
THE GINI INDEX OF AN INTEGER PARTITION

GRANT KOPITZKE

Abstract. The Gini index is a number that attempts to measure how
equitably a resource is distributed throughout a population, and is com-
monly used in economics as a measurement of inequality of wealth or
income. The Gini index is often defined as the area between the Lorenz
curve of a distribution and the line of equality, normalized to be between
zero and one. In this fashion, we define a Gini index on the set of integer
partitions and show that it is closely related to the second elementary
symmetric polynomial, and the dominance order on partitions. We con-
clude with a generating function for the Gini index, and discuss how it
can be used to find lower bounds on the width of the dominance lattice.

1. Introduction

In part one of his 1912 book “Variabilità e Mutabilità” (Variability and
Mutability), the statistician Corrado Gini formulated a number of differ-
ent summary statistics; among which was what is now known as the Gini
index - a measure that quantifies how equitably a resource is distributed
throughout a population. Referring to “the” Gini index can be misleading,
as no fewer than thirteen formulations of his famous index appeared in the
original publication [4]. Since then, many others have appeared in a variety
of different fields.

The Gini index is usually defined using the Lorenz Curve. In “Methods of
Measuring the Concentration of Wealth”, Lorenz defined this curve in the
following fashion. Consider a population of people amongst whom is dis-
tributed some fixed amount of wealth. Let L(x) be the percentage of total
wealth possessed by the poorest x percent of the population. The graph
y = L(x) is the Lorenz curve of the population [8].

It is clear from this definition that L(0) = 0 (I.E., none of the people have
none of the wealth), L(1) = 1 (all of the people have all of the wealth), and
L is non-decreasing. Since any population of people must have finite size n,
the function L(x) as defined above would appear to be a discrete function
on the set { kn : k ∈ Z and 0 ≤ k ≤ n}. However, in practice L is often made
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2 GRANT KOPITZKE

continuous on [0, 1] by linear interpolation [6].

If each person possesses the same amount of wealth, then the Lorenz
curve for this distribution is the line y = x, which we call the “line of
equality”. The area between the line of equality and the Lorenz curve of a
wealth distribution provides a measurement of the wealth inequality in that
population.

Figure 1. Area between the line of equality and a typical
Lorenz curve

The maximum possible area of 1
2 arises from the distribution in which one

person controls all of the wealth (L(1) = 1, and L(x) = 0 for all x 6= 1). The
Gini index of a distribution is then defined by calculating the area between
the line of equality and Lorenz curve of the distribution, and normalizing
this area to be between zero and one:

G = 2

∫ 1

0

(
x− L(x)

)
dx.

In this paper we consider distributions of a discrete indivisible resource in
a finite population, where the amount of that resource is equal to the number
of people in the population. There is a natural one-to-one correspondence
between the set of such distributions with n people, and the set of partitions
of n. We will then define the Gini index of a partition in a similar fashion
as above.

2. Preliminaries

2.1. Partitions and Young Diagrams. A partition, λ, of a positive inte-
ger n (denoted λ ` n) is a sequence (λ1, λ2, . . . , λ`) of ` ≤ n non-increasing

non-negative integers such that
∑`

i=1 λi = n. The λi (1 ≤ i ≤ `) are called
the “parts of λ”. To avoid repeating parts, it is sometimes useful to write
a partition as (λa11 , λ

a2
2 , . . . , λ

a`
` ) to represent λi repeating ai times. In this
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case we have that
∑`

i=1 aiλi = n, and λi 6= λj for all i 6= j. This notation
will be used in the proof of Proposition 4.1. In order to make the length
of λ (the number of parts) equal to n, one can “pad out” the partition by
adding n− ` zeros to the end. For example, the partition (4, 3, 1, 1) of 9 is
equivalent to (4, 3, 1, 1, 0, 0, 0, 0, 0). This technique will be used when defin-
ing the Lorenz curve of a partition.

A Young diagram is a finite collection of boxes arranged in left-justified
rows, with a weakly decreasing number of boxes in each row [7]. Integer
partitions are in one to one correspondence with Young diagrams in the
following way: if λ = (λ1, λ2, . . . , λ`) is a partition of n then the Young
diagram of shape λ has λ1 boxes in its first row, λ2 boxes in its second row,
etc. For example, if λ = (4, 3, 1, 1), then the Young diagram of shape λ is

.

