
ar
X

iv
:2

00
5.

04
75

9v
1

 [
m

at
h.

C
O

]
 1

0
M

ay
 2

02
0

On Increasing and Invariant Parking Sequences

Ayomikun Adeniran∗ and Catherine Yan†

Department of Mathematics, Texas A&M University,

College Station, TX 77843

May 12, 2020

Abstract

The notion of parking sequences is a new generalization of parking functions
introduced by Ehrenborg and Happ. In the parking process defining the classical
parking functions, instead of each car only taking one parking space, we allow the
cars to have different sizes and each takes up a number of adjacent parking spaces
after a trailer T parked on the first z − 1 spots. A preference sequence in which
all the cars are able to park is called a parking sequence. In this paper, we study
increasing parking sequences and count them via bijections to lattice paths with
right boundaries. Then we study two notions of invariance in parking sequences
and present various characterizations and enumerative results.

1 Introduction

Classical parking functions were first introduced by Konheim and Weiss [4]. The
original concept involves a linear parking lot with n available spaces and n labeled
cars each with a pre-fixed parking preference. Cars enter one-by-one in order. Each
car attempts to park in its preferred spot first. If a car found its preferred spot
occupied, it would move towards the exit and take the next available slot. If there is
no space available, the car exits without parking. A parking function of length n is
a preference sequence for the cars in which all cars are able to park (not necessarily
in their preferred spaces). A formal definition for parking functions can be stated
as follows.

Definition 1.1. Let ~a = (a1, a2, ..., an) be a sequence of positive integers, and let
a(1) ≤ a(2) ≤ · · · ≤ a(n) be the non-decreasing rearrangement of ~a . Then the
sequence ~a is a parking function if and only if a(i) ≤ i for all indices i. Equivalently,
~a is a parking function if and only if for all i ∈ [n],

#{j : aj ≤ i} ≥ i. (1)

∗ayoijeng@math.tamu.edu
†cyan@math.tamu.edu

1

http://arxiv.org/abs/2005.04759v1

For example, the preference sequences (1, 2, 3, 4), (2, 1, 3, 4) or (1, 2, 4, 1) are all
parking functions, while (2, 2, 4, 2) is not since it will have one car leave un-parked.
It is well-known that the number of classical parking functions is (n + 1)n−1. An
elegant proof by Pollak (see [7]) uses a circle with (n+ 1) spots where the parking
functions are the preference sequences that could park all n cars without using the
(n+ 1)-th spot.

Definition 1.1 can be extended to define the notion of vector parking functions,
or ~u-parking functions. Let ~u be a non-decreasing sequence (u1, u2, u3, ...) of positive
integers. A ~u-parking function of length n is a sequence (x1, x2, ..., xn) of positive
integers whose non-decreasing rearrangement x(1) ≤ x(2) ≤ · · · ≤ x(n) satisfies
x(i) ≤ ui. Equivalently, (x1, . . . , xn) is a ~u-parking function if and only if for all
i ∈ [n],

#{j : xj ≤ ui} ≥ i. (2)

Denote by PFn(~u) the set of all ~u-parking functions of length n. When ui = i we
obtain the classical parking functions. When ui = a+ b(i − 1) for some a, b ∈ Z+,
it is known that the number of ~u-parking functions is a(a+ bn)n−1; see e.g. [5].

The set of parking functions is a basic object lying in the center of combina-
torics, with many connections and applications to other branches of mathematics
and disciplines, such as storage problems in computer science, graph searching al-
gorithms, interpolation theory, diagonal harmonics, and sandpile models. Because
of their rich theories and applications, parking functions and their variations have
been studied extensively in the literature. See [10] for a comprehensive survey on
the combinatorial theory of parking functions.

There is a particular generalization of parking functions that was recently intro-
duced by Ehrenborg and Happ [2, 3], called parking sequences. Again, there are n

cars trying to park in a linear parking lot. In this new model the car Ci has length
yi ∈ Z+ for each i = 1, 2, ..., n. Call ~y = (y1, y2, ..., yn) the length vector. There
is a trailer T of length z − 1 parked at the beginning of the street after which the
n cars park with car Ci taking up yi adjacent parking spaces. Given a sequence
c = (c1, ..., cn) ∈ Z

n
+, for i = 1, 2, . . . , n the cars enter the street in order, and car

Ci looks for the first empty spot j ≥ ci. If the spaces j through j + yi − 1 are all
empty, then car Ci parks in these spots. If j does not exist or any of the spots j+1
through j + yi − 1 is already occupied, then there will be a collision and the car
cannot park and has to leave the street. In this case, we say the parking fails.

Definition 1.2. Assume there are z − 1 +
∑n

i=1 yi parking spots along a street,
with the first z − 1 occupied by a trailer. The sequence c = (c1, ..., cn) is called a
parking sequence for (~y, z) where ~y = (y1, ..., yn) if all n cars can park without any
collisions. We denote the set of all such parking sequences by PS(~y; z).

For example, c = (3, 7, 5, 3) is a parking sequence for (~y; z) where ~y = (1, 2, 2, 3)
and z = 4. Figure 1 shows how the cars C1, . . . , C4 would park along the street
with the reference sequence c. As given in [3], the number of parking sequences in
PS(~y; z) is

z · (z + y1 + n− 1) · (z + y1 + y2 + n− 2) · · · (z + y1 + · · ·+ yn−1 + 1). (3)

From (1) and (2) it is easy to see that any permutation of a ~u-parking function is
also a ~u-parking function. This is however not true for parking sequences. Consider

2

T C1 C3 C2 C4

1 2 3 4 5 6 7 8 9 10 11

Figure 1: c = (3, 7, 5, 3) is a parking sequence for ~y = (1, 2, 2, 3).

as an example a one-way street with 4 spots and 2 cars with fixed length vector
~y = (2, 2) and z = 1, (no trailer). Then, whereas c = (1, 2) is a parking sequence
for (~y; z), c′ = (2, 1) is not. Thus, it is natural to ask which parking sequence c is
invariant for (~y; z), that is, it is still a parking sequence for (~y; z) after the entries
of c are permuted. Another question is which sequence remains a parking sequence
when the cars enter the street in different orders. In other words, we want to know
which preference sequence allows all the cars to park when the length vector ~y is
permuted to (yσ(1), yσ(2), ..., yσ(n)) for an arbitrary σ ∈ Sn.

