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1. Introduction

In any physical model, interactions and observables play a fundamental role. For tensor mod-
els [1]–[5], these observables build from the contractions of multidimensional arrays or tensors that
transform covariantly under the action of some classical Lie groups. The most recent studies on
tensor models over Lie groups consider U(N), the unitary group of order N, and O(N), the orthog-
onal group of order N. Note that much less is known about tensor models with Sp(2N)-invariants,
Sp(2N) being the (real or complex) symplectic group, see [6] and [7]. Defined by contractions
of tensors, the observables or interactions of tensor models simply become polynomial invariants
of these classical Lie groups (for short we shall call them tensor invariants). Correlators in such
models compute therefore, at the perturbative level, in terms of Feynman graphs involving tensor
invariants as their vertices. We can easily foresee that the quantum field theory calculations heavily
rely on the diagrammatics and combinatorics of these objects. Hence, a systematic combinatorial
study of U(N) and O(N) classical invariants has been launched in the recent years bringing already
a wealth of core results [8, 9, 10, 11, 12, 13, 14, 15, 16, 7, 17, 18]

A preferred way of enumerating these invariants mainly rests on algebraic techniques of the
symmetric groups. There are a lot of reasons why the use symmetric groups has become a natural
reflex and a dominating tool in the combinatorial study of tensor invariants. Indeed, the success
of such studies has strongly benefited from the expertise and techniques developed increasingly
for matrices in recent years. Matrix models interconnect, in a nonexhaustive fashion, integrable
models, 2D gravity, gauge theory, string theory and Riemannian geometry. The symmetric groups
and their representation were established master tools to tame correlators and observables of matrix
models, and thereby to understand the half-BPS sector of N = 4 SYM [19, 20, 21, 22]. This suc-
cess emanates from importing Schur-Weyl duality as an instrument for grasping Gauge-String dual-
ity [23]. Furthermore, this algebraic implement highlights new correspondences between countings
in quantum field theory, matrix models, and string theory [24, 25, 26, 27, 28, 29, 30]. With all the
results on matrix correlators, it may come as no surprise that a similar approach extends to tensor
models and yields applications even beyond the realm of theoretical physics. In quantum infor-
mation processing [31] and linguistics [32][33] one also finds that matrix models and symmetric
groups gather a renewed attention.

A few words about the interest for tensor models fall in line. Tensor models [1, 2, 3] were
introduced as candidate theories for quantum gravity in higher dimensions [35, 34, 36]. As ex-
pected, they were much more difficult to address than matrix models [4], one of the few successful
candidate approaches quantizing gravity in 2D. The theory of tensors became only tractable after
the inception of colored tensors [37]. This class of tensor models supports a large N expansion
[38] in a similar way that matrix models expand by the famous ‘t Hooft large N limit [39]. After, a
variety of results came to light: the critical behavior of tensor models was uncovered analytically
[40, 41, 42, 43], entire new families of quantum tensor field theories were found renormalizable
both at the perturbative [45]-[53] and at the non-perturbative levels [54]-[63]. More recently, the
Sachdev-Ye-Kitaev (SYK) condensed matter model [64, 65] proves to have the same diagrammat-
ics as colored tensor models at large N [66]. This opens a whole new avenue of research giving
rise to an unprecedented interest of the community for tensor models (see [67]-[72] and references
therein), hence the urge of finding new tools to understand them better.
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The manipulation of symmetric groups and its representation theory in tensor models has
shed a new light on calculations, allowed one to discover genuine effects, and bridged theories
by uncovering new correspondences (bijections between different-looking objects). It also reveals
hidden structures at the interface of three domains: combinatorics, algebra and topology/geometry.
The exact enumeration complex tensor invariants connects to a topological field theory (TopFT)
that gives in return a geometrical interpretation of each observable as a branched cover of the
2-dimensional sphere [8]. Tensor invariants may be regarded as the generators of an algebra of
observables with interesting properties (semi-simplicity, orthogonal bases, gradation) [11]. The
two-point correlators of complex observables expand in these orthogonal bases. Many of these
features of complex tensor models extend to the real case [7]. Once the enumeration of real tensor
invariants sorted, their TopFT formulation finds a bijection with the covers of the torus with defects,
and their algebra possesses also orthogonal bases and is semi-simple. As another interesting by
product of these analyses, new integer sequences has been recorded in OEIS [73] while also some
sequences therein got simplified.

This work delivers a summary of three contributions [8], [11], and [7]. We put in parallel the
counting of U(N) tensor invariants and its corollaries [8] [11] and that of O(N) tensor invariants
[7]. The next section introduces our notation. Then section 3 focuses on the counting of complex
tensor osbervables. The following section 4 undertakes the same analysis but for real tensors before
a conclusion is drawn in section 5 with some perspectives of this work.

2. Notation: complex and real tensors

The building blocks of the theory are complex and real tensors that we now introduce. This
section follows [8, 7, 5].

Consider a field F = R,C, and d vector spaces Va over F, a = 1, . . . ,d, d ≥ 2, of respective
dimensions Na. We denote U (N) either U(N) or O(N) depending on the complex or real nature
of the field F, respectively. Let T be a multilinear map ⊗d

a=1Va → F that we call a tensor of
rank d with components Tp1,··· ,pd ∈ F (also called, by abuse, the tensor itself), pa = 1, . . . ,Na. As
the group ⊗d

a=1U (Na) acts on ⊗d
a=1Va in the fundamental representation, T transforms under the

tensor product of d fundamental representations of the groups U (Na). Each group U (Na) acts
independently on a tensor index pa and we write the component of the transformed tensor as:

T R
p1,...,pd

= ∑
qk

R(1)
p1q1 . . .R

(d)
pdqd Tq1,...,qd , R(a) ∈U (Na) . (2.1)

The observables of real or complex tensor models are the contractions of the tensors Tp1,...,pd with
respect to a trivial metric (however, the metric will be not trivial when dealing with the symplectic
group, this case is not treated here; the interested reader is referred to [7]). Such contractions are
invariant under the action of ⊗d

a=1U (Na) (note that there is subtlety in the complex case as the
action of R ∈U (Na) on a T entails the action of R† ∈U (Na) on a conjugate T̄ ). One should pay
attention on the fact that if we call these contractions U (N)) invariants without making precise
how many tensorial factors are involved, this is also an abuse. For real tensors, we must contract an
even number of them to obtain an invariant. For complex tensors, only contractions from conjugate
tensor components, T and T̄ , are allowed. We can easily see that tensor contractions generalize
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matrix traces that are U (N) invariants: Tr((MM†)n), n ≥ 1, for a matrice M of size N. For this
reason, we use the same notation Tr(·) for tensors, hereafter. Another important feature of tensor
contractions is that they encode as d-regular graphs with edge coloring with d different colors, and
each color at every vertex (representing each tensor) represents an index of this tensor [37, 40].
We will come back on this property in the following section. Calling b that representative colored
graph, we denote the invariant equivalently by

complex : Ob(T, T̄ ) = Trb(T̄ ·T . . . T̄ ·T )
real : Ob(T ) = Trb(T ·T · · · ·T ) . (2.2)

The dot means that some indices of the tensors get sum by other indices of other tensors. The
data of the graph b is sufficient to determine according to which contraction pattern the tensor
indices are summed, and to each tensor contraction we have a unique graph associated with it (up
to isomorphism). The simplest non trivial tensor contraction denotes Tr2(T, T̄ ) in the complex case
and Tr2(T ) in the real case. They express as

complex : Tr2(T, T̄ ) = ∑
pk=1,...,Nk

Tp1 p2...pd T̄p1 p2...pd

real : Tr2(T ) = ∑
pk=1,...,Nk

(Tp1 p2...pd )
2 . (2.3)

This simple quadratic invariant in the components of the tensor will play an important role when
we will define the Gaussian tensor field measure.

