of c(i). This new
surface has a new commutator c′ such that c′(i) = i and (c(i), . . . , cr(i)) is a cycle. But on S′, c(i) and j
have their bottom left corners identified, and the angle around the vertex represented by these corners is
2πℓ. Hence, by induction hypothesis, c(i) and j are in the same cycle of c′. But, that means cm(i) = j for
some 1 ≤ m ≤ r. �

Proposition 1.4 then allows us to conclude the following regarding the angle around the vertices.

Proposition 1.5 (Commutator cycle type determines cone point data). Let S ∈ STSn be given by (σ, τ) ∈
Sn × Sn. If the cycle type of c := [σ, τ ] is (1ξ1 , 2ξ2 , . . . , nξn), then S has ξℓ vertices with angle 2πℓ for each
ℓ = 1, . . . , n.

Proof. Consider a cycle of c and let i be in this cycle. From Proposition 1.4, the bottom left corner of i
represents the vertex corresponding to this cycle. Furthermore, as illustrated in figure 5, following the action
of c from i to c(i) corresponds to traversing angle 2π around this vertex. Hence, if the cycle containing i is
of length ℓ, then the angle around the corresponding vertex is 2πℓ. �
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Note that Proposition 1.5 allows us to determine the stratum of the surface simply from the combinatorics
of the permutations describing it. For instance, if the commutator of the two permutations describing a

connected square-tiled surface is a product of m disjoint transpositions, then the stratum is H(

m
︷ ︸︸ ︷

1, . . . , 1). See
Figure 6 for more illustrations of Proposition 1.5.

1 2 3 4

5 6
a

a

b

b

c

c

d

d

1 2

3 4 5 6 7 8

a

a

b

b

c

c

d

d

e
e

f

f

g

g

Figure 6. Illustrating Proposition 1.5. Left: A square-tiled surface in STS6 given by
permutations σ = (1, 2, 3, 4)(5, 6) and τ = (1)(2, 4, 5, 6, 3). The commutator is [σ, τ ] =
(1, 6, 4, 2)(3, 5), indicating that the surface is in H(3, 1). Right: A square-tiled surface in
STS8 given by permutations σ = (1, 2)(3, 4, 5, 6, 7, 8) and τ = (1, 3, 2, 6)(4, 7, 5, 8). The
commutator is [σ, τ ] = (1, 3, 7)(2, 5)(4, 6)(8) indicating that the surface is in H(2, 1, 1).

Since the commutator captures information regarding the cone point data of an STS, consider the com-
mutator map wc : Sn × Sn → Sn so that wc(σ, τ) := [σ, τ ]. Given a random STS, (σ, τ) ∈ Sn × Sn, using
Proposition 1.4 we see that the number of vertices V equals the number of cycles of the permutation wc(σ, τ).
Hence, we define the random variable

(1) Cwc,n = # cycles of wc(σ, τ)

where (σ, τ) ∈ Sn × Sn is uniformly distributed.
With that we can then define Gn : Sn × Sn → N to be the random variable

Gn =
n

2
− Cwc,n

2
+ 1

which outputs 1 − χ/2 where χ is the Euler characteristic. Note that Gn is exactly the genus when the
surface is connected.

The map wc : Sn × Sn → Sn induces a probability measure Pwc,n on Sn such that Pwc,n(π) =
#w−1

c (π)
(n!)2 .

Frobenius [13] showed that the probability measure Pwc,n takes the special form,

(2) Pwc,n(π) =
1

n!

∑

χ∈Irr(Sn)

χ(π)

χ(1)

As the image of the map wc : Sn × Sn → Sn is An [28], the probability measure Pwc,n is supported on An.

1.6. Holonomy from the randomizing model. The random model also gives information on the geom-
etry of STSs. In particular, using Proposition 1.1 and Proposition 1.5 we can get a combinatorial character-
ization of holonomy tori.

Proposition 1.6. Let S := S(σ, τ) be a square-tiled surface. Then S is a holonomy torus if and only if
either [σ, τ ] is a derangement or each of its fixed points is also fixed by σ and τ .

Proof. Assume S is a holonomy torus and that [σ, τ ] is not a derangement. Let i be a fixed point of [σ, τ ].
As a consequence of Propositions 1.4 and 1.5, the bottom left corner of square i is not a singularity. By
Proposition 1.1, the bottom left corner of i is a point in a square torus component. The only way this can
happen is if the square i itself belongs to a square torus component. But a square torus component contains
only one square. Hence, i should have its opposite sides glued in pairs, implying σ(i) = i and τ(i) = i.

For the converse, first note that every corner of every square is either itself a bottom left corner or is
glued to the bottom left corner of some square. If [σ, τ ] is a derangement, then by Propositions 1.4 and 1.5
we know every bottom left corner of every square is a singularity which implies that S(σ, τ) is a holonomy
torus by Proposition 1.1. In case [σ, τ ] has fixed points, by Proposition 1.5, we know the fixed points are
in one-to-one correspondence with nonsingular vertices of S (i.e. points of S arising from gluing exactly 4
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square corners). Assuming then each fixed point i of [σ, τ ] is also a fixed point of σ and τ , we know that
i forms a T component, and the bottom left corner of i is surely in this component. Hence, every corner
of every square is either a singularity or a point in a T component. By Proposition 1.1, S is a holonomy
torus. �

1.7. Permutation statistics. We will need some results on statistics of permutations as well. We begin
with the classically known asymptotic density (as n → ∞) of permutations in Sn without fixed points.

Proposition 1.7. The probability that a uniformly random permutation in An (or Sn) does not have a fixed
point tends to 1/e as n → ∞ whereas the expected number of fixed points is 1.

The probability of a random permutation in Sn not having a fixed point is easy to compute. For any k ∈
{1, . . . , n}, the proportion of permutations moving it is exactly 1− 1/n. So, the proportion of permutations
moving all of the {1, . . . , n} is (1 − 1/n)n. This converges to 1/e as n → ∞.

Similarly,

Proposition 1.8. The probability that a uniformly distributed random permutation from An is a product of
disjoint transpositions (and 1-cycles) tends to 0 as n → ∞, and the probability that it is a cyclic permutation
also tends to 0 as n → ∞.

Proof. Given a cycle type λ = (1ξ1 , 2ξ2 , . . . , nξn) of permutations with ξi cycles of length i, it is classically
known that the probability that a uniformly distributed permutation in Sn has cycle type λ is given by,

Pr[π ∈ Sn has cycle type λ] =

n∏

j=1

(
1

j

)ξj

· 1

ξj !

If λ is a valid cycle type for an even permutation, then

Pr[η ∈ An has cycle type λ] = 2
n∏

j=1

(
1

j

)ξj

· 1

ξj !
.

Hence,

Pr[η ∈ An is a cycle] = 2

n−1∑

k=0
k 6≡n mod 2

1

k!
·
(

1

n− k

)

which is obtained by summing over the cycle types (1k, 20, . . . , (n − k)1, . . . , n0) with k fixed points and an
(n− k)-cycle. Clearly, this series is bounded above by

2 ·
n−1∑

k=0

1

k!

1

n− k
.

According to the OEIS [36], the series n!
∑n−1

k=0
1
k!

