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Abstract

In this paper, we show that the difference between the number of parts
in the odd partitions of n and the number of parts in the distinct partitions
of n satisfies Euler’s recurrence relation for the partition function p(n)
when n is odd. A decomposition of this difference in terms of the total
number of parts in all the partitions of n is also derived. In this context,
we conjecture that for k > 0, the series

(q2; q2)∞

∞
∑

n=k

q(
k

2
)+(k+1)n

(q; q)n

[

n− 1
k − 1

]

has non-negative coefficients.
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1 Introduction

A partition of a positive integer n is a sequence of positive integers whose sum
is n. The order of the summands is unimportant when writing the partitions
of n, but for consistency, a partition of n will be written with the summands
in a nonincreasing order [1]. As usual, we denote by p(n) the number of the
partitions of n. For example, we have p(5) = 7 because the partitions of 5 are
given as:

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

The fastest algorithms for enumerating all the partitions of an integer have
recently been presented by Merca [7, 8].
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One of the well-known theorems in the partition theory is Euler’s pentagonal
number theorem, i.e.,

∞
∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞.

Here and throughout this paper, we use the following customary q-series nota-
tion:

(a; q)0 = 1, (a; q)n =

n−1
∏

k=0

(1 − aqk), (a; q)∞ =

∞
∏

k=0

(1− aqk).

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever
(a; q)∞ appears in a formula, we shall assume that |q| < 1. Euler’s pentagonal
number theorem gives an easy linear recurrence relation for p(n), namely

∞
∑

j=−∞

(−1)jp
(

n− j(3j − 1)/2
)

= δ0,n, (1)

where δi,j is the Kronecker delta function and p(n) = 0 if n < 0.
A famous theorem of Euler asserts that there are as many partitions of n

into distinct parts as there are partitions into odd parts [1, p. 5. Cor. 1.2]. For
instance, the odd partitions of 5 are:

5, 3 + 1 + 1 and 1 + 1 + 1 + 1 + 1,

while the distinct partitions of 5 are:

5, 4 + 1 and 3 + 2.

We recall Euler’s bijective proof of this result [5]: A partition into distinct
parts can be written as

n = d1 + d2 + · · ·+ dk.

Each integer di can be uniquely expressed as a power of 2 times an odd number,
i.e.,

n = 2α1o1 + 2α2o2 + · · ·+ 2αkok

where each oi is an odd number. Grouping together the odd numbers, we get
the following expression

n = t1 · 1 + t3 · 3 + t5 · 5 + · · · ,

where ti > 0. If di is odd, then we have αi = 0. For di even, it is clear that
αi > 0. So we deduce that

(t1 + t3 + t5 + · · · )− k > 0,

for any positive integer n. In other words, the difference between the number of
parts in the odd partitions of n and the number of parts in the distinct partitions
of n is nonnegative. A combinatorial interpretation of this difference has been
conjectured recently by George Beck [12, A090867, Apr 22 2017].
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Conjecture 1.1. The difference between the number of parts in the odd par-

titions of n and the number of parts in the distinct partitions of n equals the

number of partitions of n in which the set of even parts has only one element.

A few days later, George E. Andrews [2, Theorem 1] provides a solution
for this Beck’s problem and introduces a new combinatorial interpretation for
the difference between the number of parts in the odd partitions of n and the
number of parts in the distinct partitions of n.

Theorem 1.2. For all n > 1, a(n) = b(n) = c(n), where:

- a(n) is the number of partitions of n in which the set of even parts has

only one element;

- b(n) is the difference between the number of parts in the odd partitions of

n and the number of parts in the distinct partitions of n;

- c(n) is the number of partitions of n in which exactly one part is repeated.

For example, a(5) = 4 because the four partitions in question are:

4 + 1, 3 + 2, 2 + 2 + 1 and 2 + 1 + 1 + 1.

We have already seen there are 9 parts in the odd partitions of 5 and 5 parts in
the distinct partitions of 5 with the difference b(5) = 4. On the other hand, we
have c(5) = 4 where the relevant partitions are:

3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1.

In this paper, inspired by Andrews’s proof of Theorem 1.2, we provide new
properties for the difference between the number of parts in the odd partitions
of n and the number of parts in the distinct partitions of n considering two
factorizations for the generating function of b(n).

This paper is organized as follows. In Section 2 we will show that the dif-
ference between the number of parts in the odd partitions of n and the number
of parts in the distinct partitions of n satisfies Euler’s recurrence relation (1)
when n is odd. In Section 3 we will provide a decomposition of b(n) in terms
of the total number of parts in all the partitions of n. A linear homogeneous
inequality for the difference b(n) are conjectured in Section 4 in analogy with
the linear homogeneous inequality for Euler’s partition function p(n) provided
by Andrews and Merca in [3].