The conjugate partition λ̃ of λ is the partition of n obtained by reflecting
the Young diagram of λ across its main diagonal. As in the previous example,

if λ = (4, 3, 1, 1), then the Young Diagram of λ̃ is

,

hence λ̃ = (4, 2, 2, 1). Conjugation is clearly a bijection on the partitions of
n.

The dominance order is a partial order on the set of partitions of n. If
λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µn) are partitions of n, then µ � λ
if

k∑
i=1

µi ≤
k∑
i=1

λi

for all k ≥ 1. It is well known that conjugation of partitions is an antiauto-
morphism on the dominance lattice of partitions of n [3]. In other words, if

µ � λ, then λ̃ � µ̃. We will write µ ≺ λ if µ � λ and µ 6= λ, and will denote
by Pn the partially ordered set of partitions of n with respect to dominance.

For a fixed positive integer n, an antichain in Pn is a subset of Pn in
which all partitions are pairwise incomparable. A maximum antichain is an
antichain of maximal cardinality. The length of the maximum antichain is
also known as the width of the lattice. The width of Pn (A076269 on OEIS)
is currently an open problem.
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2.2. The Second Elementary Symmetric Polynomial. The second el-
ementary symmetric polynomial, e2, in n variables, x1, x2, . . . xn, is defined

e2(x1, x2, . . . , xn) =
∑

1≤i<j≤n
xixj .

For example, if λ = (4, 3, 1, 1) is a partition of 9, then

e2(λ) =
(

4(3 + 1 + 1) + 3(1 + 1) + 1(1)
)

= 27.

We will make use of the following result.

Lemma 2.1. If λ = (λ1, λ2, . . . , λ`) is a partition of a positive integer n,
then

e2(λ) =

(
n+ 1

2

)
−
∑̀
i=1

(
λi + 1

2

)
.

Proof. Let λ = (λ1, λ2, . . . , λ`) be a partition of n. Note that
∑`

i=1 λi = n.
Then

e2(λ) =
∑

1≤i<j≤`
λiλj

=

(
n+ 1

2

)
−

 ∑
1≤i<j≤`

(
− λiλj

)
+

(
n+ 1

2

)
=

(
n+ 1

2

)
− 1

2

 ∑
1≤i<j≤`

(
− 2λiλj

)
+ n(n+ 1)


=

(
n+ 1

2

)
− 1

2

 ∑
1≤i<j≤`

(
− 2λiλj

)
+

(
l∑

i=1

λi

) l∑
j=1

λj + 1


=

(
n+ 1

2

)
− 1

2

 ∑
1≤i<j≤`

(
− 2λiλj

)
+

l∑
i=1

(
λ2i + λi

)
+

∑
1≤i<j≤l

(
2λiλj

)
=

(
n+ 1

2

)
− 1

2

(∑̀
i=1

λi(λi + 1)

)

=

(
n+ 1

2

)
−

(∑̀
i=1

(
λi + 1

2

))
.

�
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3. The Gini Index of an Integer Partition

As previously stated, we restrict our study of the Gini index to finite pop-
ulations where the amount of a discrete indivisible resource is equal to the
size of the population. In other words, there is one of said resource available
for each person. The distributions of n of such a resource amongst n people
is in one-to-one correspondence with the integer partitions of n.

For example, if there are 4 dollars in a population of 4 people, then the
partition (3, 1) of 4 would correspond to one person having 3 dollars, one per-
son having 1 dollar, and the two remaining people having nothing. Whereas
the partitions (1, 1, 1, 1) and (4) correspond to completely equitable and
completely inequitable distributions, respectively.

Given a partition λ = (λ1, . . . , λn) of a positive integer n (padded with
zeros on the tail, if necessary), the Lorenz curve of λ, Lλ : [0, n] −→ [0, n],
is defined as Lλ(0) = 0, and Lλ(x) =

∑n
i=n−k+1 λi, where 1 ≤ k ≤ n is the

unique positive integer such that x ∈ (k − 1, k]. In other words, for k from
1 to n, the Lorenz curve of λ on the interval (k− 1, k] is the sum of the last
k parts of λ, λn + λn−1 + · · ·+ λn−k+1. Since total equality corresponds to
the flat partition (1n), using the above definition for the Lorenz curve of a
partition, we find that the line of equality is given by y = dxe.

Figure 2. The line of equity (dashed) and the Lorenz curve
of the partition (3,2,1) of 6 (solid).