1
n−k ∼ e · (n− 1)!. This implies

Pr[η ∈ An is a cyclic permutation] → 0.

Similarly,

Pr[η ∈ An is a product of disjoint transpositions] = 2
n−4∑

k=0
k≡n mod 4

1

k!
· 1
(
n−k
2

)
!
·
(
1

2

)n−k
2

which is obtained by summing over the cycle types (1k, 2(n−k)/2, 30, . . . , n0) with k fixed points and (n−k)/2
disjoint transpositions. Note that when k ≡ n mod 4 and k ≤ n− 4, (n− k)/2 ≥ 2 so that

(
n− k

2

)

! · 2(n−k)/2 ≥ 4 ·
(
n− k

2

)

! ≥ 4 · n− k

2
≥ n− k.

Hence,

Pr[η ∈ An is a product of disjoint transpositions] ≤ 2 ·
n−1∑

k=0

1

k!

1

n− k
→ 0

as n → ∞. �
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Next, define the random variables

Cη,n = # cycles of η; Cπ,n = # cycles of π

for η ∈ An and π ∈ Sn uniformly distributed. We will use the following result by Fleming-Pippenger which
gives large deviation statistics for Cη,n.

Lemma 1.9 (Fleming-Pippenger [11]). Let η be uniformly distributed on An for n ≥ 3. Then,

Pr(Cη,n ≥ t) = O
( n

2t

)

We will also utilize the following classically known statistics of Cη,n and Cπ,n (which can be found in [11]
in more generality).

Proposition 1.10. For X = Cη,n or Cπ,n defined above, we have

E(X) = log(n) + γ + o(1); Var(X) = log(n) + γ − π2

6
+ o(1)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

1.8. Tools from Representation Theory. For our proofs we will use a few common tools from the
representation theory of finite groups.

Let G be a finite group and P and Q be probability measures on G. Define the total variation distance

between P and Q to be ||P −Q|| = maxA⊂G |P (A)−Q(A)|. Also, define the Fourier transform of P at a
representation ρ to be

P̂ (ρ) =
∑

g∈G

P (g)ρ(g)

We use the same definition for the Fourier transform of any function f on G. We will utilize the following
lemma, initially proved for a general group by Diaconis-Shahshahani and carefully applied to the case of An

by Chmutov-Pittel, which gives an upper bound on the total variation distance between Pwc,n, the measure
on An induced by the commutator word map wc, and UAn , the uniform measure on An, in terms of the
Fourier transform of Pwc,n:

Lemma 1.11 (Diaconis-Shahshahani [6] Chmutov-Pittel [5]). Let UAn and Pwc,n be defined as above. Then
for n ≥ 5.

||Pwc,n − UAn ||2 ≤ 1

4

∑

λ6=(n),λ6=(1n)

dim ρλTr[P̂wc,n(ρ
λ)P̂wc,n(ρ

λ)∗]

If the probability measure in consideration is a class function, its Fourier transform at a representation
takes a particularly nice form:

Lemma 1.12 (Diaconis-Shahshahani [6]). Let G be a finite group and P a probability measure on G constant
on conjugacy classes. Let ρ be a linear representation of G. Then, the Fourier transform of P at the
representation ρ, can be expressed as,

P̂ (ρ) =
1

dim(ρ)

∑

K conjugacy class of G

P [K] · |K| · χρ(K) · Idim(ρ)

where P [K] is the value that P takes on a single element of K, χρ is the character associated to the repre-
sentation ρ and Idim(ρ) is the dim(ρ)× dim(ρ) identity matrix.

We will also use the following estimate by Liebeck-Shalev:

Lemma 1.13 (Liebeck-Shalev [21]). Let s ∈ R>0 be fixed. Then,
∑

χ∈Irr(Sn)

χ(1)−s = 2 +O(n−s).

The sum in this lemma is also sometimes referred to as the Witten zeta function over Sn.



THE TOPOLOGY AND GEOMETRY OF RANDOM SQUARE-TILED SURFACES 11

2. Proof of Topology results

In this section we will first prove a result that allows us to estimate moments of the number of vertices
on random STSs by moments of the number of cycles of a uniformly random permutation from An. We
will then prove the Genus Theorem. We begin with a few lemmas, the first of which will show that Pwc,n

converges to the uniform distribution on An asymptotically:

Lemma 2.1. Let UAn and Pwc,n be as previously defined. Then,

||Pwc,n − UAn || = O

(
1

n

)

Proof. We start with the Diaconis-Shahshahani, Chmutov-Pittel upper bound from Lemma 1.11:

||Pwc,n − UAn ||2 ≤ 1

4

∑

λ6=(n),λ6=(1n)

dim(ρλ)Tr[P̂wc,n(ρ
λ)P̂wc,n(ρ

λ)∗]

for n ≥ 5. Using equation 2 and Lemma 1.12, we get

P̂wc,n(ρ
λ) =

1

dim ρλ

∑

K conjugacy classes

Pwc,n(K) · |K| · χλ(K)Idim ρλ

=
1

dim ρλ

∑

K conjugacy classes

[(

1

n!

∑

ω⊢n

χω(K)

dim ρω

)

|K|χλ(K)

]

· Idim ρλ

=
1

dim ρλ

∑

ω⊢n

1

dim ρω
· 1

n!

∑

K conjugacy classes

χω(K) · |K| · χλ(K) · Idim ρλ

=
1

dim ρλ

∑

ω⊢n

1

dim ρω
· 1

n!

∑

σ∈Sn

χω(σ) · χλ(σ) · Idim ρλ

=
1

(dim ρλ)2
· Idim ρλ (due to orthogonality of irreducible characters)

Since this is a real diagonal matrix, P̂wc,n(ρ
λ)∗ = P̂wc,n(ρ

λ). So,

||Pwc,n − UAn ||2 ≤ 1

4

∑

λ6=(n),λ6=(1n)

1

(dim ρλ)2

Note that χλ(1) = dim ρλ and dim ρλ = 1 when λ = (n) or (1n). Then using Lemma 1.13, we obtain the
required estimate. �

We will next state the following exercise from Stanley’s Enumerative Combinatorics II [39], as a Lemma
we will use later. A general version of this lemma, along with the proof, needed for general polygon-tiled
surfaces appears in Section 4 as Lemma 4.5.

Lemma 2.2. The generating function for Cwc,n is given by,

G(q) :=
∑

σ,τ∈Sn

qCwc,n(σ,τ) = (n!)
∑

λ⊢n

∏

r∈λ

(q + cont(r))

where

• the sum is over unordered partitions λ of n,
• the product is over squares in the young diagram of a partition,
• cont(r) is the content of square r.

We refer the reader to Appendix A for the definitions of the combinatorial notions in this lemma.
Using Lemma 2.2 we can now obtain a large deviation result for Cwc,n.

Lemma 2.3 (Large deviations). Let Cwc,n be as before. Then, Pr(Cwc,n ≥ t) = O
(
n
2t

)
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Proof. Let g(q) := G(q)
(n!)2 be the probability generating function of Cwc,n. By Lemma 2.2 we have,

g(q) =
1

(n!)

