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Abstract

The discrepancy of a binary string refers to the maximum (absolute) difference between the number

of ones and the number of zeroes over all possible substrings of the given binary string. We provide

an investigation of the discrepancy of known simple constructions of de Bruijn sequences. Furthermore,

we demonstrate constructions that attain the lower bound of Θ(n) and a new construction that attains

the previously known upper bound of Θ( 2
n

√

n

). This extends the work of Cooper and Heitsch [Discrete

Mathematics, 310 (2010)].

1 Introduction

Let B(n) denote the set of binary strings of length n. A de Bruijn sequence is a circular string of length 2n

that contains every string in B(n) as a substring. By this definition, each such substring must occur exactly

once. As an example,

1111110111100111010111000110110100110010110000101010001001000000

is a de Bruijn sequence of order n = 6; it contains each length 6 binary string as a substring when viewed

circularly. There is an extensive literature on de Bruijn sequences motivated in part by their random-like

properties. As articulated by Golomb [18], de Bruijn sequences:

• are balanced: they contain the same number of 0s and 1s;

• satisfy a run property: there are an equal number of contiguous runs of 0s and 1s of the same length in

the sequence,

• satisfy a span-n property: they contain every distinct length n binary string as a substring.

From our example above for n = 6, note that there are exactly 2n−1 0s and 1s respectively; there are 2n−2

contiguous runs of 0s and 1s respectively; and by definition, it contains every distinct length n binary string

as a substring.

Despite these properties, many de Bruijn sequences display other properties that are far from random. For

instance, consider the greedy prefer-1 construction [22]. After starting with an initial seed, successive bits are

appended by always trying a 1 first. Only if adding a 1 results in repeating a length n substring will a 0 be

appended instead. As one would expect, the resulting de Bruijn sequence (illustrated above for n = 6) has a

much higher ratio of 1s to 0s at the start of the sequence. One measure that accounts for this is the discrepancy,

*Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2018-04211.
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which is defined to be the maximum absolute difference between the number of 0s and 1s in any substring

of a given sequence. The discrepancy in our example sequence for n = 6 is ∣17 − 5∣ = 12 as witnessed by

the underlined substring. The sequences generated by this prefer-1 approach are known to have discrepancy

Θ(2n logn

n
) [5] with an exact formulation based on the Fibonacci and Lucas numbers [6]. In contrast, the

expected discrepancy of a random sequence of length 2n is Θ(2n/2√logn) [5]. Some applications in pseudo-

random bit generation require de Bruijn sequences that do not have large discrepancy. For example, when used

as a carrier signal, a de Bruijn sequence with a large discrepancy causes spectral peaks that could interfere

with devices operating at these frequencies [23]. Similar measures described as “balance” and “uniformity”

are discussed in [19]. However, they focus only on n = 2 and instead vary the size of the alphabet. They

explain that de Bruijn sequences with good balance and uniformity are useful in the planning of reaction time

experiments [10,28]. De Bruijn sequences with high discrepancy necessarily have bad balance and uniformity.

In this paper, we extend the work initiated by Cooper and Heitsch [5] providing a more complete analysis

of discrepancy for a wide variety of de Bruijn sequence constructions. In particular, we:

1. evaluate the discrepancies of an additional 12 efficient/interesting de Bruijn sequence constructions up

to n = 30,

2. demonstrate de Bruijn sequences constructions that attain the minimum possible discrepancy of Θ(n),
and

3. present a new de Bruijn sequence construction which has discrepancy meeting the asymptotic upper

bound of Θ( 2n√
n
).

The second result formalizes preliminary work presented in [15]. The asymptotic upper bound achieved in the

third result was previously known [4, 11], however no specific construction was known to attain this bound.

The remainder of this paper is presented as follows. We begin with an overview of our experimental

results for 13 de Bruijn sequence constructions, including the prefer-1. They are partitioned into four groups

which are further analyzed in Sections 2, 3, 4, and 5. We conclude in Section 6 with open problems and future

avenues of research.