There are several basic notions and variations associated with parking functions
and their generalizations. Usually, these notions lead to a study of special classes of
parking functions that have some interesting property. One of such special classes
is the set of increasing parking functions, which have non-decreasing entries and
are counted by the ubiquitous Catalan numbers. It is only natural to ask for a
generalization of this class in the set of parking sequences.

We study these questions in the present work. The rest of the paper is organized
as follows. In section 2, we discuss increasing parking sequences and their connec-
tion to lattice paths. In section 3, we fix the length vector ~y and characterize all
permutation-invariant parking sequences when ~y has some special characteristics.
Then, in section 4, we characterize all parking sequences that remain valid for all
permutations of ~y. We finish the paper with some closing remarks in section 5.

2 Increasing Parking Sequences

In this section, we consider all non-decreasing parking sequences for any given pair
(~y; z). By convention, we write [x] = {1, 2, ..., x} and the interval [x, y] = {x, x +
1, ..., y}, where x, y ∈ Z+ and x < y. Given any sequence b = (b1, ..., bn) ∈ Z

n
+, let

binc = (b(1), ..., b(n)) be the non-decreasing rearrangement of the entries of b and

the ith entry b(i) of binc is called the i-th order statistic of b. Next, we define the
final parking configuration for any given parking sequence.

Definition 2.1. Let c ∈ PS(~y; z). The final parking configuration of c is the
arrangement of cars C1, C2, ..., Cn following the trailer T encoding their relative
order on the street after they are done parking using the preference sequence c.

For example, in Figure 1, the final parking configuration of c = (3, 7, 5, 3) is
T,C1, C3, C2, C4.

The following inequalities analogous to (1) give a necessary condition for being
a parking sequence.

Lemma 2.1. Suppose c = (c1, ..., cn) ∈ PS(~y; z) where ~y = (y1, ..., yn). Then,
#{j ∈ [n] : cj ≤ z} ≥ 1 and for each 1 ≤ t ≤ n− 1,

#{j : cj ≤ z +
t−1∑

i=0

y(n−i)} ≥ t+ 1. (4)

3

Proof. We have #{j : cj ≤ z} ≥ 1 because otherwise, there is no car whose
preference is less than or equal to z, thus no car parks on spot z and we obtain a
contradiction. Suppose for some t ∈ [2, n − 1], #{j : cj ≤ z +

∑t−1
i=0 y(n−i)} ≤ t.

Then, in the final parking configuration on spots [1, z +
∑t−1

i=0 y(n−i)], there are at
most 1 trailer and t cars occupying a total of at most z − 1 + y(n) + y(n−1) + · · ·+
y(n−t+1) spots. Thus, not all spots are used in the final parking configuration and
this contradicts the fact that c ∈ PS(~y; z).

Corollary 2.2. Let c = (c1, ..., cn) ∈ PS(~y; z) where ~y = (y1, ..., yn). Then c(1) ≤ z

and for j = 2, . . . , n,

c(j) ≤ z +

j−2
∑

i=0

y(n−i). (5)

We note that the conditions of Lemma 2.1 are not sufficient. Using the same
example as before, even though c = (1, 2) and c′ = (2, 1) both satisfy (4) for
~y = (2, 2), c′ 6∈ PS(~y; 1). In addition, for a parking sequence c ∈ PS(~y; z), its
rearrangement cinc is not necessarily a parking sequence. Consider the following
example for ~y = (1, 1, 4) and z = 1. c = (5, 6, 1) is in PS(~y; z) but cinc = (1, 5, 6) is
not.

Definition 2.2. A sequence c = (c1, ..., cn) ∈ PS(~y; z) is an increasing parking
sequence for (~y; z) if c1 ≤ c2 ≤ · · · ≤ cn. We denote the set of all increasing parking
sequences for (~y; z) by IPS(~y; z).

When ~y = (1, 1, ..., 1) and z = 1 (i.e. the trailer of length 0), Definition 2.2
leads to the classical increasing parking functions, which are counted by the Catalan
numbers. It is well-known that classical increasing parking functions of length n are
in one-to-one correspondence with Dyck paths of semilength n, which are lattice
paths from (0, 0) to (n, n) with strict right boundary (1, 2, ..., n). This result can
be generalized to increasing parking sequences.

First we show that an analog of (1) is enough to characterize increasing parking
sequences.

Proposition 2.3. Let (~y; z) = (y1, ..., yn; z).Then, c = (c1, ..., cn) ∈ IPS(~y; z) if
and only if c1 ≤ c2 ≤ · · · ≤ cn and for all i ∈ [n],

ci ≤ z +

i−1∑

j=1

yj . (6)

Proof. Observe that if c is a non-decreasing preference sequence satisfying (6), then
the cars will park in the final configuration T,C1, . . . , Cn. Hence c is in IPS(~y; z).

Conversely, for a non-decreasing sequence c that allows all the cars to park, we
need to prove that it satisfies (6). First by Corollary 2.2, c1 ≤ z. Thus, car C1

parks right after the trailer leaving no gap. By the rules of the parking process, if
ci ≤ ci+1 and both cars Ci and Ci+1 are able to park, then Ci+1 will park after Ci.
Hence for a non-decreasing c ∈ PS(~y; z), the final parking configuration must be
T,C1, C2, . . . , Cn. It follows that the first spot occupied by car Ci is z+y1+· · ·+yi−1,
which must be larger than or equal to ci.