∑

λ⊢n

∏

r∈λ

(q + cont(r))

Then for q ≥ 1,

Pr(Cwc,n ≥ t]) =
∑

s≥t

Pr(Cwc,n = s) ≤ 1

qt

∑

s≥t

Pr(Cwc,n = s)qs ≤ g(q)

qt

Taking q = 2, we see that in the expression for g(2), the only partitions that survive in the sum over the
partitions are the ones that do not have any square with content -2. These are exactly the partitions of the
form (n− j, j) for j = 0 to ⌊n/2⌋. Hence,

Pr(Cwc,n ≥ t) ≤ 1

2tn!

⌊n/2⌋
∑

j=0

∏

r∈(n−j,j)

(2 + cont(r)) =
1

2t

⌊n/2⌋
∑

j=0

(n− j + 1)!j!

n!
≤ 1

2t



n+ 1 +

⌊n/2⌋
∑

j=1

1



 = O
( n

2t

)

�

2.1. Moments of vertex count. We now state and prove the following theorem which allows us to ap-
proximate the moments of number of vertices by the moments of number of cycles in random permutations
of An. The proof technique is inspired by the proof of Theorem 1.3 of Fleming-Pippenger [11].

Theorem 2.4 (Moments of vertex count). Let p(x) be a polynomial of degree ℓ that is non-negative and
non-decreasing for x ≥ 0. Then,

E[p(Cwc,n)] = E[p(Cη,n)] +O

(

logℓ(n)

n

)

Proof. First by definition,

E[p(Cwc,n] =

n∑

s=0

p(s) Pr(Cwc,n = s)

Rewriting this in terms of the tail probabilities, we have,

E[p(Cwc,n)] = p(0) +

n∑

s=1

(p(s)− p(s− 1)) Pr(Cwc,n ≥ s)

Now, subtracting the analogous expression for E[p(Cη,n)] and taking absolute values,

|E[p(Cwc,n)]− E[p(Cη,n)]| ≤




∑

1≤s≤t

(p(s)− p(s− 1))



 |Pr(Cwc,n ≥ s)− Pr(Cη,n ≥ s)|

+
∑

t<s≤n

((p(s)− p(s− 1)Pr(Cwc,n ≥ s)) +
∑

t<s≤n

((p(s)− p(s− 1)Pr(Cη,n ≥ s))

≤ ||Pwc,n − UAn || · p(t) + Pr(Cwc,n ≥ t) · p(n) + Pr(Cη,n ≥ t) · p(n)

The first term is estimated by applying Lemma 2.1, the second term is approximated by applying Lemma
2.3 and the third term is approximated using Lemma 1.9 and so we obtain,

|E[p(Cw,n)]− E[p(Cη,n)]| ≤ O

(
tℓ

n

)

+O

(
nℓ+1

2t

)

+O

(
nℓ+1

2t

)

Taking t = ⌈ (ℓ+1) log(n)
log(2) ⌉ we obtain the required estimate. �
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2.2. Genus Theorem. The expected value and variance of Gn stated in the Genus Theorem is immediate
from Theorem 2.4 and Proposition 1.10.

Corollary 2.5. The expected value and variance of the genus random variable Gn are given as follows:

E[Gn] =
n

2
− log(n)

2
− γ

2
+ 1 + o(1); Var[Gn] =

log(n)

4
+

γ

4
− π2

24
+ o(1)

Additionally we obtain a local central limit theorem for the genus distribution. In [5], Chmutov-Pittel
point out the consequences of their Theorem 2.1. They string together results from Sachkov [34], Kolchin
[17], Menon [25], Bender [2], Canfield [4], and Lebowitz et al.[18] and observe that

Pr[Cη = ℓ] =
(2 +O(Var[Cπ,n]

−1/2)) exp
(

− (ℓ−E[Cπ,n])
2

2Var[Cπ,n]

)

√
2πVar[Cπ,n]

uniformly for ℓ such that
ℓ− E[Cπ,n]
√
Var[Cπ,n]

∈ [−a, a]

for fixed a > 0. Using this they obtain local central limit theorems for both the distribution of number of
vertices and the genus. These consequences follow solely from the total variation convergence of the relevant
probability measure in their case to the uniform measure on the alternating group and do not depend on
the specific probability measure. Hence, the consequences also apply to our Lemma 2.1, and so we obtain a
local central limit theorem for Gn.

Theorem 2.6. Fix a ∈ R>0. Then, uniformly for all ℓ such that n− ℓ is even and
ℓ−E[Cπ,n]√
Var[Cπ,n]

∈ [−a, a] we

have,

Pr

[

Gn =
n

2
− ℓ

2
+ 1

]

=
(2 +O(

√

log(n)) exp
(

− (ℓ−E[Cπ,n])
2

2Var[Cπ,n]

)

√
2πVar[Cπ,n]

Theorem 2.6 together with Corollary 2.5 is precisely the Genus Theorem.

2.3. Number of cone points. Let sn : Sn × Sn → N be the random variable that counts the number of
cone points of a random surface (σ, τ) ∈ Sn × Sn. As a Corollary to Theorem 2.4, we also get the expected
value of sn.

Corollary 2.7. The expected number of cone points on a random STS is given by,

E[sn] = log(n) + γ − 1 + o(1)

Proof. Let S(σ, τ) be a square-tiled surface. Then, from Proposition 1.5, we know that the number of cone
points (i.e. vertices with angle greater than 2π) is given by

∑n
ℓ=2 ξℓ when the cycle type of the commutator

is (1ξ1 , . . . , nξn). Define Fwc,n : Sn × Sn → Z≥0 such that Fwc,n(σ, τ) = # fixed points of [σ, τ ]. Then,

sn(σ, τ) =
n∑

ℓ=2

ξℓ = Cwc,n(σ, τ) − Fwc,n(σ, τ)

Using Theorem 2.4

E(sn) = E(Cwc,n)− E(Fwc ,n) = E(Cη,n)− 1− 1

n− 1
+O

(
log(n)

n

)

= log(n) + γ − 1 + o(1)

where we use the fact that E(Fwc,n) = 1+1/(n−1) for n > 4 as shown by A. Nica in [27], Example 3.2.3. �

2.4. Distribution among strata. It is well known (for instance, from Theorem 1.3) that for any stratum
H(α1, . . . , αs) of genus g translation surfaces, STSn ∩H(α1, . . . , αs) 6= ∅ as long as n ≥ 2g− 2+ s. A natural
question then is to ask how random square-tiled surfaces distribute among the various strata. The next
theorem answers this question, but before we state the theorem, we first recall the definition of the Poisson-
Dirichlet distribution [14]. Let B1, B2, . . . be independent uniformly distributed random variables on
[0, 1]. Let G = (G1, G2, . . . ) be defined as,

G1 = B1; G2 = (1−B1)B2; Gi = (1−B1)(1 −B2) . . . (1−Bi−1)Bi.

The random sequence G describes the lengths of the pieces broken off in a random stick breaking process:
start off with a unit length stick and then break off a piece of length B1 on the left leaving a piece of length
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(1−B1). From this, break off a piece of length B2(1−B1) on the left leaving (1−B1)(1−B2), and so on.
G is then a a random variable on the infinite simplex

∆ = {x ∈ R∞ : xi ≥ 0,

∞∑

i

xi = 1}.