1.1 The discrepancy of de Bruijn sequence constructions up to n = 25

In Table 1 we present exact discrepancies for 13 de Bruijn sequence constructions for values of n between 10

and 25. The results are partitioned into the following four groups based on increasing discrepancy. A larger

table up to n = 30 is provided in the appendix.

Group 1: Constructions based on the Complementing Cycling Register (CCR) which has feedback

function f(a1a2⋯an) = a1 + 1 (mod 2).
Group 2: The greedy prefer-same and prefer-opposite sequences along with a lexicographic composi-

tion construction.

Group 3: Constructions based on the Pure Cycling Register (PCR) which has feedback function

f(a1a2⋯an) = a1. Table 1 also shows a random entry based on taking the average discrepancy of

10000 randomly generated1 sequences of length 2n.

Group 4: Two constructions based on joining smaller weight-range cycles.

1
The sequences were generated in C using the srand and rand functions.
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Details about the constructions from each group are presented in their respective upcoming sections. Imple-

mentations for each of these constructions can be found at http://debruijnsequence.org. Each construc-

tion can generate each symbol in O(n) time bit (or better) using only O(n) space except for the Pref-same

and Pref-opposite algorithms which require O(2n) space using their greedy construction.

( Group 1 ) ( Group 2 )

n Huang CCR2 CCR3 CCR1 Pref-same Lex-comp Pref-opposite

10 12 13 13 16 24 24 27

11 13 14 15 18 29 29 34

12 15 16 16 22 35 35 43

13 16 17 18 23 43 43 52

14 18 19 20 30 48 48 63

15 19 21 21 29 59 59 74

16 21 22 23 36 68 68 87

17 22 24 25 37 79 79 100

18 24 26 26 43 88 88 115

19 25 27 28 43 103 103 130

20 27 29 30 52 114 114 147

21 28 31 31 50 127 127 164

22 30 32 33 59 142 142 183

23 31 34 35 59 155 155 202

24 33 36 36 67 172 172 223

25 35 37 38 66 187 187 244

( Group 3 ) ( Group 4 )

n PCR4 Random PCR3 PCR2 PCR1 Cool-lex Weight-range

10 29 50 75 101 120 131 131

11 41 71 141 180 222 257 257

12 51 101 248 321 416 468 468

13 70 143 468 587 784 801 930

14 85 203 850 1065 1488 1723 1723

15 110 288 1604 1974 2824 3439 3439

16 175 407 2965 3632 5376 6443 6443

17 246 575 5594 6785 10229 11452 12878

18 326 815 10461 12635 19484 24319 24319

19 462 1157 19765 23746 37107 48629 48629

20 730 1634 37243 44585 71250 92388 92388

21 954 2311 70575 84270 138332 167975 184766

22 1327 3264 133737 159281 268582 352727 352727

23 1820 4565 254322 302449 521553 705443 705443

24 2684 6252 484172 574819 1012795 1352090 1352090

25 3183 9192 924071 1096009 1966813 2496163 2704168

Table 1: Discrepancies of de Bruijn sequence constructions of order n ordered by increasing discrepancy and

partitioned into four groups.

1.2 Computing the discrepancy of a de Bruijn sequence

Since de Bruijn sequences have the same number of 0s as 1s, the discrepancy for each of the 2n linear versions

of a given (circular) de Bruijn sequence will be the same. Given a linear version D of a de Bruijn sequence,

the discrepancy of D can be computed in linear time by keeping track of two values while scanning D one bit

a time from left to right:

• the maximum value d1 of the number of 1s minus the number of 0s in any prefix of D, and

• the maximum value d2 of the number of 0s minus the number of 1s in any prefix of D.

The discrepancy of D is d1 + d2.

3
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2 Group 1: CCR-based constructions

In this section we consider the four de Bruijn sequence constructions in Group 1 based on the CCR. The se-

quences generated by the constructions CCR1, CCR2, and CCR3 are based on shift-rules presented in [17].