4

Proposition 2.3 allows us to enumerate increasing parking sequences for any
given length vector ~y and z ∈ Z+ using results in lattice path counting. Recall that
a lattice path from (0, 0) to (p, q) is a sequence of p east steps and q north steps.
It can be represented by a sequence of non-decreasing integers (x1, x2, . . . , xq) such
that the north steps are at (xi, i − 1) → (xi, i), for i = 1, ..., q. The lattice path
is said to have strict right boundary (b1, b2, ..., bq) if 0 ≤ xi < bi for all 1 ≤ i ≤ q.
Let LPp,q(b1, b2, ..., bq) denote the set of all lattice paths from (0, 0) to (p, q) with
strict right boundary (b1, b2, . . . , bq). Figure 2 shows an example of a lattice path

(2,3,3,7) from (0,0) to (8,4) with strict right boundary ~b = (3, 4, 5, 8).

(0, 0)

(8, 4)

Figure 2: A lattice path (2,3,3,7) with strict right boundary at (3, 4, 5, 8).

We can represent increasing parking sequences in terms of lattice paths with
strict right boundary as follows: Let (~y; z) = (y1, ..., yn; z) and M = z − 1 + y1 +
y2 + · · · + yn−1 + yn. Then by Proposition 2.3 there is a bijection from IPS(~y; z)
to the set of lattice paths from (0, 0) to (M,n) with strict right boundary (z, z +
y1, z + y1 + y2, ..., z + y1 + y2 + · · ·+ yn−1). (The boundary is strict because in the
lattice path, xi can be 0 while in c ∈ IPS(~y, z), ci ≥ 1.) There are well-known
determinant formulas to count the number of lattice paths with general boundaries,
see, for example, Theorem 1 of [6, Chap.2], which leads to the following determinant
formula.

Corollary 2.4. Suppose M = z − 1 + y1 + y2 + · · ·+ yn−1 + yn. Then,

#IPS(~y; z) = #LPM,n(z, z + y1, z + y1 + y2, ..., z + y1 + y2 + · · ·+ yn−1)

= det

[(
bi

j − i+ 1

)]

1≤i,j≤n

where b1 = z and bi = z + y1 + y2 + · · ·+ yi−1 for i = 2, ..., n.

For the special case that the length vector has constant entries, there are nicer
closed formulae for the determinant. Specifically, when ~y = (kn) = (k, k, . . . , k)
and M = z + kn − 1, LPM,n(z, z + k, z + 2k, ..., z + (n − 1)k) is the set of lattice
paths from (0, 0) to (z + kn − 1, n) which never touch the line x = z + ky. Using
the formula (1.11) of [6, Chap.1], we have

Corollary 2.5. Suppose (~y, z) = ((kn); z) and M = z + kn− 1. Then

#IPS(~y; z) = #LPM,n(z, z + k, z + 2k, ..., z + (n − 1)k) =
z

z + n(k + 1)

(
z + n(k + 1)

n

)

.

5

This specializes to the Fuss-Catalan numbers when z = 1.

Corollary 2.6. Suppose ~y = (k, k, . . . , k) ∈ Z
n
+. Then

#IPS(~y; 1) =
1

kn+ 1

(
(k + 1)n

n

)

.

3 Invariance for Fixed Length Vector

In this section, we study the first of two types of invariance for parking sequences.
Fixing the length vector ~y ∈ Z

n
+ and a positive integer z, we investigate which park-

ing sequence remains in the set PS(~y; z) after its entries are arbitrarily rearranged.

Definition 3.1. Fix ~y = (y1, ..., yn) and z ∈ Z+. Let c ∈ PS(~y, ; z). We say that c
is a permutation-invariant parking sequence for (~y; z) if for any rearrangement c′ of
c, we have c′ ∈ PSn(~y; z). We denote the set of all permutation-invariant parking
sequences for (~y; z) by PSinv(~y; z).

For example, for ~y = (1, 2), we have PS(~y; 1) = {(1, 1), (1, 2), (3, 1)} and PSinv(~y; z) =
{(1, 1)}. First, we describe a subset of the invariant parking sequences.

Proposition 3.1. For any c = (c1, ..., cn) ∈ [z]n, we have c ∈ PSinv(~y; z).

Proof. For any preference sequence c, if ci ≤ z for all i, then we obtain the final
parking configuration T,C1, C2, ..., Cn, which means c ∈ PS(~y; z). Since the condi-
tion ci ∈ [z] for all i does not depend on the order of ci, we have c is permutation-
invariant.

In general, PSinv(~y; z) is larger than the set [z]n, and the situation can be more
complicated. The following two examples show that PSinv(~y; z) depends not only
on the relative order of the yi’s, but also on the difference of yi’s.

Example 1. Let ~y = (y1, y2) and z = 1. If y1 < y2, then PSinv(~y; 1) = {(1, 1)}.
On the other hand, if y1 ≥ y2, we have PSinv(~y; 1) = {(1, 1), (1, y2 +1), (y2 +1, 1)}.

Example 2. Suppose ~y = (4, 3, 2) and ~t = (4, 3, 1). It is easy to check that

PSinv(~y; 1) = {(1, 1, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1)}

and

PSinv(~t; 1) = {(1, 1, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 1, 5), (1, 5, 1), (5, 1, 1)}.

Note that the relative orders for the vectors ~y and ~t are the same, (both have the
pattern 321), but the invariant sets are not similar.

In the following we characterize the invariant set for some families of ~y. First,
we consider the case where the length vector is strictly increasing. Next, we look
at the case where ~y is a constant sequence. Lastly, given a, b ∈ Z+, we consider two
cases where the length vector is of the form (i) ~y = (a, ..., a, b, ..., b) where a < b

and (ii) ~y = (a, ..., a, b, ..., b) where b = 1 and a > b.

6

3.1 Strictly increasing length vector

When ~y is a strictly increasing sequence, we show that Proposition 3.1 gives all the
permutation-invariant parking sequeneces.

Theorem 3.2. Let (~y; z) = (y1, y2, ..., yn; z) where y1 < y2 < · · · < yn. Then,

PSinv(~y; z) = [z]n.