The distribution of the ordered version of G, (G(1), G(2), . . . ) with G(1) ≥ G(2) ≥ . . . is what is known as
the Poisson-Dirichlet distribution. We are now ready to state the next theorem:

Theorem 2.8 (Distribution among strata). The distribution of vertex angles for random square-tiled surfaces
converges to Poisson-Dirichlet distribution.

Proof. In [14], Corollary 4.1, Gamburd shows that the distribution of normalized, ordered cycle lengths of a
uniformly distributed permutation in An converges to the Poisson-Dirichlet distribution as n → ∞.

Applying Lemma 2.1 and the triangle inequality, we conclude that the distribution of normalized, ordered,
cycle lengths of a Pwc,n-distributed permutation in An converges to the Poisson-Dirichlet distribution. Recall
that the Pwc,n-distribution in An is precisely the distribution of random commutators obtained from two
uniformly distributed random permutations from Sn.

Then, finally, Proposition 1.5 relates the cycle lengths of random commutators to the angles around the
vertices of random STSs and we obtain the theorem. �

Given a fixed n, there are only finitely many strata H(α) in which STSs with n squares can live. Ideally,
we would like to be able to approximate the probability of falling in each of these strata. However, Theorem
2.8 does not allow us to carry out such an approximation. Nevertheless, one can use Lemma 2.1 to calculate
the asymptotic density as n → ∞ of STSs in principal strata (the strata corresponding to surfaces with all
cone angles 4π) or minimal strata (the strata corresponding to surfaces with exactly one cone point).

Proposition 2.9. Let S(σ, τ) ∈ STSn given by (σ, τ) ∈ Sn × Sn. Then, as n → ∞,

Pr[S(σ, τ) belongs to a principal stratum] → 0; Pr[S(σ, τ) belongs to a minimal stratum] → 0.

Proof. Using Proposition 1.5, we begin by noting that S(σ, τ) is in a principal stratum (i.e., has all cone
angles 4π) if and only if S(σ, τ) is connected and [σ, τ ] is a product of disjoint transpositions (and 1-cycles).
Similarly, S(σ, τ) is in a minimal stratum (i.e., has exactly one cone point) if and only if S(σ, τ) is connected
and [σ, τ ] is a non-trivial cyclic permutation. Hence, using Lemma 2.1 and Proposition 1.8,

Pr[S(σ, τ) belongs to a principal stratum] ≤ Pr[[σ, τ ] is a product of disjoint transpositions]

= Pr[η ∈ An is a product of disjoint transpositions] +O(n−1)

→ 0.

Similarly,

Pr[S(σ, τ) belongs to a minimal stratum] ≤ Pr[[σ, τ ] is a non-trivial cyclic permutation]

= Pr[η ∈ An is a non-trivial cyclic permutation] +O(n−1)

→ 0.

�

It is interesting to compare Proposition 2.9 with what happens in the general case of translation surfaces
of a fixed genus. It is known that a stratum H(α1, . . . , αs) of genus g translation surfaces with s cone points
is a complex orbifold of dimension 2g − 2 + s. Hence the principal stratum (the one with the most cone
points) has the highest dimension among genus g strata, and the minimal stratum has the lowest. So, if
we fix the genus, we expect a generic translation surface to fall in the principal stratum. However, when
the genus is not fixed, and we consider simply square-tiled surfaces, Proposition 2.9 asserts the opposite. In
fact, the computation in Proposition 1.8 suggests that the probability of a random STS falling in a minimal
stratum is higher than the probability of it falling in a principal stratum.
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3. Proof of Geometry result

This section will be devoted to proving the following theorem:

Holonomy Theorem. Let S(σ, τ) ∈ STSn given by (σ, τ) ∈ Sn × Sn. Then, as n → ∞,

Pr[S(σ, τ) is a holonomy torus ] =
1

e
+O(n−1); Pr[S(σ, τ) is a visibility torus ] = 1−O

( n

2n/2

)

We begin with the following lemma which gives sufficient criterion on the number of squares for an STS
to be a visibility torus. For connected surfaces, this lemma is part (3) of Theorem 1.3.

Lemma 3.1. Let S be a (not necessarily connected) n-square-tiled surface with s cone points. Let g =
1− χ(S)/2 where χ(S) is the Euler characteristic. If 4g + 2s− 4 > n, then S is a visibility torus.

Proof. Assume S(σ, τ) has ℓ ≥ 1 connected components with genera g1, . . . , gℓ and Euler characteristic
χ1, . . . , χℓ. Also let s1, . . . , sℓ be the cone points and n1, . . . , nℓ be the number of squares in each of the
components. Then,

g = 1− χ(S)

2
= 1−

∑ℓ
i=1 χi

2
=

ℓ∑

i=1

gi − (ℓ− 1)

since gi = 1− χi

2 . Now, assume 4gi + 2si − 4 ≤ ni for each i. Note
∑

i ni = n. This then implies,

4

ℓ∑

i=1

gi + 2

ℓ∑

i=1

si − 4l = 4g + 2s− 4 ≤ n,

a contradiction. So there must exist a connected component for which 4gi+2si−4 > n. By Theorem 1.3 part
(3), this connected component is a visibility torus. Hence, regardless of what happens in other components,
S(σ, τ) is a visibility torus. �

Next we give the proof of the Holonomy Theorem.

Proof of . (Holonomy) We first prove that Pr[S(σ, τ) is a holonomy torus] = 1
e +O(n−1). Define,

Xn := {(σ, τ) ∈ Sn × Sn|[σ, τ ] is a derangement},
Yn := {(σ, τ) ∈ Sn × Sn| fixed points of [σ, τ ] = fixed points of σ = fixed points of τ}.

By Proposition 1.6,

Pr[S(σ, τ) is a holonomy torus] = Pr[(σ, τ) ∈ Xn] + Pr[(σ, τ) ∈ Yn]

We note that for all (σ, τ) ∈ Yn, 〈σ, τ〉 is not transitive (for instance, the common fixed points are fixed by
the entire group). So, by Dixon [7], we know, Pr[(σ, τ) ∈ Yn] = O(n−1). On the other hand, by Lemma 2.1
and Proposition 1.7, Pr[(σ, τ) ∈ Xn] = e−1 +O(n−1). So, we conclude,

Pr[S(σ, τ) is a holonomy torus] =
1

e
+O(n−1).

(Visibility) Next we prove that, Pr[S(σ, τ) is a visibility torus] = 1−O
(

n
2n/2

)
.