The sequences generated by the CCR2 and CCR3 constructions can also be constructed by concatenation

approaches [16] described later in this section; the equivalence of the shift-rules to their respective concate-

nation constructions has been confirmed up to n = 30, though no formal proof has been given. The Huang

construction is a shift-rule based construction in [20]. Since every de Bruijn sequence of order n contains the

substring 0n, a lower bound on discrepancy is clearly n. In this section we prove that two aforementioned con-

catenation based constructions have discrepancy at most 2n, and thus attain the smallest possible asymptotic

discrepancy of Θ(n).
To get a better feel for these four de Bruijn sequence constructions, the following graphs illustrate the

running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn

sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.
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Recall that the CCR is a feedback shift register with feedback function f(a1a2⋯an) = a1 + 1(mod 2).
The CCR partitions B(n) into equivalence classes of strings called co-necklaces. For example, the following

four columns are the co-necklace equivalence classes for n = 5:
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00000 00010 00100 01010

00001 00101 01001 10101

00011 01011 10011

00111 10111 00110

01111 01110 01101

11111 11101 11011

11110 11010 10110

11100 10100 01100

11000 01000 11001

10000 10001 10010

The periodic reduction of string α, denoted pr(α) is the smallest prefix β of α such that α = βt for some

t ≥ 1. In [16], the following two de Bruijn sequence constructions CCR2 and CCR3 concatenate the periodic

reductions of αα for given representatives α of each co-necklace equivalence class.

Algo CCR2

1. Let the representative for each co-necklace equivalence class of order n be its lexicographically

smallest string.

2. Let α1, α2, . . . , αm denote these representatives in colex order.

3. Output: pr(α1α1) ⋅ pr(α2α2) ⋯ pr(αmαm).

For n = 5, the representatives for this algorithm are the bolded strings in the equivalence classes above and

Algo CCR2 produces:

0000011111 ⋅ 0010011011 ⋅ 0001011101 ⋅ 01.

Algo CCR3

1. Let the representative for each co-necklace equivalence class of order n be the string obtained by

taking the lexicographically smallest string, removing its largest prefix of the form 0j , and then

appending 1j to the end.

2. Let α1, α2, . . . , αm denote these representatives in lexicographic order.

3. Output: pr(α1α1) ⋅ pr(α2α2) ⋯ pr(αmαm).

For n = 5, the representatives for this algorithm are the underlined strings in the equivalence classes above

and Algo CCR3 produces:

1001101100 ⋅ 10 ⋅ 1011101000 ⋅ 1111100000.

We now prove that the discrepancy resulting from these two de Bruijn sequence constructions is at most

2n.
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Lemma 2.1 Consider a sequence of binary strings α1, α2,⋯, αm where each αi has the same number of 0s

as 1s and has discrepancy at most n. Then S = α1α2⋯αm has discrepancy at most 2n.

Proof. Consider a shortest substring of S of the form αiαi+1⋯αj that has the same discrepancy as S . Its

discrepancy will be the same as that of αiαj which gives an upper bound of 2n. ◻

Theorem 2.2 The de Bruijn sequences constructed by Algo CCR2 and Algo CCR3 have discrepancy at

most 2n.

Proof. Given a length n binary string α, αα has the same number of 0s and 1s and has discrepancy at most

n. These properties also hold for pr(αα) by definition of the periodic reduction. Thus, by Lemma 2.1, the

sequences constructed by Algo CCR2 and Algo CCR3 have discrepancy at most 2n. ◻

Interestingly, from Table 1, these two concatenation-based constructions do not demonstrate the small-

est discrepancy for n ≤ 30. The construction by Huang [20], which is based on a cycle-joining approach,

demonstrates slightly smaller discrepancy. In particular the author states:

“It seems clear that the sequences produced by our algorithm have a relatively good character-

istic of local 0-1 balance in comparison with the ones produced by the ‘prefer one’ algorithm.”

So the author indicates that their construction may have small discrepancy, however no analysis is provided.

3 Group 2: Prefer-same, prefer-opposite, and lexicographic compositions

In this section we consider the three de Bruijn sequence constructions in Group 2. The Pref-same [3, 9, 12]

and the Pref-opposite [2] are greedy constructions based on the last bit of the sequence as it is constructed.

They have the downside of requiring an exponential amount of memory. The Lex-comp construction [13] is

obtained by concatenating lexicographic compositions. Its construction was an attempt to efficiently generate

the sequence generated by the Pref-same approach; it was conjectured to be the same for a very long prefix.

