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Abstract

A hallmark of graph neural networks is their ability to distinguish the isomorphism class of their
inputs. This study derives the first hardness results for graph isomorphism in the message-passing
model (MPNN). MPNN encompasses the majority of graph neural networks used today and is
universal in the limit when nodes are given unique features. The analysis relies on the introduced
measure of communication capacity. Capacity measures how much information the nodes of a
network can exchange during the forward pass and depends on the depth, message-size, global
state, and width of the architecture. It is shown that the capacity of MPNN needs to grow linearly
with the number of nodes so that a network can distinguish trees and quadratically for general
connected graphs. Crucially, the derived bounds are applicable not only to worst-case instances
but over a portion of all inputs. An empirical study involving 12 tasks of varying difficulty and
420 networks reveals strong alignment between actual performance and theoretical predictions.

1 Introduction

The study of the expressive power of neural networks has historically focused on vectors and se-
quences [Cybenko, 1989, Hornik et al., 1989, Mhaskar and Poggio, 2016, Hanin and Sellke, 2017, Lin
et al., 2017, Lu et al., 2017, Neto et al., 1997, Pérez et al., 2019].

Recently, we have also seen the first theoretical investigations of graph neural networks [Maron et al.,
2019, Keriven and Peyré, 2019, Xu et al., 2018]. Therein, one of the most intensely studied models is
that of message-passing neural networks (MPNN). Since its inception by Scarselli et al. [2008], MPNN
has been extended to include edge [Gilmer et al., 2017] and global features [Battaglia et al., 2018]. The
model also encompasses many of the popular graph neural network architectures used today [Kipf and
Welling, 2016, Xu et al., 2018, Hamilton et al., 2017, Li et al., 2015, Duvenaud et al., 2015, Battaglia
et al., 2016, Kearnes et al., 2016, Simonovsky and Komodakis, 2017].

1.1 Prior work

Two types of analyses of MPNN may be distinguished.

The first bound the expressive power of anonymous MPNN, i.e., those in which nodes do not have
any access to discriminative features (also known as labels or attributes) and that are permutation
(in)equivariant by design. Xu et al. [2018] and Morris et al. [2019] established the equivalence of
anonymous MPNN to the 1st-order Weisfeiler-Lehman graph isomorphism test. A consequence of
this connection is that anonymous MPNN cannot distinguish between regular graphs with the same
number of nodes. Other notable findings include the derivation of approximability results for NP-hard
problems [Sato et al., 2019], the connection to 1st-order logic [Barceló et al., 2019], the observation
that MPNN cannot count simple subgraphs [Chen et al., 2020], as well as the analysis of the power of
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particular architectures to compute graph properties [Dehmamy et al., 2019, Garg et al., 2020] and to
distinguish graphons [Magner et al., 2020]—see also overview papers [Geerts et al., 2020, Sato, 2020].

The second focus on the non-anonymous case [Murphy et al., 2019, Loukas, 2020, Dasoulas et al., 2019,
Sato et al., 2020]. With node features acting as identifiers, MPNN were shown to become universal
in the limit [Loukas, 2020] and permutation (in)equivariance needs to be learned. The node features
may correspond to a simple one-hot encoding of the nodes [Kipf and Welling, 2016, Berg et al., 2017,
Murphy et al., 2019] or a random node coloring [Dasoulas et al., 2019, Sato et al., 2020]. On the other
hand, in the non-asymptotic regime, there is evidence that the power of MPNN grows as a function of
depth and width. Specifically, Loukas [2020] derived several hardness results for decision, optimization,
and estimation graph problems. The key insight was that networks cannot solve many tasks when the
product of their depth and width does not exceed a polynomial of the number of nodes.

1.2 New insights: communication capacity and graph isomorphism

Current results for the non-anonymous MPNN leave two important questions unanswered: First,
it is unclear whether a depth-vs-width dependency is indicative only of worst-case distributions as
proven in previous studies [Loukas, 2020] or if it constitutes a more general phenomenon. In addition,
it is unknown whether a similar dependency holds for graph isomorphism—a problem of particular
significance to graph neural networks [Xu et al., 2018, Morris et al., 2019, Chen et al., 2020].

To address these questions, this paper defines and characterizes the communication capacity of MPNN,
a measure of the amount of information that the nodes can exchange during the forward pass. In
Section 2 it is shown that the capacity of MPNN depends on the network’s depth, width, and message-
size, as well as on the cut-structure of the input graph. In essence, communication capacity is an
effective generalization of the previously considered product between depth and width [Loukas, 2020]
that takes into account more involved properties and also holds for MPNN with a global state [Gilmer
et al., 2017, Battaglia et al., 2018, Ishiguro et al., 2019].

The paper then delves into the communication complexity of graph isomorphism. The theory of com-
munication complexity compliments communication capacity as it provides a convenient mathematical
framework to study how much information needs to be exchanged by parties that jointly compute
a function [Rao and Yehudayoff, 2020]. In this setting, Section 3 derives the first hardness results
for graph and tree isomorphism. It is shown that the communication capacity of MPNN needs to
grow at least linearly with the number of nodes so that the network can learn to distinguish trees,
and quadratically to distinguish between all connected graphs. This stands out from previous relevant
works that have studied subcases of isomorphism, such as subgraph freeness [Even et al., 2017, Gonen
and Oshman, 2018] or considered models that cannot solve isomorphism [Xu et al., 2018, Morris et al.,
2019, Chen et al., 2020, Dehmamy et al., 2019, Magner et al., 2020]. In addition, the derived lower
bounds rely on a newly developed mathematical technique which renders them applicable not only to
worst-case instances [Loukas, 2020], but probabilistically over a portion of all inputs.