In the following, most of the illustrations are made at fixed rank d = 3 but it generally extends
in any d. We will also mostly reduce to Na = N for simplicity.

Examples of unitary invariants. Figure 1 illustrates contraction patterns for U(N)⊗3 (complex)
tensor invariants with 2 (one T and one T̄ ), 4, and 6 complex tensors. They are bipartite and colored
graphs. T̄ is represented by a black vertex, T by a white one. The color a = 1,2, . . . ,d of the edge
is associated with the label a of an index pa of the tensor. Note that the graphs are bipartite.

1
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3

3

1

2 2 2

1

2 3 2

1

2

1

1

2

1

2

1

2
3

T̄T

Tr2(T̄ T )

Figure 1: U(N)⊗3 tensor invariants.

Examples of orthogonal invariants. Examples of O(N)⊗3 tensor invariants are provided in Figure
2.
Tensor field measure. Tensor contractions define the interactions of tensor models. We introduce
a physical model through a partition function (using abusively a single variable T for both real and
complex cases)

Z =
∫

dν(T )exp(−S(T )) , (2.4)
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Figure 2: O(N)⊗3 tensor invariants.

TT

Tr2(T 2)

where S(T ) = ∑b λbOb(T ) is a finite sum over some U (N) invariants representing the model
interactions, each associated with a coupling λb. The Gaussian tensor field measure dν(T ) is given
by

complex : dν(T )≡∏
ik

dTi1i2...id dT̄i1i2...id e−Tr2(T,T̄ )

real : dν(T )≡∏
ik

dTi1i2...id e−Tr2(T ) , (2.5)

with Tr2(T, T̄ ) and Tr2(T ) given by (2.3). We will be interested in the moment of these measures
called the correlators of the models:

〈Ob(T )〉=
1
Z0

∫
dν(T )Ob(T ) . (2.6)

with Z0 =
∫

dν(T ). The free propagator of the Gaussian measure corresponds to

〈Ti1i2...id Tj1 j2... jd 〉=
1
Z0

∫
dν(T )Ti1i2...id Tj1 j2... jd = δi1 j1δi2 j2 . . .δid jd . (2.7)

We will also discuss the mean values of two observables, called 2pt-function,

〈Ob(T )Ob′(T )〉=
1
Z0

∫
dν(T )Ob(T )Ob′(T ) . (2.8)

The second correlator will be restricted to normal order allowing only Wick contractions from
Ob(T ) to Ob′(T ). Using the symmetric group formulation of the U (N) invariants, we will refor-
mulate (2.8) and analyse the representation algebraic structure brought by the 2pt-function.

3. Counting complex tensor model observables

Symmetric groups offer an elegant formulation of the counting of invariants based on the
contractions of n copies of tensors Ti1,··· ,id and n copies of the conjugate tensors T̄i1,··· ,id . This
enumeration problem addresses as a TopFT with permutation gauge group that we also discuss.
Finally, translating the same counting in representation theory, we find a sum of terms involving
the famous Kronecker coefficient. This section summarizes [8] and [11].

3.1 Counting

Counting complex tensor invariants performs with the aid of a graphical representation that
we shall not refrain to explain. Each tensor Tp1,··· ,pd will be associated with a white vertex with d
exiting half-lines, each of which is representing an index pa, a = 1, . . . ,d. The conjugate T̄p1,··· ,pd
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is represented by a black vertex with the same above principle for its d half-lines. Each index pa of
any tensor is distinguished from the others and no symmetry is assumed between the indices. For
this reason, each contraction can only occur between indices pa of the same sub-label or color a,
one belonging to a given T and the other to a given T̄ . This contraction manifests at the level of the
graph by connecting the two half-lines of index a bewteen the two vertices associated with T and
T̄ .

We will concentrate on rank d = 3, as the general case d recovers from this case. If one
wishes to count all the possible contractions between n tensors and n conjugate tensors, this can be
thought as counting all possible parings in the way given in Figure 3. Thus, we are enumerating

1
2
3 1

2

3 1

2

3

1 3

2

1 3

2

1 3

2

σ1

σ2

T2 TnT1

T2 TnT1

σ3

Figure 3: A tensor contraction identified as permutation triple (σ1,σ2,σ3).

permutation triples (σ1,σ2,σ3) ∈ Sn×Sn×Sn, Sn being the symmetric group of n elements, up to
the equivalence

(σ1,σ2,σ3)∼ (γ1σ1γ2, γ1 σ2γ2, γ1σ3γ2 ) , γi ∈ Sn . (3.1)

This amounts to count elements of the double quotient Diag(Sn) \(Sn× Sn× Sn)/Diag(Sn) . The
enumeration of cosets relates to the counting of orbits of the left/right diagonal action. We therefore
rely on Burnside’s lemma and write, in terms of the fixed points of the same action described above,

|H1 \G/H2|=
1

|H1||H2| ∑
h1∈H1

∑
h2∈H2

∑
g∈G

δ (h1gh2g−1) , (3.2)

where the δ is the usual delta function on the group, δ (σ) = 1, if σ = id, and 0 otherwise. The
number of invariants expands as

Z3(n) =
1

(n!)2 ∑
σ1,2,3∈Sn

∑
γ1,γ2∈Sn

δ (γ1σ1γ
−1
2 σ

−1
1 )δ (γ1σ2γ

−1
2 σ

−1
2 )δ (γ1σ3γ

−1
2 σ

−1
3 )

= ∑
p`n

Sym(p) , Sym(p) :=
n

∏
i=1

(ipi)(pi!) , (3.3)

where the sum is performed over all partitions p of n, denoted p ` n. Programmed in Gap, and
Mathematica, one obtains the sequence [OEIS: A110143 (isomorphism of graph coverings)][73]:

1;4;11;43;161;901;5579;43206;378360;3742738, ... (3.4)

The appendices of [8] store the programs used for this computation.
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The above generalizes for arbitrary rank d using d−tuples of permutations (σ1, . . . ,σd) ∈
(Sn)

×d equivalent under the diagonal action Diag(Sn) such that

(σ1, . . . ,σd)∼ (γ1σ1γ2, . . . ,γ1σdγ2) . (3.5)

We follow step by step the same procedure and in adapted notations and obtain the number of rank
d tensor invariants made with 2n tensor fields as

Zd(n) = ∑
p`n

(Sym(p))d−2 Sym(p) :=
n

∏
i=1

(ipi)(pi!) (3.6)

Given d and n, this number can be evaluated by a GAP or Mathematica program (see again ap-
pendices of [8]). The link between the counting tensor invariants and the counting of covers will
become clearer when we will develop the permutation-TopFT formulation of the counting. Let
us finally mention a word about connected invariants as the above counting includes all invariants
connected and disconnected ones. To obtain connected invariants one should resort by the so-
called plethystic logarithm using the Moebius-mu function. The programs allowing to reach and
sequences listing the numbers of connected invariants in the same reference.

