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Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn non-Euclidean data such as graphs or meshes?

Geometric (deep) learning (Bronstein et al., 2017) is an
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important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

In machine learning, a model often introduces a set of as-

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.
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sumptions, which is known as inductive bias. These as-
sumptions help narrow down the hypothesis space while
maintaining the validity of the learning model subject to
the nature of the data. For example, a natural inductive
bias for graph classification problems is the invariant to
the permutation property (Maron et al., 2018; Sannai et al.,
2019). We are often interested in a hypothesis h that is in-
variant to isomorphism, i.e., for two isomorphic graphs G1

and G2 the hypothesis h should produce the same outcome,
h(G1) = h(G2). Therefore, it is reasonable to restrict our
attention to only invariant hypotheses. More specifically,
we focus on invariant embedding maps because we can con-
struct an invariant hypothesis by combining these mappings
with any machine learning model designed for vector data.
Consider the following research question:

Question 2. How to design an efficient and invariant em-
bedding map for the graph classification problem?

1.2. Homomorphism Numbers as a Classifier

A common approach to Problem 1 is to design an embed-
ding3 ρ : (G, x) 7→ ρ((G, x)) ∈ Rp, which maps graphs to
vectors, where p is the dimensionality of the representation.
Such an embedding can be used to represent a hypothesis
for graphs as h((G, x)) = g(ρ((G, x)) by some hypothesis
g : Rp → Y for vectors. Because the learning problem on
vectors is a well-studied problem, we can focus on designing
and understanding graph embedding.

We found that using homomorphism numbers as an invariant
embedding is not only theoretically valid but also extremely
efficient in practice. In a nutshell, the embedding for a
graph G is given by selecting k pattern graphs to form a
fixed set F , then computing the homomorphism numbers
from each F ∈ F to G. The classification capability of
the homomorphism embedding is parameterized by F . We
develop rigorous analyses for this idea in Section 2 (without
vertex features) and Section 3 (with vertex features).

Our contribution is summarized as follows:
• Introduce and analyze the usage of weighted graph ho-

momorphism numbers with a general choice of F . The
choice of F is a novel way to parameterize the capabil-
ity of graph learning models compared to choosing the
tensorization order in other related work.

• Prove the universality of the homomorphism vector
in approximating F-indistinguishable functions. Our
main proof technique is to check the condition of the
Stone-Weierstrass theorem.

• Empirically demonstrate our theoretical findings with
synthetic and benchmark datasets. Notably, we show
that our methods perform well in graph isomorphism
test compared to other machine learning models.

3Not to be confused with “vertex embedding”.

In this paper, we focus on simple undirected graphs without
edge weights for simplicity. The extension of all our results
to directed and/or weighted graphs is left as future work.

1.3. Related Works

There are two main approaches to construct an embedding:
graph kernels and graph neural networks. In the following
paragraphs, we introduce some of the most popular methods
which directly related to our work. For a more comprehen-
sive view of the literature, we refer to surveys on graph neu-
ral networks (Wu et al., 2019) and graph kernels (Gärtner,
2003; Kriege et al., 2019).

1.3.1. GRAPH KERNELS

The kernel method first defines a kernel function on the
space, which implicitly defines an embedding ρ such that
the inner product of the embedding vectors gives a kernel
function. Graph kernels implement ρ by counting methods
or graph distances (often exchangeable measures). There-
fore, they are isomorphism-invariant by definition.

The graph kernel method is the most popular approach to
study graph embedding maps. Since designing a kernel
which uniquely represents graphs up to isomorphisms is as
hard as solving graph isomorphism (Gärtner et al., 2003),
many previous studies on graph kernels have focused on
proposing a solution to the trade-off between computational
efficiency and representability. A natural idea is to compute
subgraph frequencies (Gärtner et al., 2003) to use as graph
embeddings. However, counting subgraphs is a #W[1]-hard
problem (Flum & Grohe, 2006) and even counting induced
subgraphs is an NP-hard problem (more precisely it is an
#A[1]-hard problem (Flum & Grohe, 2006)). Therefore,
methods like the tree kernel (Collins & Duffy, 2002; Mahé
& Vert, 2009) or the random walk kernel (Gärtner et al.,
2003; Borgwardt et al., 2005) restrict the subgraph family to
be some computationally efficient graphs. Regarding graph
homomorphism, Gärtner et al. and also Mahé & Vert studied
a relaxation which is similar to homomorphism counting
(walks and trees). Especially, Mahé & Vert showed that the
tree kernel is efficient for molecule applications. However,
their studies limit to tree kernels and it is not known to what
extend these kernels can represent graphs.

More recently, the graphlet kernel (Shervashidze et al., 2009;
Pržulj et al., 2004) and the Weisfeiler-Lehman kernel (Sher-
vashidze et al., 2011; Kriege et al., 2016) set the state-of-the-
art for benchmark datasets (Kersting et al., 2016). Other sim-
ilar kernels with novel modifications to the distance function,
such as Wasserstein distance, are also proposed (Togninalli
et al., 2019). While these kernels are effective for bench-
mark datasets, some are known to be not universal (Xu et al.,
2019; Keriven & Peyré, 2019) and it is difficult to address
their expressive power to represent graphs.
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WL-indistinguishable

isomorphic to
WL-kernel/GIN

Tensorized GNN

Figure 1. A visualization of Graph Neural Networks’ expressive
power. An “ideal” GNN, for instance the tensorized GNN by
Keriven & Peyré, maps graphs that are isomorphic to G to f(G).
In contrast, WL-kernel (Shervashidze et al., 2011) and (ideal)
GIN (Xu et al., 2019) is limited by the WL-indistinguishable set so
they might map graphs which are non-isomorphic to G to f(G).

1.3.2. GRAPH NEURAL NETWORKS

Graph Neural Networks refers to a new class of graph clas-
sification models in which the embedding map ρ is imple-
mented by a neural network. In general, the mapping ρ
follows an aggregation-readout scheme (Hamilton et al.,
2017; Gilmer et al., 2017; Xu et al., 2019; Du et al., 2019)
where vertex features are aggregated from their neighbors
and then read-out to obtain the graph embedding. Empir-
ically, especially on social network datasets, these neural
networks have shown better accuracy and inference time
than graph kernels. However, there exist some challenging
cases where these practical neural networks fail, such as
Circular Skip Links synthetic data (Murphy et al., 2019) or
bipartite classification (Section 4).