A large-scale empirical study reveals strong qualitative and quantitative agreement between the MPNN
test accuracy and theoretical predictions. In the 12 graph and tree isomorphism tasks considered,
the performance of the 420 networks trained was found to depend strongly on their communication
capacity. In addition, the proposed theory could consistently predict which networks would exhibit
poor classification accuracy as a function of their capacity and the type of task in question.

2



2 The communication capacity of message-passing networks

Suppose that a learner is given a graph G = (V, E , a) sampled based on a distribution D over a finite
universe of graphs X . Throughout this paper, V will be used to denote the set of nodes of cardinality
n, E the set of edges, and a encodes any node and edge features of interest. With G as input, the
learner needs to predict the output of function f : X → Y. This work focuses on graph classification,
in which case f assigns a class y ∈ Y (e.g., its isomorphism class) to each graph in the universe.

A message-passing neural network N is a learner that operates as follows:

Set x(0)i = ai for all vi ∈ V.
for layer ` = 1, . . . , d do

for every edge eij ∈ E (in parallel) do

msg(`)ij = Message`
(
x
(`−1)
j , aj , aij

)
for every node vi ∈ V (in parallel) do

x
(`)
i = Update`

(
x
(`−1)
i ,

{
msg(`)ij : eij ∈ E

})
return ReadOut

({
x
(d)
i : vi ∈ V

})
.

In its essence, the message-passing model dictates that the node representations x(`)i should be
progressively updated by exchanging information along the edges of the graph. Each message msg(`)ij
contains some information that is sent to from node vj to vi. Each neuron in a network utilizes some
alphabet S of cardinality s = |S| to encode its state. For this reason, x(`)i and msg(`)ij are selected
from some finite sets Sw` and Sm` , where w` and m` are the width and the message-size of the `-th
layer. For instance, to represent whether a neuron is activated it suffices to choose a binary alphabet,
whereas a more general computer could use the set of numbers represented by 32-bits in floating point
arithmetic.

The logic of the network is then determined by the message, update, and readout functions.

• In general, Message` and Update` are layer-dependent functions whose parameters are selected
based on some optimization procedure. It is common to parametrize these functions by feed-
forward neural networks [Scarselli et al., 2008, Li et al., 2015, Battaglia et al., 2018]. The rational
is that, by the universal approximation theorem and its variants [Cybenko, 1989, Hornik et al.,
1989, Lu et al., 2017], these networks can approximate any smooth function that maps vectors
onto vectors.

• Function ReadOut allows us to recover the final output from the node representations of the
last layer. Two cases may be distinguished depending on the task at hand: (i) If the network’s
output is required to be invariant on the number of nodes, ReadOut aggregates the decisions
of individual nodes. (ii) When f(G) assigns some class to every node, ReadOut is the identity
function.

In the pseudo-code above, all message exchange needs to occur along graph edges. However, one may
also easily incorporate a global state (or external memory) to the model above by instantiating a
special node v0 and extending the edge set to contain edges from every other node to it. Global state
is useful for incorporating graph features to the decision making [Battaglia et al., 2018] and there is
some evidence that it can facilitate logical reasoning [Barceló et al., 2019]. Here, I will suppose that
x
(`)
0 belongs to the set Sg` , with g` possibly being larger than w`.
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Figure 1: A visual depiction of a graph G = (V, E) chosen from X . Ga (in yellow) and Gb (in green)
are chosen from families Xa and Xb of graphs with v nodes. The edges of Gc (dashed lines) may
connect to any node but should induce a (Va,Vb)-cut of at most τ .

2.1 Communication capacity

Networks that rely on message-passing can exchange a bounded amount of information. To illustrate
this phenomenon, imagine that there are two node- and edge-disjoint subgraphs Ga = (Va, Ea) and
Gb = (Vb, Eb) of G that are controlled by two parties: Alice and Bob. By construction, when Alice
needs to send information to Bob, she does so by sending messages across some path that crosses
between Va and Vb. Bob does the same. From this elementary observation, it can be deduced that the
number of symbols that can be sent during the network’s forward pass is bounded by the cut between
the two parties:

Lemma 2.1 (Communication capacity). Let N be an MPNN of d layers, where each layer ` has width
w`, exchanges messages of size m`, and maintains a global state of size g`. For any partitioning of G
into Ga = (Va, Ea) and Gb = (Vb, Eb) with Va ∩ Vb = Ea ∩ Eb = ∅, the number of symbols cN that can
be transmitted from Alice to Bob (or from Bob and to Alice) is at most

cN ≤ cut(Va,Vb)
d∑
`=1

min{m`, w`}+

d∑
`=1

g`,

with cut(Va,Vb) being the size of the smallest cut that separates Va from Vb in G.

Hence, any network N of finite size has bounded communication capacity. In Section 3 this limitation
will be exploited in order to characterize what N cannot compute.

3 The communication complexity of graph isomorphism

This section derives necessary conditions for the communication capacity of a network that solves
the graph isomorphism problem. Graph isomorphism entails finding a mapping fisom : X → Y from
a universe of labeled graphs to their corresponding graph isomorphism classes. Crucially, though
the nodes of labeled graph G are assigned some predefined order (which constitutes their label in
graph-theory nomenclature), the class fisom(G) should be invariant to this ordering.