3.2 Topological Field Theory TopFT2

A quick look at (3.3) shows a weighted sum of delta’s functions. There is a simple physical
construction, namely a topological lattice gauge theory, where permutation groups play the role
of gauge groups [28] (henceforth called permutation-TopFT), that gives a sense of this expression.
The topological invariance of this lattice construction illuminates the link between the counting of
tensor invariants and the counting of branched covers of the 2-dimensional sphere. We start by the
rank d = 3 situation as its generalization naturally follows.

We look for a topological space leading to a permutation-TopFT whose partition function
corresponds to Z3(n) (3.3). Consider the graph G3 in Figure 4, which has two vertices and three
edges denoted by a,b, and c. Next consider G3× S1, which amounts to let evolve G3 along a
compactified time direction and then identifying the graph at the base of the Figure 4 with the one
at the top. There are three (shaded) 2-cells of this cell-complex. To do Sn permutation-TopFT
(sometime as the lattice consists in gluing of 2-cells, we further specify TopFT2) on this complex,
we assign a −→ σ1, b −→ σ2, c −→ σ3 where the σi ∈ Sn. It is straighforward to check that the
partition function of that TopFT is precisely Z3(n).

Figure 4: The underlying lattice of the TopFT2 related to Z3(n).
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After some manipulations (gauge fixed one σi, say σ3, set τi = σ
−1
3 σi, i = 1,2, rename γ2→ γ ,

and then introduce another variable τ0 = (τ1τ2)
−1), one arrives at:

Z3(n) =
1
n! ∑

τ0,τ1,τ2∈Sn

∑
γ∈Sn

δ (γτ1γ
−1

τ
−1
1 )δ (γτ2γ

−1
τ
−1
2 )δ (γτ0γ

−1
τ
−1
0 )δ (τ0τ1τ2) . (3.7)

This formula therefore enumerates, according to the Burnside lemma, triples of permutations
τ0,τ1,τ2 satisfying

τ0τ1τ2 = 1 . (3.8)

More precisely, it is counting equivalence classes of these triples under the conjugation equivalence
by γ ∈ Sn : τi ∼ γτiγ

−1. We recognize in (3.8) the group generated by three generators subject
to one relation, which is the fundamental group of the two-sphere, with three punctures. Our
counting function Z3(n) thus delivers the number of equivalence classes of branched covers of the
2-sphere, with 3-branch points, each equivalence class being counted once. In two dimensions,
branched covers are holomorphic maps and so we expect that these permutation triples have rich
properties: maps with three branch points (often taken as 0,1,∞) are called Belyi maps and are
known to be definable over algebraic number fields [74]. It turns out that Belyi maps are also
related to large N matrix models ribbon graphs [24]. In fact, we can go deeper in this puzzling
correspondence between matrices and tensors (see section 8 of [8]). Matrix and tensor models have
found a clear connection: a Feynman diagram of a matrix model relates to a state/observable of a
rank-3 tensor model (with a certain weight). This is a surprising feature reminiscent of dimensional
reduction/uplift. This link has been deepen very recently by Amburg et al [18] as it generalizes at
any d (states in rank d corresponds to diagrams in rank d−1). This of course deserves careful study
as it may reveal important properties similar of that of gauge/gravity duality for tensor models.

Several other counting formulae for other types of tensors have been digged out in [8], for
instance, the case when the tensor is fully symmetric, or a color symmetrized counting. We shall
not go futher by lack of place and invite the interested reader to have a look on this work.

3.3 Algebras and representation theoretic bases

We will learn, in this subsection, another piece of information about the counting of complex
tensor invariants under, this time, a different light, that of the representation theory of symmetric
group Sn. For the basics of representation theory of the symmetric group, the reader may refer
to the standard textbook by Hammermesh [75] and refer to [11] for the calculations concerning
tensors (appendices therein gather all what is needed in the paper).

Mapping the counting in representations. The irreducible representations (irreps) of symmetric
group Sn are labeled by Young diagrams R, and these are partitions of n: R ` n. The Wigner
matrices DR

i j(σ) = 〈R, j|σ |R, i〉 defines the real matrix representation of σ ∈ Sn in the irrep R ` n
of dimension d(R) = n!/h(R), where h(R) is the product of hook-lengths in the Young diagram
R. The matrices DR satisfy orthogonality properties and convolute in well-known invariants of the
representation theory of Sn. We will also need the character χR(·) = Tr(DR(·)) of the representation
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R. Any δ on the group expands as δ (·)=∑R`n[d(R)/n!]χR(·). In a nutshell, the following identities
hold:

orthogonality : ∑
σ∈Sn

DR
i j(σ)DS

kl(σ) =
n!

d(R)
δ

RS
δikδ jl ;

reality : DR
i j(σ

−1) = DR
ji(σ) ; (3.9)

Clebsch−Gordan : ∑
σ∈Sn

DR1
i1 j1(σ)DR2

i2 j2(σ)DR3
i3 j3(σ) =

n!
d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3 CR1,R2;R3,τ

j1, j2; j3

τ ∈ [[1,C(R1,R2,R3)]] ,

where the symbol

C(R1,R2,R3) =
1
n! ∑

σ∈Sn

χ
R1(σ)χR2(σ)χR3(σ) (3.10)

stands for the so-called Kronecker coefficient. The Kronecker coefficient is the multiplicity of the
one-dimensional (trivial) representation in the tensor product R1⊗R2⊗R3.

Expanding (3.3) in irreps, we have by a small calculation

Z3(n) =
1

(n!)2 ∑
σi∈Sn

∑
γ1,γ2∈Sn

δ (γ1σ1γ
−1
2 σ

−1
1 )δ (γ1σ2γ

−1
2 σ

−1
2 )δ (γ1σ3γ

−1
2 σ

−1
3 )

=
1

(n!)2 ∑
γi∈Sn

∑
Ri`n

χ
R1(γ1)χ

R1(γ2)χ
R2(γ1)χ

R2(γ2)χ
R3(γ1)χ

R3(γ2)

= ∑
R1,R2,R3`n

(C(R1,R2,R3))
2 . (3.11)

The counting of rank d = 3 observables equates to a sum of square of Kronecker coefficients
(shortly called at times Kroneckers). The above identity is of a certain interest as it is a longstanding
open problem to give a combinatorial sense of C(R1,R2,R3) thereby ensuring its positivity (see
Problem 10 in [76]; keeping in mind the way that Littlewood-Richardson coefficient have found
a combinatorial description). Furthermore, this very coefficient attracks today a lot of attention
in the theoretical computer science community, in particular in computational complexity theory
[77, 78] as it turns out to be the object of interest for understanding a geometrical version of the
famous problem P vs NP. We have given above a combinatorial interpretation of a sum of squares
of Kroneckers as the number of 3-regular edge-colored bipartite graphs. A question arises: is there
a refinement of the counting of rank 3 observables that boils down to a single coefficient? This
should be investigated. Finally, to change group invariance, namely from U(N) to O(N), as we
will see in the next section, also impacts (3.11).

