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Abstract

Floating-point addition on a finite-precision machine is not associative, so not all
mathematically equivalent summations are computationally equivalent. Making this
assumption can lead to numerical error in computations. Proper ordering and paren-
thesizing is a low-overhead way of mitigating such error in a floating point summation.

Ordered and parenthesized summations fall into equivalence classes. We describe
these classes, and the parenthetic forms summations in these classes take. We provide
summation-related interpretations for sequences known in other contexts, and give new
recursive and closed formulas for sequences not previously related to summation.

We also introduce a data structure that facilitates understanding of these objects,
and use it to consider certain forms of summation used by default in widely used
computer languages. Finally, we relate this data structure to other mathematical
constructs from the fields of mathematical analysis and algorithmic analysis.

1 Introduction

Two summations are mathematically equivalent if they are comprised of the same summands,
under any parenthesization and any ordering, since addition is associative and commutative.
This is not true for floating-point addition on computers of finite precision [1, 2].

The assumption that mathematically equivalent summations are also computationally
equivalent can lead to calculation error, and affect the accuracy of the result to the detriment
of the overall calculation, since error in one step can propagate and influence the entire run.
To complicate matters, there can easily be a very large number of non-equivalent summations,
so it is not feasible to simply examine all possible cases.

In this paper, we look at the structure of computationally equivalent forms of floating-
point summations on n term. We enumerate the non-equivalent groupings and orderings,
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and discuss in detail some cases that are of interest because of their high degree of accuracy
or because they are default in commonly used programming languages.

These structures and this kind of analysis appear in a range of disparate fields. For
example, the form and ordering of trees with similar structure is important in mathemat-
ical phylogenetics [3]. There is also a connection between the summation-based structures
discussed here, the Karatsuba recursion tree [4, 5, 6], and the Tagaki function [7, 8].

2 Background

2.1 Mathematically and computationally equivalent summations

Two summations are computationally equivalent if they differ only by some series of pairwise
transpositions. Two computationally equivalent summations will always have the same value
on any system following IEEE 754 [9] because the commutativity of addition is guaranteed
under this standard. However, associativity is not guaranteed and should not be assumed
on a finite-precision machine.

The equivalence relation in use throughout this paper is accordingly that imposed by
IEEE 754: pairwise commutativity. All isomorphisms we discuss in this paper are in terms
of this relation. When we call two summations equivalent in this paper, we mean compu-
tationally equivalent on a IEEE-754-compliant finite-precision machine. We do not mean
mathematically equivalent, which of course does assume associativity.

Adding the same summands with different groupings and orderings that are computa-
tionally inequivalent can produce different results in practice, and can induce rounding error
[1, 2]. This is discussed in detail in many references going back decades.

As an example of computationally inequivalent summations, consider a summation prob-
lem with one very large number and many very small numbers. Two groupings can lead to
different results:

• When adding a large floating-point number to a small one, the sum may exceed the
precision of the computer, and the significant digits of the small number are lost.

• On the other hand, if many very small floats are added together first before adding
the large number, the resulting sum of small elements may add to the end sum, even
though some of the significant digits of the sum of small elements are still lost.

2.2 Grouping and ordering

In this paper, we use the terms parenthesization and grouping interchangeably.
Two summations that are computationally equivalent must have equivalent parenthetic

form. However, having equivalent parenthetic form is not sufficient for computational equiv-
alence.
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This reason for this is the importance of ordering. For any parenthetic form, one can
always select a particular set of floating-point summands and impose an ordering in such a
way that floating-point error takes place. On the other hand, optimal grouping combined
with the best ordering for that parenthesization can lead to much-reduced rounding error
[10]. For this reason, when we enumerate computationally inequivalent summations, we must
consider both grouping and ordering.

A simple example of two computationally inequivalent summations that have equivalent
parenthetic form is ((a+ b) + c) and (a+ (b+ c)). The sum (a+ (b+ c)) is computationally
equivalent to ((b+c)+a), by pairwise commutativity, and ((b+c)+a) has the same parenthetic
form as ((a+ b) + c). However, the ordering of additions means that that ((b+ c) + a) may
not obtain the same results as ((a+ b) + c, and so they are not computationally equivalent.

2.2.1 Implications for computation

In some sense, selecting a grouping is answering the question: “In what manner should the
summation take place?”, whereas selecting an ordering answers: “How shall we instantiate
the chosen grouping?”

Parenthesization is relevant to such things as parallelization, where a balanced tree is
preferred, for good load-balancing. However, in a parallel implementation, there may not be
control over the order in which the parallel sub-sums are added, and this must be taken into
account when designing a parallelization scheme. Also, in a perfectly load-balanced scheme,
one may find oneself obliged to group very large summands with very small, thus greatly
enhancing the likelihood of computational error.

Parenthesization also comes into play when designing a default summation form for a
given programming language. The specifications for the language may permit the program-
mer to sum values without defining the parenthesization. In that case, the compiler will
address the parenthesization in some default manner that seems optimal.

On the other hand, ordering influences the amount of rounding error one might see. There
are parenthesizations that for certain distributions of summand values are unacceptably likely
to give results prone to rounding error, as in the load-balanced scheme discussed above.

One approach might be to start with a rough ordering, perhaps on subsets of the sum-
mands, select groupings that work for each subset, and then add the sums of the subset sums
in some appropriate grouping.

One might have computational constraints on the ordering of a summation rather than
the grouping, for example on a streaming problem, but we do not address that question in
this paper.

2.3 Online Encyclopedia of Integer Sequences

When a sequence in this paper associated with a class of summations turns out to exist
in the Online Encyclopedia of Integer Sequences (OEIS) [11], we name the OEIS sequence
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and cite the listing. This paper links several disparate OEIS sequences into a family of
summation-related sequences.