The analysis follows a communication complexity-theoretic argument. Specifically, I consider the
universe X of all labeled graphs G = (V, E) admitting to the following (Xa,Xb, τ) decomposition:

1. Subgraph Ga = (Va, Ea) induced by labels Va = (1, 2, · · · , v) belongs to Xa.

2. Subgraph Gb = (Vb, Eb) induced by labels Vb = (v + 1, v + 2, · · · , 2v) belongs to Xb.

3. Subgraph Gc = (V, E \ (Ea ∪ Eb)) yields cut(Va,Vb) ≤ τ .
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Figure 2: Example graphs sampled from two (Xa,Xb, 1) decompositions. Top: Xa and Xb contain all
connected graphs on v = 6 nodes (special case of Theorems 3.1 and 3.2). Bottom: Xa and Xb contain
all trees on 11 nodes (special case of Theorem 3.3). In both cases, there exists a τ = 1 cut between the
nodes Va controlled by Alice (in yellow) and nodes Vb controlled by Bob (in green).

A (Xa,Xb, τ) decomposition is fairly general: the main restriction placed is that the cut between Va
and Vb is bounded by τ . Families Xa and Xb can be chosen to contain relevant families of graphs (e.g.,
all connected graphs or all trees), whereas the nodes and edges of Gc may be selected arbitrarily.

To derive lower bounds, it will be imagined that Ga = (Va, Ea) and Gb = (Vb, Eb) are known to Alice
and Bob, respectively. The goal of the two parties is to determine fisom(G) = fisom(Ga, Gb, Gc) by
exchanging as little information as possible — see Section 3.1 for precise definitions and Appendix B
for more information. Two main results will be proven: Section 3.2 will show that, when Xa and Xb
contain all labeled connected graphs on v nodes, the number of symbols Alice and Bob must exchange
grows quadratically with v. Moreover, Section 3.3 will show that, when Xa and Xb contain only trees,
the dependence on v is linear.

With these results in place, Section 3.4 will argue that MPNN needs to have capacity that is at least
half the communication complexity to compute fisom. Since the derived impossibility results extend
also to any universe X ′ that is a superset of a universe X that admits to a (Xa,Xb, τ) decomposition,
the impossibility results also hold for the general problems of graph and tree isomorphism.

3.1 Communication complexity

Suppose that Alice and Bob wish to jointly compute a function f : Xa × Xb → Y that depends on
both their inputs. Alice’s input is an element xa ∈ Xa and Bob sees an element xb ∈ Xb. In the graph
isomorphism problem, xa and xb correspond to subgraphs Ga and Gb, respectively. To learn f(xa, xb),
the two parties need to exchange information based on some communication protocol π.

Worst-case complexity. The focus of classical theory is on the worst-case input. Denote by
‖π(xa, xb)‖m the number of symbols that Alice and Bob need to exchange in order to compute f(xa, xb)
using protocol π. Subscript m ∈ {one, both} indicates whether “successful computation” entails one or
both parties figuring out f(xa, xb) at the end of the exchange. The communication complexity [Rao
and Yehudayoff, 2020] of f is defined as

cmf := min
π

max
(xa,xb)∈Xa×Xb

‖π(xa, xb)‖m (1)

and corresponds to the minimum worst-case length of any protocol that computes f .

Expected complexity. In machine learning, rather than the worst-possible case, one usually cares
about the expected behavior of a learner when its input is sampled from a distribution. Concretely,
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let (Xa, Xb) be random variables sampled from a distribution D with domain Xa ×Xb. The expected
length of a protocol π is

ED
[
cmf (π)

]
:=

∑
(xa,xb)∈Xa×Xb

‖π(xa, xb)‖m · P(Xa = xa, Xb = xb) , (2)

where now the protocol length ‖π(xa, xb)‖m is weighted according to the probability of each input.
With this in place, I define the expected communication complexity of f as

cmf (D) := min
π

ED
[
cmf (π)

]
, (3)

corresponding to the minimum expected length of any protocol that computes f .

For an overview of the classical theory of communication complexity pertaining to the worst-case and
an analysis of the newly-defined expected complexity, the reader may refer to Appendix B.

3.2 Graph isomorphism

I first focus on the case where Xa and Xb contain all connected graphs on v nodes. Some examples of
graphs arising from a (Xa,Xb, 1) decomposition can be found in Figure 2.

The first result is distribution agnostic:

Theorem 3.1 (Graph isomorphism). When Xa and Xb each contain the set of all connected graphs
on v nodes, the worst-case communication complexity of fisom is at least

cbothfisom ≥
v2

log2 s
− 2v logs

(
v
√

2

e

)
− logs

(
2ve2

)
+ o(1) = β and cone

fisom ≥
β − (log2 s)

−1

2
.

The proposed bound is asymptotically tight: the two parties should exchange Θ(v2/ log2 s) symbols
in the worst case. The tightness is a consequence of the following elementary upper bound: to
compute fisom(G), Bob and Alice can simply send their entire edge-sets to each other and proceed
to compute f(Ga, Gb, Gc) independently. Then, since the number of edges of a graph v nodes are
|Ea|, |Eb| ≤ v(v − 1)/2, it suffices to exchange cfisom ≤ v(v − 1)/ log2 s symbols.

As it turns out, a similar bound holds also in the random graph model Gv,p. In Gv,p, every graph with
v nodes and k edges is sampled with probability

P(G ∼ Gv,p) = pk(1− p)(
v
2)−k.