The standard Gini index is calculated by finding the area between the
line of equality and the Lorenz curve, and normalizing. In a similar fashion
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we define the Gini index, g, of a partition λ = (λ1, . . . , λn) of n by

g(λ) =

∫ n

0
(dxe − Lλ(x)) dx

=

(
n+ 1

2

)
−

n∑
i=1

iλi.

The ordinary Gini index is normalized to be between zero and one. For
a fixed value of n, the function g attains its maximum value of

(
n
2

)
on the

partition (n) of n. So the Gini index of a partition λ of n can be normal-
ized by dividing g(λ) by

(
n
2

)
. As long as n, and g(λ) are both known, the

normalized Gini index of λ can always be calculated in this fashion. With
this in mind, we may disregard the normalization, and view g itself as the
integer valued Gini index of a partition.

Our construction of g in conjunction with Lemma 2.1 yields some inter-
esting results:

Proposition 3.1. If λ is an integer partition, then g(λ) = e2(λ̃), where λ̃
is the conjugate partition of λ.

Proposition 3.2. Let λ and µ be partitions of n. If µ ≺ λ then g(µ) < g(λ)
and e2(λ) < e2(µ).

The normalized Gini index on Rn restricted to Pn is equal to 2g
n2 . It is

known that this function is strictly Schur convex, so Proposition 3.2 follows
from this fact (see [2]). A complete proof of Proposition 3.2 that does not
utilize these facts will be given in section 5.

The converse of Proposition 3.2 does not hold, in general. However, the
contrapositive provides us with an easily calculated lower bound on the
width of Pn. For if λ, µ ∈ Pn are distinct partitions such that g(λ) = g(µ),
then the partitions λ and µ are incomparable. Such lower bounds can be
calculated using the generating function of g given in the following section.

4. Generating Functions

It is often useful in Algebraic Combinatorics to record a discrete data set
in the coefficients or powers of a formal power series. We call these power
series “generating functions” for the data set. By “formal” we mean that
the convergence of the series is immaterial. Any variables appearing in the
series are taken as indeterminates rather than numbers. Alternatively, one
may consider a formal power series as an ordinary power series that con-
verges only at zero.
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We define a generating function for the Gini index g(λ) of an integer
partition λ by

G(q, x) =

∞∑
n=1

∑
λ`n

q((
n+1
2 )−g(λ))xn.

Perhaps the most widely known example of a generating function is that
of the integer partition function P (n), which counts the number of partitions
of the integer n. For example, n = 4 has partitions

(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), and (4),

so P (4) = 5. It is well known (see [1]) that P (n) has generating function

∞∏
n=1

1

1− xn
=

∞∑
n=0

P (n)xn,

Where P (0) is defined to be 1.

In light of our previous results, we obtain a similar equality for G(q, x).

Proposition 4.1.

∞∏
n=1

1

1− q(
n+1
2 )xn

− 1 =

∞∑
n=1

∑
λ`n

q((
n+1
2 )−g(λ))xn

The proof is provided in the following section.

We can use G(q, x) to find lower bounds on the width of Pn by calculating
the sizes of the maximum level sets of g on Pn. In particular, the size of
these level sets will be the largest coefficient on the powers of q that form
the coefficient of xn. Expanding G(q, x) yields

∞∑
n=1

∑
λ`n

q((
n+1
2 )−g(λ))xn = qx+ (q2 + q3)x2 + (q3 + q4 + q6)x3

+ (q4 + q5 + q6 + q7 + q10)x4

+ (q5 + q6 + q7 + q8 + q9 + q11 + q15)x5

+ (· · ·+ 2q9 + · · · )x6 + (· · ·+ 2q10 + · · · )x7

+ (· · ·+ 2q11 + · · · )x8 + (· · ·+ 3q15 + · · · )x9

+ · · · .

So the size of the maximal level sets of g are 1, 1, 1, 1, 1, 2, 2, 2, and 3, on
P1 through P9, respectively.

Denote by b(n) the size of the maximal level set of g on Pn. Proposi-
tion 3.2 implies that b(n) ≤ a(n) for all positive integers n, where a(n)
is the size of the maximum antichain in Pn. In [5], Early proved that
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Ω
(
n−5/2eπ

√
2n/3

)
≤ a(n). It is currently unknown how b(n) relates asymp-

totically to a(n) or n−5/2eπ
√
2. However, we conjecture that b(n) ≤ O

(
n−5/2eπ

√
2n/3

)
.