Recall the random variables Gn := Gn,4 and sn := sn,4 that count the genus (in the connected case) and
the number of cone points respectively of a random S ∈ STSn. By Lemma 3.1 we observe that

Pr[S(σ, τ) is a visibility torus] > Pr[4Gn + 2sn − 4 > n]

Now, Pr[4Gn + 2sn − 4 > n] > Pr[4Gn − 4 > n] = Pr[Gn > (n+ 4)/4]. However,

Pr

[

Gn >
n+ 4

4

]

= Pr

[
n

2
− Cw1,n

2
+ 1 >

n+ 4

4

]

= 1− Pr
[

Cw1,n ≥ n

2

]

= 1−O
( n

2n/2

)

where the last equality is due to Lemma 2.3. So,

Pr[S(σ, τ) is a visibility torus] ≥ Pr

[

Gn >
n+ 4

4

]

= 1−O
( n

2n/2

)

which implies Pr[S(σ, τ) is a visibility torus] = 1 − O
(

n
2n/2

)
. Therefore, we conclude that a random STS is

asymptotically almost surely a visibility torus. �
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4. Generalization to Polygon-tiled Surfaces

In this section we generalize the theory of square-tiled surfaces to polygon-tiled surfaces. In particular,
we generalize the Genus Theorem and Theorem 2.4.

i

σ5(i)

σ2(i)

σ3(i)

σ1(i)

σ4(i)

v1

v2
v3

v4

v5

v6

v7
v8

v9

v10

e1

e2

e3e4

e5

e6

e7

e8 e9

e10

Figure 7. Associating permutations describing the
gluings of a decagon-tiled surface. Since e6 is opposite
to e1, the decagon glued to side e6 is σ−1

1 (i) and so on
for the other sides whose neighbors are not shown.

4.1. Randomizing model for PTSs. Similar to
square-tiled surfaces, for any S ∈ PTSn,2k we can
encode the gluings by a k-tuple of permutations.
First label the polygons {1, . . . , n}. Next, for each
polygon, label and orient the edges e1, . . . , e2k, coun-
terclockwise starting at the right vertical edge. Also,
we label the corners v1, . . . , v2k counterclockwise
starting at the top of edge e1. Then, define σ1 ∈ Sn

such that σ1(i) is the polygon glued to edge e1 of
polygon i. This ensures that the polygon σ1(i)
is always the neighbor to the right of polygon i,
directly generalizing the square-tiled case. Next,
σ2 ∈ Sn is defined such that σ2(i) is the polygon
glued to edge ek of polygon i and σ3 ∈ Sn such
that σ3(i) is the polygon glued to edge e2k−1. Con-
tinue on so that σl(i) is the polygon glued to edge
e(l−1)(k−1)+1 mod 2k of polygon i. This is illustrated
in Figure 7 for k = 5. Note that, just as we needed
only two permutations in the square-tiled case, it
suffices to describe the gluings associated to k of the
non-parallel sides. The gluings on the opposite par-
allel sides to the ones just described are encoded by
the corresponding inverse permutations. See Figure
4 for some examples.

Conversely, given a k tuple of permutations, (σ1, . . . , σk) ∈ ∏k
Sn, one can associate to such a tuple a

polygon-tiled surface S(σ1, . . . , σk) ∈ PTSn,2k. Again, this surface is connected if and only if the subgroup
generated by the permutations 〈σ1, . . . , σk〉 ⊂ Sn, is a transitive subgroup and hence, a uniformly distributed

k-tuple of permutations in Sn gives a connected surface asymptotically almost surely as n → ∞. So,
∏k Sn

with the uniform measure is a combinatorial model for random polygon-tiled surfaces built out of n 2k-gons.

4.2. Genus of PTSs from the randomizing model. Similar to the square-tiled case, in order to de-
termine the genus of a random PTS in PTSn,2k we start with the Euler characteristic formula. For any
S ∈ PTSn,2k, we have n faces and kn edges so that the genus is determined by the number of the vertices.

To count the number of vertices, we can use the next proposition. Essentially, it tells us that the products
c := σ1 . . . σkσ

−1
1 . . . σ−1

k , a := σ1 . . . σk and b := σ−1
1 . . . σ−1

k capture the vertex equivalence classes when
(σ1, . . . , σk) describes a polygon-tiled surface. When k = 2, note that c is exactly the commutator and the
following proposition is seen as a direct generalization of Proposition 1.4.

Proposition 4.1 (Combinatorial condition for identifying vertices). Let S ∈ PTSn,2k be given by (σ1, . . . , σk) ∈
∏k

Sn. Let a, b, c be the products of permutations as defined above.

(1) If k is even, corner vk+1 of polygon i is glued to corner vk+1 of polygon j if and only if there exists
ℓ ≥ 1 such that cℓ(i) = j.

(2) If k is odd, corner vk+1 of polygon i is glued to corner vk+1 of polygon j if and only if there exists
ℓ ≥ 1 such that aℓ(i) = j. Similarly, corner v1 of polygon i is glued to corner v1 of polygon j if and
only if there exists ℓ ≥ 1 such that bℓ(i) = j.

Proof. When k is even, the proof of the general case is analogous to the proof of Proposition 1.4. Geomet-
rically, the action of c on polygon i corresponds to winding around the vertex represented by corner vk+1 of
i as in Figure 8.
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i

σ−1
4 (i)

v5
v2

σ−1
3 σ−1

4 (i)

σ−1
2 σ−1

3 σ−1
4 (i)

v7
v4

σ4b(i)

b(i)

v6
v1

σ2σ3σ4b(i)

σ3σ4b(i)

v8
v3 c(i)

v5

Figure 8. Following corner v5 of i under the generalized commutator c in an octagon-tiled
surface. Only the relevant gluings around the corners are shown through which we see that
v5 of i is glued to v2 of σ−1

4 is glued to v7 of σ−1
3 σ−1

4 and so on until v5 of j = c(i).

The case for odd k is similar. Using a geometric viewpoint, the action of a on i corresponds to winding
around the vertex represented by corner vk+1 and the action of b on i corresponds to winding around the
vertex represented by corner v1. �

Proposition 4.1 naturally leads to the following observation which is a direct generalization of Proposition
1.5.

Proposition 4.2 (Cycle type determines cone point data). Let S ∈ PTSn,2k be given by (σ1, . . . , σk) ∈
∏k

Sn.

(1) If k is even and the cycle type of σ1 . . . σkσ
−1
1 . . . σ−1

k is (1ξ1 , 2ξ2 , . . . , nξn), then S has ξl vertices with
angle 2π(k − 1)ℓ for each ℓ = 1, . . . , n.

(2) If k is odd and the cycle type of σ1 . . . σk is (1ξ1 , 2ξ2 , . . . , nξn) and the cycle type of σ−1
1 . . . σ−1

k is

(1β1 , 2β2, . . . , nβn), then S has λl + βl vertices with angle π(k − 1)ℓ for each ℓ = 1, . . . , n

Proof. When k is even, every vertex in S is represented by corner vk+1 of some polygon i. This is because
every vertex is a pre-image of the lone vertex in the base 2k-gon surface which can be represented by corner
vk+1. By Proposition 1.4 disjoint cycles of c are in bijection with the distinct vertices. Following the gluings
from i to c(i) corresponds to winding around the vertex and traversing 2π(k − 1) angle each. Hence, if the
associated cycle’s length is ℓ, then the vertex angle is 2π(k − 1)ℓ.

The case for odd k is similar. In this case the base surface has two branch points, say p and q. One is
represented by corner vk+1 (say, p is) and the other by v1. Hence, each vertex in the surface that is in the
pre-image (under the branch covering map) of p is represented by corners vk+1 and vertices in the pre-image
of q are represented by corners v1. By Proposition 1.4 cycles of a are then in bijection with vertices in the
pre-image of p while cycles of b are in bijection with pre-images of q. Following the gluings from i to a(i) and
i to b(i) each corresponds to winding around the respective vertices and traversing π(k − 1) angle each. �

Propositions 4.1 and 4.2 motivate the study of the permutations a = σ1 . . . σk, b = σ−1
1 , σ−1

2 , . . . , σ−1
k and

c = ab in order to understand the genus of random PTSs. To study these products we briefly introduce the
general theory of word maps in the next section.