The OEIS resource can be very useful in the investigation of mathematical objects as-
sociated with sequences. It lists other mathematical objects having the same sequences,
and thus can give insight into the mathematics of the problem itself and its connection to
other problems. It is well worth looking at any such references given, in the hope of finding
commonalities with seemingly unrelated problems.

3 Trees and summations

3.1 Binary tree representation of a summation

A convenient and clarifying way of representing a summation is as a leaf-labeled rooted full
binary tree. A full binary tree is one in which every node has either zero or two children
[12]. In a summation tree, a node with two children represents the parenthesized sum of its
children. The leaf nodes are labeled with the variables, and the internal nodes with +.

In this paper, we use the terms summation and leaf-labeled summation tree interchange-
ably. We also use the terms parenthetic form and unlabeled summation tree interchangeably.

3.1.1 Summations and their parenthetic forms

We consider in this paper both abstract parenthetic forms and actual summations on these
forms. Parenthetic forms are abstract, correspond to unlabeled summation trees, describe
only the parenthesization, and may represent a class of summation trees, or a family of
summations. Actual summations correspond to leaf-labeled trees, and describe both the
parenthesization and the ordering of the variables. A summation is a concrete instantiation
of some abstract parenthetic form.

Two summations that are computationally equivalent for any choice of summands must
have isomorphic summation trees. However, having isomorphic summation trees is not suf-
ficient for computational equivalence. Figure 1 is an example of two summations that have
isomorphic unlabeled summation trees, yet have non-isomorphic leaf-labeled summation trees
and are computationally inequivalent.

3.1.2 Equivalent parenthetic forms and isomorphic unlabeled trees

Two unlabeled summation trees are isomorphic if one can be obtained from the other by
a sequence of reversing the children of some set of nodes. This is in accordance with the
pairwise commutativity of addition we assume. Parenthetic forms that are equivalent up to
pairwise commutativity of summands map to isomorphic summation trees.

This refers only to isomorphic equivalence of parenthetic form; it is not the same as
computational equivalence on instantiated summations, which depends on ordering as well
as grouping.

4



+

+ +

+ c + f

a b d e

+

+ +

+ c f +

e d b a

Figure 1: Two isomorphic summation trees, or parenthetic forms, that represent computa-
tionally inequivalent summations. These trees represent (((a + b) + c) + ((d + e) + f)) and
(((e + d) + c) + (f + (b + a))), respectively. Although the summands are the same and the
trees are isomorphic in form, the summations themselves are not computationally equivalent,
because of the ordering of the summands: the summation on the right cannot be derived
from the summation on the left by a sequence of pairwise transpositions.

3.1.3 Computationally equivalent summations and isomorphic leaf-labeled trees

Two leaf-labeled summation trees are isomorphic if one can be obtained from the other by
a sequence of reversing the children of some set of nodes. Again, this is in accordance with
the pairwise commutativity of addition. Computationally equivalent summations map to
isomorphic leaf-labeled trees.

3.2 SD-trees and enumerations

A summation tree can be considered as a type of PQ tree. A PQ tree is a labeled tree
representing a set of permutations on n elements, where the n leaf nodes are labeled with
the elements and the internal nodes are labeled as P or Q, where the P nodes have at least
two children with all permutations of the children equivalent, and the Q nodes have at least
three children, with reversals of the orderings of the children equivalent [13]. A summation
tree is a binary PQ-tree, and since it is binary, all of the internal nodes are labeled with P .

To aid in the enumeration and understanding of summation trees, we introduce a type
of PQ summation tree called an SD-tree. We use this structure to establish a formula and
a general method for enumerating members of a class of summations.

3.2.1 SD-trees

An SD-tree is a binary tree in which all internal nodes have two children, and where an
internal node is labeled S if its two children have the {S}ame number of descendant leaf
nodes, and D if its two children have {D}ifferent numbers of descendant leaf nodes. One
might also consider a leaf-labeled SD-tree, which is an instantiation of the parenthetic form
represented by the SD-tree in question, and represents an actual summation. An SD-tree is
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a variant of a PQ-tree. An example of a leaf-labeled SD-tree is shown in figure 2.

S

D D

S c S f

a b d e

Figure 2: An example of an SD-tree. This tree represents (((a+b)+c)+((d+e)+f)). This is
the same summation as in the first tree in Figure 1. The nodes labeled S have children with
the same number of descendant leaves. The nodes labeled D have children with different
numbers of descendant leaves.

Two summation SD-trees are considered isomorphic if one can be obtained from the other
by a sequence of reversing the children of some set of nodes (this is the same definition as
in the non-SD summation tree case).

Lemma 1. Two isomorphic SD-trees with n leaf nodes have the same number of S-nodes
and the same number of D-nodes.

Proof. Follows from pairwise commutativity of addition.

Remark 2. The converse is not true. Two SD-trees with n leaf nodes and with the same
number of S-nodes and D-nodes need not be isomorphic, as in Figure 3.

3.3 Enumeration of summations using SD-trees

If the number of S-nodes in the elements of an equivalence class of summation SD-trees is
known or can be quantified, then there is a simple formula to enumerate the computationally
inequivalent summations in that class.

Lemma 3. Let T be SD-tree with n leaf nodes. The number of computationally inequivalent
leaf-labeled SD-trees that are isomorphic to T is n!

2ε
, where ε is the number of internal nodes

of T labeled S, i.e., with left and right subtrees having the same number of leaf nodes.

Proof. There are n! ways to order the n leaf nodes of the tree T . Without loss of generality,
it suffices to consider SD-trees where the number of leaf descendants of the left child of a
node is always less than or equal to the number of leaf descendants of the right child. (This
is because of pairwise commutativity.)