5. Proofs of Main Results

5.1. Proof of Proposition 3.1.

Proof. Let λ = (λ1, λ2, . . . , λ`) be a partition of a positive integer n, where

λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 and
∑`

i=1 λi = n. We can calculate g(λ) by filling
the Young diagram of shape λ with numbers, where the entry in any box
counts the number of boxes in that column that are weakly above it. For
example, for the partition (4, 3, 1, 1), we would have

1 1 1 1
2 2 2
3
4

.

Then the sums of the values in each row are∑(
Entries in row 1

)
= λ1,∑(

Entries in row 2
)

= 2λ2,∑(
Entries in row 3

)
= 3λ3,...∑(

Entries in row `
)

= `λ`.

Summing all values in the Young diagram of λ yields
∑`

i=1 iλi. By subtract-

ing this from
(
n+1
2

)
we have(

n+ 1

2

)
−
∑(

Entries in Young Diagram i
)

=

(
n+ 1

2

)
−
∑̀
i=1

iλi = g(λ).

We can calculate e2(λ) similarly by forming a Young diagram of shape λ
where each each box’s entry counts the number of boxes in the same row
that are weakly to the left of its own. Again using (4, 3, 1, 1) as an example,
we would have

1 2 3 4
1 2 3
1
1

.

In general, the ith row of the diagram for λ will be of the form

1 2 . . . λi−1 λi
,
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so the sum of the boxes in the ith row will be
(
λi+1
2

)
. Summing all of the

entries in the Young diagram of λ and subtracting this from
(
n+1
2

)
yields(

n+ 1

2

)
−
∑̀
i=1

(
Entries in row i

)
=

(
n+ 1

2

)
−
∑̀
i=1

(
λi + 1

2

)
= e2(λ),

where the last equality is by Lemma 2.1. Since g(λ) is calculated by counting
boxes in the columns of the Young diagram of λ, and e2(λ) is calculated by

counting boxes in the rows, it follows that g(λ) = e2(λ̃).
�

5.2. Proof of Proposition 3.2.

Proof. Let λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µn) be partitions of n
(padded with zeros in their tails, if necessary). Suppose that λ covers µ,
I.E. there is no partition ρ of n such that µ ≺ ρ ≺ λ. Now λ covers µ if and
only if

λi = µi + 1,

λk = µk − 1, and

λj = µj ,

for all j 6= i or k, and either k = i + 1 or µi = µk [3]. In other words, λ
covers µ if and only if all but two of the rows (row i and k, with i < k) in
the Young diagrams of λ and µ are of the same length, and the diagram of λ
can be obtained from that of µ by removing the last box from the kth row,
and appending it to end of the ith row.

Begin with the Young diagram of µ and, as in the proof of Proposition 3.1,
fill the diagram with numbers so that each box’s entry counts the number
of boxes weakly to the left of it.

1 2 . . . µ1−3 µ1−2 µ1−1 µ1

...

1 2 . . . µi−1 µi

...

1 2 . . . µk−1 µk

...

1 2 . . . µn
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From row k we remove the box containing µk and append it to the end of
row i to obtain a diagram of shape λ.

1 2 . . . µ1−3 µ1−2 µ1−1 µ1

...

1 2 . . . µi−1 µi µk

...

1 2 . . . µk−1

...

1 2 . . . µn

But i < k, hence µk ≤ µi, and the corresponding filling of the diagram for λ
would have the last cell in row i containing µi + 1, which is strictly greater
than µk. Thus the sum of all numbers in the diagram for λ is

n∑
j=1
j 6=i,k

(
µj + 1

2

)
+

(
µi + 2

2

)
+

(
µk
2

)
,

and the sum of all numbers in the diagram for µ is

n∑
j=1

(
µj + 1

2

)
.

By Lemma 2.1, we have

e2(µ)− e2(λ) =

(
n+ 1

2

)
−

n∑
j=1

(
µj + 1

2

)
−

(n+ 1

2

)
−

 n∑
j=1
j 6=i,k

(
µj + 1

2

)
+

(
µi + 2

2

)
+

(
µk
2

)


=

(
µi + 2

2

)
+

(
µk
2

)
−
(
µi + 1

2

)(
µk + 1

2

)
=

(µi + 1)(µi + 2− µi) + (µk)(µk − 1− µk)
2

=
2µi + 2− µk

2
> 0.
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So e2(µ) > e2(λ). Moreover µ ≺ λ if and only if λ̃ ≺ µ̃. Hence µ̃ covers λ̃,
and by Proposition 3.1, g(µ) < g(λ). The general case follows by transitivity.