Proof. By Proposition 3.1, [z]n ⊆ PSinv(~y; z). Conversely, suppose c = (c1, c2, ..., cn)
is a parking sequence for (~y; z) with some ci 6∈ [z]. We claim that c is not
permutation-invariant. To see this, let x = min{ci ∈ c |ci > z}. Then, we can
consider cinc = (c(1), c(2), ..., c(r), x, c(r+2), . . . , c(n)), where c(1) ≤ c(2) ≤ · · · ≤ c(r) ≤
z < x ≤ c(r+2) ≤ · · · ≤ c(n) and r ≥ 1 by Corollary 2.2. Then, by Proposition 2.3,
x satisfies the inequality: z < x ≤ z +

∑r
i=1 yi. Thus, we can choose the maximum

s such that x > z +
∑s

i=1 yi, where 0 ≤ s < r. Consider the preference

c′ = (c(1), c(2), ..., c(s), x, c(s+1), . . . , c(r), c(r+2), . . . , c(n))

We try to park according to c′. Clearly, the first s cars park in order after the
trailer T without any gaps in between them. Then, the car Cs+1 has preference
x and parks after car Cs with h unoccupied spots in between Cs and Cs+1, where
h = x − (z +

∑s
i=1 yi) ≥ 1 and h ≤ ys+1 by the maximality of s. Among the

un-parked cars Cs+2, . . . , Cn, the minimal length is ys+2, where ys+2 > ys+1 ≥ h.
Thus no car can fill in these h unoccupied spots. It follows that c′ 6∈ PS(~y; z), and
hence c 6∈ PSinv(~y; z).

Corollary 3.3. Let (~y; z) = (y1, y2, ..., yn; z) where y1 < y2 < · · · < yn. Then,

#PSinv(~y; z) = zn.

3.2 Constant length vector

In this subsection, we investigate the case where ~y is of the form (kn) = (k, k, ..., k).

Theorem 3.4. Suppose (~y; z) = ((kn); z) where k ∈ Z+ and k > 1. Then,
PSinv(~y; z) is the set of all sequences (c1, ..., cn) such that for each 1 ≤ i ≤ n,

(i) c(i) ≤ z + (i− 1)k, and

(ii) ci ∈ {1, 2, ..., z, z + k, z + 2k, ..., z + (n− 1)k}.

Proof. Let c = (c1, ..., cn) be a sequence that for each 1 ≤ i ≤ k, c(i) ≤ z+(i− 1)k,
and ci ≤ z or ci = z + sk for some s = 0, 1, ...n − 1. We claim that c ∈ PS(~y; z).
Since these conditions are independent of the arrangement of the terms ci’s, this
would implies c is permutation-invariant.

We attempt to park using c. First, C1 either parks right after the trailer if
c1 ≤ z, or on spots [c1, c1 + k− 1] if c1 = z+ sk for some s ≥ 0. We assume for our
inductive hypothesis, that the first r cars are parked already, (where 1 ≤ r ≤ n−1),
and the following observations hold true at this stage in the parking process:

1. Any car already parked on the street occupies spots of the form [z + ks, z +
k(s + 1)− 1] where s ∈ {0, 1, ..., n − 1}

7

2. For any maximal interval of unoccupied spots, the length is a multiple of k
and the interval starts at z + km for some m ∈ {0, 1, ..., n − 1}.

Now car Cr+1 comes with preference cr+1 = z + kl. There are two possibilities:

• if spot (z + kl) is empty, then Cr+1 parks on spots [z + kl, z + k(l + 1)− 1].

• if spot (z+kl) is non-empty, then Cr+1 drives forward to park in the first open
interval ahead. Such an open interval must exist. Otherwise, assume that the
last open spot after Cr parked is x. By inductive hypothesis, x = z + sk − 1
for some s < l. So all the spots from x to the end of the street (z+nk−1) are
occupied, by n− s cars. These n− s cars, as well as Cr+1, all have preference
at least x. In other words, there are at least n− s+ 1 cars having preference
ci ≥ z + sk, which implies c(s) ≥ z + sk, a contradiction.

This exhausts all possible cases for Cr+1. Thus, by induction, all cars can park and
c ∈ PS(~y; z).

Conversely, suppose for a contradiction that there is a parking sequence c ∈
PSinv(~y; z) not satisfying Condition (ii). (By Corollary 2.2 Condition (i) holds for
all c ∈ PS(~y; z).) Then, there is some j ∈ [n] such that cj = z + sk + t for some
s ∈ {0, 1, ...n − 1} and 1 ≤ t < k. Consider the following rearrangement of c

given by c′ = (cj , c1, c2, ..., cj−1, cj+1, ..., cn). By our assumption, c′ ∈ PS(~y; z). We
attempt to park using this preference. First, C1 parks on [z+ sk+ t, z+(s+1)k+
t− 1]. However, between the trailer and C1, there is now an unoccupied interval of
(z + sk + t)− z = sk + t spots, which is clearly nonempty and not a multiple of k.
Thus, no matter what preferences the remaining cars have, it is impossible to park
all cars on this street. This yields a contradiction to our assumption.

Recall that a ~u-parking function of length n is a sequence (x1, x2, ..., xn) satisfy-
ing 1 ≤ x(i) ≤ ui. We can use the results of vector parking functions to enumerate
the number of sequences described in Theorem 3.4.

Corollary 3.5. Let (~y; z) = ((kn); z) with k ≥ 2. Then,

#PSinv(~y; z) = z(n+ z)n−1.

Proof. For any c = (c1, ..., cn) ∈ PSinv(~y; z) let f(c) = c′, where c′ is the sequence
whose entries are given by

c′i =

{

ci, if 1 ≤ ci ≤ z

z + s, if ci = z + sk.

The condition c(i) ≤ z + (i − 1)k implies c′(i) ≤ z + i − 1, hence c′ is a vector

parking function associated to the vector ~u = (z, z + 1, ..., z + n − 1), and f is
a map from PSinv(~y; z) to PFn(~u). It is clear that f is a bijection since the map
can be easily inverted. By [5, Corollary 5.5], the number of ~u-parking functions is
z(z + n)n−1.

Remark. Note that Theorem 3.4 and Corollary 3.5 are also valid for k = 1, in
which case PSinv((1

n); z) = PS((1n); z) are exactly ~u-parking functions associated
to ~u = (z, z + 1, . . . , z + n− 1).