The relation (3.11) generalizes in any rank d: Zd(n) = ∑R1,R2,R3`n(C(R1,R2, . . . ,Rd))
2, where

C(R1,R2, . . . ,Rd) is not the Kronecker coefficient (as this name is reserved for 3 irreps) but a gen-
eralized version of it: it counts the multiplicity of the trivial representation in the tensor product of
all Ri listed.

Kd(n), the double coset graph algebra. We now introduce an algebraic structure on observables.
Such an algebra has been very fruitful in matrix models since it allows one to uncover computable
sectors. Consider the group algebra C(Sn), i.e. the space of linear combinations which read
a = ∑σ∈Sn λσ σ , with λσ ∈ C. As customary, we start by d = 3 for simplicity.

8
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In the double coset formulation, we counted the orbits

(σ1,σ2,σ3)∼ (γ1σ1γ2,γ1σ2γ3,γ1σ3γ2) . (3.12)

We now want to embed these orbits in C(Sn)
⊗3. For this purpose, define K3(n) ⊂ C(Sn)

⊗3 as the
vector space over C such that:

K3(n) = SpanC
{

∑
γ1,γ2∈Sn

γ1σ1γ2⊗ γ1σ2γ2⊗ γ1σ3γ2, σ1,σ2,σ3 ∈ Sn

}
. (3.13)

By construction, it is an obvious fact that dimCK3(n) = Z3(n), as a generator of K3(n) is precisely
(the sum of all elements of) an orbit of the left/right diagonal group action (3.12).

The vector space K3(n) has some properties that we now examine. Introducing a minor change
by a convenient normalization, any basis element of K3(n) expresses as

Aσ1,σ2,σ3 =
1

(n!)2 ∑
γ1,γ2∈Sn

γ1σ1γ2⊗ γ1σ2γ2⊗ γ1σ3γ2 . (3.14)

One should keep in mind that Aσ1,σ2,σ3 corresponds to a graph (observable). We can multiply two
such elements and obtain:

Aσ1,σ2,σ3Aσ4,σ5,σ6 =
1
n! ∑

τ∈Sn

Aσ1τσ4,σ2τσ5,σ3τσ6 . (3.15)

That means that the product is stable in K3(n), and therefore it makes it an algebra. From such
a property, we infer that graphs multiply in K3(n), which henceforth can be called a graph alge-
bra. K3(n = 1) ≡ {e} is trivial. The work [11] provides the multiplication tables for K3(n = 2)
(isomorphic to C(Sn)⊗C(Sn)) and K3(n = 3), both are them are commutative.

It is also not difficult to realize that the product of K3(n) is associative and admits a unit,
namely the orbit containing (id, id, id). We conclude that K3(n) is an associative unital subalgebra
of C(Sn)

⊗3. Moreover, K3(n) is semi-simple with the nondegenerate pairing [Prop. 2, [11]]

δ3(⊗3
i=1σi;⊗3

i=1σ
′
i ) =

3

∏
i=1

δ (σiσ
′−1
i ) . (3.16)

All the above properties extend at any rank d ≥ 3: Kd(n) is an associative unital semi-simple
subalgebra of C(Sn)

⊗d . It is an interesting theme of research to determine the structure coefficients
of the graph algebra Kd(n) and check if it has some known isomorphism class. The semi-simplicity
property of an algebra entails, by the Wedderburn-Artin theorem, that the algebra admits a de-
composition as a direct sum of matrix subalgebras. Kd(n) therefore admits a Wedderburn-Artin
decomposition. In fact, from the identity Zd(n) = ∑R1,R2,R3`n(C(R1,R2, . . . ,Rd))

2, the dimension
of each matrix subalgebra read-off as the square of the multiplicity (C(R1,R2, . . . ,Rd))

2. In the
following, we identify a basis of this matrix subalgebras in rank d = 3.

K3(n) as a centralizer algebra. There is another formulation of the counting of rank d ob-
servables by gauge fixing one σi. In rank d = 3, we could choose to fix σ1, (σ1,σ2,σ3) →
(1,σ−1

1 σ2,σ
−1
1 σ3)≡ (1,τ1,τ2). The action of γ2 = γ reduces to (τ1,τ2) as

(τ1,τ2)∼ (γτ1γ
−1,γτ2γ

−1) (3.17)

9
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In the same way as previously done, we can span the algebra K ′
3 (n) over the orbits of couples

τ1⊗ τ2. We show that it is a subalgebra of the group algebra C(Sn)⊗C(Sn) which is invariant
under conjugation by the diagonally embedded Sn. In such a setting, we call K ′

3 (n), a permutation
centralizer algebra. All properties of the double coset formulation recover here as well, simply
because K ′

3 (n) and K3(n) are isomorphic.

K3(n) decomposed in matrix blocks. We investigate a base of K3(d) which makes explicit the
Wedderburn-Artin decomposition. Start by the Fourier basis of C(Sn) defined as

QR
i j =

κR

n! ∑
σ∈Sn

DR
i j(σ)σ , (3.18)

where κR is a normalization factor. Let ρL and ρR denote the left and right multiplications on
C(Sn)

⊗3, respectively. Then, we introduce the following convolution

QR1,R2,R3
τ,τ ′ = ∑

il , jl ,k
CR1,R2;R3,τ

i1,i2;i3 CR1,R2;R3,τ
′

j1, j2; j3 ∑
σ1,σ2

ρL(σ1)ρR(σ2)Q
R1
i1 j1⊗QR2

i2 j2⊗QR3
i3 j3

= κR,S,T ∑
σl∈Sn

∑
il , jl

CR,S;T,τ1
i1,i2;i3 CR,S;T,τ2

j1, j2; j3 DR
i1, j1(σ1)DS

i2, j2(σ2)DT
i3, j3(σ3)σ1⊗σ2⊗σ3 . (3.19)

To check that the set {QR1,R2,R3
τ,τ ′ } forms an orthogonal matrix base of K3(n) is the next task. Pro-

vided a rightful choice of κR, these elements multiply like matrices:

QR,S,T
τ1,τ2 QR′,S′,T ′

τ ′2,τ3
= δ

RR′
δ

SS′
δ

T T ′
δτ2τ ′2

QR,S,T
τ1,τ3 . (3.20)

Then observe that, at fixed [R1,R2,R3], QR1,R2,R3
τ,τ ′ is matrix with C(R1,R2,R3)

2 entries. The fact they
are orthogonal with respect to the pairing δ3(·) (3.16) can be also derived in a direct manner. Thus,
we can infer that this is the Wedderburn-Artin basis for K3(n).