4.3. Word maps. Recall that for the square-tiled case, we considered the probability distribution on An

induced by the commutator map wc : Sn × Sn → Sn. More generally, let w be a word in Fk = F (x1, . . . , xk)

the free group on k generators. Given a group G, we can consider a word map, w :
∏k

G → G associated
to the word w ∈ Fk given by substitution: for w =

∏r
j=1 x

ǫj
ij

with ǫj = ±1,

w(g1, . . . , gk) =
r∏

j=1

gij

For example, if w ∈ F (x1, x2) is the word w = [x1, x2] = x1x2x
−1
1 x−1

2 , then w(g1, g2) = [g1, g2]. Although
word maps are generally defined, we will assume G is finite for our purposes. For any g ∈ G, let Nw(g) =
#w−1(g). Then, any word map induces a probability measure on G, which we will denote Pw given by

Pw(g) =
Nw(g)

#Gk
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The function Nw satisfies some basic properties:

• Nw is a class function
• If w and w′ are equivalent under Aut(Fk), then Nw ≡ Nw′

• If w = x1, then Nw ≡ #Gk−1

Since class functions on a finite group can be written as linear combinations of irreducible characters, we
can write Nw =

∑

χ∈Irr(G) N
χ
w · χ for Nχ

w ∈ C. The coefficients Nχ
w are called the Fourier coefficients

of the word map w. The study of these Fourier coefficients goes back to Frobenius [13] who proved that

Nχ
[x1,x2]

= #G
χ(1) and hence gave the formula in (2). More generally, we are concerned with the Fourier

coefficients of the word maps associated to words

wc := x1 . . . xkx
−1
1 . . . x−1

k wa := x1x2 . . . xk wb := x−1
1 x−1

2 . . . x−1
k .

The next proposition simplifies the task to simply understanding wc.

Proposition 4.3. Nwa ≡ Nwb
≡ #Gk−1.

Proof. Replacing xi with its inverse is an elementary Nielsen transformation and an automorphism of Fk.
So, wb ∼ wa under Aut(Fk). Similarly, replacing x1 by x1x2 is an elementary Nielsen transformation.
Inductively, x1 ∼ x1x2 . . . xk = wa ∼ wb. Hence, Nwa = Nwb

= #Gk−1. �

As a consequence of Proposition 4.3, the induced probability measures Pwa,n,2k and Pwb,n,2k on Sn induced

by wj :
∏k

Sn → Sn (for j = a, b) are exactly the uniform measure. The case of Pwc,n,2k, induced by

wc :
∏k

Sn → An is slightly more complicated. The coefficients of Nwc are given by the following theorem
of Tambour (which was generalized by Parzanchevski-Schul [29]).

Theorem 4.4 (Tambour [40]). For wc = x1x2 . . . xkx
−1
1 . . . x−1

k ∈ F (x1, . . . , xk), the function Nwc can be
expanded into irreducible characters as,

Nwc ≡







∑

χ∈Irr(G)
#Gk−1

χ(1)k−1 · χ for even k ≥ 2

∑

χ∈Irr(G)
#Gk−1

χ(1)k−2 · χ for odd k ≥ 3

Note that Pwc,n,4 = Pwc and Theorem 4.4 generalizes Frobenius’s formula for the Fourier coefficients of
the commutator word map.

Now, given a random polygon-tiled surface (σ1, . . . , σk) ∈
∏k

Sn, using Proposition 4.1 we see that the
number of vertices equals the number of cycles of the permutation wc(σ1, . . . σk) if k is even, and the sum of
the number of cycles of wa(σ1 . . . σk) and wb(σ1 . . . σk) if k is odd. Hence, we define the random variables,
for every k ≥ 2 and n ≥ 1,

(3) Cwi,n,2k = # cycles of wi(σ1, . . . , σk)

where (σ1, . . . , σk) ∈ ∏k
Sn is uniformly distributed. Then define Gn,2k :

∏k
Sn → N to be the random

variable

Gn,2k =







(k−1)n
2 − Cwc,n,2k

2 + 1 for even k ≥ 2

(k−1)n
2 − Cwa,n,2k+Cwb,n,2k

2 + 1 for odd k ≥ 3

We will drop the subscript 2k from the random variables when it is implied by context.

4.4. Generalization of preliminary lemmas. We now generalize the appropriate lemmas from the
square-tiled case. In the first lemma we calculate the generating function for the random variable Cwc,n,2k

which counts the number of cycles of a Pwc,n,2k-distributed random permutation from An. Note the case
k = 2 is exactly Lemma 2.2.

Lemma 4.5. The generating function for Cwc,n,2k is given by,

G(q) :=
∑

σ1,...,σk∈Sn

qCwc,n,2k(σ1,...,σk) =







(n!)
∑

λ⊢n Hk−2
λ

∏

r∈λ(q + cont(r)) for k ≥ 2 even

(n!)2
∑

λ⊢n Hk−3
λ

∏

r∈λ(q + cont(r)) for k ≥ 3 odd
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where

• the sum is over unordered partitions λ of n,
• Hλ is the product of hook lengths of λ,
• cont(r) is the content of square r.

Proof. In this proof we will use some of the combinatorial tools introduced in Appendix A.
We begin by applying the Frobenius characteristic map (equation (6)) to the class function Nwc which

records the number of pre-images of an element under the word map wc.

chNwc =
∑

µ⊢n

z−1
µ Nwc(µ)pµ =

1

n!

∑

σ∈Sn

Nwc(σ)pcyc(σ) =
1

n!

∑

σ1,...,σk∈Sn

pcyc(wc(σ1,...,σk))

where pµ is the power sum symmetric function associated to the partition µ and cyc(σ) is the partition
associated to the cycle type of σ.

However, in terms of the Schur symmetric functions (equation (7)), and after applying Theorem 4.4, we
then have

chNwc =







∑

λ⊢n
|Sn|

k−1

χλ(1)k−1 sλ for even k ≥ 2

∑

λ⊢n
|Sn|

k−1

χλ(1)k−2 sλ for odd k ≥ 3

Equating the two expressions for chNwc and using Lemma A.1 so that Hk−1
λ = |Sn|

k−1

χλ(1)k−1 , we get

(4)
1

n!

∑

σ1,...,σk∈Sn

pcyc(wc(σ1,...,σk)) =







∑

λ⊢n H
k−1
λ sλ for even k ≥ 2

∑

λ⊢n H
k−1
λ χλ(1)sλ for odd k ≥ 3

Now, taking x1 = · · · = xq = 1 and 0 for the rest of the indeterminates, on the left we get

1

n!

∑

σ1,...,σk∈Sn

qCwc,n,2k(σ1,...,σk)

Using Lemma A.4 we get sλ(1, 1, 1, . . . , 1) =
∏

r∈λ
q+cont(r)

h(r) where cont(r) is the content and h(r) is the

hook length of square r which simplifies the right hand side and equation (4) then becomes,

∑

σ1,...,σk∈Sn

qCwc,n,2k(σ1,...,σk) =







n!
∑

λ⊢n Hk−2
λ

∏

r∈λ(q + cont(r)) for even k ≥ 2

(n!)2
∑

λ⊢n Hk−3
λ

∏

r∈λ(q + cont(r)) for odd k ≥ 3

which is the generating function required. �

We next state the generalization of Lemma 2.3 to the case of the random variables Cwc,n,2k.