Theoretical analysis of graph neural networks is an active
topic of study. The capability of a graph neural network has
been recently linked to the Weisfeiler-Lehman isomorphism
test (Morris et al., 2019; Xu et al., 2019). Since Morris et al.
and Xu et al. proved that the aggregation-readout scheme
is bounded by the one-dimensional Weisfeiler-Lehman test,
much work has been done to quantify and improve the capa-
bility of graph neural networks via the tensorization order.
Another important aspect of graph neural networks is their
ability to approximate graph isomorphism equivariant or
invariant functions (Maron et al., 2018; 2019; Keriven &
Peyré, 2019). Interestingly, Chen et al. showed that isomor-
phism testing and function approximation are equivalent.

The advantage of tensorized graph neural networks lies in
their expressive power. However, the disadvantage is that
the tensorization order makes it difficult to have an intuitive
view of the functions which need to be approximated. Fur-
thermore, the empirical performance of these models might
heavily depends on initialization (Chen et al., 2019).

Figure 1 visualizes the interaction between function approx-
imation and isomorphism testing. An ideal graph neural

network f maps only G and graphs isomorphic to it to
f(G). On the other hand, efficient implementation of f can
only maps some F-indistinguishable of G to f(G). This
paper shows that graph homomorphism vectors with some
polynomials universally approximate F -invariant functions.

2. Graphs without Features
We first establish our theoretical framework for graphs with-
out vertex features. Social networks are often feature-less
graphs, in which only structural information (e.g. hyper-
links, friendships, etc.) is captured. The main result of this
section is to show that using homomorphism numbers with
some polynomial not only yields a universally invariant ap-
proximator but that we can also select the pattern set F for
some targeted applications.

2.1. Definition

An (undirected) graph G = (V (G), E(G)) is simple if it
has neither self-loops nor parallel edges. We denote by G
the set of all simple graphs.

Let G be a graph. For a finite set U and a bijection
σ : V (G) → U , we denote by Gσ the graph defined by
V (Gσ) = U and E(Gσ) = {(σ(u), σ(v)) : (u, v) ∈
E(G)}. Two graphs G1 and G2 are isomorphic if Gσ1 = G2

for some bijection σ : V (G1)→ V (G2).

2.2. Homomorphism Numbers

Here, we introduce the homomorphism number. This is a
well-studied concept in graph theory (Hell & Nesetril, 2004;
Lovász, 2012) and plays a key role in our framework.

Let F and G be undirected graphs. A homomorphism
from F to G is a function π : V (F ) → V (G) that pre-
serves the existence of edges, i.e., (u, v) ∈ E(F ) implies
(π(u), π(v)) ∈ E(G). We denote by Hom(F,G) the set of
all homomorphisms from F to G. The homomorphism num-
ber hom(F,G) is the cardinality of the homomorphisms,
i.e., hom(F,G) = |Hom(F,G)|. We also consider the ho-
momorphism density t(F,G). This is a normalized version
of the homomorphism number:

t(F,G) =
hom(F,G)

|V (G)||V (F )| (1)

=
∑

π:V (F )→V (G)

∏
u∈V (F )

1

|V (G)|

×
∏

(u,v)∈E(F )

1[(π(u), π(v)) ∈ E(G)], (2)

where 1[·] is the Iverson braket. Eq. (2) can be seen as the
probability that randomly sampled |V (F )| vertices of V (G)
preserve the edges of E(F ). Intuitively, a homomorphism
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number hom(F,G) aggregates local connectivity informa-
tion of G using a pattern graph F .

Example 3. Let ◦ be a single vertex, we have hom(◦, G) =
|V (G)| and hom( , G) = 2|V (E)|.
Example 4. Let Sk be the star graph of size k + 1. Then,
hom(Sk, G) ∝

∑
u∈V (G) d(u)k, where d(u) is the degree

of vertex u.

Example 5. We have: hom(Ck, G) ∝ tr(Ak), where Ck
is a length k cycle and A is the adjacency matrix of G.

It is trivial to see that the homomorphism number is invariant
under isomorphism. Surprisingly, the converse holds as
homomorphism numbers identify the isomorphism class of
a graph. Formally, we have the following theorem.

Theorem 6 ((Lovász, 1967)). Two graphs G1 and G2 are
isomorphic if and only if hom(F,G1) = hom(F,G2) for
all simple graphs F . In addition, if |V (G1)|, |V (G)2| ≤ n
then we only have to examine F with |V (F )| ≤ n.

2.3. Homomorphism Numbers as Embeddings

The isomorphism invariance of the homomorphism numbers
motivates us to use them as the embedding vectors for a
graph. Since examining all graphs will be impractical (i.e.
F = G), we select a subset F ⊆ G as a parameter for the
graph embedding. We obtain the embedding vector of a
graph G by stacking the the homomorphism numbers from
F ∈ F . When F = G, this is known as the Lovász vector.

hom(F , G) = [ hom(F,G) : F ∈ F ] ∈ R|F|.

We focus on two criterion: Expressive capability and com-
putational efficiency. Similar to the kernel representability
and efficiency trade-off, a more expressive homomorphism
embedding map is usually less efficient and vice versa.

Graphs G1 and G2 are defined to be F-indistinguishable
if hom(F,G1) = hom(F,G2) for all F ∈ F (Böker et al.,
2019). Theorem 6 implies that the F-indistinguishability
generalizes graph isomorphism. For several classes F , the
interpretation ofF -indistinguishability is studied; the results
are summarized in Table 1. The most interesting result is
the case when F ∈ F has treewidth4 at most k where
the F -indistinguishability coincides with the k-dimensional
Weisfeiler–Lehman isomorphism test (Dell et al., 2018).