Call the set of left descendant leaf nodes of a node dℓ, and the set of right descendant
leaf nodes dr. |dℓ| = |dr| if and only if an ordering transposing dℓ and dr gives a tree that
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Figure 3: Not all trees with the same number of leaves and the same number of S-nodes
are isomorphic. Here are two non-isomorphic SD-trees with 6 leaves, 2 S-nodes and 3 D-
nodes. This example is smallest in terms of the number of leaves of the SD-tree. (There is
also another example of non-isomorphic SD-trees with 6 leaves, this having 3 S-nodes and 2
D-nodes.)

is the same as the original tree, up to transposition of the two subtrees. So such subtrees
are combinatorially counted twice. The number of trees that are the same as another given
ordering is 2ε, so the total number of non-equivalent trees isomorphic to T is n!

2ε
.

Corollary 4. Let T be an SD-tree with n leaf nodes. The number of non-equivalent sum-
mations corresponding (up to tree isomorphism) to T is σ(n) = n!

2ε
, where ε is the number of

internal nodes of Tσ(n) labeled S, i.e., with left and right subtrees having the same number of
leaf nodes.

3.4 A general method for enumeration of summations

Corollary 4 implies that it suffices to (1) show that all summation trees representing class
members are isomorphic to each other as SD-trees, (2) show that all summations with trees
isomorphic to that class are in the class, and (3) provide a formula for the number of S nodes
in the representative summation tree. The enumeration then follows immediately. We will
follow this method throughout this paper to enumerate summations of certain interesting
classes.

3.5 Parenthetic constraints on summations

Certain classes of summation problems have constraints placed on the grouping that may
induce isomorphic parenthetic forms. When such constraints exist, we can discuss the prob-
lem in terms of the summation trees that have forms conforming to the constraints. In other
words, we fix the parenthesization in accordance with the constraint, then set the ordering.
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In the next two sections, we first discuss summations on n variables, grouped and or-
dered without any constraints on the grouping. We then turn to summations with grouping
constraints that induce specific parenthetic forms, and discuss in depth two important cases.

4 Summations with no grouping constraints

We assume in this section that all summations are completely and explicitly parenthesized,
and that pairwise commutativity holds. We make no other assumptions; in other words,
there are no constraints imposed on the parenthesizations.

The following formula is known to apply to leaf-labeled binary trees, and is shown by
Stanley [14], Callan [15] and Dale [16]. Walters makes this observation on commutative,
non-associative multiplication, which has the same properties needed for this purpose as
addition [17].

We observe that the number of computationally inequivalent summations on n variables
is the same as the number of leaf-labeled rooted binary trees with n leaf nodes. We give a
sketch of a tree-based proof here, and also provide a new combinatorial proof.

Proposition 5. [14, 15, 16] The number of computationally inequivalent summations on n

terms is
(2n− 3)!! (1)

Proof 1, Tree-based Proof (sketch). We proceed via induction, and note that all n-variable
sums are obtained by taking the appropriate (n−1)-variable sum and adding the nth variable
to one of its sub-sums. There are (n− 2) + signs in an (n− 1)-variable sum, so the number
of sub-sums to either side of a + sign is 2((n− 2)− 1). Including the expression itself gives
at least 2((n− 2)− 1) + 1 = (2n− 3) possible sub-sums. Since there is no overlap, there is
no duplication, and this is the exact number. So by the induction hypothesis, the number
of computationally inequivalent summations on n variables is (2n − 3)(2(n − 1) − 3)!! =
(2n− 3)(2n− 5)!! = (2n− 3)!!.

Proof 2, Combinatorial Proof. We can order the n variables in n! ways to make n! unparen-
thesized sums. For each of these sums, there are Cn−1 = 1

n

(

2(n−1)
n−1

)

distinct ways to paren-

thesize them, where Cn−1 is the nth Catalan number [14, 18].
Each sum contains n − 1 addition signs, and since the addends on either side of an

addition sign can appear in two different orientations, each expression is equivalent to 2n−1
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expressions under commutativity. Thus, there are

n! · 1
n
·
(

2(n−1)
n−1

)

2n−1
=

(n− 1)!(2(n− 1))!

(n− 1)!(n− 1)! · 2n−1

=
(2n− 2)!

(n− 1)! · 2n−1

=
(2n− 2)!

(2n− 2) · (2n− 4) · · ·4 · 2

=
(2n− 2)(2n− 3)(2n− 4) · · ·5 · 4 · 3 · 2 · 1

(2n− 2) · (2n− 4) · · ·4 · 2

= (2n− 3)!!

Remark 6. This sequence in Proposition 5 is OEIS A001147 [17]. There are many different
interpretations of this sequence.

5 Summations with grouping constraints

We discuss pairwise and ladder summation in depth in this section, two important cases
that are used by default in certain widely used programming languages. Both of these have
grouping constraints and both are examples of classes that can be described in terms of
isomorphic SD-trees.

D

D d

S c

a b

Figure 4: An example of a ladder, or serial, SD-tree, representing (((a+ b) + c) + d).

5.1 Ladder (serial) summation

A ladder summation is one in which the summation proceeds pairwise in the order in which
the terms appear. For example, the ladder summation on four summands is (((a+b)+c)+d),
and its tree is shown in Figure 4. Ladder summation corresponds to the C language default
of left-to-right associativity on summations with ungrouped summands [19].
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Remark 7. By pairwise commutativity, the same result is guaranteed in C on an IEEE-754-
compliant system upon transposition of the first two elements of an ungrouped summation,
but is not guaranteed after any other transposition.

Lemma 8. There is a unique ladder SD-tree with n leaf nodes, and it has exactly one S-node.

Proof. The lowest internal level of the a ladder-summation tree consists of one node with
two leaf children. Every other node in the tree has one child that is a leaf; the other is the
root of another ladder summation. So only the unique lowest internal node is labeled S.