Observe that it attains the same discrepancy as the Pref-same for all values of n tested.

To get a better feel for the two greedy de Bruijn sequence constructions, the following graphs illustrate

the running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn

sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.
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In the following table we study some experimental results for the Pref-same construction. In particular,

for 10 ≤ n ≤ 25 we compute the maximum difference between the number of 1s and the number of 0s along

with the maximum difference between the number 0s and the number of 1s, over all prefixes of each Pref-

same de Bruijn sequence of order n. Adding these two values together, we get the discrepancies shown in

Table 1.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

max(#1s − #0s) 21 26 31 36 43 50 57 64 73 82 91 100 111 122 133 144

max(#0s − #1s) 3 3 4 7 5 9 11 15 15 21 23 27 31 33 39 43

discrepancy 24 29 35 43 48 59 68 79 88 103 114 127 142 155 172 187

Interestingly, the values in the row max(#1s − #0s) are equivalent to the known sequence A008811 in the

Online Encyclopedia of Integer Sequences (OEIS) [1] offset by four positions. The sequence enumerates the

“Expansion of x(1+x4)/((1−x)2(1−x4))” and the provided formula demonstrates that each value is Θ(n2).
More specifically the values match the sequence for 6 ≤ n ≤ 30. This leads to the following conjecture.

Conjecture 3.1 The de Bruijn sequences constructed by the Pref-same and Lex-comp algorithms have dis-

crepancy Θ(n2).
A similar analysis was performed for sequences generated by the Pref-opposite construction.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

max(#1s − #0s) 10 13 17 21 26 31 37 43 50 57 65 73 82 91 101 111

max(#0s − #1s) 17 21 26 31 37 43 50 57 65 73 82 91 101 111 122 133

discrepancy 27 34 43 52 63 74 87 100 115 130 147 164 183 202 223 244

Remarkably, observe that the two middle rows are a shift from each other by two positions. Just as interesting,

the sequences also correspond to a known sequence in OEIS [1], namely A033638. Specifically, the row

max(#1s− #0s) corresponds to this sequence shifted by four positions. The sequence does not match for

n < 10, but we have verified it matches for 10 ≤ n ≤ 30. The sequence corresponds to “quarter squares plus

1”, and by applying the appropriate shifts, the discrepancy for the Prefer-opposite sequence of order n, for

10 ≤ n ≤ 30 is given by:

⌊(n − 4)
2

4
⌋ + ⌊(n − 2)

2

4
⌋ + 2.

This leads to the following conjecture.

Conjecture 3.2 The de Bruijn sequence constructed by the Pref-opposite algorithm has discrepancy Θ(n2).
We conclude this section with an observation regarding the Pref-opposite de Bruijn sequence: For 2 ≤

n ≤ 25, each sequence has the following suffix where j = ⌈n/3⌉:
0j1n−j ⋅ 0j−11n−j+1 ⋯ 01n−1 ⋅ 10n−1.

For example, when n = 10, the Pref-opposite de Bruijn sequence has suffix

0000001111 ⋅ 0000011111 ⋅ 0000111111 ⋅ 0001111111 ⋅ 0011111111 ⋅ 0111111111 ⋅ 1000000000,

and the underline section has 5 + 6 + 7 + 8 + 10 ones and 4 + 3 + 2 + 1 zeros. A slight rearrangement gives a

lower bound of (5− 1) + (6− 2) + (7− 3) + (8− 4)+ 10 = 4 ⋅ 4+ 10 = 26 for the discrepancy of the sequence.

The actual discrepancy is 27. More generally, if this suffix is indeed a suffix for each Pref-opposite de Bruijn

sequence, then a lower bound on its discrepancy will be

(⌈n/2⌉ − 1)(⌊n/2⌋ − 1) + n = Ω(n2).
7



4 PCR-based constructions

In this section we consider the four de Bruijn sequence constructions in Group 3 based on the PCR. The

constructions PCR1, PCR2, PCR3, and PCR4 are based on shift-rules presented in [17]. The sequences

generated by PCR1 are the same as the ones generated by the prefer-0 greedy construction (the complement of

the prefer-1) and a very efficient necklace concatenation construction based on lexicographic order [14]. The

sequences generated by PCR2 are the same as the ones generated by a more efficient necklace concatenation

construction based on colex order [7, 8]. The PCR3 is based on a general approach in [21] and revisited

in [27].