A function f : G → R is F-invariant if f(G1) = f(G2)
for all F-indistinguishable G1 and G2; therefore, if we use
the F -homomorphism as an embedding, we can only repre-
sent F -invariant functions. In practice, F should be chosen
as small as possible such that the target hypothesis can be
assumed to be F-invariant. In the next section, we show
that any continuous F-invariant function is arbitrary accu-

4Smaller treewidth implies the graph is more “tree-like”.

Table 1. Meaning of F-indistinguishable

F F-indistinguishable

single vertex graphs have the same number of
vertices (Example 3)

single edge graphs have the same number of
edges (Example 3)

stars graphs have the same degree se-
quence (Example 4)

cycles adjacency matrices have the same
eigenvalues (Example 5)

treewidth up to k graphs cannot be distinguished
by the k-dimensional Weisfeiler-
Lehman test (Dell et al., 2018)

all simple graphs isomorphic graphs (Lovász, 1967)

rately approximated by a function of the F -homomorphism
embedding (Theorem 7 and 8).

2.4. Expressive Power: Universality Theorem

By characterizing the class of functions that is represented
by hom(F , G), we obtain the following results.

Theorem 7. Let f be an F-invariant function. For any
positive integer N , there exists a degree N polynomial hN
of hom(F , G) s.t. f(G) ≈ hN (G) ∀ G with |V (G)| ≤ N .

Theorem 8. Let f be a continuous F-invariant function.
There exists a degree N polynomial hN of hom(F,G) (F ∈
F) such that f(G) ≈ hN (G) ∀G ∈ G.

Proof of Theorem 7. Since |V (G)| ≤ N , the graph space
contains a finite number of points; therefore, under the dis-
crete topology, the space is compact Hausdorff.5 Let X be
a set of points (e.g., graphs). A set of functions A separates
X if for any two different points G1, G2 ∈ X , there exists
a function h ∈ A such that h(G1) 6= h(G2). By this separa-
bility and the Stone–Weierstrass theorem (Theorem 9), we
conclude the proof.

Theorem 7 is the universal approximation theorem for
bounded size graphs. This holds without any assumption
of the target function f . It is worth mentioning that the
invariant/equivariant universality results of tensorized graph
neural networks on this bounded size setting were proven
by (Keriven & Peyré, 2019); the unbounded case remains
an open problem. Theorem 8 is the universal approximation
for all graphs (unbounded). This is an improvement to the
previous works. However, our theorem only holds for con-
tinuous functions, where the topology of the space has to
satisfy the conditions of the Stone-Weierstrass theorem.

5In this topology, any function is continuous.
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Theorem 9 (Stone–Weierstrass Theorem (Hart et al., 2003)).
Let X be a compact Hausdorff space and C(X) be the set
of continuous functions from X to R. If a subset A ⊆ C(X)
separates X then the set of polynomials of A is dense in
C(X) w.r.t. the topology of uniform convergence.

In the unbounded graph case (Theorem 8), the input space
contains infinitely many graphs; therefore, it is not compact
under the discrete topology. Hence, we cannot directly
apply the Stone–Weierstrass theorem as in the bounded case.
To obtain a stronger result, we have to complete the set
of all graphs, and prove the completed space is compact
Hausdorff. Since it is non-trivial to work directly with
discrete graphs, we find that the graphon theory (Lovász,
2012) fits our purpose.

Graphon A sequence of graphs G1, G2, . . . is a conver-
gence if the homomorphism density, t(F,Gi), is a conver-
gence for all simple graph F . A limit of a convergence is
called a graphon, and the space obtained by adding the lim-
its of the convergences is called the graphon space, which
is denoted by G. See (Lovász, 2012) for the detail of this
construction. The following theorem is one of the most
important results in graphon theory.

Theorem 10 (Compactness Theorem (Lovász, 2012;
Lovász & Szegedy, 2006)). The graphon space G with the
cut distance δ� is compact Hausdorff.

Now we can prove the graphon version of Theorem 8.

Theorem 11. Any continuousF -invariant function f : G →
R is arbitrary accurately approximated by a polynomial of
{t(F, ·) : F ∈ F}.

Proof. The F-indistinguishability forms a closed equiva-
lence relation on G, where the homomorphism density is
used instead of the homomorphism number. Let G/F be
the quotient space of this equivalence relation, which is
compact Hausdorff in the quotient topology.

By the definition of the quotient topology, any continuousF -
invariant function is identified as a continuous function on
G/F . Also, by the definition, the set of F -homomorphisms
separates the quotient space. Therefore, the conditions of the
Stone–Weierstrass theorem (Theorem 9) are fulfilled.

2.5. Computational Complexity: Bounded Treewidth

Computing homomorphism numbers is, in general, an #P-
hard problem (Dı́az et al., 2002). However, if the pattern
graph F has bounded treewidth, homomorphism numbers
can be computed in polynomial time.

A tree-decomposition (Robertson & Seymour, 1986) of
a graph F is a tree T = (V (T ), E(T )) with mapping
B : V (T ) → 2V (F ) such that (1)

⋃
t∈V (T )B(t) = V (F ),

(2) for any (u, v) ∈ E(F ) there exists t ∈ V (T ) such

Algorithm 1 Compute hom(F, (G, x))

Input: target graph G, pattern graph F , vertex features x
function recursion(current, visited)

hom x← x
for y in F .neighbors(current) do

if y 6= visited then
hom y← recursion(y, current)
aux← [

∑
hom y[G.neighbors(i)] for i in V (G)]

hom x← hom x ∗ aux (element-wise mult.)
end if

end for
return hom x

end function
Output:

∑
recursion(0, -1)

that {u, v} ⊆ B(t), and (3) for any u ∈ V (F ) the
set {t ∈ V (T ) : u ∈ B(t)} is connected in T . The
treewidth (abbreviated as “tw”) of F is the minimum of
maxt∈V (T ) |B(t)− 1| for all tree-decomposition T of F .

Theorem 12 ((Dı́az et al., 2002)). For any graphs F and
G, the homomorphism number hom(F,G) is computable
in O(|V (G)|tw(F )+1) time.