The scrutiny of K3(n) reports other results concerning the existence of overcomplete bases,
a nontrivial center Z (K3(n)) with base elements given by PR,S,T = ∑τ QR,S,T

τ,τ . PR,S,T counts the
number of nonvanishing Kronecker coefficients, another property which might be useful for com-
putational complexity theory. In the next section, we engage the quantum theory and underline a
few properties induced by the existence of orthogonal bases.

Correlators. At rank d = 3, we focus the Gaussian model (2.5) and aim at calculating 1pt- and
2pt-correlators. Especially in this section, we use Na = N, a = 1, . . . ,d. Let Ob = Oσ1,σ2,σ3 be an
observable determined by a triple (σ1,σ2,σ3). By the Wick theorem, we obtain

〈Oσ1,σ2,σ3〉= ∑
µ∈Sn

Nc(µσ1)+c(µσ2)+c(µσ3) (3.21)

c(α) is the number of cycles of α . We map this expression in the Fourier components by contract-
ing it with characters, at fixed (S1,S2,S3):

〈OS1,S2,S3〉 =
1

(n!)3 ∑
σl∈Sn

χ
S1(σ1)χ

S2(σ2)χ
S3(σ3)〈Oσ1,σ2,σ3〉

10
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=
1

(n!)2

[ 3

∏
l=1

fN(Sl)
]
C(S1,S2,S3) , (3.22)

where fN(R) is the product of box weights after filling R. Hence, the correlators 〈OS1,S2,S3〉 are
proportional to the Kronecker coefficients. A similar expression hold for rank d 1pt-function, where
the Kronecker is replaced by the coefficient C(S1,S2, . . . ,Sd). Hence using software programs
(in particular Sage has a useful and efficient package to compute Kroneckers), we can compute
explicitly this sector of the Gaussian tensor model, and that is quite remarkable.

The last thing that we wish to sketch is that normal ordered 2pt-functions evaluate wtih the
Wedderburn-Artin base {QR,S,T

τ,τ ′ }. We have (see equation (97) in [11]):

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉= ∑
γ1,γ2

N3n
δ3[(σ1⊗σ2⊗σ3)γ

⊗3
1 (τ1⊗ τ2⊗ τ3)γ

⊗3
2 (Ω1⊗Ω2⊗Ω3)] , (3.23)

where Ωi = ∑αi∈Sn Nc(αi)−nαi are shown to be central elements of C(Sn). Now, we introduce the
Fourier (or representation basis ) of the observables:

OR,S,T
τ1,τ2 = ∑

σ1,σ2,σ3

δ3(Q
R,S,T
τ1,τ2 σ

−1
1 ⊗σ

−1
2 ⊗σ

−1
3 )Oσ1,σ2,σ3 . (3.24)

A calculation leads to

〈OR1,S1,T1
τ1,τ

′
1

OR2,S2,T2
τ2,τ

′
2
〉= c(R1,S1,T1)δR1,R2δS1,S2δT1,T2δτ1,τ2δτ ′1,τ

′
2
, (3.25)

with c(R1,S1,T1) a constant depending on representation indices. This demonstrates that {OR,S,T
τ,τ ′ }

forms an orthogonal basis for Gaussian normal ordered correlators arising directly from the QR,S,T
τ,τ ′ ,

which are the representation theoretic base elements of K3(n). We emphasize that more results
and the proofs of above identities are available in [11]. Concerning correlators, we obtain new
correspondences with cover countings in a TopFT2. On another side, a thorough exploration of the
color symmetrized counting exhibit a graded algebra structure with grade labeled by the irreps of
Sd , the group of permutation of the colors [[1,d]].

4. Counting real tensor model observables

This section deals with O(N) invariants for real tensor models. We adopt the same methodol-
ogy of the previous section. This section reports some of the main results of [7].

4.1 Counting

Tensors in this part are real and still denoted Tp1,...,pd . Seeking a graphical representation for
the contractions of tensors, we use the same scheme as in subsection 3.1.

Orthogonal invariants bijectively correspond to d-regular colored graphs (no bipartiteness)
[43]. Indeed, at the contrary of the previous section, there is no objection that T contracts its indices
with another T . However, the bipartiteness is still useful to achieve a counting. A way to restore this
property consists in the insertion of another type of vertex of valence 2, called black vertex, on each
edge of the graph. We keep the initial vertices associated with T as white. Consider the contraction

11
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of 2n tensors or white vertices and complete the graph associated with the contraction. Then add
on each edge the black vertices denoted v j

i , i = 1, · · · ,2n and j = 1, · · · ,d. The resulting graph is
neither regular, nor properly edge-colored. It is however bipartite. We illustrate the contraction of
2n tensors in rank 3 by the diagram of Figure 5.

Figure 5: Diagrammatics for real tensor contractions.

The number of contractions matches with the number of permutation triples (σ1,σ2,σ3) ∈
S2n×S2n×S2n subjected to the equivalence

(σ1,σ2,σ3)∼ (γ1σ1γ, γ2 σ2γ, γ3σ3γ ) , γi ∈ Sn[S2] ,γ ∈ Sn , (4.1)

where Sn[S2] is the so-called wreath product of Sn by S2 (that is the semi direct product Snn (S2)
n).

Its action describes as follows: (S2)
n permutes independently the half-lines of the n v j

i ’s; then, Sn

permutes the n vertices v j
i of a given color j, hence the three copies of the wreath products in rank

3.
Up to equivalence, any contraction belongs to the double quotient

Sn[S2]×Sn[S2]×Sn[S2]\(S2n×S2n×S2n)/Diag(S2n) . (4.2)

The computation of the cardinality of double coset requires a technique different from the complex
case but it still involves the Burnside lemma. Its last stage makes use of software programs. The
number of invariants in rank d = 3, that we denote Zo

3(2n), follows the sequence:

1;5;16;86;448;3580;34981;448628;6854130;121173330 . (4.3)

Note that Read [79] introduced orthogonal polynomial techniques to achieve the same counting.
He was able to obtain the first three terms of the sequence in his seminal paper.

The generalization at any rank d is straightforward. Connected tensor invariants can be also
generated by the plethystic logarithm. At rank 3, one gets

1;4;11;60;318;2806;29359;396196;6231794;112137138 . (4.4)

Other counting sequences at rank d = 4 are provided in [7], and its appendices list Mathematica
programs computing both general and connected sequences at arbitrary d. To our knowledge, none
of the sequences at d ≥ 4 are yet reported in OEIS.

12
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4.2 Topological Field Theory TopFT2

TopFT interprets the tensor invariant counting in a different manner. Consider the counting of
classes in the double coset (4.2), and the relation (4.1). Using Burnside’s lemma, one infers that

Zo
3(2n) =

1
[n!(2!)n]3(2n)! ∑

γi∈Sn[S2]
∑

σi∈S2n

∑
γ∈S2n

δ (γ1σ1γσ
−1
1 )δ (γ2σ2γσ

−1
2 )δ (γ3σ3γσ

−1
3 ) , (4.5)

with δ the Kronecker symbol on S2n.
We identify the above counting as a partition function of a TopFT2 on a cellular complex given

by Figure 6. Two gauge groups S2n and Sn[S2] are needed on this lattice. Associated with that, three
cylinders sharing one of their boundary circle characterize the topology of that 2-complex. The
enumeration of 3-index orthogonal invariants corresponds to a S2n–TopFT2 on 3 glued cylinders
along one circle, with a restriction such that, the opposite boundary circle is associated with a
generator of the gauge group Sn[S2]. Such a topological theory has boundary holonomies decorated
with Sn[S2] group elements.