To get a better feel for these four de Bruijn sequence constructions, the following graphs illustrate the

running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn

sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.
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The discrepancy for the sequence generated by the PCR1 construction has already been studied in [5]

where they show that the discrepancy is Θ(2n logn

n
). The sequences generated by the PCR2 and PCR3

constructions appear to have a similar growth trajectories. More interesting are the sequences generated by

the PCR4 construction that, from Table 1, appear to have discrepancy that is closest to that of a random string.

It would be interesting to do a more detailed investigation of this construction, which is based on a very simple

successor rule.
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5 Weight range constructions

In this section we consider two de Bruijn sequence constructions which are based on joining smaller cycles

based on weight (number of 1s). The Cool-lex construction [24], is a concatenation approach which is based

on creating underlying cycles which contain all strings with weights d and d + 1 given 0 ≤ d < n. Then,

appropriate such cycles can be joined together to obtain a de Bruijn sequence [25]. By the nature of how

the cycles are joined, the first half of the resulting de Bruijn sequence contains mostly length n substrings of

weight less than or equal to n/2. Similarly, the latter half mostly contains length n substrings with weight

greater than or equal to n/2. Thus, as one would expect, the resulting de Bruijn sequence has a very large

discrepancy. The Weight-range construction is a new construction presented in this section which we prove

attains the maximal possible asymptotic discrepancy of Θ(2n/√n) [4, 11].

To get a better feel for these two de Bruijn sequence constructions, the following graphs illustrate the

running difference between the number of 1s and the number of 0s in each prefix of the given de Bruijn

sequence. The examples are for n = 10, so the de Bruijn sequences have length 210 = 1024.
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Notice that if we had shifted the starting position of the Cool-lex sequence the profile of the graph would

be very similar to that the Weight-range sequence. In fact, the discrepancies of the two sequences are the

same except when nmod 4 ≡ 1 (see Table 1). This will be discussed more after we present the Weight-range

construction.

A minimum weight de Bruijn sequence is a cyclic sequence that contains each binary string of length n

with weight at least w exactly once. A maximum weight de Bruijn sequence is defined similarly where the

weight of each string is at most w. A construction for the former sequence is given in [26]; it is constructed

by concatenating the periodic reduction of each necklace of weight ≥ w when the necklaces are listed in

lexicographic order. Let the resulting sequence be denoted by Dw(n).
Remark 5.1 For any w < n, Dw(n) begins with 0n−w1w and ends with 1n.

By complementing the bits in Dw(n), we obtain a maximum weight de Bruijn sequence with weight at most

n −w. Denote this sequence by Dw(n). From the previous remark, it begins with 1n−w0w and ends with 0n.

Example 1 The necklaces of length 6 with weight w ≥ 3 in lexicographic order are:

000111,001011, 001101, 001111, 010101,010111, 011011,011111, 111111.
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Concatenating together their periodic reductions we obtain the minimum weight de Bruijn se-

quence D3(6).
000111 ⋅ 001011 ⋅ 001101 ⋅ 001111 ⋅ 01 ⋅ 010111 ⋅ 011 ⋅ 011111 ⋅ 1

As further examples,

D4(6) = 001111 ⋅ 010111 ⋅ 011 ⋅ 011111 ⋅ 1
and

D4(6) = 110000 ⋅ 101000 ⋅ 100 ⋅ 100000 ⋅ 0.

From the above example observe that:

• D3(6) contains all binary strings of length 6 with weight greater than or equal to 3,

• D4(6) contains all binary strings of length 6 with weight less than or equal to 2,

• The length n−1 prefix of D4(6), namely 11000, appears in the wraparound of D3(6).
LetDr

w(n) denote the sequence Dw(n) with the suffix 1w−1 rotated to the front. Then by applying the Gluing

Lemma [25], the following is a de Bruijn sequence of order 6:

1100001010001001000000´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D4(6)

⋅ 110001110010110011010011110101011101101111´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dr

3
(6)

.