The most useful case will be whenF is the set of trees of size
at most k. The number of trees of size k is a known integer
sequence6. There are 106 non-isomorphic trees of size k =
10, which is computationally tractable in practice. Also, in
this case, the algorithm for computing hom(F,G) is easily
implemented by dynamic programming with recursion as in
Algorithm 1. This algorithm runs in O(|V (G)|+ |E(G)|)
time. For the non-featured case, we sets x(u) = 1 ∀u ∈
V (G). The simplicity of Algorithm 1 comes from the fact
that if F is a tree then we only need to keep track of a
vertex’s immediate ancestor when we process that vertex by
the visited argument in the function recursion.

3. Graphs with Features
Biological/chemical datasets are often modeled as graphs
with vertex features (attributed graphs). In this section, we
develop results for graphs with features.

3.1. Definition

A vertex-featured graph is a pair (G, x) of a graph G and a
function x : V (G)→ X , where X = [0, 1]p.

Let (G, x) be a vertex-featured graph. For a finite set U
and a bijection σ : V (G)→ U , we denote by xσ the feature
vector on Gσ such that xσ(σ(u)) = x(u). Two vertex-
featured graphs (G1, x1) and (G2, x2) are isomorphic if
Gσ1 = G2 and xσ1 = x2 for some σ : V (G1)→ V (G2).

6https://oeis.org/A000055

https://oeis.org/A000055


Graph Homomorphism Convolution

3.2. Weighted Homomorphism Numbers

We first consider the case that the features are non-negative
real numbers. Let x(u) denote the feature of vertex u,
weighted homomorphism number is defined as follow:

hom(F, (G, x)) =
∑

π∈Hom(F,G)

∏
u∈V (F )

x(π(u)), (3)

and weighted homomorphism density is defined by
t(F, (G, x)) = hom(F, (G, x(u)/

∑
v∈V (G) x(v))). This

definition coincides with the homomorphism number and
density if x(u) = 1 for all u ∈ V (G).

The weighted version of the Lovász theorem holds as fol-
lows. We say that two vertices u, v ∈ V (G) are twins
if the neighborhood of u and v are the same. The twin-
reduction is a procedure that iteratively selects twins u
and v, contract them to create new vertex uv, and assign
x(uv) = x(u) + x(v) as a new weight. Note that the result
of the process is independent of the order of contractions.
Theorem 13 ((Freedman et al., 2007), (Cai & Govorov,
2019)). Two graphs (G1, x1) and (G2, x2) are isomorphic
after the twin-reduction and removing vertices of weight
zero if and only if hom(F, (G1, x1)) = hom(F, (G2, x2))
for all simple graph F .

Now we can prove a generalization of the Lovaász theorem.
Theorem 14. Two graphs (G1, x1) and (G2, x2) are
isomorphic if and only if hom(F, φ, (G1, x1)) =
hom(F, φ, (G2, x2)) for all simple graph F and some con-
tinuous function φ.

Proof. It is trivial to see that if (G1, x1) and (G2, x2) are
isomorphic then they produce the same homomorphism
numbers. Thus, we only have to prove the only-if part.

Suppose that the graphs are non-isomorphic. By setting
φ = 1, we have the same setting as the feature-less case;
hence, by Theorem 6, we can detect the isomorphism classes
of the underlying graphs.

Assuming G1 and G2 are isomorphic, we arrange the ver-
tices of V (G1) in the increasing order of the features (com-
pared with the lexicographical order). Then, we arrange
the vertices of V (G2) lexicographically smallest while the
corresponding subgraphs induced by some first vertices are
isomorphic. Let us choose the first vertex u ∈ V (G1) whose
feature is different to the feature of the corresponding vertex
in V (G2). Then, we define

φ(z) =

{
1, z ≤lex x1(u),

0, otherwise,

where ≤lex stands for the lexicographical order. Then, we
have hom(F, φ, (G1, x1)) 6= hom(F, φ, (G2, x2)) as fol-
lows. Suppose that the equality holds. Then, by Theorem 13,

the subgraphs induced by vertices whose features are lexico-
graphicallly smaller than or equal to x1(u) are isomorphic.
However, this contradicts the minimality of the ordering of
V (G2). Finally, by taking a continuous approximation of φ,
we obtain the theorem.

3.3. (F, φ)-Homomorphism Number

Let (G, x) be a vertex-featured graph. For a simple graph F
and a function φ : Rp → R, (F, φ)-convolution is given by

hom(F,G, x;φ) =
∑

π∈Hom(F,G)

∏
u∈V (F )

φ(x(π(u))). (4)

The (F, φ)-convolution first transform the vertex features
into real values by the encoding function φ. Then this ag-
gregates the values by the pattern graph F . The aggregation
part has some similarity with the convolution in CNNs.
Thus, we call this operation “convolution.”
Example 15. Let ◦ be a singleton graph and φ be the i-th
component of the argument. Then,

hom(F,G, x;φ) =
∑

u∈V (G)

xi(u). (5)

Example 16. Let be a graph of one edge and φ be the
i-th component of the argument. Then,

hom( , G, x;φ) =
∑

(u,v)∈E(G)

xi(u)xi(v). (6)

Algorithm 1 implements this idea when φ is the identity
function. We see that the (F, φ)-convolution is invariant
under graph isomorphism in the following result.
Theorem 17. For a simple graph F , a function φ : Rp → R,
a vertex-featured graph (G, x), and a permutation σ on
V (G), we have

hom(F,G, x;φ) = hom(F,Gσ, xσ, φ). (7)

Proof. Hom(F , Gσ) = {σ ◦ π : π ∈ Hom(F , G)}. There-
fore, we have:

hom(F,Gσ, xσ;φ) =
∑

π∈Hom(F,G)

∏
u∈V (F )

φ(xσ(σ ◦ π(u)))

From the definition, we have xσ(σ ◦ π(u)) = x(π(u)).

Theorem 17 indicates that for any F and φ, the (F, φ)-
convolution can be used as a feature map for graph classi-
fication problems. To obtain a more powerful embedding,
we can stack multiple (F, φ)-convolutions. Let F be a (pos-
sibly infinite) set of finite simple graphs and Φ be a (pos-
sibly infinite) set of functions. Then (F ,Φ)-convolution,
hom(F , G, x; Φ), is a (possibly infinite) vector:

[ hom(F,G, x;φ) : F ∈ F , φ ∈ Φ ] . (8)
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By Theorem 17, for any F and Φ, the (F ,Φ)-convolution
is invariant under the isomorphism. Hence, we propose to
use (F ,Φ)-convolution as a embedding of graphs.