8

3.3 Length vector ~y = (a, ..., a, b, ..., b) where a < b

Let n ≥ 2 and z, a, b, r be positive integers with a < b and 1 ≤ r < n. In this
subsection we fix ~y = (a, a, ..., a

︸ ︷︷ ︸

r

, b, ..., b
︸ ︷︷ ︸

n−r

) = (ar, bn−r), i.e. the first r cars are of size

a and the remaining n − r cars are of size b. First we prove a couple of Lemmas
that characterize the set of permutation-invariant parking sequences for (~y; z). In
the following we will refer to any car of size a (respectively, size b) as an A-car
(respectively, B-car).

Lemma 3.6. Assume c ∈ PSinv(~y; z). Then in the final parking configuration of
c, all A-cars park in [z, z + ra− 1].

Proof. Suppose not. Then, there is some c ∈ PSinv(~y; z) with which at least one
A-car is not parked in the interval [z, z + ra− 1] in the final parking configuration
F . In F , between the trailer T and all A-cars there are blocks L1, . . . , Lm of
consecutive spots occupied by B-cars. Assume the block Li consists of lib spots,
where l1 + l2 + · · · + lm = n− r. Let Cj be the last A-car in the configuration F .
Then Cj occupies some spots in [z + ra, z + ra+ (n− r)b− 1], and no other A-car
has checked the spots Cj occupied in the parking process. In addition, let Ck be
the first B-car in F . Then j ≤ r < k and Ck parks before Cj in F .

Case 1: Assume in F there are some other A-cars parked between Ck and Cj . Consider
the rearrangement c′ = (c1, ..., cj−1, ck, cj+1, ..., ck−1, cj , ck+1, ..., cn) obtained
by exchanging the j-th and k-th terms in c. Let the cars park according to
the preference c′. It is easy to see that all A-cars occupy the same spots as
in F except that Cj now parks on a of the b spots originally occupied by Ck

in F , leaving (b − a) of these spots unused. Hence after all the A-cars are
parked, the first block of consecutive open spots has size l1b− a, which is not
a multiple of b. Thus it is impossible for the remaining B-cars to fill in and
hence c′ 6∈ PS(~y; z).

Case 2: There is no A-car parked between Ck and Cj in F . Then F is of the form
A · · ·AB · · ·BAB · · ·B, where there are r − 1 A-cars before the first B-car
Ck, and cj = z + (r − 1)a + l1b. Let c′′ be the following rearrangement
of c: the first r entries of c′′ are c1, . . . , cj−1, ck, cj+1, . . . , cr, obtained from
the first entries of c by replacing cj with ck; the preferences for B-cars are
cj , cr+1, . . . , ck−1, ck+1, . . . , cn. Let the cars park according to c′′. Then the
A-cars will occupy the spots [z, z+ ra− 1], and the first B-car occupies spots
[cj , cj + b− 1]. Now there are cj − 1− (z− 1+ ra) = l1b− a spots between the
last A-car and the first B-car; these spots cannot be filled by other B-cars.
Hence c′′ 6∈ PS(~y; z).

In both cases we have a permutation of c that is not in PS(~y; z), contradicting
the assumption that c ∈ PSinv(~y; z).

Lemma 3.7. If (c1, c2, ..., cn) ∈ PSinv(~y; z), then ci ≤ z+(r−1)a for all 1 ≤ i ≤ n.

Proof. Suppose not. Take any permutation of c starting with max{ci : i ∈ [n]} and
we contradict the conclusion of Lemma 3.6.

Lemma 3.8. For c ∈ PSinv(~y; z), let c(1) ≤ c(2) ≤ · · · ≤ c(n) be the order statistics
of c. Then, c(i) ≤ z for each 1 ≤ i ≤ n − r + 1 and c(n−r+j) ∈ {1, ...z, z + a, z +
2a, ..., z + (j − 1)a} for each 2 ≤ j ≤ r.

9

Proof. By Lemmas 3.6 and 3.7, if c ∈ PSinv(~y; z), then any r-term subsequence of c,
say (ci1 , ci2 , ..., cir), parks all r A-cars in [z, z+ra−1] and hence ci ≤ z+(r−1)a for
all i = 1, ..., n. Furthermore, if we consider the last r terms of the order statistics
of c, this means (c(n−r+1), c(n−r+2), ..., c(n)) ∈ PSinv((a, a, ..., a); z). By Theorem
3.4, we obtain c(n−r+j) ∈ {1, ...z, z + a, z + 2a, ..., z + (j − 1)a} for each 1 ≤ j ≤ r.
Finally by the order statistics, c(i) ≤ c(n−r+1) ≤ z for each 1 ≤ i ≤ n− r.

Combining Lemmas 3.6, 3.7 and 3.8, we prove the following result.

Theorem 3.9. Let n ≥ 2 and z, a, b, r be positive integers with a < b and 1 ≤ r < n.
Assume ~y = (ar, bn−r). Let PFn(~u) be the set of ~u-parking functions of length n

where ~u = (z, z, ..., z
︸ ︷︷ ︸

n−r+1

, z + 1, z + 2, ..., z + r − 1). Then, there is a bijection between

the sets PSinv(~y; z) and PFn(~u).

Proof. First, we claim that any c satisfying the inequalities in Lemma 3.8 is in
PSinv(~y; z). To see this, consider first the A-cars with preferences (c1, . . . , cr). We
have ci ∈ {1, 2, ..., z, z + a, z + 2a, ..., z + (r − 1)a} for all 1 ≤ i ≤ r, and the order
statistics of these r terms are no more than (z, z+ a, · · · , z+(r− 1)a) (coordinate-
wise). By Theorem 3.4, (c1, . . . , cr) is a parking sequence for ((ar); z). Hence all
A-cars must park on [z, z+ra−1]. Next, consider the B-cars. Since ci ≤ z+(r−1)a
and all A-cars are parked without any unoccupied spots on [z, z + ra− 1], then all
B-cars park in increasing order after the A-cars. In other words, the final parking
configuration is T,C ′

1, ..., C
′
r , Cr+1, ..., Cn where C ′

1, ..., C
′
r is some rearrangement of

the A-cars. This proves the claim.
Now, by the above claim and Lemma 3.8, we have shown that PSinv(~y; z) is

exactly the set of all sequences c whose order statistics satisfy c(i) ≤ z for each
1 ≤ i ≤ n − r + 1 and c(n−r+j) ∈ {1, ...z, z + a, z + 2a, ..., z + (j − 1)a} for each
2 ≤ j ≤ r. Let ~u = (u1, u2, . . . , un) = (z, z, ..., z, z +1, z+2, ..., z + r− 1). Consider
the map γa : PSinv(~y; z)→ PFn(~u) defined as follows.