Effectively, this means the probability of choosing each graph depends only on the number of edges it
contains. Moreover, for p = 0.5 each graph is sampled uniformly at random from the set of all possible
graphs. The following theorem bounds the expected communication complexity when the subgraphs
known to Alice and Bob are sampled from Gv,p:

Theorem 3.2 (Random graph isomorphism). Let Ga and Gb be sampled independently from Gv,p,
with p > log v/v and cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1. Denote by Bv,p the resulting distribution.
With high probability,

cbothfisom(Bv,p) ≥ v2 Hs(p)− v
(

2 logs

(v
e

)
+ Hs(p)

)
− logs

(
2ve2

)
= β

and

cone
fisom(Bv,p) ≥

β

2
− v2 − v(1−H2(p)) + 1

2 log2 s
,

where Hs(p) = −(1− p) logs (1− p)− p logs p is the binary entropy function (base s).
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The expected complexity, therefore, grows asymptotically with Ω(v2 Hs(p)) and is maximized when
every graph in the universe is sampled with equal probability (i.e., for p = 0.5). Interestingly, in this
setting, the bounds of Theorems 3.1 and Theorem 3.2 match. This implies that, unless there is some
strong isomorphism class imbalance in the dataset, the communication complexity lower bound posed
by Theorem 3.1 does not only concern rare worst-case inputs, but should be met on average.

Note also that in the theorem it is asserted that p > log v/v. The latter condition suffices to guarantee
that every G ∼ Bv,p will be connected with high probability.

3.3 Tree isomorphism

I also bound the communication complexity of tree isomorphism. In this case, Xa and Xb contain all
trees on v nodes. Some examples of trees arising from a (Xa,Xb, 1) decomposition can be found in
Figure 2.

The following is proved:

Theorem 3.3 (Tree isomorphism). Suppose that Ga and Gb are sampled independently from the set
of all trees on v nodes. Denote by Tv the resulting distribution. The communication complexity of
fisom is at least

cbothfisom ≥ c
both
fisom(Tv) & 2v logs α− 5 logs v + logs 7 = β and cone

fisom ≥ c
one
fisom(Tv) &

β + logs 2

2
,

where α ≈ 2.9557652 and f(n) & g(n) means f(n) ≥ g(n) as n grows.

Perhaps as expected, discriminating trees is significantly easier. For trees, the communication complexity
grows asymptotically with Θ(v), rather than quadratically as in Theorems 3.1 and 3.2.

Further, akin to the general case, the expected and worst-case complexities match when every tree is
sampled with equal probability. Since a distribution over trees cannot be meaningfully parametrized
based a connection probability p (trees always have the same number of edges), by default in Tv every
G ∈ X is sampled with equal probability.

3.4 Consequences for message-passing neural networks

Two types of networks are distinguished depending on how the readout function operates:

1. ReadOut performs majority-voting. Specifically, for N to compute fisom(G) there should exist
a function g : Swd → Y and a set of nodesMG ⊆ V possibly dependent on G and of cardinality
at least |MG| ≥ µ = O(1), such that g(x

(d)
i ) = fisom(G) for every vi ∈MG.

2. ReadOut performs consensus. This is akin to a majority-voting, with the distinction thatMG

should contain at least |MG| ≥ n− µ = Ω(n) nodes.

The next result makes the connection between communication complexity and MPNN explicit:

Proposition 3.1. Let D be a distribution over graphs that is densely supported on a universe X
admitting to a (Xa,Xb, τ) decomposition. Further, suppose that N is an MPNN whose communication
capacity is at most cN . The following statements hold:

• If 2cN < cmfisom , then N cannot compute fisom(G) for at least one G ∈ X .

• If X ⊂ X ′ and 2cN < cmfisom , then N cannot compute fisom(G) for at least one G ∈ X ′.
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• If 2cN < δ cmfisom(D) for some δ ∈ [0, 1], then N cannot compute fisom(G) with probability at least
1−δ

(cmfisom
(G)/βm)−δ .

Above, with majority-voting one should set m = one, βone ≤ logs (min{|Xa|, |Xb|}) and v > (n− µ)/2,
whereas with consensus m = both, βboth ≤ logs (|Xa|+ |Xb|), and v > µ.

It is then a direct corollary of Proposition 3.1 together with Lemma 2.1, Theorems 3.1, 3.2 and 3.3
that an MPNN of sub-quadratic and sub-linear capacity cannot compute the isomorphism class of
connected graphs and trees, respectively.

4 Empirical results

This section tests the developed theory on 12 graph and tree isomorphism tasks of varying difficulty.
In the 420 neural networks tested, the bounds are found to consistently predict when each network
can solve a given task as a function of its capacity.

4.1 Experimental setting

In the considered experiments, MPNN of different capacities were tasked with learning the mapping
between a universe of graphs their corresponding isomorphism classes.

Datasets. A total of 12 universes were constructed: graph universes Xngraph for n = (6, 8, 10, 12) and
tree universes Xntree for n = (8, 10, . . . , 22). Examples of graphs from X 12

graph and X 22
tree can are shown

in Figure 2. Each Xngraph was built in two steps: First, geng [McKay and Piperno, 2014] was used to
populate Xa and Xb with all possible connected graphs on v = n/2 nodes. Then, each G ∈ Xngraph was
generated by selecting Ga and Gb from Xa and Xb and connecting them with an edge, such that τ = 1.
The labels added to the nodes of G were the one-hot encoding of a random permutation of (1, . . . , v)
and (v + 1, . . . , n). The construction of Xntree differed only in that Xa and Xb contained all trees on
v = n/2 nodes. Each dataset was split into a training, a validation, and a test set (covering 90%, 5%,
and 5% of the dataset, respectively). Additional details are provided in Appendix A.