Applying this strategy more generally, let DBmax(n) denote the de Bruijn sequence obtained by joining two

such smaller cycles.

Weight-range construction

DBmax(n) = Dw(n) ⋅ Dr
w′(n),

where w = ⌊n/2⌋ + 1 and w′ = ⌈n/2⌉.

A complete C implementation to construct DBmax(n) is given in the Appendix2.

The following technical lemma leads to a lower bound for the discrepancy of DBmax(n).
Lemma 5.2 A maximum weight de Bruijn sequence of order n and maximum weight w has (n−1

w
) more 0s

than 1s.

Proof. By definition, a maximum weight de Bruijn sequence of order n and maximum weight w contains

every binary string of length n with weight at most w as a substring exactly once. Since each bit in this

2It is also available at http:\debruijnsequence.org.
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sequence belongs to n different strings the total number of 1s in the sequence is

ones = 1

n

w

∑
d=0

d(n
d
)

= 0

n
(n
0
) + 1

n
(n
1
) + 2

n
(n
2
) +⋯+ w

n
(n
w
)

= 0 + (n − 1
0
) + (n − 1

1
) +⋯+ (n − 1

w − 1
),

and the total number of 0s is

zeros = 1

n

w

∑
d=0
(n − d)(n

d
)

= n

n
(n
0
) + n − 1

n
(n
1
) + n − 2

n
(n
2
) +⋯+ n −w

n
(n
w
)

= (n − 1
0
) + (n − 1

1
) + (n − 1

2
) +⋯+ (n − 1

w
).

Thus zeros − ones = (n−1
w
). ◻

Theorem 5.3 The de Bruijn sequence DBmax(n) has discrepancy at least ( n−1⌊n/2⌋) + ⌊n2 ⌋.
Proof. Let w = ⌊n/2⌋ + 1 and w′ = ⌈n/2⌉. Recall that Dw(n) is a maximum weight de Bruijn sequence

with maximum weight n − w. Thus, by Lemma 5.2, it has (n−1
n−w) = ( n−1

n−(⌊n/2⌋+1)) = ( n−1⌊n/2⌋) more 0s than 1s.

Consider Dw(n) with its prefix of 1n−w removed. The resulting string, which is a substring of DBmax(n),
has ( n−1⌊n/2⌋)+(n−w)more 0s than 1s. When n is odd we have n−w = n−⌊n/2⌋−1 = ⌊n

2
⌋ and thus DBmax(n)

has discrepancy at least ( n−1⌊n/2⌋) + ⌊n2 ⌋. When n is even, we additionally add the length n − 1 prefix of Dr
w′(n)

which has more 0s than 1s (exactly one more). Since n −w + 1 = n − (⌊n/2⌋ − 1) + 1 = ⌊n
2
⌋ (when n is even)

this again means that DBmax(n) has discrepancy at least ( n−1⌊n/2⌋) + ⌊n2 ⌋. ◻

By applying Stirling’s approximation to ( n−1⌊n/2⌋) we obtain the following corollary.

Corollary 5.4 The discrepancy of the de Bruijn sequence DBmax(n) attains the asymptotic upper bound of

Θ( 2n√
n
).

Observe from Table 1 that the discrepancy of DBmax(n) is exactly ( n−1⌊n/2⌋) + ⌊n2 ⌋ for 10 ≤ n ≤ 25. This leads

to the following conjecture.

Conjecture 5.5 The de Bruijn sequence DBmax(n) has discrepancy equal to ( n−1⌊n/2⌋) + ⌊n2 ⌋, and moreover, it

is the maximal possible discrepancy over all de Bruijn sequences of order n.