Lemma 4.6 (Large deviations). Let Cwc,n,2k be as before. Then, Pr(Cwc,n,2k ≥ t) = O
(
n
2t

)

The proof follows the proof of Lemma 2.3. We start with the generating function obtained from Lemma
4.5 which is first converted into a probability generating function and evaluated at q = 2 to give an upper
bound for Pr(Cwc,n,2k ≥ t). Next, note that for any partition λ ⊢ n, we have Hλ

n! = n!
χλ(1)n!

≤ 1. This then

implies that Pr(Cwc,n,2k ≥ t) ≤ 1
2tn!

∑⌊n/2⌋
j=0

∏

r∈(n−j,j)(2+ cont(r)) which is exactly the intermediate bound

in the proof of Lemma 2.3.
Similarly, we can generalize Lemma 2.1 and obtain the following lemma for the general case of polygon-

tiled surfaces.

Lemma 4.7. Let UAn and Pwc,n,2k be as previously defined. Then,

||Pwc,n,2k − UAn || =







O(n−k+1) when k ≥ 2 even

O(n−k+2) when k ≥ 3 odd
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To obtain this lemma from the proof of Lemma 2.1, we use the general formula obtained by Tambour in
Theorem 4.4 instead of Frobenius’s formula for the number of pre-images under the commutator map. In
particular, under Tambour’s formula, equation (2) generalizes to

(5) Pwc,n,2k(π) =
1

n!

∑

χ∈Irr(Sn)

χ(π)

(χ(1))ǫ

where ǫ = k − 1 when k is even and ǫ = k − 2 when k is odd. The rest of the proof follows closely the one
in Lemma 2.1 with this modification.

4.5. Moments of vertex count in PTSs. We now state the generalization of Theorem 2.4 to PTSs.

Theorem 4.8 (Moments of vertex count). Let p(x) be a polynomial of degree ℓ that is non-negative and
non-decreasing for x ≥ 0. Then,

E[p(Cwc,n,2k)] = E[p(Cη,n)] +







O
(

logℓ(n)
nk−1

)

for even k ≥ 2

O
(

logℓ(n)
nk−2

)

for odd k ≥ 3

E[p(Cwi,n,2k)] = E[p(Cπ,n)] for i = a, b

The proof is analogous to the proof of the square-tiled case, but uses Lemmas 4.7 and 4.6 instead of
Lemmas 2.1 and 2.3.

The statistics of the genus random variable Gn,2k directly follows from Theorem 4.8.

Corollary 4.9. The expected value and variance of the genus random variable Gn,2k are given as follows:

Even k ≥ 2 Odd k ≥ 3

E[Gn,2k]
(k−1)n

2 − log(n)
2 − γ

2 + 1 + o(1) (k−1)n
2 − log(n)− γ + 1 + o(1)

Var[Gn,2k]
log(n)

4 + γ
4 − π2

24 + o(1) log(n)
2 + γ

2 − π2

12 + o(1)

Similarly, the local central limit theorem from Gn,2k for even k also follows from previous observations of
Chmutov-Pittel as explained for the square-tiled case. When k is odd, Gn,2k is given by a linear combination
of random variables Cwa,n,2k and Cwb,n,2k which are not independent. Hence, the local central limit theorem
for the odd k case doesn’t immediately follow, but we still conjecture that Gn,2k is asymptotically normally
distributed for k odd as well.

4.6. Number of cone points. Let sn,2k :
∏k

Sn → N be the random variable counting the number of cone
points of a random S ∈ PTSn,2k. As a Corollary to Theorem 4.8, we also get the expected value of sn,2k.

Corollary 4.10. The expected number of cone points on a random polygon-tiled surface is given by,

k = 2 Even k ≥ 4 k = 3 Odd k ≥ 5

E[sn,2k] log(n) + γ − 1 + o(1) log(n) + γ + o(1) 2 log(n) + 2γ − 2 + o(1) 2 log(n) + 2γ + o(1)

Proof. Recall that every S ∈ PTSn,2k branch covers S′ ∈ PTS1,2k where S′ is obtained by taking a regular
2k-gon (oriented in the plane so that one side is vertical) and identifying its opposite sides. There are two
branch points (when k is odd) and one branch point (when k is even).

When k ≥ 4, the branch points are cone points of S′, and hence all their pre-images (i.e. ramification
points) on S are cone points as well. Moreover, any cone point on S has to project to a cone point on S′.
Hence, the random variables Cwc,n,2k (for even k ≥ 4) and Cwa,n,2k +Cwb,n,2k (for odd k ≥ 5) exactly count
the number of cone points on S and subsequently Theorem 2.4 implies,

E[sn,2k] =

{

E[Cwc,n,2k] = log(n) + γ + o(1) for even k ≥ 4

E[Cwa,n,2k] + E[Cwb,n,2k] = 2 log(n) + 2γ + o(1) for odd k ≥ 5

The case k = 2 is handled in Corollary 2.7. When k = 3, S′ is the hexagonal torus which does not have
cone points. Hence, the pre-images of the branch points may include non-cone points as well. By Proposition



THE TOPOLOGY AND GEOMETRY OF RANDOM SQUARE-TILED SURFACES 21

1.5, the number of ramification points on a hexagon-tiled surface S(σ1, σ2, σ3) that are not cone points is
exactly the number of fixed points of wa(σ1, σ2, σ3) together with the fixed points of wb(σ1, σ2, σ3).

So, define Fwi,n,2k :
∏k

Sn → Z≥0 to count the number of fixed points of wi(σ1, . . . , σk) for i = a, b. Using
Proposition 1.7, for a hexagon-tiled surface,

E(sn,6) = E(Cwa,n,6 + Cwb,n,6 − Fwa,n,6 − Fwb,n,6) = 2E(Cπ,n)− 2E(Fπ) = 2 log(n) + 2γ − 2 + o(1)

�
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[20] S. Lelièvre and E. Royer. Orbit countings in H(2) and quasimodular forms. International Mathematics Research Notices,

2006, January 2006.
[21] M. W. Liebeck and A. Shalev. Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and

random walks. J. Algebra, 276(2):552–601, 2004.
[22] H. Masur. Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential. In

Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), volume 10 of Math. Sci. Res. Inst. Publ., pages 215–228.
Springer, New York, 1988.

[23] H. Masur. The growth rate of trajectories of a quadratic differential. Ergodic Theory Dynam. Systems, 10(1):151–176,
1990.