Architecture and training. The networks combined multiple GIN0 [Xu et al., 2018] layers with batch
normalization and a sum readout function. Their depth and width varied in d ∈ (2, 3, 4, 5, 6, 7, 8) and
w ∈ (1, 2, 4, 8, 16), respectively, the message-size was set equal to w, and no global state was used.
Each network was trained using Adam with a decaying learning rate. Early stopping was employed
when the validation accuracy reached 100%.

4.2 Findings

Let me begin by stating that networks of sufficient size could solve nearly every isomorphism task up
to 100% test accuracy (Table 2 in Appendix A), which corroborates previous theoretical findings that
(non-anonymous) MPNN are more powerful than their anonymous counterparts and that they can
learn to be permutation invariant [Murphy et al., 2019, Loukas, 2020, Dasoulas et al., 2019].

Figures 3a and 3b summarize the neural network performance for all graph- and tree-isomorphism
tasks considered. The achieved accuracy strongly correlated with communication capacity (computed
based on Lemma 2.1) with larger-capacity networks performing consistently better. Moreover, in
qualitative agreement with the analysis, solving a task can be seen to necessitate larger capacity when
the number of nodes is increased. A case in point, whereas a capacity of 4 suffices to classify 99% of
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Figure 3: Test accuracy in terms of communication capacity and the number of nodes for 4 graph (left)
and 8 tree isomorphism tasks (right). Each marker corresponds to a trained network. Networks of high
(low) accuracy as plotted with large green (small red) markers. The two dashed colored lines connect
the smallest-capacity networks that attain 50% and 99% accuracy, respectively. The two gray regions at
the bottom of the figure correspond to the proposed distribution-dependent lower bounds for a majority
and consensus readout function. Best seen in color.

graphs of 6 nodes correctly, for 8, 10, and 12 nodes the required capacity increases to 8, 24, and 112,
respectively. This identified correlation between capacity and accuracy could not be explained by the
depth or width of the network alone, as, in most instances, tasks that could not be solved by wide and
shallow networks could also not be solved by deep networks of the same capacity. The only exception
was when the depth was too small, in which case the receptive field did not cover the entire graph (see
Figures 5a and 5b in Appendix A).

The gray regions at the bottom of each figure indicate the proposed expected communication complexity
lower bounds. Here, |S| = 2 based on the interpretation that each neuron can be either in an activated
state or not. There are also two lower bounds plotted since a network that sums the final layer’s
node representations can learn to differentiably approximate both a majority-voting and a consensus
function. The analysis asserts that a network with capacity below the gray dashed lines should not be
able to solve the isomorphism problem for a significant fraction of all inputs (see precise statement
in Proposition 3.1). Indeed, networks in the gray region consistently perform poorly. The empirical
accuracy appears to match closely the consensus bound, though it remains inconclusive if the network
is actually learning to do consensus. A closer inspection of the results (see Figures 4a and 4b in
Appendix A) also reveals that the poor performance of the networks in the gray region is not an issue
of generalization. In agreement with the theory, networks of insufficient communication capacity do not
possess the expressive power to map a fraction of all inputs to the right isomorphism class, irrespective
of whether these graphs appear in the training or test set.
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5 Conclusion

This work proposed a hardness-result for graph isomorphism in the MPNN model by characterizing
the amount of information the nodes can exchange during their forward pass (termed communication
capacity). The developed proof techniques may be of independent interest: they innovate upon classical
communication complexity arguments by considering the expected as well as worst-case complexity.
A closer examination of the proofs also reveals connections between hardness and the entropy of the
classification function (see Lemmas B.2 and C.1) that could possibly be exploited for other graph
problems. The exploration of these directions is left for future work.

From a practical perspective, this work provided evidence that, if the amount of training data is not
an issue, graph isomorphism is hard but not impossible for MPNN. Specifically, it was argued that
the number of parameters needs to increase quadratically with the number of nodes. The implication
is that, in the most general case, networks of practical size should be able to solve the isomorphism
problem for graphs with at most a few dozen nodes, but will encounter issues otherwise.

Acknowledgements. I would like to thank Nikolaos Karalias and Giovanni Cherubin for their helpful
discussions, as well as the Swiss National Science Foundation for supporting this work in the context
of the project “Deep Learning for Graph-Structured Data” (grant number PZ00P2 179981).
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A Additional empirical results

This section presents the empirical results more comprehensively.

First, Table 1 provides summary statistics for each of the 12 isomorphism tasks considered:

X 6
graph X 8

graph X 10
graph X 12

graph X 8
tree X 10

tree X 12
tree X 14

tree X 16
tree X 18

tree X 20
tree X 22

tree

classes 3 21 231 6328 3 6 21 66 276 1128 5671 22730
degree (avg.) 4.0 4.7 5.4 6.0 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.8

diameter (avg.) 3.7 4.5 5.0 5.4 4.0 4.3 5.0 5.4 6.0 6.4 6.9 7.3
dataset size 10k 10k 40k 100k 10k 10k 40k 40k 40k 40k 40k 100k

Table 1: Details relevant to the 4 graph and 8 tree isomorphism tasks.