2 A pentagonal number recurrence for b(n)

In this section we consider s(n) to be the difference between the number of parts
in all the partitions of n into odd number of distinct parts and the number of
parts in all the partitions of n into even number of distinct parts. For instance,
considering the partitions of 5 into distinct parts, we see that

s(5) = 1− 2− 2 = −3.
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In [3], Andrews and Merca defined Mk(n) to be the number of partitions
of n in which k is the least positive integer that is not a part and there are
more parts > k than there are parts < k. If n = 18 and k = 3 then we have
M3(18) = 3 because the three partitions in question are:

5 + 5 + 5 + 2 + 1, 6 + 5 + 4 + 2 + 1, and 7 + 4 + 4 + 2 + 1.

We have the following result.

Theorem 2.1. Let k and n be positive integers. The partition functions b(n),
s(n) and Mk(n) are related by

(−1)k−1





k
∑

j=−(k−1)

(−1)jb
(

n− j(3j − 1)/2
)

−
1 + (−1)n

2
s
(n

2

)





=

⌊n/2⌋
∑

j=1

s(j)Mk(n− j).

Proof. As we can see in [2], the proof of Theorem 1.2 invokes the equality of
the generating functions for a(n), b(n) and c(n). So we consider the following
factorization of Andrews for the generating function of b(n):

∞
∑

n=0

b(n)qn = (−q; q)∞

∞
∑

n=1

q2n

1− q2n
. (2)

On the other hand, the identity

∞
∑

n=1

qn

1− qn
=

1

(q; q)∞

∞
∑

n=1

s(n)qn.

is a specialization of the Lambert series factorization theorem [10, Theorem
1.2]. A proof of this relation via logarithmic differentiation can be seen in [9,
Theorem 1].

We have
∞
∑

n=0

b(n)qn =
(q2; q2)∞
(q; q)∞

∞
∑

n=1

q2n

1− q2n

=
(q2; q2)∞
(q; q)∞

·
1

(q2; q2)∞

∞
∑

n=1

s(n)q2n

=
1

(q; q)∞

∞
∑

n=1

s(n)q2n. (3)

In [3], the authors considered Euler’s pentagonal number theorem and proved
the following truncated form:

(−1)k−1

(q; q)∞

k
∑

n=−(k−1)

(−1)nqn(3n−1)/2 = (−1)k−1 +

∞
∑

n=k

q(
k

2
)+(k+1)n

(q; q)n

[

n− 1
k − 1

]

, (4)
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where
[

n
k

]

=







(q; q)n
(q; q)k(q; q)n−k

, if 0 6 k 6 n,

0, otherwise

is the q-binomial coefficient.

Multiplying both sides of (4) by
∞
∑

n=1
s(n)q2n, we obtain

(−1)k−1





( ∞
∑

n=1

b(n)qn
)( k

∑

n=−(k−1)

(−1)nqn(3n−1)/2

)

−
∞
∑

n=1

s(n)q2n





=

(

∞
∑

n=1

s(n)q2n

)(

∞
∑

n=0

Mk(n)q
n

)

,

where we have invoked the generating function for Mk(n) [3],

∞
∑

n=0

Mk(n)q
n =

∞
∑

n=k

q(
k

2
)+(k+1)n

(q; q)n

[

n− 1
k − 1

]

.

The proof follows easily considering Cauchy’s multiplication of two power series.

The limiting case k → ∞ of Theorem 2.1 provides the following linear re-
currence relation for b(n) involving the generalized pentagonal numbers.

Corollary 2.2. For n > 0,

∞
∑

k=−∞

(−1)kb
(

n− k(3k − 1)/2
)

=

{

s(n/2), for n even,

0, for n odd.

Theorem 2.1 can be seen as a truncated form of Corollary 2.2. Considering
again the relation (3), we remark the following convolution identity.

Corollary 2.3. For n > 0,

b(n) =

⌊n/2⌋
∑

j=0

s(j)p(n− 2j).

3 A decomposition of b(n)

Let us define S(n) to be the total number of parts in all the partitions of n. For
example, we have

S(5) = 1 + 2 + 2 + 3 + 3 + 4 + 5 = 20.
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Andrews and Merca [4] defined MPk(n) to be the number of partitions of n
in which the first part larger than 2k − 1 is odd and appears exactly k times.
All other odd parts appear at most once. For example, MP2(19) = 10, and the
partitions in question are:

9 + 9 + 1, 9 + 5 + 5, 8 + 5 + 5 + 1, 7 + 7 + 3 + 2, 7 + 7 + 2 + 2 + 1,

7 + 5 + 5 + 2, 6 + 5 + 5 + 3, 6 + 5 + 5 + 2 + 1, 5 + 5 + 3 + 2 + 2 + 2,

5 + 5 + 2 + 2 + 2 + 2 + 1.