1

1

1

2 2

3

3

3

1

3

1

2

3

2

Figure 6: Underlying lattice of TopFT2 related to Zo
3(2n).

After a few derivations involving integration and changes of variables, we come to

Zo
3(2n) =

1
[n!(2!)n]3 ∑

γi∈Sn[S2]
∑

σ1,2∈S2n

δ (γ1σ1γ3σ
−1
1 )δ (γ2σ2γ3σ

−1
2 ) . (4.6)

This integration pictures as in Figure 7 as the removal of a 1-cell associated with the variable γ

in the 2-complex. The partition function therefore shows two types of invariances: the extraction
of γ corresponds to one type of topological invariance, and then, it is followed by the change of
variables σ1,2 → σ1,2σ

−1
3 corresponding to a topological invariance of a second kind. Thus, the

partition function (4.6) finds another form as

Z3(2n) = Z(S1× I;(DSn[S2])
×3) , (4.7)

where the right-hand-side defines the partition function obtained by inserting 3 Sn[S2]-defects, one
at each end of the cylinder S1× I, and another one at finite time t0 ∈ I, see Figure 8. A defect is
defined as a closed non-intersecting loop with a marked point. The relation (4.7) shows that orthog-
onal invariants are in one-to-one correspondence with n-fold covers of the cylinder with 3 defects,
up to a (symmetry) factor, the stabilizer subgroup of the graph that we denote Aut(Gσ1,σ2,σ3). The
order of the stabilizer infers from Aut(Gσ1,σ2,σ3) = ∑γi∈Sn[S2] δ (γ1σ1γ3σ

−1
1 )δ (γ2σ2γ3σ

−1
2 ). This

13
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Figure 7: Topological transformations leaving the partition function invariant.
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Figure 8: Cylinder with 3 defects.

number meets the number of equivalences (Sn[S2]×Sn[S2])\(Sn×Sn)/Diag(Sn[S2]) corresponding
to a fixed (σ1,σ2).

The rank d case tracks the same logic: the counting expresses in terms of n-covers of d− 1
cylinders with d defects, one defect shared by all cylinders. It is noteworthy that TopFT2 may
enrich the counting orthogonal invariants with a geometrical picture. Indeed, the base space of the
TopFT is generally regarded as a string worldsheet [80, 81]. The counting becomes now counting
of worldsheet maps over a cylinder with defects. Once more, this intimates that a link may exist
between tensor models and string theory, which TopFT could elucidate. This merits full-fledged
treatment.

4.3 Algebras and representation theoretic bases

We address the algebraic structure underlying the counting of real tensor invariants. First, we
switch to representation theory that delivers a different expression of the same enumeration. Then,
this new reading allows us to motivate the search for an algebra making sense of the new formula.
Careful attention must be paid on the fact that we might use the same notation as in subsection 3.3
while we are dealing with S2n (and not Sn).

Mapping the counting in representations. Let us revisit the counting (4.5) using the representa-
tion theory of the symmetric group S2n (the appendices of [7] reviews the main identities used in
the following). The partitions of 2n or Young diagrams, R ` 2n, label irreps of S2n.

The counting (4.5) expands as

Zo
3(2n) =

1
[n!(2!)n]3(2n)! ∑

γl∈Sn[S2]
∑

γ∈S2n

∑
Rl `2n

χ
R1(γ1)χ

R1(γ)χR2(γ2)χ
R2(γ)χR3(γ3)χ

R3(γ)

=
1

[n!(2!)n]3 ∑
Rl `2n

C(R1,R2,R3)
[

∑
γ1∈Sn[S2]

χ
R1(γ1)

][
∑

γ2∈Sn[S2]

χ
R2(γ2)

]
, (4.8)

14
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where the Kronecker coefficient of S2n is defined by

C(R1,R2,R3) =
1

(2n)! ∑
γ∈S2n

χ
R1(γ)χR2(γ)χR3(γ) . (4.9)

The two other factors ∑γi∈Sn[S2] χ
Ri(γi), i = 1,2, need a non-obvious treatment. To tackle these

sums, we use a result by Howe [82] (see also [83, 84, 85, 29]): ∑γ∈Sn[S2] χ
R(γ) = |Sn[S2]|mR, where

mR = 1 if R is an “even” partition, and mR = 0 otherwise. A partition is called even if all its row
lengths are even. Inserting this in (4.8), we have

Zo
3(2n) = ∑

Rl `2n/Rl is even
C(R1,R2,R3) . (4.10)

A Sage code implements the sum (4.10) produces the sequence (4.3) as expected.
Zo

3(2n) is also the dimension of an algebra K3(n). We will make this clear in the next devel-
opments. Here again, we realize that counting of colored graphs could contribute to the famous
problem of giving a combinatorial interpretation to the Kronecker coefficients [77, 78]. From the
previous section, it was shown that the sum of squares of Kronecker coefficients associated with
Sn equals the number of d-regular bipartite colored graphs made with n black and n white vertices.
Here, the interpretation goes as follows: the number of d-regular colored graphs (not necessarily
bipartite) equals the sum of all “even” Kroneckers of S2n. The two countings are obviously radically
different. On one hand, the real case associated with S2n have more terms but a linear power of the
Kroneckers. On the other hand, we may associate the bipartite structure (or complex tensors) to the
presence of squares in the sum of Kroneckers. Switching from U(N) to O(N), in other words from
complex to real, we get rid of the squares but need to deal with a sum over a much larger number
of terms. So is there a real Lie group having having even a lesser number of terms than O(N)?

We may finally add that the above counting extends to arbitrary d:

Zo
d(2n) = ∑

Rl `2n/Rl is even
Cd(R1, . . . ,Rd) , (4.11)

where Cd(R1, . . . ,Rd) should have now an obvious meaning. This expression can be computation-
ally implemented without any issue with Sage.

K o
d (n), the double coset graph algebra. Let us focus on the algebra generated by real tensor

invariants. We will consider C(S2n), the group algebra of S2n. We first study the rank 3 before
achieving the general case.