γa : (c1, ..., cn) 7→ (c′1, ..., c
′
n) = c′

where for all 1 ≤ j ≤ n

c′j =

{

cj , if cj ≤ z

z + s, if cj = z + sa.

The map γa is well-defined since the sequence c′ has order statistics satisfying
1 ≤ c′(i) ≤ ui for each i = 1, 2, ..., n. Thus c′ ∈ PFn(~u). Clearly the map γa is
invertible, hence γa is a bijection.

Corollary 3.10. Let ~y and ~u be as in Theorem 3.9. Then,

#PSinv(~y; z) = #PFn(~u)

=
r−1∑

j=0

(
n

j

)

(r − j) rj−1zn−j.

In particular, when r = 1, #PSinv(a, b, b, ..., b; z) = zn.

Proof. The result follows from Theorem 3.9 and [[9], Theorem 3].

10

3.4 Length vector ~y = (a, 1, 1, . . . , 1) where a > 1

It is natural to ask what happens for the length vector ~y = (ar, bn−r) with a > b.
Unlike in the preceding subsection, the number of sequences in PSinv((a

r, bn−r); z)
with a > b depends on the value of a and b. Table 1 shows the initial values for
PSinv((a

2, bn−2); z) where z = b = 1 and a = 2, 3.

Some Initial Values

Length ~y (2, 2) (2, 2, 1) (2, 2, 1, 1) (2, 2, 1, 1, 1)
a = 2:

#PSinv(~y; 1) 3 7 31 81

Length ~y (3, 3) (3, 3, 1) (3, 3, 1, 1) (3, 3, 1, 1, 1)
a = 3:

#PSinv(~y; 1) 3 7 13 51

Table 1: #PSinv((a, a, 1, ..., 1); z) with a = 2, 3.

These initial values do not correspond to any known sequences in the On-Line
Encyclopedia of Integer Sequences (OEIS) [8]. While we do not have a solution
for the general case, in the following we present a small result for the special case
where there is one A-car and n− 1 cars each of size b = 1.

Proposition 3.11. Suppose z, a ∈ Z+ with a > 1. Let PFn(~u) be the set of ~u-
parking functions, where ~u = (z, z + 1, ..., z + n− 1). Then

PSinv((a, 1
n−1); z) = PFn(~u).

Proof. Let c = (c1, c2, ..., cn) ∈ PSinv(~y; z) and c(1) ≤ c(2) ≤ · · · ≤ c(n) be its
order statistics. If c(i) > z + i − 1 for some i, consider the preference sequence
c′ = (c(n), c(n−1), . . . , , c(1)). Under c′ the first n − i + 1 cars all prefer spots in
[z+ i, z+ a+n− 2]. There are only a+n− i− 1 spots in this interval yet the total
length of the first n − i + 1 cars is a + n − i. It is impossible to park. Hence we
must have c(i) ≤ z + i− 1 for all i and c ∈ PFn(~u).

Conversely, given x ∈ PFn(~u), we know PFn(~u) is permutation-invariant, thus
we only need to show that x ∈ PS(~y; z) where ~y = (a, 1n−1). First, x1 ≤ z + n− 1
hence C1 parks. We claim that all the remaining cars can park with the preference
sequence x. Assume not, then there is a car failing to park and there are empty
spots left unoccupied. Let k be such an empty spot. Note that all the remaining
cars are of length 1. A car Ci (i ≥ 2) cannot park if and only if all the spots from
xi to the end are occupied when Ci enters. Since xi ≤ z + n − 1, it follows that
z ≤ k ≤ z + n− 1. From x ∈ PFn(~u) and condition (2), we have

#{j : xj ≤ k} ≥ k − (z − 1).

It means that there are at least k− (z−1) cars that attempted to park in the spots
[z, k], which has exactly k − (z − 1) spots. Therefore the spot k must be checked
and cannot be left empty, a contradiction.

Again using the counting formulas for ~u-parking functions, we have

Corollary 3.12. #PSinv(y; z) = z(n + z)n−1.

11

4 Invariance for the Set of Car Lengths

4.1 Strong parking sequences

In this section, we study another type of invariance. Given a fixed set of cars of
various lengths and a one-way street whose length is equal to the sum of the car
lengths and a trailer’s length z − 1, we consider the parking sequences for which
all n cars can park on the street irrespective of the order in which they enter the
street. Denote by Sn the set of all permutations on n letters. For a vector ~y and
σ in Sn, let σ(~y) = (yσ(1), ... , yσ(n)).

Definition 4.1. Let c = (c1, ..., cn) and ~y = (y1, ..., yn). Then, c is a strong parking
sequence for (~y; z) if and only if

c ∈
⋂

σ∈Sn

PS(σ(~y); z).

We will denote the set of all strong parking sequences for (~y; z) by SPS{~y; z}, or
equivalently, SPS{~yinc; z}.

Example 3. For the case n = 2, let a, b ∈ Z+ with a < b. It is easy to see that

PS((a, b); z) = [z]× [z + a] ∪ {(c1, c2) : c1 = z + b, 1 ≤ c2 ≤ z},

PS((b, a); z) = [z]× [z + b] ∪ {(c1, c2) : c1 = z + a, 1 ≤ c2 ≤ z}.

This gives

SPS{(a, b); z} = PS((a, b); z) ∩ PS((b, a); z) = [z]× [z + a].

Note that SPS{(a, b); z} is exactly the set of all preferences c ∈ PS((a, b); z) that
yields the final parking configuration T,C1, C2.