3.4. (F, φ)-Homomorphism Number as Embedding

Let Φ be a set of continuous functions. As same as the fea-
tureless case, we propose to use the (F ,Φ)-homomorphism
numbers as an embedding. We say that two featured
graphs (G1, x1) and (G2, x2) are (F ,Φ)-indistinguishable
if hom(F, φ, (G1, x1)) = hom(F, φ, (G2, x2)) for all F ∈
F and φ ∈ Φ. A function f is (F ,Φ)-invariant if
f(G1, x1) = f(G2, x2) for all (F ,Φ)-indistinguishable
(G1, x1) and (G2, x2).

3.5. Universality Theorem

The challenge in proving the universality theorem for the
featured setting is similar to the featureless case, which is the
difficulty of the topological space. We consider the quotient
space of graphs with respect to (F ,Φ)-indistinguishability.
Our goal is to prove this space is completed to a compact
Hausdorff space.

With a slight abuse of notation, consider a function ι that
maps a vertex featured graph (G, x) to a |Φ|-dimensional
vector [(G,φ(x) : φ ∈ Φ] ∈ (G/F)Φ where each coordi-
nate is an equivalence class of F-indistinguishable graphs.
This space has a bijection to the quotient space by (F ,Φ)-
indistinguishability. Each coordinate of the |Φ|-dimensional
space is completed to a compact Hausdorff space (Borgs
et al., 2008). Therefore, by the Tychonoff product theo-
rem (Hart et al., 2003), the |Φ|-dimensional space is com-
pact. The bijection between the quotient space shows the
quotient space is completed by a compact Hausdorff space.
We denote this space by G. Under this space, we have the
following result.
Theorem 18. Any continuous (F ,Φ)-invariant function
G → R is arbitrary accurately approximated by a polyno-
mial of (G, x) 7→ t(F, (G,φ(x))).

Proof. The space G is compact by construction. The sep-
arability follows from the definition of (F ,Φ)-invariant.
Therefore, by the Stone–Weierstrass theorem, we complete
the proof.

The strength of an embedding is characterized by the sepa-
rability.
Lemma 19. Let F be the set of all simple graphs and Φ
be the set of all continuous functions from [0, 1]p to [0, 1].
Then, (G, x) 7→ hom(F , G, x; Φ) is injective.

Proof. Let (G, x) and (G′, y) be two non-isomorphic
vertex-featured graphs. We distinguish these graphs by the
homomorphism convolution.

If G and G′ are non-isomorphic, by (Lovász, 1967),
hom(F , G, x; 1) 6= hom(F , G′, y; 1) where 1 is the func-
tion that takes one for any argument.

Now we consider the case that G = G′. Let {1, . . . , n}
be the set of vertices of G. Without loss of generality, we
assume x(1) ≤ x(2) ≤ . . . where ≤ is the lexicographical
order. Now we find a permutation π such that G = Gπ and
y(π(1)), y(π(2)), . . . are lexicographically smallest. Let
u ∈ {1, . . . , n} be the smallest index such that x(u) 6= y(u).
By the definition, x(u) ≤ y(u). We choose ψ by

ψ(x) =

{
1, x ≤ x(u),

0, otherwise.
(9)

Then, there exists F ∈ F such that hom(F,G, x;ψ) 6=
hom(F,G, y;ψ) because the graphs induced by {1, . . . , k}
and {π(1), . . . , π(k)} are non-isomorphic because of the
choice of π.

Now we approximate ψ by a continuous function φ. Be-
cause (F, φ)-convolution is continuous in the vertex weights
(i.e., φ(x(u))), by choosing φ sufficiently close to ψ, we get
hom(F,G, x;φ) 6= hom(F,G, y;φ).

We say that a sequence (Gi, xi) (i = 1, 2, . . . ) of fea-
tured graphs is an (F ,Φ)-convergent if for each F ∈
F and φ ∈ Φ the sequence hom(F,Gi, xi;φ) (i =
1, 2, . . . ) is a convergent in R. A function f : (G, x) 7→
f(G, x) is (F ,Φ)-continuous if for any (F ,Φ)-convergent
(Gi, xi) (i = 1, 2, . . . ), the limit limi→∞ f(Gi, xi) of
the function exists and its only depends on the limits
limi→∞ hom(F,Gi, xi, φ) of the homomorphism convo-
lutions for all F ∈ F and φ ∈ Φ.

Now we prove the universality theorem. LetH be a dense
subset of the set of continuous functions, e.g., the set of
polynomials or the set of functions represented by a deep
neural network. We defineH(G;F ,Φ) by

H(G;F ,Φ) = ∑
F∈F,φ∈Φ

hF,φ(hom(F, ·;φ) : hF,φ ∈ H

 (10)

where the argument of the function is restricted to G. This
is the set of functions obtained by combining universal
approximators in H and the homomorphism convolutions
hom(F,G, x, φ) for some F ∈ F and φ ∈ Φ. Let G be
a set of graphs, and let C(G;F ,Φ) be the set of (F ,Φ)-
continuous functions defined on G. Then, we obtain the
following theorem.

Theorem 20 (Universal Approximation Theorem). Let G
be a compact set of graphs whose number of vertices are
bounded by a constant. Then, H(G;F ,Φ) is dense in
C(G;F ,Φ).
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Proof. Because the number of vertices are bounded, the
space of converging sequences is identified as G. Therefore,
this space is compact Hausdorff. The separability is proved
in Lemma 19. Hence, we can use the Stone–Weierstrass
theorem to conclude this result.

3.6. The Choice of F and Φ

In an application, we have to choose F and Φ appropriately.
The criteria of choosing them will be the same as with non-
featured case: Trade-off between representability and effi-
ciency. Representability requires that (F ,Φ)-convolutions
can separate the graphs in which we are interested in. Effi-
ciency requires that (F ,Φ)-convolutions must be efficiently
computable. This trivially limits both F and Φ as finite sets.