Lemma 9. All SD-trees having exactly one S-node are isomorphic to some ladder SD-tree.

Proof. Any subtree of an SD-tree must have at least one S-node, except when it consists of a
single leaf node. This means one of the top branches of an SD-tree with exactly one S-node
is a single leaf node. The conclusion follows by induction on the number of leaf nodes.

Corollary 10. Ladder SD-trees are exactly those with one S-node, up to isomorphism.

Proposition 11. The number of computationally inequivalent ladder summations on n vari-
ables is

n!

2
(2)

Proof. Follows immediately from Corollary 4 and Corollary 10.

Remark 12. This is OEIS A001710 [20], the number of even permutations on n letters.

5.2 Pairwise summation

Pairwise summation is a recursive summation method that proceeds by dividing the set of n
summands in half (or almost in half, if n is odd), summing on the two subsets, then adding
the two sums. Pairwise summation is known to be fairly accurate, and in some cases is nearly
as accurate as such gold-standard techniques as Kahan summation [2]. Pairwise summation
is the default on ungrouped summands in NumPy [21] and in Julia [22].

We discuss here three different forms for the sequence σ(n), the number of pairwise
summations on n variables. Two are recursive and one is a closed form. One of the recursive
formulations is previously known, and is shown by David in [23].

Proposition 13. [23] The number of computationally inequivalent pairwise summations on
n variables is

σ(n) =

{

1
2

(

2m
m

)

σ(m)2, if n = 2m;
(

2m+1
m

)

σ(m)σ(m+ 1), if n = 2m+ 1.
(3)

Remark 14. Enumerating the pairwise summations on n elements is equivalent to enumerat-
ing the tournaments on n teams. This is the classical formulation of this problem, and gives
rise to the sequence OEIS A096351 [24].
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S

S S

a ec g

(a) Pairwise summation SD-tree for
the set of 4 summands {a, c, e, g}.
This tree has 3 S-nodes.

D

D S

S ec g

a b

(b) Pairwise summation SD-tree for the set
of 5 summands {a, b, c, e, g}. This tree has 2
S-nodes.

S

D D

S Sc g

a b e f

(c) Pairwise summation SD-tree for the set of
6 summands {a, b, c, e, f, g}. This tree has 3 S-
nodes.

D

S D

S S S g

a b c d e f

(d) Pairwise summation SD-tree for the set
of 7 summands {a, b, c, d, e, f, g}. This tree
has 4 S-nodes.

S

S S

S S S S

a b c d e f g h

(e) Pairwise summation SD-tree for the set of 8
summands {a, b, c, d, e, f, g, h}. This tree has 7 S-
nodes.

Figure 5: The sub-figures show the changing shape of pairwise SD-trees as summands are
added, and show how the internal nodes change (or not) from S to D and vice versa. New
nodes are added in alternating fashion, so that leaf descendants of all internal nodes are
evenly distributed. The S-nodes are grey, and children of S-nodes have the same number of
leaf descendants.

5.2.1 A formula for pairwise summation using SD-trees.

We show here a new formula for this sequence, based on the tree representation of a pairwise
summation, and the method presented using the SD-tree-based approach from Corollary 4.

Pairwise summation gives rise to a binary tree in which every node that is not a leaf
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has exactly two children, and every level is completely filled except for the lowest. This is
a full complete binary tree, except in the spacing of its lowest level [12]. The lowest level
is not filled from left to right, but instead the number of descendants of a node differs by
at most one from the number of descendants of its siblings, so at every level of the tree,
the children of a node are evenly or almost evenly divided between the left and the right
branches. Examples are shown in Figure 5.

Lemma 15. All pairwise-summation SD-trees on n elements are isomorphic, and therefore
have the same number of S-nodes.

Proof. A pairwise-summation SD-tree is constructed by extending each node by two children.
If a node has k leaf descendants, then its children must have

⌊

k
2

⌋

and
⌈

k
2

⌉

leaf descendants.
These can be transposed, by pairwise commutativity of addition. That they have the same
number of S-nodes follows by Lemma 1.

Lemma 16. Any summation with a summation tree isomorphic to a pairwise-summation
SD-tree is itself a pairwise summation.

Proof. Follows from the definition of pairwise summation.

5.2.1.1 Counting S-nodes in a pairwise summation. We now know that all pairwise
summation SD-trees have the same number of S nodes, and all we need do is count them to
obtain the exponent in the denominator of the enumeration. Define ǫ(n) be the number of
S nodes in an SD-tree. We show here two different forms for the sequence ǫ(n).

Proposition 17. The number of S-nodes in a pairwise summation SD-tree with n leaf nodes
is

ε(n) =











2ε(m) + 1, if n = 2m;

ε(m) + ε(m+ 1), if n = 2m+ 1;

0 if n = 1.

(4)

Proof. All subtrees of a pairwise summation SD-tree are themselves pairwise summation
SD-trees. We proceed via induction.

If n = 2m, then the pairwise summation divides the 2m leaf nodes evenly between the
two subtrees, and the root node is an S-node. So the number of S-nodes in the SD-tree is
equal to 1 + 2ε(m), by the induction hypothesis.

If n = 2m + 1, then the pairwise summation divides the 2m + 1 leaf nodes into two
subtrees having m and m+ 1 nodes, and the root node is not an S-node. So the number of
S-nodes in the SD-tree is equal to ε(m) + ε(m+ 1), by the induction hypothesis.