Table 2 provides empirical evidence that, with a one-hot encoding of the node-ordering given as features
and a sufficiently large training set, MPNN of sufficient capacity can solve graph isomorphism. In the
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current experiment, a large network (depth = 10 and width = 32) is seen to solve most isomorphism
instances. The network did not achieve perfect classification for larger graphs, but better results can
be achieved with more training data.

accuracy X 6
graph X 8

graph X 10
graph X 12

graph X 8
tree X 10

tree X 12
tree X 14

tree X 16
tree X 18

tree X 20
tree X 22

tree

training 100% 100% 100% 99.997% 100% 100% 100% 100% 100% 100% 100% 100%
validation 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 97.45% 82.82%

test 100% 100% 100% 99.96% 100% 100% 100% 100% 100% 100% 97.35% 82.92%

Table 2: The performance of a large-capacity MPNN.

The achieved accuracy of all networks considered is shown in Figures 4a and 4b for graph and tree
isomorphism tasks, respectively. In contrast to the figures of Section 4, these plots: depict the training
as well as testing accuracy. For the majority of tasks the test and training accuracy is almost identical.
Overfitting can be a problem for larger graphs (e.g., trees of at least 20 nodes). The problem can be
mitigated by increasing the size of the training set.
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Figure 4: Training and test accuracy as a function of communication capacity.

Finally, Figures 5a and 5b demonstrate that depth and width are partially exchangeable for graph and
tree isomorphism. This implies that the correlation between capacity and accuracy (see Figures 3a
and 3b) cannot be explained by only looking at the depth or width of a network. Here, the two figures
depict the empirical test accuracy (by the marker color and size) as a function of depth and width for
all graph and tree isomorphism tasks. For each task, the depth and width have been normalized by
the square root of the critical capacity, corresponding to the smallest communication capacity of any
network that could achieve at least 50% accuracy. As a consequence of the normalization, all networks
in the top-right region (in white) possess sufficient capacity for the task at hand. Moreover, networks
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plotted below (above) the main diagonal are deeper than they are wide (wider than they are deep). As
seen, the isomorphism task can be solved by both wide and deep networks of super-critical capacity, as
long as the networks are not too shallow. Indeed, networks of very small depth cannot see the entire
graph and thus have poor accuracy.
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Figure 5: Accuracy as a function of capacity-normalized depth and width. Depth and width are partially
exchangeable for graph and tree isomorphism.

B Communication complexity: basics and beyond

B.1 Basic theory: protocols

Let’s start by denoting by S the common set of symbols1 Alice and Bob use to communicate and
denote by s = |S| its cardinality. A protocol π is described in terms of a rooted s-ary tree, i.e., a
tree with a clearly defined root and in which every internal node has exactly s children. In addition,
every internal node v is owned by either Alice or Bob and each one of the node’s children symbolizes
a symbol sent by its owner. Specifically, the protocol associates v with a function πv that maps the
input of v’s owner to S (or equivalently to one of v’s children). The protocol operates as follows: first,
both parties set the current vertex to be the root of the tree. Say that the current vertex is v. If
the owner of v is Alice then she announces symbol πv(x) and otherwise Bob announces πv(y). Both
parties then update the current vertex to point to the child of v indicated by the value of πv. This
procedure is repeated until a leaf is found and said leaf becomes the protocol’s output.

It can be seen that the number of symbols ‖π(xa, xb)‖m Alice and Bob need to send in order to jointly
compute f(xa, xb) using protocol π equals the length of the path from the root to the leaf π(xa, xb).
Moreover, the number of symbols sent by a protocol in the worst case (i.e., for any input) is at most
equal to the depth of the protocol tree (Fact 1.1 in [Rao and Yehudayoff, 2020]).

1Though usually it is assumed that the parties communicate using binary symbols, i.e., S = {0, 1}, the set could also
be defined more abstractly to contain s symbols.
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B.2 Basic theory: monochromatic rectangles

To understand how protocols operate, one needs to consider the concept of rectangles. A rectangle is a
subset of Xa ×Xb that can be expressed as X ′a ×X ′b for some X ′a ⊂ Xa and X ′b ⊂ Xb.

As it turns out, every protocol can be described in terms of rectangles. Let Rv ⊆ Xa ×Xb be the set
of inputs leading to a path that crosses a node v ∈ π. Moreover, define the following sets:

X va = {x ∈ Xa : ∃y ∈ Xb such that (xa, xb) ∈ Rv}
X vb = {y ∈ Xb : ∃x ∈ Xa such that (xa, xb) ∈ Rv}

The following result clarifies the connection between protocols and rectangles.

Lemma B.1 (Lemma 1.4 in [Rao and Yehudayoff, 2020]). For every protocol π and vertex v, Rv is a
rectangle with Rv = X va ×X vb . Further, the rectangles R` given by the leafs ` ∈ Lπ of the protocol tree
form a partition of Xa ×Xb.

It is not hard to realize that, for every leaf ` ∈ Lπ, the function f should always take the same value
at every (xa, xb) ∈ R` in order for both parties to be able to compute the output from π(xa, xb). Such
rectangles are referred to as monochromatic: concretely, a rectangle R ⊂ Xa ×Xb is monochromatic if
f(xa, xb) = f(x′a, x

′
b) for every (xa, xb), (x

′
a, x
′
b) ∈ R. Indeed, if leaf rectangles were not monochromatic,

Alice and Bob would not be able to identify the output of f based on R`.

The following theorem is obtained by combining Lemma B.1 with the fact that the minimum depth of
any s-ary tree with sc

both
f leafs is cbothf .