The choice of Φ will depend on the property of the vertex
features. We will include the constant function 1 if the
topology of the graph is important. We will also include
the i-th component of the arguments. If we know some
interaction between the features is important, we can also
include the cross terms.

The choice of F relates with the topology of the graphs of
interest. If Φ = {1} where 1 is the constant function, the
homomorphism convolution coincides with the homomor-
phism number (Table 1).

Here, we focus on the efficiency. In general, computing
hom(F,G, x, φ) is #P-hard. However, it is computable in
polynomial time if F has a bounded tree The treewidth
of a graph F , denoted by tw(F ), is a graph parameter that
measures the tree-likeness of the graph. The following result
holds.

Theorem 21. hom(F,G, x;φ) is computable in
|V (G)|tw(F )+1 time, tw(F ) is the treewidth of F .

4. Experimental results
4.1. Classification models

The realization of our ideas in Section 2 and Section 3 are
called Graph Homomorphism Convolution (GHC-*) models
(due to their resemblance to theR−convolution (Haussler,
1999)). Here, we give specific formulations for two practi-
cal embedding maps: GHC-Tree and GHC-Cycle. These
embedding maps are then used to train a classifier (Support
Vector Machine). We report the 10-folds cross-validation
accuracy scores and standard deviations in Table 2.

GHC-Tree We let Ftree(6) to be all simple trees of size at
most 6. Algorithm 1 implements Equation 3 for this case.
Given G and vertex features x, the i-th dimension of the
embedding vector is

GHC-Tree(G)i = hom(Ftree(6)[i], (G, x)).

Table 2. Classification accuracy over 10 experiments
(a) Synthetic datasets

METHODS CSL BIPARTITE PAULUS25
Practical models
GIN 10.00 ± 0.00 55.75 ± 7.91 7.14 ± 0.00
GNTK 10.00 ± 0.00 58.03 ± 6.84 7.14 ± 0.00
Theory models
Ring-GNN 10∼80 ± 15.7 55.72 ± 6.95 7.15 ± 0.00
GHC-Tree 10.00 ± 0.00 52.68 ± 7.15 7.14 ± 0.00
GHC-Cycle 100.0 ± 0.00 100.0 ± 0.00 7.14 ± 0.00

(b) Benchmark datasets

METHODS MUTAG IMDB-BIN IMDB-MUL
Practical models
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00
PATCHY-SAN 89.92 ± 4.50 71.00 ± 2.20 45.20 ± 2.80
WL kernel 90.40 ± 5.70 73.80 ± 3.90 50.90 ± 3.80
Theory models
Ring-GNN 78.07 ± 5.61 73.00 ± 5.40 48.20 ± 2.70
GHC-Tree 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40
GHC-Cycles 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67

GHC-Cycle We let Fcycle(8) to be all simple cycles of size
at most 8. This variant of GHC cannot distinguish iso-
spectral graphs. The i-th dimensional of the embedding
vector is

GHC-Cycle(G)i = hom(Fcycle(8)[i], G).

With this configuration, GHC-Tree(G) has 13 dimensions
and GHC-Cycle(G) has 7 dimensions.

Other methods To compare our performance with other
approaches, we selected some representative methods.
GIN (Xu et al., 2019) and PATCHY-SAN (Niepert et al.,
2016) are representative of neural-based methods. WL-
kernel (Shervashidze et al., 2011) is a widely used efficient
method for graph classifications. GNTK (Du et al., 2019)
is a recent neural tangent approach to graph classification.
We also include results for Ring-GNN (Chen et al., 2019) as
this recent model used in theoretical studies performed well
in the Circular Skip Links synthetic dataset (Murphy et al.,
2019). Except for setting the number of epochs for GIN to
be 50, we use the default hyperparameters provided by the
original papers. More details for hyperparamters tuning and
source code is available in the Supplementary Materials.

4.2. Synthetic Experiments

Bipartite classification We generate a binary classifica-
tion problem consisting of 200 graphs, half of which are
random bipartite graphs with density p = 0.2 and the other
half are Erdős-Rényi graphs with density p = 0.1. These
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graphs have from 40 to 100 vertices. According to Table 1,
GHC-Cycle should work well in this case while GHC-Tree
can not learn which graph is bipartite. More interestingly,
as shown in Table 2, other practical models also can not
work with this simple classification problem due to their
capability limitation (1-WL).

Circular Skip Links We adapt the synthetic dataset used
by (Murphy et al., 2019) and (Chen et al., 2019) to demon-
strate another case where GIN, Relational Pooling (Murphy
et al., 2019), and Order 2 G-invariant (Maron et al., 2018)
do not perform well. Circular Skip Links (CSL) graphs are
undirected regular graphs with the same degree sequence
(4’s). Since these graphs are not cospectral, GHC-Cycle can
easily learn them with 100% accuracy. Chen et al. men-
tioned that the performance of GNN models could vary
due to randomness (accuracies ranging from 10% to 80%).
However, it is not the case for GHC-Cycle. CSL classifi-
cation results shows another benefit of using F patterns as
an inductive bias to implement a strong classifier without
the need of additional features like Ring-GNN-SVD (Chen
et al., 2019).

Paulus graphs We prepare 14 non-isomorphic cospectral
strongly regular graphs known as the Paulus graphs7 and
create a dataset of 210 graphs belonging to 14 isomorphic
groups. This is a hard example because these graphs have
exactly the same degree sequence and spectrum. In our ex-
periments, no method achieves accuracy higher than random
guesses (7.14%). This is a case when exact isomorphism
tests clearly outperform learning-based methods. In our
experiments, homomorphisms up to graph index 100 of Net-
workX’s graph atlas still fail to distinguish these isomorphic
classes. We believe further studies of this case could be
fruitful to understand and improve graph learning.

4.3. Benchmark Experiments

We select 3 datasets from the TU Dortmund data collec-
tion (Kersting et al., 2016): MUTAG dataset (Debnath et al.,
1991), IMDB-BINARY, and IMDB-MULTI (Yanardag &
Vishwanathan, 2015). These datasets represent with and
without vertex features graph classification settings. We
run and record the 10-folds cross-validation score for each
experiment. We report the average accuracy and standard de-
viation of 10 experiments in Table 2. More experiments on
other datasets in the TU Dortmund data collection, as well
as the details of each dataset, are provided in the Appendix.