By Ehrenborg and Happ’s result (3), we know that if ~y = (kn), then

#SPS{~y; z} = #PS(~y; z) = z ·

n−1∏

i=1

(z + ik + n− i).

In the following we consider the case that ~y does not have constant entries.

Definition 4.2. We say that c ∈ PS(~y; z) parks ~y in the standard order if the final
parking configuration of c is given by T,C1, C2, ..., Cn.

The following lemma is easily proved by induction.

Lemma 4.1. Let c = (c1, c2, ..., cn) ∈ PS(~y; z). Then, c parks ~y in the standard
order if and only if

ck ≤ z + y1 + · · ·+ yk−1 for all k ∈ [n].

The following result characterizes strong parking sequences for any set of n ≥ 2
cars with a given length vector {y1, y2, ..., yn} and a trailer T of length z − 1.

Theorem 4.2. Let n ≥ 2. Assume that ~y = (y1, ..., yn) is not a constant se-
quence. Then c is a strong parking sequence for {~y; z} if and only if c parks
~yinc = (y(1), y(2), ..., y(n)) in the standard order.

12

Proof. Suppose c parks ~yinc in the standard order. We need to check that c is a
parking sequence for (σ(~y); z) for every σ ∈ Sn. This follows from Lemma 4.1 and
the fact that y(1) + y(2) + · · ·+ y(i) ≤ yσ(1) + yσ(2) + · · ·+ yσ(i) for any σ ∈ Sn and
i ∈ [n].

Conversely, let c be a parking sequence for (~yinc; z) that does not parks ~yinc in
the standard order. We will construct a permutation σ such that for a sequence
of cars with length vector σ(~yinc), c 6∈ PS(σ(~yinc); z). In the following, let Ci

represent a car of length y(i), as listed in the table below. Let F be the final
parking configuration of c when we park the cars C1, . . . , Cn. In c, let k1 be the
minimal index k such that ck > z+y(1)+y(2)+ · · ·+y(k−1). Then in F the trailer is
followed by C1, . . . , Ck1−1 with no gap, but there is a gap between Ck1−1 and Ck1 .
Let Ct be the last car that parks right before Ck1 in F . Clearly t > k1.

Car C1 C2 · · · Ck1 · · · Ct · · · Cn−1 Cn

Car Length y(1) y(2) · · · y(k1) · · · y(t) · · · y(n−1) y(n)

Case 1. Assume y(k1) < y(t). Let σ1 be the transposition (k1 ←→ t). For each i ∈ [n]
let Di represent a car of length yσ1(i), as shown below.

σ1
Car D1 D2 · · · Dk1 · · · Dt · · · Dn−1 Dn

Car Length y(1) y(2) · · · y(t) · · · y(k1) · · · y(n−1) y(n)

We park cars D1, ...,Dn using the preference sequence c. If c ∈ PS(σ1(~y); z),
then D1, ...,Dt are able to park and

(a) D1,D2, ...,Dk1−1 have the same lengths and preferences as C1, C2, ..., Ck1−1.
Hence they park in order right after the trailer with no gaps.

(b) Dk1 is longer than Ck1 and occupies spots in [ck1 , ck1 + y(t) − 1].

(c) Any car Di for i ∈ {k1 + 1, ..., t − 1} has the same preference as Ci so it
parks either before Dk1 and in the same spots as Ci in F , or parks after
Dk1 .

(d) Dt takes the first y(k1) spots of the ones occupied by Ct in F .

After parking D1, ...,Dt, there are y(t) − y(k1) unused spots between cars Dt

and Dk1 . Any car trying to park after Dt has length ≥ y(t) > y(t) − y(k1). So
the spots between Dt and Dk1 cannot be filled and hence c 6∈ PS(σ1(~yinc), z).

Case 2. Assume y(k1) = y(t). Then, since ~yinc is not a constant sequence, either y(1) <
y(k1) or y(t) < y(n).

Case 2a: Assume y(t) < y(n). Let σ2 be the transposition (t ←→ n) and Ei be a
car of length σ2(i) for each i ∈ [n].

σ2
Car E1 E2 · · · Ek1 · · · Et · · · En−1 En

Car Length y(1) y(2) · · · y(k1) · · · y(n) · · · y(n−1) y(t)

We park cars E1, . . . , En using the preference sequence c. The cars
E1, ..., Et−1 take the same spots as C1, . . . , Ct−1 in F . Next, car Et tries
to park in the spots Ct occupies, at the interval [ck1 − y(t), ck1 − 1], where
the spot ck1 is already occupied by Ek1 . But Et has length y(n) > y(t)
and hence cannot fit. Therefore, c 6∈ PS(σ2(~yinc); z).

Case 2b: If y(k1) = ... = y(t) = ... = y(n) = b, then we must have k1 > 1 and
y(1) < y(k1). In the final configuration F , at the time car Ck1 is parked,

13

the lengths of all the intervals of consecutive empty spots left are multiples
of b. Let σ3 be the transposition (1 ←→ k1) and Fi be a car of length
σ3(i) for each i ∈ [n].

σ3
Car F1 F2 · · · Fk1 · · · Ft · · · Fn−1 Fn

Car Length y(k1) y(2) · · · y(1) · · · y(t) · · · y(n−1) y(n)

We park cars F1, . . . , Fn using the preference sequence c. The cars
F1, . . . , Fk1−1 will take the spaces right after the trailer. The total length
of F1, . . . , Fk1−1 is no more than the total length of C1, . . . , Ck1−1, and Ct,
since y(1) + y(2) + · · ·+ y(k1−1) + y(t) > y(2) + · · ·+ y(k1−1) + y(k1). So Fk1

will park at the spot starting at ck, just as Ck1 . But, as y(1) < y(k1),
after Fk1 is parked, the available space after Fk1 is nonempty and not a
multiple of b, while all the remaining cars are of length b. Hence, it is not
possible to park all of them and c 6∈ PS(σ3(~yinc); z).

Combining Lemma 4.1 and Theorem 4.2, we obtain the following counting formula.