We have the following result.

Theorem 3.1. Let k and n be positive integers. The partition functions b(n),
S(n) and MPk(n) are related by

b(n)−
2k−1
∑

j=0

S
(

n/2− j(j + 1)/4
)

= (−1)k
n
∑

j=0

(−1)jb(n− j)MPk(j),

where S(x) = 0 if x is not a positive integer

Proof. First we want the generating function for partitions where z keeps track
of the number of parts equal to k. This is

1

1− zqk

∞
∏

n=1
n6=k

1

1− qn
=

1

(q; q)∞
·
1− qk

1− zqk
.

Let Sk(n) denote the total number of k’s in all the partitions of n. Hence

∞
∑

n=0

Sk(n)q
n =

d

dz

∣

∣

∣

z=1

(1− qk)

(q; q)∞(1− zqk)
=

qk

1− qk
·

1

(q; q)∞
.

Thus, we deduce the following generating function for S(n):

∞
∑

n=0

S(n)qn =
1

(q; q)∞

∞
∑

n=1

qn

1− qn
.

So we can write

∞
∑

n=0

b(n)qn =
(q2; q2)∞
(q; q)∞

∞
∑

n=1

q2n

1− q2n

=
(q2; q2)∞

(q; q2)∞(q2; q2)∞

∞
∑

n=1

q2n

1− q2n

=
(q2; q2)∞
(q; q2)∞

∞
∑

n=0

S(n)q2n.
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This identity can be written as follows:

(q; q2)∞
(q2; q2)∞

∞
∑

n=0

b(n)qn =
∞
∑

n=0

S(n)q2n. (5)

In [4], the authors considered the following theta identity of Gauss

∞
∑

n=0

(−q)n(n+1)/2 =
(q2; q2)∞
(−q; q2)∞

(6)

and proved the following truncated form:

(−q; q2)∞
(q2; q2)∞

2k−1
∑

j=0

(−q)j(j+1)/2

= 1 + (−1)k−1 (−q; q2)k
(q2; q2)k−1

∞
∑

j=0

qk(2k+2j+1)(−q2k+2j+3; q2)∞
(q2k+2j+2; q2)∞

.

By this relation, with q replaced by −q, we obtain

(q; q2)∞
(q2; q2)∞

2k−1
∑

j=0

qj(j+1)/2 = 1 + (−1)k−1
∞
∑

n=0

(−1)nMPk(n)q
n, (7)

where we have invoked the generating function for MPk(n) [4],

∞
∑

n=0

MPk(n)q
n =

(−q; q2)k
(q2; q2)k−1

∞
∑

j=0

qk(2k+2j+1)(−q2k+2j+3; q2)∞
(q2k+2j+2; q2)∞

.

Multiplying both sides of (7) by
∞
∑

n=0
b(n)qn, we obtain

(−1)k−1

(

( ∞
∑

n=1

S(n)q2n
)( 2k−1

∑

n=0

qn(n+1)/2

)

−

∞
∑

n=1

b(n)qn

)

=

(

∞
∑

n=1

b(n)qn

)(

∞
∑

n=0

(−1)nMPk(n)q
n

)

.

The proof follows easily considering Cauchy’s multiplication of two power
series.

The limiting case k → ∞ of Theorem 3.1 provides the following decomposi-
tion of the difference b(n) in terms of S(n).

Corollary 3.2. For n > 0,

b(n) =

∞
∑

k=0

S
(

n/2− k(k + 1)/4
)

,

with S(x) = 0 if x is not a positive integer.
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More explicitly, this corollary can be rewritten as:

b(2n) =

∞
∑

k=−∞

S
(

n− k(4k − 1)
)

and

b(2n+ 1) =
∞
∑

k=−∞

S
(

n− k(4k − 3)
)

.

Combinatorial proofs of these identities would be very interesting. On the other
hand, the relation (5) allows us to remark that

S(n) =

2n
∑

k=0

(−1)ke(k)b(2n− k),

where e(n) is the number of partitions of n in which each even part occurs with
even multiplicity and there is no restriction on the odd parts [12, A006950].
Other properties for S(n) can be found in [6].

As a consequence of Theorem 3.1, we remark the following infinite families
of inequalities involving the partition functions b(n) and MPk(n).