We fix d = 3. Consider σ1⊗σ2⊗σ3 as an element of the group algebra C(S2n)
⊗3, and three

left actions of the subgroup Sn[S2] and the diagonal right action Diag(C(S2n)) on this triple as:

σ1⊗σ2⊗σ3→ ∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ⊗ γ2σ2γ⊗ γ3σ3γ . (4.12)

K o
3 (2n) is the vector subspace of C(S2n)

⊗3 which is invariant under these subgroup actions:

K o
3 (2n) = SpanC

{
∑

γi∈Sn[S2]
∑

γ∈S2n

γ1σ1γ⊗ γ2σ2γ⊗ γ3σ3γ, σ1,σ2,σ3 ∈ S2n

}
. (4.13)
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It is obvious that dimK o
3 (2n) = Zo

3(2n), since each base element represents a graph equivalence
class counted once in Zo

3(2n). Pick two base elements and multiply them[
∑

γi∈Sn[S2]
∑

γ∈S2n

γ1σ1γ⊗ γ2σ2γ⊗ γ3σ3γ

][
∑

τi∈Sn[S2]
∑

τ∈S2n

τ1σ
′
1τ⊗ τ2σ

′
2τ⊗ τ3σ

′
3τ

]
= ∑

τi∈Sn[S2]
∑

γ∈S2n

[
∑

γi∈Sn[S2]
∑

τ∈S2n

γ1(σ1γτ1σ
′
1)τ⊗ γ2(σ2γτ2σ

′
2)τ⊗ γ3(σ3γτ3σ

′
3)τ

]
. (4.14)

This shows that the multiplication is stable in K o
3 (2n), and hence, K o

3 (2n) forms graph algebra.
In the same vein as before, we can also show that K o

3 (2n) is an associative, unital subalgebra of
C(S2n)

⊗3 which is semi-simple under a similar nondegenerate pairing δ3(·, ·), product of delta’s
on each factor of C(S2n)

⊗3, see (3.16). The proof is totally similar for K o
d (2n) (considering d

factors in the tensor product) that is also a semi-simple associative unital subalgebra of C(S2n)
⊗d

of dimension Zo
d(2n).

The semi-simplicity ensures that, by the Wedderburn-Artin theorem, K o
d (2n) decomposes in

matrix subalgebras. In the complex case and at rank d = 3, we successfully exhibit the orthogonal
base making apparent this matrix decomposition. The real case appears more difficult to handle
and, so far, no Wedderburn-Artin base has been found for d ≥ 3. Postponing this for future inves-
tigations, it remains an issue that we could certainly address: in rank d = 3, find a representation
base with labels that reflect the dimension (4.10). This is our next goal.

A representation theoretic base for K o
3 (2n). We start by considering (3.18) for the present case,

and so replace Sn by S2n, κR is a different but fixed constant, such that {QR
i j} forms this time an

orthonormal base of C(S2n): δ (QR
i j;QR′

i′ j′) = δRR′δii′δ j j′ .
Consider the right diagonal action ρR(·) and the three left actions ρi(·) on the tensor product

C[S2n]
⊗3. We write:

∑
γ1,γ2,γ3∈Sn[S2]

∑
γ∈S2n

ρ1(γ1)ρ2(γ2)ρ3(γ3)ρR(γ)QR1
i1 j1⊗QR2

i2 j2⊗QR3
i3 j3

=
(2n)!
d(R3)

∑
γa

∑
pl ,ql

∑
τ

CR1,R2;R3,τ
j1, j2; j3 CR1,R2;R3,τ

q1,q2;q3
DR1

p1i1(γ1)D
R2
p2i2(γ2)D

R3
p3i3(γ3)QR1

p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(4.15)

Overlapping the result with a Glebsch-Gordan coefficent yields

∑
jl

CR1,R2;R3,τ
j1, j2; j3 ∑

γa

∑
γ

ρ1(γ1)ρ2(γ2)ρ3(γ3)ρR(γ)QR1
i1 j1⊗QR2

i2 j2⊗QR3
i3 j3

= (2n)! ∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3 ∑

γ1

DR1
p1i1(γ1)∑

γ2

DR2
p2i2(γ2)∑

γ3

DR3
p3i3(γ3)QR1

p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(4.16)

An emphasis should be put on the fact that ∑γ∈Sn[S2] D
R
pq(γ) 6= 0, if and only if R is a partition

of 2n with even rows. Next, the Wigner matrix element must split using the so-called branching
coefficients of Sn[S2] in S2n. To proceed with that consider V R an irreps S2n, and the subgroup
inclusion Sn[S2]⊂ S2n, we can decompose V R in irreps V r of Sn[S2] as V R =⊕rV r⊗VR,r, where VR,r

is a vector space of dimension the multiplicity of the irreps r in R. A state in this decomposition
is written |r,mr,νr〉, where mr labels the states of V r and νr = 1, . . . ,dimVR,r. The branching
coefficients are defined by the overlap of |r,mr,νr〉 with an orthonormal base of R:

BR;r,νr
i;mr

= 〈R, i |r,mr,νr〉= 〈r,mr,νr |R, i〉 . (4.17)
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The properties of BR;r,νr
i;mr

have been listed in [7] (see page 17,18). First, decompose the above (4.16),
exploiting the branching coefficient

∑
jl

CR1,R2;R3,τ
j1, j2; j3 ∑

γa

∑
γ

ρ1(γ1)ρ2(γ2)ρ3(γ3)ρR(γ)QR1
i1 j1⊗QR2

i2 j2⊗QR3
i3 j3

= (2n)!(n!2n)3BR1;tr
i1 BR2;tr

i2 BR3;tr
i3 ∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
,

(4.18)

and then we are in position to define the representation base that we are looking for:

QR1,R2,R3,τ = κ~R ∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3

= κ~R
κR1κR2κR3

((2n)!)3 ∑
σi

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3

∏
i=1

BRi; tr
pi

DRi
piqi

(σi)
]
σ1⊗σ2⊗σ3 , (4.19)

where κ~R is a normalization constant to be fixed later on, and ~R = (R1,R2,R3). Note that the set
{QR1,R2,R3,τ} is of cardinality the counting of orthogonal invariants (4.10). Some calculations show
that the elements of {QR1,R2,R3,τ} obey the invariance

(γ1⊗ γ2⊗ γ3)QR1,R2,R3,τ(γ⊗ γ⊗ γ) = QR1,R2,R3,τ , (4.20)

and are orthonomal under the pairing

δ (QR1,R2,R3,τ ;QR′1,R
′
2,R
′
3,τ
′
) = κ

2
~R d(R3)∑

pl

[ 3

∏
i=1

BRi; tr
pi

]2
δ~R~R′δττ ′ = κ

2
~R d(R3)δ~R~R′δττ ′ . (4.21)

They form in fact an orthonormal base of K o
3 (2n) for a well chosen κ~R. Nevertheless, they do not

multiply like matrices. Indeed,

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′
= δ~R~R′k(

~R′,τ)QR′1,R
′
2,R
′
3,τ
′
, (4.22)

with a factor k(~R′,τ) that prevents their orthogonality with respect to the multiplication. They do
not define the base of Wedderburn-Artin matrix decomposition. The base {QR1,R2,R3,τ} decomposes
K o

3 (2n) in blocks mutually orthogonal in the labels (R1,R2,R3) but not in all the remaining labels.

Correlators. The calculation of correlators happens to be more involved than the bipartite com-
plexe case. In general, correlators build a polynomial in a variable N, i.e. the range of a single
tensor index, with powers the number cycles of some permutations. To understand and list these
permutations is the first difficult point to overcome.