Proposition 18. The number of S-nodes in a pairwise summation SD-tree with n leaf nodes
is

ε(n) =

⌊log2(n)⌋
∑

i=0

[((⌊ n

2i

⌋

+ 1
)

mod 2
)

× 2i + (−1)((⌊
n

2i
⌋+1) mod 2) × (n mod 2i)

]

(5)
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Remark 19. Equation (5) is simpler than it looks. ⌊log2(n)⌋ is one less than the number of
bits in n. The expression (

⌊

n
2i

⌋

+1) mod 2) is just the negation of the ith bit of n and enables
the functions seen in Equation 7 and 8 from {0, 1} to {1, 0} and {−1, 1}, respectively.

Proof. Because every SD-tree is a full complete binary tree, there are 2i nodes at level i
except for the bottom level. At each level, the descendant leaf nodes are almost evenly
divided between the nodes: at the ith level, each of the 2i nodes has at least

⌊

n
2i

⌋

leaf
descendants, and (n mod 2i) of these nodes have an additional leaf descendant.

Consider the binary representation of the number n where the bits are ordered from least
significant to most significant. If the ith bit of n is 0, then

⌊

n
2i

⌋

is even and 2i − (n mod 2i)
nodes have an even number of descendants. If the ith bit of n is 1, then

⌊

n
2i

⌋

is odd, and
(n mod 2i) nodes have an even number of descendants. A node in a pairwise summation tree
is an S-node if it has an even number of leaf descendants. So the number of S-nodes at level
i is

{

2i − (n mod 2i), if the ith bit of n is 0;

(n mod 2i), if the ith bit of n is 1.
(6)

We observe the following two equations:

(⌊ n

2i

⌋

+ 1
)

mod 2 =

{

1, if the ith bit of n is 0;

0, if the ith bit of n is 1.
(7)

(−1)((⌊
n

2i
⌋+1) mod 2) =

{

-1, if the ith bit of n is 0;

1, if the ith bit of n is 1.
(8)

Putting Equations (6), (7), and (8) together, we see that the number of S-nodes at level i is

((⌊ n

2i

⌋

+ 1
)

mod 2
)

× 2i + (−1)((⌊
n

2i
⌋+1) mod 2) × (n mod 2i)

Summing across the levels proves the proposition.

Remark 20. Equation (5) is easily calculated as bitwise operations. Here is one C encoding:

int bits_n = (int) floor(log2(n))+1;

int exp = 0;

for (int i=0; i<bits_n; i++) {

exp += (!((n>>i)&1))*(1<<i) + (-(!((n>>i)&1)<<1)+1)*(n-((n>>i)<<i));

}

Remark 21. The exponent ε(n) in Equations (4) and (5) is an offset variant of the sequence
OEIS A268289 [25], the cumulative deficient binary digit sum. In the context of S-nodes,
ε(n) is undefined at n = 0 and starts with ε(1) = 0. The SD-tree equation in Proposition 17
is the same formula referenced by Sloane for OEIS A268289 [25]. The closed form shown in
Equation (5) is new for that sequence.
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Remark 22. Hwang provides an extensive analysis of solutions to divide-and-conquer recur-
rences in [26]. Equation (5) could also be obtained from Equation (4) using the methods in
that paper. Instead, we prove Equation (5) directly by analyzing S-nodes in Proposition 18.

5.2.1.2 Counting equivalent pairwise summations. The exponent in the denomi-
nator of the enumeration of the equivalence class of pairwise summations has been derived,
and the enumeration itself immediately follows.

Corollary 23. The number of computationally inequivalent pairwise summations on n vari-
ables is

σ(n) =
n!

2ε(n)
, where ε(n) =











2ε(m) + 1, if n = 2m;

ε(m) + ε(m+ 1), if n = 2m+ 1.

0, if n = 1.

(9)

Proof. Follows directly from Corollary 4 and Proposition 17.

Corollary 24. The number of computationally inequivalent pairwise summations on n vari-
ables is

σ(n) =
n!

2ε(n)
, where ε(n) =

⌊log2(n)⌋
∑

i=0

((⌊ n

2i

⌋

+ 1
)

mod 2
)

·2i+(−1)((⌊
n

2i
⌋+1) mod 2) ·(n mod 2i)

(10)

Proof. Follows directly from Corollary 4 and Proposition 18.

Remark 25. Equation (9) is a new recursive formula for OEIS A096351 [24] and Equation
(10) is a new closed formula for the same.

5.2.2 Pairwise summations, Karatsuba recursion and the Tagaki function.

There are interesting connections between S-nodes in a pairwise summation, the Tagaki
function [7] and Karatsuba’s classical addition algorithm [4]. OEIS A268289, i.e., the number
of S-nodes in a pairwise summation, is related to the Tagaki function; there are a number
of identities linking the two [6, 8]. Baruchel discusses the recursion tree of Karatsuba’s
multiplication algorithm in terms of two types of nodes in the tree, direct and indirect. He
conjectured in [5] and proved in [6] that the sequence ε(n + 1) in Equation (11), the set of
elements in the indirect path that contribute to a term of degree n in the Karatsuba addition,
is A268289n+1.

We provide a direct proof of Baruchel’s identity on ε(n) (A268289) here, but in terms of
the number of S-nodes of pairwise summations (or full complete binary trees with the lowest
levels spaced as in a pairwise summation), rather than the Karatsuba recursion tree.

To prove this, we consider an n-leafed pairwise-summation tree T , and label the (n− 1)
internal nodes of T breadth-first with the integers from 1 to (n − 1). The tree T has two
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subtrees: the left TL and the right TR. The internal nodes of these could be labeled in the
same manner as those of T . Without loss of generality, if n = 2m + 1, TL has the greater
number (m + 1) of leaf nodes and TR has m leaf nodes. If n = 2m, then both TL and TR

have m leaf nodes. This ordering of subtrees is key to the mapping from TL and TR to T

that we define for the proof.
We define f , mapping the internal nodes of TL and TR into the internal nodes of T :

f(x) =

{

2x, if x ∈ TL;

2x+ 1, if x ∈ TR.