4.4. Running time

Although homomorphism counting is #P-complete in gen-
eral, polynomial and linear time algorithms exist under the

7https://www.distanceregular.org/graphs/paulus25.html
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Figure 2. Runtime (sec) in log-scale for one 10-folds run

bounded tree-width condition (Dı́az et al., 2002). Figure 2
shows that our method runs much faster than other practi-
cal models. The results are recorded from averaging total
runtime in seconds for 10 experiments, each computes the
10-folds cross-validation accuracy score. In principle, GHC
can be linearly distributed to multiple processes to further
reduce the computational time making it an ideal baseline
model for future studies.

5. Conclusion
In this work we contribute an alternative approach to the
question of quantifying a graph classification model’s ca-
pability beyond the tensorization order and the Weisfeiler-
Lehman isomorphism test. In principle, tensorized graph
neural networks can implement homomorphism numbers,
hence our work is in coherence with prior work. However,
we find that the homomorphism from F to G is a more
“fine-grained” tool to analyze graph classification problems
as studying F would be more intuitive (and graph-specific)
than studying the tensorization order. Since GHC is a more
restricted embedding compared to tensorized graph neural
networks such as the model proposed by (Keriven & Peyré,
2019), the universality result of GHC can be translated to the
universality result of any other model that has the capability
to implement the homomorphism numbers.

Another note is about the proof for Theorem 8 (universality
on unbounded graphs). In order to prove this result, we
made an assumption about the topology of f and also about
the graph of interest belongs to the graphon space. While
the graphon space is natural in our application to prove the
universality, there are a few concerns. First, we assumed
that the graphons exist for graphs of interest. However, it
might not be true in general. Second, graph limit theory is
well-studied in dense graphs while sparse graph problems
remain largely open.
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APPENDIX
We present additional information for the theoretical frame-
work (Section 2 and Section 3) and experimental settings
(Section 4) here. The Appendix is organized as follow:

• Section A gives details of the configurations for GHC-∗
and other GNNs.

• Section B gives details of synthetic and real-world
datasets used in this paper. We also provide some
additional results on other real-world datasets.

A. Implementation Details
The source code for GHC is provided with this supple-
mentary document. The main implementation is in file

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
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Table 3. The number of non-isomorphic trees of size k.9

k 2 3 4 5 6 7 8
# trees 1 1 2 3 6 11 23

k 9 10 11 12 13 14 15
# trees 47 106 235 551 1301 3159 7741

homomorphism.py. Aside from Algorithm 1, which
can be implemented directly with numpy and run with net-
workx, other types of homomorphism counting are imple-
mented with C++ and called from homomorphism.py.
The implementation for general homomorphism is called
homlib. We include an instruction to install homlib in
its README.md. All our experiments are run on a PC with
the following specifications. Kernel: 5.3.11-arch1-1;
CPU: Intel i7-8700K (12) 4.7 GHz; GPU: NVIDIA
GEFORCE GTX 1080 Ti 11GB; Memory: 64 GB. Note
that GPU is only used for training GIN (Xu et al., 2019).

Benchmark Experiments The main file to run experi-
ment on real-world (benchmark) datasets is tud.py. This
is a simple classification problem where each graph in a
dataset belongs to a single class. While any other classi-
fier can be used with GHC, we provide the implementa-
tion only for Support Vector Machines (scikit-learn)
with One-Versus-All multi-class algorithm. We prepro-
cess the data using the StandardScaler provided with
scikit-learn. As described in the main part of this
paper, we report the best 10-folds cross validation accuracy
scores across different SVM configurations. The parameter
settings for this experiments are:

• Homomorphism types: Tree, LabelTree (weighted ho-
momorphism), and Cycle.

• Homomorphism size: 6 for trees and 8 for cycles. The-
oretically, the homomorphism size increase implies
performance increase, but in practice we observe no
improvement in classification accuracy beyond size
6. The number of non-isomorphic trees of size k is
presented in Table 3.

• SVC kernel: Radial Basis Function, Polynomial (max
degree = 3).

• SVC regularization parameter (C): 20 values in the
log-space from 10−2 to 105.

• SVC kernel coefficient (gamma): ‘scale’ (1 /
(n features * X.var())

For other GNNs, we use the default hyperparameters used
by the original paper. To run GIN (Xu et al., 2019), we fix
the number of epochs at 100 and enable the use degree

9https://oeis.org/A000055

as tags by default for all datasets. We limit the number
of threads used by GNTK (Du et al., 2019) to 8.

Synthetic Experiments The main file to run experiment
on real-world (benchmark) datasets is synthetic.py
and the implementation of synthetic datasets can be found
in utils.py. Since these experiments focus on the capa-
bility of GHC, we can achieve the best performance with
just a simple classifier. The parameter settings for this ex-
periments are:

• Homomorphism types: Tree and Cycle.

• Homomorphism size: 6 for trees and 8 for cycles.

• SVC kernel: Radial Basis Function.

• SVC regularization parameter (C): Fix at 1.0.

• SVC kernel coefficient (gamma): Fix at 1.0.

We provide in our source code helper functions which be-
have the same as the default dataloader used by GIN and
GNTK implementations. The external loaders are provided
in externals.py. Users can copy-paste (or import)
these loader into the repository provided by GIN and GNTK
to run our synthetic experiments. The settings for other
models are set as in the benchmark experiments.

Timing Experiments We measure run-time using the
time module provided with Python 3.7. The reported time
in Figure 2 is the total run-time (in seconds) including ho-
momorphism time and prediction time for our model as well
as kernel learning time and prediction time for others.

B. Datasets
As other works in the literature, we use the TU Dortmund
data collections (Kersting et al., 2016). The overview of
these datasets are provided in Table 4. We provide additional
classification results for these datasets in Table 5 and Table 6.
We also provide some example of MUTAG data in Figure 4,
four first isomorphic groups of PAULUS25 in Figure 3,
plot of trees and cycles used in GHC-Tree (Figure 5 and
GHC-Cycles (Figure 6).