Theorem B.1 (Theorem 1.6 by Rao and Yehudayoff [2020]). If the communication complexity of
f : Xa×Xb → Y is cbothf , then Xa×Xb can be partitioned into at most sc

both
f monochromatic rectangles.

The following is a direct corollary:

Corollary B.1 (Rao and Yehudayoff [2020]). If Xa ×Xb cannot be partitioned into sc monochromatic
rectangles, then cbothf ≥ c.

A simple way to satisfy the requirement of the corollary is to prove that no large monochromatic
rectangle exists. For instance, if it is shown that all monochromatic rectangles have size bounded
by k2 then every monochromatic partitioning must contain at least |Xa ×Xb|/k2 rectangles and the
complexity is at least cbothf ≥ logs

(
|Xa ×Xb|/k2

)
. I will rely on this method in the following to derive

lower bounds on the worst-case communication complexity of different functions.

B.3 Beyond the basics: expected communication complexity

The following lemma connects ED[cf (π)] to the entropy of the categorical distribution induced by the
leafs of the protocol tree.

Lemma B.2. Let the random variables X = (Xa, Xb) ∼ D be sampled from some distribution D and,
moreover, let random variable Lπ be the leaf for a protocol π that computes f(Xa, Xb). The expected
communication complexity of f is

min
π

Hs(Lπ) ≤ cmf (D) ≤ min
π

Hs(Lπ) + 1,

where Hs(Lπ) is the Shannon entropy (base s) of Lπ under D.
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Proof. The expected length of a protocol π is

ED
[
cmf (π)

]
=
∑
xa,xb

‖π(xa, xb)‖m · P(Xa = xa, Xb = xb)

=
∑
`∈Lπ

depth(t) · P(Lπ = `)

= ED[depth(Lπ)] .

Note that the set Lπ contains the leafs of the protocol tree and Lπ is a categorical random variable
over leafs with

P(Lπ = `) =
∑

x,y : π(xa,xb)=`

P(Xa = xa, Xb = xb) ,

which is also equal to the probability P
(
(Xa, Xb) ∈ R`

)
that a randomly drawn input belongs to R`.

To understand cmf (D) it helps to realize the connection between protocols and coding theory: rather
than sending information between Alice and Bob, one may think of sending the leafs over a channel by
using a codebook. In this analogy, each leaf corresponds to a code and the path from the root of the
protocol tree to every internal node at depth t corresponds to code prefix of length t. Furthermore,
the probability of encountering the leaf is P (Lπ = t) and the depth of the protocol tree for every input
(xa, xb) ∈ R` is equal to the length of the code required to send the associated symbol.

From the above it follows that the act of designing a protocol with minimal cmf (π) is equivalent to
finding a tree with minimum expected path length from the root to the leafs, which in turn is equivalent
to minimizing the length of the expected code length for a categorical distribution Lπ. Therefore,
based on Shannon’s source coding theorem we have that

min
π

Hs(Lπ) ≤ cmf (D) ≤ min
π

Hs(Lπ) + 1,

matching the lemma statement.

C Deferred proofs

C.1 Proof of Lemma 2.1

global state
u0

BobAlice

(a) Example partitioning

in

B

out

in outin out in out

A
in out in out

wl ml el

(b) Maximum flow reduction

Figure 6: An example of the reduction employed in the proof of Lemma 2.1. The yellow and green
subgraphs correspond respectively to Ga and Gb. The global state (external memory) is shown in orange.
Each edge is annotated based on its capacity in the maximum flow reduction.

The number of symbols that can be transmitted from Alice to Bob in layer ` is bounded by the
maximum flow of the following multi-source multi-sink maximum flow problem with node capacities:

• The nodes Va are the senders and the nodes Vb are the sinks.
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• Each edge has capacity m`.

• Each node in V has capacity w`, whereas v0 has capacity g`.

This problem can be reduced to a simple maximum flow problem (single source single-sink without
node capacities) in three steps:

1. All nodes in Va (resp. Vb) are connected to a new node A (resp. B) with edges of infinite
capacity.

2. Each node vi (with the exception of A,B and v0) is split into two nodes ini and outi connected
by an edge of capacity w`. Incoming edges to vi are connected to ini and outgoing edges are
connected to outi.

3. The same splitting procedure is performed for node v0, but now the internal edge has capacity g`.

Consider the transformed flow network as shown in Figure 6b. By the max-flow min-cut theorem, the
maximum value of the flow is equal to the minimum capacity over all cuts that separate Va ∪A from
Vb ∪B. The latter however can always be bounded by cut(A,B) + g`. The first term of this equation
gives the weight of the smallest cut separating A and B in the reduced graph, excluding those (orange)
edges that touch v0: since the edges from A to Va have infinite capacity (resp. from B to Vb), every
such cut also separates Va and Vb. Notice also that every path from A to B includes at least one
internal edge of capacity w` and one normal edge of capacity m`. Combining the previous observations
one finds that cut(A,B) ≤ cut(Va,Vb) min{w`,m`}, where cut(Va,Vb) is the size of the smallest cut
that separates Va and Vb on G (the undirected and unweighted graph prior to the reduction). The
internal edge capacity of v0 in accounted by term g`. The final bound is obtained by summing the
cuts over all d layers.

C.2 Proof of Theorem 3.1

The proof consists of two main steps. First, the number of monochromatic rectangles of fisom will be
controlled using the number of graph isomorphism classes in X . Then, invoking Corollary B.1 will
result in a bound for cbothfisom

. Second, the identified lower bound will be translated to a bound regarding
cone
fisom

based on Lemma D.1.