[24] H. Masur, K. Rafi, and A. Randecker. The shape of a generic translation surface, 2018.
[25] K. V. Menon. On the convolution of logarithmically concave sequences. Proc. Amer. Math. Soc., 23:439–441, 1969.
[26] M. Mirzakhani and B. Petri. Lengths of closed geodesics on random surfaces of large genus. Comment. Math. Helv.,

94(4):869–889, 2019.
[27] A. Nica. On the number of cycles of given length of a free word in several random permutations. Random Structures

Algorithms, 5(5):703–730, 1994.
[28] O. Ore. Some remarks on commutators. Proc. Amer. Math. Soc., 2:307–314, 1951.
[29] O. Parzanchevski and G. Schul. On the Fourier expansion of word maps. Bull. Lond. Math. Soc., 46(1):91–102, 2014.
[30] B. Petri. Finite length spectra of random surfaces and their dependence on genus. J. Topol. Anal., 9(4):649–688, 2017.
[31] B. Petri. Random regular graphs and the systole of a random surface. J. Topol., 10(1):211–267, 2017.
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Appendix A. Tools from Combinatorics

Since our randomizing model is combinatorial, the overall strategy is to convert geometric questions into
combinatorial ones about the model, and use combinatorial tools to answer them. Hence, in this section we
provide a brief exposition on the relevant combinatorial notions and state the relevant combinatorial lemmas.
Majority of the material in this section can be found in the textbook by Stanley [38, 39].

A.1. Partitions and the hook-length formula. A partition n ∈ N is a sequence λ = (λ1, . . . , λk) ∈ Nk

such that
∑

λi = n and λ1 ≥ λ2 ≥ · · · ≥ λk. Two partitions are identical if they only differ in the number of
zeros. For example (3, 2, 1, 1) = (3, 2, 1, 1, 0, 0). Informally a partition can be thought of as a way of writing
n as a sum λ1 + · · ·+ λk disregarding the order the λi (since there is a canonical way of writing such a sum
as a partition). If λ is a partition of n, we write λ ⊢ n. The non-zero λi are called parts of λ and we say that
λ has k parts if k = #{i : λi > 0}. If λ has ξi parts equal to i, then we can write λ = 〈1ξ1 , 2ξ2 , . . .〉 where
terms with ξi = 0 and the superscript ξi = 1 is omitted. Denote by Par(n), the set of all partitions of n and
set Par =

⋃

n∈N
Par(n).

For a partition (λ1, . . . , λk) ⊢ n, we can draw a left-justified array of boxes with λi boxes in the i-th row.
This is called the Young diagram associated to partition (λ1, . . . , λk). The squares in a Young diagram
can be identified using tuples (i, j) where i is the row corresponding to part λi and 1 ≤ j ≤ λi is the position
of the square along that row. Given a square r = (i, j) ∈ λ, define the hook length of λ at r as the number
of squares directly to the right or directly below r, counting r itself once. The hook length product of λ,
denoted Hλ is the product,

Hλ =
∏

u∈λ

h(u)

Likewise, define the content cont(r) of λ at r = (i, j) by cont(r) = j − i. In general we obtain a Young

tableau by filling in the boxes of the Young diagram with entries from a totally ordered set (usually a set
of positive integers). It is called a semistandard Young tableau (SSYT) if the entries of the tableau
weakly increase along each row and strictly increase down each column. The type of an SSYT is a sequence
ξ = (ξ1, . . . ) where the SSYT contains ξ11

′s, ξ22
′s and so on. See Figure 9 for examples of Young diagram

and Young tableau.

9 7 5 2 1

6 4 2

5 3 1

3 1

1

0 1 2 3 4

−1 0 1

−2 −1 0

−3 −2

−4

1 1 2 3 3

2 2 3

5 5 5

6 8

7

Figure 9. Young diagram and tableau for the partition (5,3,3,2,1). From left to right:
Young diagram; Tableau with hook lengths; Tableau with contents; Example of an SSYT

Partitions are particularly relevant to us, since the cycle type of a permutation π ∈ Sn is a partition
of n, and two permutations are conjugate if and only if they have the same cycle type. Hence, partitions
index conjugacy classes of Sn, and we will denote cyc(π) to be the partition obtained from the cycle type
of π. Moreover, partitions of n also index the irreducible representations and irreducible characters of Sn

canonically. We will denote by ρλ and χλ the irreducible representation and character associated indexed by
the partition λ. One instance of the deep relation between partitions and the representation theory of the
symmetric group is the Hook-length formula which gives a relation between the degree (or dimension) of a
representation and the hook length product of the partition that is used to index it:

Lemma A.1 (Hook-length formula). For a partition λ ⊢ n, and associated representation ρλ ∈ Ŝn, the
degree is given by

dim(ρλ) =
n!

Hλ
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A.2. Symmetric functions and the Murnaghan-Nakayama Rule. Let x = (x1, x2, . . . ) be a set of
indeterminates, and let n ∈ N.

Denote the set of all homogeneous symmetric functions of degree n over Q as Λn. Note that Λn is a
Q-vector space with many different standard bases, two of which we will utilize. The first of which are called
power sum symmetric functions, denoted pλ and indexed by partitions λ. They are defined as,

pn :=
∑

i

xn
i , n ≥ 1 (with p0 = 1)

pλ := pλ1
pλ2

. . . if λ = (λ1, λ2, . . . , )

The second set of symmetric functions we will need are called Schur functions, denoted sλ and also indexed
by partitions λ. They are defined as the formal power series,

sλ(x) =
∑

T

xT

where

• the sum is over all SSYTs T of shape λ.

• xT = x
ξ1(T )
1 x

ξ2(T )
2 . . . if T is an SSYT of type ξ.

While it is not hard to see that power sum symmetric functions are indeed symmetric functions, it is a non-
trivial theorem that Schur functions are indeed symmetric functions. There is a deep connection between
Schur functions, power sum symmetric functions and irreducible characters of Sn. This relation is called the
Murnaghan-Nakayama rule:

Theorem A.2 (Murnaghan-Nakayama Rule). For λ ⊢ n,

sλ =
∑

ν⊢n

z−1
ν χλ(ν)pν

where χλ is the irreducible character of Sn indexed by λ and z−1
ν =

#{σ∈Sn:cyc(σ)=ν}
n!

Conversely, the power sum symmetric functions can be transformed into the Schur functions as follows:

Theorem A.3. The power sum symmetric functions can be expressed as a linear combination of the Schur
functions in the following way:

pµ =
∑

λ⊢n

χλ(µ)sλ

Next, let CFn be the set of class functions f : Sn → Q. Then, there exists a natural inner product on
CFn given by,

〈f, g〉 = 1

n!

∑

σ∈Sn

f(σ)g(σ) =
∑

λ⊢n

z−1
λ f(λ)g(λ)

where f(λ) denotes the value of f on the conjugacy class associated to partition λ. To each class function
f ∈ CFn, one can associate a symmetric function of degree n via the linear transformation ch : CFn → Λn,
called the Frobenius characteristic map given by,

(6) chf =
1

n!

∑

σ∈Sn

f(σ)pcyc(σ) =
∑

λ⊢n

z−1
λ f(λ)pλ.

Using Theorem A.3, the characteristic function is expressed as,

(7) chf =
∑

λ⊢n

〈f, χλ〉sλ

Finally, we state a particular specialization of sλ which we will use. This is Corollary 7.21.4 of [39]

Lemma A.4. For any λ ∈ Par and m a positive integer, we have

sλ(1
m) =

∏

r∈λ

m+ cont(r)

h(r)

where sλ(1
m) means evaluating sλ by setting x1 = . . . xm = 1 and xi = 0 for all i > m.
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