�

5.3. Proof of Proposition 4.1.

Proof. We will show that the power series about x = 0 of the product

(1)

∞∏
n=1

1

1− q(
n+1
2 )xn

− 1

has as its general coefficient ∑
λ`n

q((
n+1
2 )−g(λ)).

Considering each factor of the product as a geometric series, we have

∞∏
n=1

1

1− q(
n+1
2 )xn

=
1(

1− q(
2
2)x
) · 1(

1− q(
3
2)x2

) · 1(
1− q(

4
2)x3

) · 1(
1− q(

5
2)x4

) · . . .
=
(

1 + q(
2
2)x+ q2(

2
2)x2 + q3(

2
2)x3 + q4(

2
2)x4 + . . .

)
·(

1 + q(
3
2)x2 + q2(

3
2)x4 + q3(

3
2)x6 + q4(

3
2)x8 + . . .

)
·(

1 + q(
4
2)x3 + q2(

4
2)x6 + q3(

4
2)x9 + q4(

4
2)x12 + . . .

)
·(

1 + q(
5
2)x4 + q2(

5
2)x8 + q3(

5
2)x12 + q4(

5
2)x16 + . . .

)
· . . . .

If we distribute and simplify, for example, the coefficient of x4, we see
that it is

q4(
2
2) + q2(

3
2) + q(

2
2)+(42) + q2(

2
2)+(32) + q(

5
2),

where each of the terms correspond to the partitions

(1, 1, 1, 1), (2, 2), (3, 1), (2, 1, 1), and (4),

respectively, by

(λ1, λ2, . . . , λl) 7→ q(
∑l
i=1 (λi+1

2 )).

This is true, in general, for the coefficient of xn, for all positive integers n.
To see this, consider the coefficient on xn in the power series expansion of
(1). If we set q = 1 in the product of (1), we obtain the generating function
of P (n) (the number of partitions of n). Hence there are P (n) different ways
to obtain a power of xn. So the xn term in (1) will be of the form

P (n)∑
j=1

mj∏
i=1

q

(
aj,i(

λj,i+1

2
)
)
x(aj,iλj,i),
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where aj,i, λj,i > 0, and
∑mj

i=1 aj,iλj,i = n. Thus the coefficient on xn will be

(2)

P (n)∑
j=1

q

(∑mj
i=1 aj,i(

λj,i+1

2
)
)
.

Since each
(λj,i+1

2

)
in (2) comes from a different term of the product in (1),

we have that λj,i 6= λj,k whenever i 6= k. Therefore, by reordering, we may

choose the power aj,i
(λj,i+1

2

)
on q so that λj,i > λj,i+1 > 0, for 1 ≤ i < mj . It

follows that (λ
aj,1
j,1 , λ

aj,2
j,2 , . . . , λ

aj,mj
j,mj

) is a partition of n, where λj,i is repeated

aj,i times.

Again, using the generating function for P (n), the ways of writing xn as

a product
∏
i x

(aj,iλj,i) (where aj,iλj,i > 0) is in bijection with the partitions

of n. Since each of the sums
∑mj

i=1 aj,iλj,i = n have distinct summands for

all 1 ≤ j ≤ P (n), it follows that the sums
∑mj

i=1 aj,i
(λj,i+1

2

)
are all distinct

for different values of j. In other words, every partition (λ
aj,1
j,1 , . . . , λ

aj,mj
j,mj

) of

n appears as a power in (2). Hence (2) is equal to∑
λ`n

q(
∑n
i=1 (λi+1

2 )).

By Lemma 2.1, e2(λ) =
(
n+1
2

)
−
∑n

i=1

(
λi+1
2

)
, thus∑

λ`n
q(
∑n
i=1 (λi+1

2 )) =
∑
λ`n

q(
∑n
i=1 (n+1

2 )−e2(λ)).

Finally, by Proposition 3.1, we have that the general coefficient on xn in the
power series expansion of (1) is∑

λ`n
q(
∑n
i=1 (n+1

2 )−g(λ)).

�
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