Corollary 4.3. Let z ∈ Z+ and ~y = (y1, y2, . . . , yn) ∈ Z
n
+. If ~y 6= (sn) for any

integer s, then

#SPS{~y; z} = z ·

n−1∏

i=1

(z + y(1) + · · ·+ y(i)).

where y(1) ≤ y(2) ≤ · · · ≤ y(n) is the order statistics of ~y.

4.2 Parking on a street with fixed length

Suppose instead of fixing the set of cars, we fix the total street length. Let C
k
n =

{~y = (n1, n2, ..., nk) ∈ Z
k
+ : n1 + n2 + · · · + nk = n} i.e. C

k
n is the set of all

compositions of n into k parts. We consider all possible sequences that can park
any set of k cars on the street of fixed length z+n− 1. More formally, we have the
following definition.

Definition 4.3. Let n, k, z ∈ Z+ with 1 ≤ k ≤ n. Then, c = (c1, ..., ck) is a
k-strong parking sequence for (n; z) if and only if

c ∈
⋂

~y∈Ck
n

SPS{~y; z}.

We will denote the set of all k-strong parking sequences for (n; z) by SPSk(n; z) (or
SPSk(n) when z = 1). For example, when n = 3, we have the following sets:

SPS1(n) = {(1)}

SPS2(n) = {(1, 1), (1, 2)}

SPS3(n) = {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1), (1, 3, 2),

(2, 1, 1), (2, 1, 2), (2, 1, 3), (2, 2, 1), (2, 3, 1), (3, 1, 1), (3, 1, 2), (3, 2, 1)}

We remark that in general, for any n ∈ N, SPS1(n) = {(1)} and SPSn(n) = PFn

where PFn is the set of all parking functions of length n. The following proposition
helps characterize SPSk(n; z) for any 1 ≤ k ≤ n and z ∈ Z+.

14

Proposition 4.4. Suppose n, z ∈ Z+ and let ~y0 = (1k−1, n − k + 1) be the compo-
sition of n into k parts with n1 = n2 = · · · = nk−1 = 1 and nk = n− k + 1. Then,

SPSk(n; z) = SPS{

k−1
︷ ︸︸ ︷

1, 1, ..., 1, n− k + 1; z} =
⋂

σ∈Sn

PS(σ(~y0); z). (7)

In other words, SPSk(n; z) is the set of all sequences in PS(~y0; z) that yield the
standard order.

Proof. The statement follows from Lemma 4.1 and the fact that for any ~y =
(n1, ..., nk) with n1 + · · ·+ nk = n, we have for each i ∈ [k − 1],

i
︷ ︸︸ ︷

1 + 1 + · · ·+ 1 = i ≤ n1 + · · ·+ ni.

Corollary 4.5.

#SPSk(n; z) =

{

z(k), if k 6= n

z(n+ z)n−1, if k = n.

where z(k) = z(z + 1) · · · (z + n− 1). In particular, when z = 1,

#SPSk(n) =

{

k!, if k 6= n

(n+ 1)n−1, if k = n.

Proof. Follows from Proposition 4.4 and Corollary 4.3.

5 Closing Remarks

In this paper, we studied increasing parking sequences and their connections with
lattice paths. We also studied permutation-invariant parking sequences and length-
invariant parking sequences. More precisely, we characterized the permutation-
invariant parking sequences for some special families of length vectors. While it
may not be easy to find a general formula for all cases, a natural direction to go
would be to investigate other special cases of car lengths. Furthermore, in the study
of parking functions we encounter quite a number of other mathematical structures
including trees, non-crossing partitions, hyperplane arrangements, polytopes etc. It
will be interesting to investigate if there is anything that connects other combina-
torial structures to invariant parking sequences. Recently in [1], parking sequences
were extended to the case in which one or more trailers are placed anywhere on the
street alongside n cars with length vector ~y = (1, 1, ..., 1). A natural generalization
is to consider a similar scenario where ~y is any length vector.

Acknowledgements

The authors are grateful for helpful conversations with Westin King which led to
shorter proofs for Theorem 3.2 and Lemma 3.6.

15

References

[1] A. Adeniran, S. Butler, G. Dorpalen-Barry, P. E. Harris, C. Hettle, Q. Liang, J.
L. Martin and H. Nam, Enumerating parking completions using Join and Split,
Electronic Journal of Combinatorics (2020). To Appear.

[2] R. Ehrenborg and A. Happ, Parking cars of different sizes, Amer. Math.
Monthly 123 (2016), 1045–1048.

[3] R. Ehrenborg and A. Happ, Parking cars after a trailer, Australasian Journal
of Combinatorics, Volume 70(3) (2018), Pages 402–406.

[4] A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM
J. Appl. Math. 14 (1966), 1266–1274.

[5] J. P. S. Kung and C. Yan, Gončarov polynomials and parking functions, J.
Combin. Theory Ser. A 102 (2003), No. 1, 16–37.

[6] S. G. Mohanty, “Lattice Path Counting and Applications”, in: Z.W. Birnbaum
and E. Lukacs, Probability and Mathematical Statistics, Academic Press, 1979.

[7] J. Riordan. Ballots and trees, J. Combinatorial Theory, 6:408–411, 1969.

[8] N. J. A. Sloane. The On-line Encyclopedia of Integer Sequences.
https://oeis.org.

[9] C. Yan, On the Enumeration of Generalized Parking Functions, Proceedings
of the 31st Southeastern International Conference on Combinatorics, Graph
Theory, and Computing, (Boca Raton, 2000). Congressus Numerantium, 147
(2000), 201–209.

[10] C. Yan, “Parking Functions”, pp. 835-893 in: M. Bóna (ed.), Handbook of
Enumerative Combinatorics, Discrete Math. Appl., Chapman and Hall/CRC:
Boca Raton, FL, 2015.

16

https://oeis.org

	1 Introduction
	2 Increasing Parking Sequences
	3 Invariance for Fixed Length Vector
	3.1 Strictly increasing length vector
	3.2 Constant length vector
	3.3 Length vector where
	3.4 Length vector where

	4 Invariance for the Set of Car Lengths
	4.1 Strong parking sequences
	4.2 Parking on a street with fixed length

	5 Closing Remarks