The function f is a bijection between the internal nodes of TL∪TR and the non-root internal
nodes of T . This mapping is illustrated in Figure 6.

1 1

2 3 2

(a) Two pairwise summation SD-trees, the
left, TL, with 4 leaves and the right, TR, with
3. Internal nodes are numbered breadth-
first, and the S-nodes are grey.

1

2 3

4 5 6

(b) A pairwise summation SD-tree T with 7
leaves. The left subtree is isomorphic to TL, and
the right subtree is isomorphic to TR. Internal
nodes are numbered breadth-first, and S-nodes
are grey.

Figure 6: The mapping f is illustrated here. Internal nodes x from TL are sent to (2x), so 1,
2, and 3 from TL (circles) are mapped to internal nodes 2, 4, and 6 of tree T . Internal nodes
x from TR are sent to (2x+1), so internal node 2 of TR (square) is mapped to internal node
5 of T , and internal node 1 of TR is mapped to node 3 of T .

Proposition 26. Let ε(n) be the number of S-nodes in a pairwise summation SD-tree. Then

ε(n) = |{k | 1 ≤ k < n, (n− k − 1) mod 2⌊log2 k⌋+1 < 2⌊log2 k⌋}| (11)

Proof. It suffices to show that the S-nodes of T are exactly those whose labels are in the set
described by Equation (11). The proof proceeds by induction on tree height. We consider
the two cases: n = 2m+ 1 (n odd) and n = 2m (n even).

First, the tree root satisfies condition 11 if and only if n is even: the root is labeled 1, so
(n − 1 − 1) mod 2⌊log2 1⌋+1 < 2⌊log2 1⌋ if and only if (n − 1 − 1) = 0 mod 2 if and only if n is
even.
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Case 1: n odd, n = 2m + 1. By the inductive hypothesis, x is an S-node of TL if and
only if

((m+ 1)− x− 1) mod 2⌊log2(x)⌋+1 < 2⌊log2(x)⌋, which is true if and only if

(2(m+ 1)− 2x− 2) mod 2⌊log2(x)⌋+2 < 2⌊log2(x)⌋+1, which is the same as

(n− 2x− 1) mod 2⌊log2(2x)⌋+1 < 2⌊log2(2x)⌋, which is true if and only if

(n− k − 1) mod 2⌊log2(k)⌋+1 < 2⌊log2(k)⌋, where k is an even node of T . (12)

Again, by the induction hypothesis, x is an S-node of TR if and only if

(m− x− 1) mod 2⌊log2(x)⌋+1 < 2⌊log2(x)⌋, which is true if and only if

(2m− 2x− 2) mod 2⌊log2(2x+1)⌋+1 < 2⌊log2(x+1)⌋, which is the same as

((n− 1)− (2x+ 1)− 1) mod 2⌊log2(2x+1)⌋+1 < 2⌊log2(x+1)⌋, which is true if and only if

(n− k − 1) mod 2⌊log2(k)⌋+1 < 2⌊log2(k)⌋, where k is an odd node of T , and k ≥ 3. (13)

Statement (12) shows there is a bijection between even nodes of T that satisfy the condition
in the proposition and the S-nodes of TL, and statement (13) shows a bijection between
odd non-root nodes of T that satisfy the condition and the S-nodes of TR. Since n is odd,
the root node does not satisfy the condition. So the number of nodes in T that satisfy the
condition in Equation (11) is ε(m+ 1) + ε(m), and this is ε(n), by Proposition 17.

Case 2: n even, n = 2m. The proof in this case proceeds in the same manner as the
above. By the induction hypothesis, x is an S-node of TL if and only if

(m− x− 1) mod 2⌊log2(x)⌋+1 < 2⌊log2(x)⌋, which is true if and only if

(2m− 2x− 2) mod 2⌊log2(x)⌋+2 < 2⌊log2(x)⌋+1, which is the same as

((n− 1)− 2x− 1) mod 2⌊log2(2x+1)⌋+1 < 2⌊log2(2x+1⌋), which is true if and only if

(n− k − 1) mod 2⌊log2(k)⌋+1 < 2⌊log2(k)⌋, where k is an even node of T . (14)

Again, by the induction hypothesis, x is an S-node of TR if and only if

(m− x− 1) mod 2⌊log2(x)⌋+1 < 2⌊log2(x)⌋, which is true if and only if

(2m− 2x− 2) mod 2⌊log2(x)⌋+2 < 2⌊log2(x)⌋+1, which is true if and only if

(n− (2x+ 1)− 1) mod 2⌊log2(2x+1)⌋+1 < 2⌊log2(2x+1)⌋, which is true if and only if

(n− k − 1) mod 2⌊log2(k)⌋+1 < 2⌊log2(k)⌋, where k is an odd node of T , and k ≥ 3. (15)

Statement (14) shows there is a bijection between even nodes of T that satisfy the condition
in the proposition and the S-nodes of TL, and (15) shows a bijection between odd non-root
nodes of T that satisfy the condition and the S-nodes of TR. The root node does satisfy
the condition when n is even. So the number of nodes in T that satisfy the condition in
Equation (11) is 2ε(m) + 1, and this is ε(n), by Proposition 17.
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5.2.3 A remark on orderings for pairwise summations vs. tournaments

The parenthetic form of grouping for a pairwise summation is the same as the form for a
tournament. However, the optimal ordering for a summation may well be different than
that of a tournament. This contrast illustrates the problem-specific nature of selecting the
preferred or best ordering, even after a grouping method has been selected.

As a heuristic, the most accurate pairwise summation groups pairs of similar magnitude
at each level of the summation tree. This tends to minimize rounding error that results from
the use of finite precision on digital computers [10].