We shall focus on d = 3 and Wick’s theorem allows us to write the 1pt-function of an observ-
able Ob = Oσ1,σ2,σ3 as

〈Oσ1,σ2,σ3〉= ∑
µ∈S∗2n

N∑
3
i=1 c(µσ̃i) , (4.23)

where S∗2n is the subset defined by the pairings of S2n, that are permutations made only of transpo-
sitions and

(σ̃1, σ̃2, σ̃3) = (σ−1
1 ξ σ1,σ

−1
2 ξ σ2,σ

−1
3 ξ σ3), (4.24)
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with ξ the fixed permutation (12)(34) . . .(2n−1,2n). With the same notation, the normal ordered
2pt-function writes

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉= ∑
µ∈S2n

N∑
3
i=1 c(µ−1τ̃iµσ̃i) . (4.25)

Aiming at finding an orthogonal base of 2pt-functions, the central elements Ωi =∑αi∈S2n
Nc(αi)−2nαi

will be of great use. We have

〈Oσ1,σ2,σ3Oτ1,τ2,τ3〉= N6n
∑
µ

δ3[(µ
−1)⊗3(τ̃1⊗ τ̃2⊗ τ̃3)µ

⊗3(σ̃1⊗ σ̃2⊗ σ̃3)(Ω1⊗Ω2⊗Ω3)]

= N6n
∑
µ

δ3[(τ̃1⊗ τ̃2⊗ τ̃3)µ
⊗3(σ̃1⊗ σ̃2⊗ σ̃3)(µ

−1)⊗3(Ω1⊗Ω2⊗Ω3)] . (4.26)

We then introduce the representation theoretic elements OR1,R2,R3,τ as

OR1,R2,R3,τ = ∑
σl

δ3(QR1,R2,R3,τσ
−1
1 ⊗σ

−1
2 ⊗σ

−1
3 )Oσ1,σ2,σ3 (4.27)

and, after a lengthy calculation, we arrive at

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉=

[ 3

∏
i=1

δR′iRi

]
δτ ′τF(R1,R2,R3,τ)

F(R1,R2,R3,τ) = ∑
Si,τi

[ 3

∏
i=1

DimN(Si)
][

∑
bi,ci,pi

DSi
bici

(ξ )CSi,Si;Ri,τi
bi,ci;pi

BRi; tr
pi

]2
. (4.28)

This is precisely the orthogonality of the representation theoretic base {OR1,R2,R3,τ} for normal
ordered Gaussian correlators in K o

3 (2n).

5. Conclusion

We have enumerated rank d real and complex tensor invariants that are orthogonal and unitary
invariants relying on techniques build on symmetric groups and their representation theory. From
this enumeration, we find several bridges with other formalisms. In particular, we were interested in
TopFT allowing us to interpret in a different way these countings as the number of covers of topo-
logical objects (punctured 2-sphere for the complex case and torus with defects for the real case)
and even to foresee geometrical pictures attached to them. If this program is successfully achieved
then one could establish, for instance, connections between string theory and tensor models. Such
correspondences deserve attention. From another side, the representation theory of the symmetric
group brings a different perspective on these countings and might connect them with the problem
of the combinatorial interpretation of the Kronecker coefficient. This could be of major interest in
computational complexity theory. Moreover, we have found that tensor model observables span a
graph algebra with interesting properties such as associativity and semi-simplicity. With the latter
feature, the complex case exhibits a Wedderburn-Artin base. Finally, we were interested in Gaus-
sian correlators, showing that there are representation theoretic orthogonal bases for the normal
ordered 2pt-function. Aiming at extracting physical properties, more work must be performed on
computable sectors in tensor models. With the help of computer softwares, the fast calculation of
the 1pt-function is encouraging. Higher order correlators need to be addressed after this.

The following table delivers a summary of the results presented in this work.
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Unitary TM Orthogonal TM

Counting observables d √ √

# of observables at d = 3 1; 4; 11; 43; 161; . . . 1; 5; 16; 86; 448; . . .
TopFT2 interpretation Branched covers of the 2-sphere Covers of 2-torus with defects

Algebraic structure associative unital semi-simple associative unitary semi-simple
Invariant ortho. rep. base √ √

1-pt and 2-pt correlators √ √

Wedderburn-Artin base √ X

Finally, we may venture a few words about new tensor models mixing both U(N) and O(N)

invariance. Inspired by the work of Ferrari [86], a tensor model with mixed invariance under
U(N)×2×O(N) has been recently studied by Benedetti et al [87]. Note that this type of mixed
invariance was first introduced in the so-called multi-orientable tensor model [44]. Both these
mixed-type models admit a large N expansion and have interesting scaling properties. We can
certainly apply the above counting formalism to such models promoting a mixed group U(N)×p×
O(N)×q. For simplicity, consider the case of a rigid tensor (no symmetry under the tensor index),
of rank d = p+ q, require that the number of T in the observable is even (same for the number
of T̄ ), and that no indices associated with an orthogonal invariance contract a T and a T̄ (apart
from the quadratic invariant Tr2(T T̄ )). The counting operates with three groups of permutation
(σ1,σ2, . . . ,σp) ∈ S×p

2n implementing the connection between T ’s and T̄ ’s, (τ1,τ2, . . . ,τq) ∈ S×q
2n

establishing the connection between the T ’s only, and (τ̄1, τ̄2, . . . , τ̄q) ∈ S×q
2n connecting the T̄ ’s

between themselves. The invariants are fully determined by the equivalence

[τ1,τ2, . . . ,τq; σ1,σ2, . . . ,σp; τ̄1, τ̄2, . . . , τ̄q]

∼ [γ1τ1µ1,γ2τ2µ1, . . . ,γqτqµ1; µ1σ1µ2,µ1σ2µ2, . . . ,µ1σpµ2; µ2τ̄1γ̄1,µ2τ̄2γ̄2, . . . ,µ2τ̄qγ̄q]

(5.1)

where γi and γ̄i ∈ S2n[S2], and µi ∈ S2n. Note that this is no longer a pure left and then right
action as in the cases treated above. As preliminary thoughts, sorting these classes may require
to embed it in tensor product spaces: C(S×q

2n )⊗C(S×p
2n )⊗C(S×q

2n ). Then define, four actions:
S2n[S2]

×q⊗1⊗1 that acts on the left and only on the first slot; DiagR,L
q⊗p(S2n)⊗1 acts by diagonal

(right, left) multiplication: the right multiplication acts on the q τi’s on the first slot, and the left
multiplication on the next p σi’s factors on the second slot; next we have 1⊗DiagR,L

p⊗q(S2n), that
acts similarly (note the exchange of roles of p and q) but on the second and third slots; finally
1⊗1⊗S2n[S2]

×q acting on the right and only on the third slot:

[S2n[S2]
×q⊗1⊗1][DiagR,L

q⊗p(S2n)⊗1][1⊗DiagR,L
p⊗q(S2n)][1⊗1⊗S2n[S2]

×q]

. C(S×q
2n )⊗C(S×p

2n )⊗C(S×q
2n ) . (5.2)

The fact that DiagR,L
q⊗p(S2n)⊗ 1 and 1⊗DiagR,L

p⊗q(S2n) do not form groups make this new puzzle
interesting.
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