Remark 22. We conjecture that the above result can be
extended to the infinite graphs (say, graphons).

https://oeis.org/A000055
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y = 0 y = 1

y = 2 y = 3

Figure 3. Four first isomorphic groups in Paulus25 dataset

DATASETS N n |c| X T
MUTAG 188 17.9 2 no yes
PTC-MR 344 25.5 2 no yes
NCI1 4110 29.8 2 no yes
PROTEINS 1113 39.1 2 yes yes
D&D 1178 284.3 2 no yes
BZR 405 35.7 2 yes yes
RDT-BIN 2000 429.6 2 no no
RDT-5K 5000 508.5 5 no no
RDT-12K 11929 391.4 11 no no
COLLAB 5000 74.5 3 no no
IMDB-BIN 1000 19.8 2 no no
IMDB-MUL 1500 13.0 3 no no
Bipartite 200 70.0 2 no no
CSL 150 41.0 10 no no
Paulus 25 210 25.0 14 no no

Table 4. Overview of the datasets in this paper. Here, N denotes
total number of graphs, n denotes the average number of nodes,
|c| denotes number of classes, X denotes if the dataset consists of
vertex features, and T denotes if the dataset consists of vertex tags
(or types).
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Figure 4. Example of MUTAG data

Figure 5. Elements of Ftree(6)

METHODS
DATASETS

RDT-BIN RDT-5K RDT-12K COLLAB IMDB-BIN IMDB-MUL
Our experiments (Average over 10 runs of stratified 10-folds CV)
GHC-Tree 88.42 ± 2.05 52.98 ± 1.83 44.8 ± 1.00 75.23 ± 1.71 72.10 ± 2.62 48.60 ± 4.40
GHC-Cycles 87.61 ± 2.45 52.45 ± 1.24 40.9 ± 2.01 72.59 ± 2.02 70.93 ± 4.54 47.61 ± 3.67
GIN 74.10 ± 2.34 46.74 ± 3.07 32.56 ± 5.33 75.90 ± 0.81 70.70 ± 1.1 43.20 ± 2.00
GNTK - - - 83.70 ± 1.00 75.61 ± 3.98 51.91 ± 3.56
Literature (One run of stratified 10-folds CV)
GIN 92.4 ± 2.5 57.5 ± 1.5 - 80.2 ± 1.9 75.1 ± 5.1 52.3 ± 2.8
PATCHY-SAN 86.3 ± 1.6 49.1 ± 0.7 - 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8
WL kernel 80.8 ± 0.4 - - 79.1 ± 0.1 73.12 ± 0.4 -
Graphlet kernel 60.1 ± 0.2 - 31.8 64.7 ± 0.1 - -
AWL kernel 87.9 ± 2.5 54.7 ± 2.9 - 73.9 ± 1.9 74.5 ± 5.9 51.5 ± 3.6
WL-OA kernel 89.3 - - 80.7 ± 0.1 - -
WL-W kernel - - - - 74.37 ± 0.83 -
GNTK - - - 83.6 ± 1.0 76.9 ± 3.6 52.8 ± 4.6

Table 5. Graph classification accuracy (percentage) on popular non-vertex-featured benchmark datasets. This table provides the results
obtained by averaging 10 times the 10-folds cross-validation procedure. Note that the results reported in the literature are run for only one
10-folds cross-validation. “-” denotes the result is not available or the experiment runs for more than 2 days (48 hours).
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METHODS
DATASETS

MUTAG PTC-MR NCI1 PROTEINS D&D BZR
Our experiments (Average over 10 runs of stratified 10-folds CV)
GHC-Tree 89.28 ± 8.26 52.98 ± 1.83 48.8 ± 1.00 75.23 ± 1.71 72.10 ± 2.62 48.60 ± 4.40
GHC-Cycle 87.81 ± 7.46 50.97 ± 2.13 47.4 ± 1.02 74.30 ± 1.93 70.10 ± 2.49 47.20 ± 3.84
GHC-LabelTree 88.86 ± 4.82 59.68 ± 7.98 73.95 ± 1.99 73.27 ± 4.17 76.50 ± 3.15 82.82 ± 4.37
GIN 74.10 ± 2.34 46.74 ± 3.07 76.67 ± 1.16 75.9 ± 0.81 70.70 ± 1.1 43.20 ± 2.00
GNTK 89.65 ± 7.5 68.2 ± 5.8 85.0 ± 1.2 76.60 ± 5.02 75.61 ± 3.98 83.64 ± 2.95
Literature (One run of stratified 10-folds CV)
GIN 89.4 ± 5.6 64.6 ± 7.0 82.7 ± 1.7 76.2 ± 2.8 - -
PATCHY-SAN 92.5 ± 4.2 60.0 ± 4.8 78.6 ± 1.9 75.9 ± 2.8 77.12 ± 2.41 -
WL kernel 90.4 ± 5.7 59.9 ± 4.3 86.0 ± 1.8 75.0 ± 3.1 79.78 ± 0.36 78.59 ± 0.63
Graphlet kernel 85.2 ± 0.9 54.7 ± 2.0 70.5 ± 0.2 72.7 ± 0.6 79.7 ± 0.7 -
AWL kernel 87.9 ± 9.8 - - - - -
WL-OA kernel 84.5 ± 0.17 63.6 ± 1.5 86.1 ± 0.2 76.4 ± 0.4 79.2 ± 0.4 -
WL-W kernel 87.27 ± 1.5 66.31 ± 1.21 85.75 ± 0.25 77.91 ± 0.8 79.69 ± 0.50 84.42 ± 2.03
GNTK 90.00 ± 8.5 67.9 ± 6.9 84.2 ± 1.5 75.6 ± 4.2 - -

Table 6. Graph classification accuracy (percentage) on popular vertex-featured (vertex-labeled) benchmark datasets. This table provides
the results obtained by averaging 10 times the 10-folds cross-validation procedure. “-” denotes the result is not available in the literature
or the experiment runs for more than 2 days (48 hours).

Figure 6. Elements of Fcycles(8)