The best tournament might also match teams of equal strength at each level of the
tournament, leading to interesting games, at least in early games. This is equivalent to the
best ordering for a pairwise summation. On the other hand, one might prefer better teams
to be matched with worse teams early in the competition, in order to allow the best teams
to persevere into the final rounds of the tournament. This would be a very poor choice for
a pairwise summation, and is more likely to lead to rounding errors and inaccuracy. The
choice of ordering here then would depend on the goals of the tournament.

6 Bounds and enumerations

6.1 Bounds on inequivalent summations on a parenthetic form

Proposition 27. The upper bound for the number of computationally inequivalent summa-
tions on n summands on a class of isomorphic SD-trees is n!

2
. This is the number of ladder

summations on n summands.

Proof. This can be seen by considering that all nodes in a summation tree must have zero or
two children, so leaf nodes at the lowest level must come in pairs, and any tree must have at
least one of these pairs. This means an upper bound is less than or equal to n!

2
, by Corollary

4. But this bound is met by the class of ladder summations on n terms.

Remark 28. This upper bound is OEIS A001710 [20], the number of even permutations on
n letters. See Proposition 11.

Proposition 29. The lower bound for the number of summations on n summands on a class
of isomorphic SD-trees is n!

2β(n) , where 2β(n) is the highest power of 2 that divides n!.

Proof. Follows from Corollary 4.

Remark 30. The sequence β(n) is OEIS A011371 [27], the highest power of 2 dividing n!.
The sequence n!

2β(n) is OEIS A049606 [28], the largest odd divisor of n!.

Lemma 31. The largest power of 2 that divides 2k! is 2(2
k−1).
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Proof. Let 2β(2
k) be the largest power of 2 that divides 2k!. For 1 ≤ i ≤ k there are

2k

2i
= 2k−i numbers in {1, 2, . . . , 2k} divisible by 2i. Each of these adds one to β(2k). So

β(2k) =
k
∑

i=1

2k−i =
k−1
∑

i=0

2i = 2k − 1.

Lemma 32. Let n = 2k + r, where 0 < r < 2k. The largest power of 2 that divides
n!

(2k)!
= n(n− 1) · · · (2k + 1) is the same as the largest power of 2 that divides (n− 2k)! = r!.

Proof. 2k does not divide any of {2k + 1, 2k + 2, . . . , 2k + r = n}, so largest power of of 2
that divides n!

(2k)!
= n(n − 1) · · · (2k + 1) is the same as the largest power of 2 that divides

(n− 2k)!.

Lemma 33. Let n = 2k + r, where 0 < r < 2k. The largest power of 2 that divides n! is the
largest power of 2 that divides 2k! plus the largest power of 2 that divides (n− 2k)! = r!

Proof. Follows from Lemmas 31 and 32.

Proposition 34. Let n = 2k + r , where 0 ≤ r < 2k. The bound in Proposition 29 on
summations on n summands is met by a parenthetic form µ(n) that has the recursive form

µ(n) = (µ(2k) + µ(r))

where µ(2i) is the pairwise summation on 2i elements.

Case 1, r = 0. A pairwise summation on 2k elements is represented by a perfect binary tree,
one in which all interior nodes have two children, and all leaf nodes are at the same level k
[29]. A perfect binary tree has 2k leaf nodes and 2k − 1 interior nodes. Each of the interior
nodes is an S-node. So by Corollary 4 and Lemma 31, the bound is met.

Case 2, r > 0. 2k is not equal to n− 2k, so the top node is not an S-node and the problem
reduces to finding the largest powers of 2 that divide 2k and r. The conclusion follows by
Lemma 33.

Remark 35. The parenthetic form shown in Proposition 34 is not necessarily the only one that
meets the bound. For example, Table 1 shows 3 non-equivalent parenthetic forms meeting
the bound β(n) from Proposition 27 for each of n = 7, 11, 13, 14, and 15 non-equivalent
parenthetic forms meeting the bound for n = 15.

6.2 Enumeration of parenthetic forms

Proposition 36. The number of non-isomorphic summation trees (or parenthetic forms)
with n unlabeled leaf nodes (or summands) is

α(n) =

⌊n
2 ⌋

∑

i=1

α(i)α(n− i) (16)
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Proof. Partition n as i and n− i. A summation tree is formed by attaching an i-leaf tree as
the left subtree and an (n− i)-leaf tree as the right. Because of commutativity, it suffices to
consider only the case where i ≤ n− i. Summing across such i gives the proposition.

Remark 37. This sequence is OEIS A000992, the nth half-Catalan number. An equivalent
observation is made by Callan [30]. In Table 1, this sequence is in the rightmost column.

Proposition 38. The number of non-isomorphic summation trees (or parenthetic forms)
with n unlabeled leaf nodes (or summands) and s S-nodes is

τ(n, s) =























⌊n−1
2 ⌋
∑

j=1

s
∑

i=0

τ(j, i)τ(n− j, s− i), if n is odd;

⌊n−1
2 ⌋
∑

j=1

s
∑

i=0

τ(j, i)τ(n− j, s− i) +
s−1
∑

i=0

τ(n
2
, i)τ(n

2
, s− 1− i), if n is even.

(17)

where τ(n, s) =

{

1, if n = 0 and s = 0 (the unique empty tree);

1, if n = 1 and s = 0 (the unique single-node tree).

Proof. At every stage, the first term n in the calculation is reduced by half, so this recursion
terminates, according to the rules for termination of τ(n, s) above.

If n is odd, the children of the top node cannot both have the same number of leaf
descendants, so the top node cannot be an S-node. The formula follows by counting the
sub-trees on the 2-partitions of n, where the left sub-tree has i S-nodes and the right has
s− i S-nodes, for 0 ≤ i ≤ s, and the two counts are multiplied together.