As noted earlier, the discrepancy of the cool-lex construction matches the discrepancy for the weight-

range construction for 10 ≤ n ≤ 25, except for when nmod 4 ≡ 1 (see Table 1). As illustration, the cool-lex

construction first constructs cycles of the following weights for n = 6,7,8,9:

• n = 6: (0,1,2), (3,4), (5,6)

• n = 7: (0,1), (2,3), (4,5), (6,7)
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• n = 8: (0,1,2), (3,4), (5,6), (7,8)

• n = 9: (0,1), (2,3), (4,5), (6,7), (8,9)

before joining them together one at a time. Note when n = 9, strings with weights 4 and 5 are grouped together

before the smaller cycles are joined together. This causes a reduction in the discrepancy compared to the

weight-range construction. It is possible, however, to tweak the cool-lex implementation so the discrepancies

are equivalent. For instance for n = 9, the smaller cycles with weights (0,1,2), (3,4), (5,6), (7,8, 9) could

be joined together instead.

6 Future directions and open problems

In this paper, we investigated the discrepancies of 13 de Bruijn sequence constructions. We proved that two

constructions attain the lower bound of Θ(n) and presented one new construction that attains the upper bound

of Θ( 2n√
n
). It remains an interesting problem to demonstrate a construction with discrepancy that is close to

that of a random stream of bits of the same length. Some avenues of future research include the following.

1. Simplify the description of the Huang construction [20]. Does it have the smallest discrepancy over all

de Bruijn sequences?

2. Answer the conjectures regarding the discrepancies for the greedy Pref-same and Pref-opposite con-

structions (Conjecture 3.1 and Conjecture 3.2).

3. Analyze the discrepancy of PCR4 which had discrepancy closest to one we might expect from a random

stream of bits.

4. Determine whether or not the maximal discrepancy of any de Bruijn sequence is ( n−1⌊n/2⌋)+ ⌊n2 ⌋ (Conjec-

ture 5.5).

5. Generalize the investigation of disrepancy to de Bruijn sequences over an arbitrary alphabet size k.

6. Study the distribution of discrepancy over all possible de Bruijn sequences.
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A Table of discrepancies

( Group 1 ) ( Group 2 )

n Huang CCR2 CCR3 CCR1 Pref-same Lex-comp Pref-opposite

10 12 13 13 16 24 24 27

11 13 14 15 18 29 29 34

12 15 16 16 22 35 35 43

13 16 17 18 23 43 43 52

14 18 19 20 30 48 48 63

15 19 21 21 29 59 59 74

16 21 22 23 36 68 68 87

17 22 24 25 37 79 79 100

18 24 26 26 43 88 88 115

19 25 27 28 43 103 103 130

20 27 29 30 52 114 114 147

21 28 31 31 50 127 127 164

22 30 32 33 59 142 142 183

23 31 34 35 59 155 155 202

24 33 36 36 67 172 172 223

25 35 37 38 66 187 187 244

26 36 39 40 77 208 208 267

27 38 41 42 74 224 224 290

28 40 43 43 85 246 246 315

29 41 44 45 84 264 264 340

30 43 46 47 94 286 286 367

( Group 3 ) ( Group 4 )

n PCR4 Random PCR3 PCR2 PCR1 Cool-lex Weight-range

10 29 50 75 101 120 131 131

11 41 71 141 180 222 257 257

12 51 101 248 321 416 468 468

13 70 143 468 587 784 801 930

14 85 203 850 1065 1488 1723 1723

15 110 288 1604 1974 2824 3439 3439

16 175 407 2965 3632 5376 6443 6443

17 246 575 5594 6785 10229 11452 12878

18 326 815 10461 12635 19484 24319 24319

19 462 1157 19765 23746 37107 48629 48629

20 730 1634 37243 44585 71250 92388 92388

21 954 2311 70575 84270 138332 167975 184766

22 1327 3264 133737 159281 268582 352727 352727

23 1820 4565 254322 302449 521553 705443 705443

24 2684 6252 484172 574819 1012795 1352090 1352090

25 3183 9192 924071 1096009 1966813 2496163 2704168

26 4108 13074 1766284 2092284 3819605 5200313 5200313

27 5604 17933 3382851 4004050 7453523 10400613 10400613

28 7629 22672 6488970 7672443 14544826 20058314 20058314

29 10433 34591 12468181 14730243 28382864 37442182 40116614

30 13637 57357 23991972 28316271 55421919 77558775 77558775
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