Corollary 3.3. Let k and n be positive integers. Then

(−1)k
n
∑

j=0

(−1)jb(n− j)MPk(j) > 0.

Proof. We take into account that

b(n)−

1
∑

j=0

S
(

n/2− j(j + 1)/4
)

> b(n)−

3
∑

j=0

S
(

n/2− j(j + 1)/4
)

> · · · > b(n)−

∞
∑

j=0

S
(

n/2− j(j + 1)/4
)

= 0.

Relevant to Theorem 3.1, it would be very appealing to have combinatorial
interpretations of

(−1)k
n
∑

j=0

(−1)jb(n− j)MPk(j).

4 Open problems

Linear homogeneous inequalities involving Euler’s partition function p(n) have
been the subject of recent studies [3, 4, 7, 11]. In [7], the author proved the
inequality

p(n)− p(n− 1)− p(n− 2) + p(n− 5) 6 0, n > 0,
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in order to provide the fastest known algorithm for the generation of the par-
titions of n. Subsequently, Andrews and Merca [3] proved more generally that,
for k > 0,

(−1)k−1
k
∑

j=−(k−1)

(−1)jp
(

n− j(3j − 1)/2
)

> 0, (8)

with strict inequality if n > k(3k + 1)/2. In other words, for k > 0, the
coefficients of qn in the series

(−1)k−1





1

(q; q)∞

k
∑

j=−(k−1)

(−1)jqj(3j−1)/2 − 1





are all zero for 0 6 n < k(3k+1)/2, and for n > k(3k+1)/2 all the coefficients
are positive. Related to this result on truncated pentagonal number series, we
remark that there is a substantial amount of numerical evidence to conjecture
a stronger result.

Conjecture 4.1. For k > 0, the coefficients of qn in the series

(−1)k−1





1

(q; q)∞

k
∑

j=−(k−1)

(−1)jqj(3j−1)/2 − 1



 (q2; q2)∞

are all zero for 0 6 n < k(3k+1)/2, and for n > k(3k+1)/2 all the coefficients

are positive.

Let Q(n) be the number of partitions of n into odd parts. It is well known
that the generating function for Q(n) is 1/(q; q2)∞. Assuming Conjecture 4.1,
we immediately deduce that the partition functions p(n) and Q(n), share a
common infinite family of linear inequalities of the form (8) when n is odd. In
addition, considering Theorem 2.1, we easily deduce that the partition function
b(n) satisfies the following infinite families of linear inequalities.

Conjecture 4.2. For k > 0,

(−1)k−1





k
∑

j=−(k−1)

(−1)jb
(

n− j(3j − 1)/2
)

−
1 + (−1)n

2
s
(n

2

)



 > 0,

with strict inequalities if n > 2 + k(3k + 1)/2.

In this context, relevant to Theorem 2.1, it would be very appealing to have
combinatorial interpretations of

⌊n/2⌋
∑

j=1

s(j)Mk(n− j).
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5 Concluding remarks

New properties for the difference between the number of parts in the odd par-
titions of n and the number of parts in the distinct partitions of n have been
introduced in this paper.

Surprisingly, when n is odd, Euler’s partition function p(n) and the difference
b(n) share two common linear homogeneous recurrence relations. As we can see
in Corollary 2.2, the first recurrence relation involves the generalized pentagonal
numbers:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7)

+ p(n− 12) + p(n− 15)− p(n− 22)− p(n− 26) + · · · ,

and

b(n) = b(n− 1) + b(n− 2)− b(n− 5)− b(n− 7)

+ b(n− 12) + b(n− 15)− b(n− 22)− b(n− 26) + · · · .

The second recurrence relation combines the partition function p(n) and the
difference b(n) with the triangular numbers, as follows:

p(n) = p(n− 1) + p(n− 3)− p(n− 6)− p(n− 10)

+ p(n− 15) + p(n− 21)− p(n− 28)− p(n− 36) + · · · ,

and

b(n) = b(n− 1) + b(n− 3)− b(n− 6)− b(n− 10)

+ b(n− 15) + b(n− 21)− b(n− 28)− b(n− 36) + · · · .

These relations can be easily derived considering again the theta identity of
Gauss (6) and the following two identities:

(q2; q2)∞
(−q; q2)∞

∞
∑

n=0

p(n)qn = (−q2; q2)∞,

and

(q2; q2)∞
(−q; q2)∞

∞
∑

n=0

b(n)qn = (q4; q4)∞

∞
∑

n=1

q2n

1− q2n
.

Finally, we want to thank Professor George E. Andrews for his valuable
comments on the first version of this paper.
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