If n is even, the formula is as above, but we must also include the case where the top
node is an S-node. In that case, both children have n

2
leaf nodes, and the summation is

on sub-trees where there are n
2
leaf nodes in each sub-tree. In this case, the root is one

of the S-nodes, so the left sub-tree has i S-nodes and the right has s − 1 − i S-nodes, for
0 ≤ i ≤ s− 1.

Remark 39. The number of parenthetic forms increases much more slowly than the total
number of summations. Table 1 shows the enumeration of parenthetic forms on n summands
and s S-nodes for n up to 16 summands.

Remark 40. The formula in Proposition 38 is recursive and the proof is constructive, so one
can more or less laboriously calculate all the parenthetic forms on N summands.

Proposition 41. The number of parenthetic forms on n ≥ 1 with exactly 2 S-nodes is

τ(n, 2) =

{

(m− 1)2, if n = 2m+ 1;

(m− 1)(m− 2), if n = 2m.
(18)
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Table 1: The number τ(n, s) of summation trees with n leaf nodes and s S-nodes, calculated
up to n = 15. The rows represent n, the number of leaf nodes, and the columns represent s,
the number of S-nodes. α(n) is the sum of all the τ(n, s) in the nth row.

n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 α(n)

1 0
2 1 1
3 1 0 1
4 1 0 1 2
5 1 1 1 0 3
6 1 2 2 1 0 6
7 1 4 3 3 0 0 11
8 1 6 7 6 3 0 1 24
9 1 9 14 13 8 1 1 0 47

10 1 12 27 28 23 8 3 1 0 103
11 1 16 49 58 54 25 8 3 0 0 214
12 1 20 82 119 125 82 34 15 2 1 0 481
13 1 25 132 237 270 213 99 42 8 3 0 0 1030
14 1 30 199 449 578 542 322 151 51 11 3 0 0 2337
15 1 36 294 821 1190 1255 867 440 173 39 15 0 0 0 5131

Proof. We proceed by induction, and observe that the proposition is true by inspection for
n = 1, 2, 3, 4. We also observe that no tree having exactly 2 S-nodes can have an S-node
root. This means that either (a) one of the subtrees below the root has two S-nodes and the
other has none, or else (b) both subtrees have exactly one S-node.
In case (a), the subtree with no S-nodes consists of only one leaf node. The other subtree
has n− 1 leaf nodes and 2 S-nodes. So the number of trees with such subtrees is τ(n− 1, 2).
In case (b), each subtree has one S-node, so by Corollary 10, it is the unique ladder tree of
its size. Each subtree with ℓ leaf nodes has a sibling with n− ℓ leaf nodes, and there is one
ladder tree at each of these sizes, so the number of such double ladder trees is

⌊

n
2

⌋

− 1 if n is
odd, and n

2
−2 if n is even (excluding when the siblings have an equal number of leaf nodes).

Putting (a) and (b) together, τ(n, 2) = τ(n−1, 2)+
⌊

n
2

⌋

−1. Using the induction hypothesis,

τ(n, 2) =

{

(m− 1)(m− 2) + (m− 1) = (m− 1)2, if n = 2m+ 1;

(m− 2)2 + (m− 2) = (m− 1)(m− 2), if n = 2m.

Remark 42. τ(n, 1) counts the (unique) ladder summations, as discussed in Proposition 11.
τ(n, 2) is sequence OEIS A002620 [31], the quarter-squares, with an offset. The bold-face
column α(n) in Table 1 is the half-Catalan sequence OEIS A000992 [30] seen in Proposition
36. None of the other sequences in Table 1 seem to be listed in the OEIS.
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7 Conclusion

We have classified a number of summation types arising in real calculations. Table 2 in the
Appendix presents a summary of the main combinatorial results derived or referenced in this
paper, with other interpretations and OEIS numbers where applicable.
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9 Appendix: Summary of results

Table 2: This table is a summary of the main combinatorial results derived or referenced in
this paper, with references, alternative interpretations and OEIS numbers where applicable.

Summation interpretation Refs. Other meaning OEIS

Inequivalent parenthetic forms (i.e., non-isomorphic summation trees)

No. of non-isomorphic summation trees
with n unlabeled leaf nodes

Prop. 36 Half-Catalan
numbers

A000992

No. of non-isomorphic summation trees
with n unlabeled leaf nodes and 1 S-node
(ladder or serial summations)

Cor. 10 The constant 1

No. of non-isomorphic summation trees
with n unlabeled leaf nodes and 2 S-nodes

Prop. 41 Quarter-squares A002620

No. of non-isomorphic summation trees
with n unlabeled leaf nodes and s S-nodes

Prop. 38

Computationally inequivalent summations

No. of computationally inequivalent
summations on n elements having a
particular summation SD-tree

Cor. 4

No. of computationally inequivalent
summations on n summands

Prop. 5 Double factorial of
odd numbers

A001147

No. of computationally inequivalent ladder,
or serial, summations on n summands

Prop. 11 No. of even
permutations on n

elements

A001710

No. of computationally inequivalent
pairwise summations on n summands

Prop. 13,
Cor. 23, 24

No. of tournaments
on n teams

A096351

S-nodes and bounds

Lower bound for the number of S-nodes in
a summation tree on n summands

Prop. 27 The constant 1

Upper bound for the number of S-nodes in
a summation tree on n summands

Prop. 29 Largest number k
where 2k divides n!

A011371

No. of S-nodes in a pairwise summation
tree with n leaf nodes

Prop.
17, 18

Cumulative deficient
binary digit sum

A268289

Lower bound for the number of
computationally inequivalent summations
on n summands on a given SD-tree

Prop. 29 Largest odd divisor
of n!

A049606

Upper bound for the number of
computationally inequivalent summations
on n summands on a given SD-tree

Prop. 27 No. of even
permutations on n

elements

A001710
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