There are 2(v2) labeled graphs on v nodes (i.e., counting orderings), the overwhelming majority of which
are connected. The number of connected labeled graphs on v nodes is

|Xa| = |Xb| = 2(v2)
(

1− 2v

2v
+ o

(
1

2v

))
= 2(v2)

(
1−O

( v
2v

))
,

which, for sufficiently large v, is very close to 2(v2) [Flajolet and Sedgewick, 2009, p. 138]. Specifically,
one may write

log2 |Xa| = log2 |Xb| = log2

(
2(v2)

(
1−O

( v
2v

)))
=

(
v

2

)
log2 2 + 2 log2

(
1−O

( v
2v

))
≥ v(v − 1)

2
− 2O

( v
2v

)
(log(1− x) ≥ −O(1)x for x ∈ [0, 1])

=
v(v − 1)

2
+ o(1)
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and, similarly, log2 |Xa| = log2 |Xb| ≤
v(v−1)

2 . The number of permutations on v nodes is v!, which
implies that the number g(v) of isomorphism classes of v-node graphs is bounded by

log2 g(v) ≥ log2

(
|Xa|
v!

)
(4)

=
v(v − 1)

2
− log2 (v!) + o(1) (5)

≥ v(v − 1)

2
− v log2

(v
e

)
− log2

(√
ve2
)

+ o(1) (since x! ≤
√
xe2 (x/e)x)

=
v2

2
− v log2

(
v
√

2

e

)
− log2

(√
ve2
)

+ o(1) (6)

By construction, X contains at least g(v)(1 + g(v))/2 classes. To obtain this bound, one assumes that
there do not exist any classes that differ only w.r.t. Gc and then notes that each unique class of X
may be build either by gluing two distinct or identical classes on v nodes (corresponding to graphs in
Xa and Xb). The bound then follows by counting all pairs of elements (there are g(v) of those) with
repetitions (e.g., for {a, b, c} the set of possible pairs are {(aa), (ab), (ac), (bb), (bc), (cc)}).

The number of monochromatic rectangles of fisom is at least the number of classes and thus Corollary B.1
asserts:

cbothfisom log2 s = log2

 minimum number of
monochromatic

rectangles




≥ log2

(
g(v)(g(v) + 1)

2

)
= 2 log2 g(v) + log2

(
1 +

1

g(v)

)
− 1 ≥ 2 log2 g(v)− 1 (7)

Substituting (6) into (7) gives:

cbothfisom log2 s ≥ v2 − 2v log2

(
v
√

2

e

)
− 2 log2

(√
ve2
)
− 1 + o(1)

= v2 − 2v log2

(
v
√

2

e

)
− log2

(
2ve2

)
+ o(1)

A bound on cone
fisom

can be derived with the help of Lemma D.1:

cone
fisom log2 s ≥ cbothfisom log2 s− max

Gb,Gc
logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|) log2 s

= 2 log2 g(v)− 1− log2 g(v)

≥ v2

2
− v log2

(
v
√

2

e

)
− log2

(
2e
√
v
)

+ o(1).

This proof is concluded by factoring cone
fisom

as a function of cbothfisom
.

C.3 Proof of Theorem 3.2

I will begin by proving a more general result. Specifically, it will be shown that the expected
communication complexity is directly bounded by the entropy of the isomorphism class of a graph
sampled from G.
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Lemma C.1. The expected number of symbols that Alice and Bob need to exchange to jointly compute
the isomorphism class fisom(G) of a graph sampled from G = (Ga, Gb, Gc) ∼ G is at least

cbothfisom(G) ≥ min
Gc

Hs(fisom(G)|Gc) .

Proof. The first step is to condition the expected communication complexity on Gc:

cfisom(G) = min
π

EG[cfisom(π)]

= min
π

∑
Gc

P(Gc) EG[cfisom(π)|Gc] (due to the law of total expectation)

= min
π

∑
Gc

P(Gc) EG[cfc(π)] (by the definition fc(·, ·) := fisom(·, ·, Gc))

≥
∑
Gc

P(Gc) min
π

EG[cfc(π)] ≥ min
Gc

cfc(G).

Denote by Lπ the set of leafs of a protocol π that computes fc and by Lπ the random variable induced
by the distribution G (for brevity, the conditioning on Gc remains implicit in the following). We have
that

Hs(Lπ) =
∑
`∈Lπ

P(Lπ = `) logs

(
1

P(Lπ = `)

)
. (8)

Upon closer consideration, there are |Y| types of leafs such that Lπ =
⋃|Y|
y=1 Lπ,y, with each subset Llπ

containing all leafs for which the protocol outputs the graph isomorphism class y. From Lemma D.2
and because Lπ,1, . . . ,Lπ,|Y| form a partitioning of Lπ, we may write:

Hs(Lπ) ≥
|Y|∑
y=1

P(Lπ ∈ Lπ,y) logs

(
1

P(Lπ ∈ Lπ,y)

)
.

The term P(Lπ ∈ Lπ,y) seen above corresponds to the probability that class y will appear in our
sample:

P(Lπ ∈ Lπ,y) = P(f(Ga, Gb, Gc) = y)

therefore, minπ Hs(Lπ) ≥ Hs(f(G)|Gc) and the claim follows.

Coming back to the setting of the main theorem, denote by ky = |Ea|+ |Eb| the number of edges of the
graphs in class y (disregarding the edges Ec). For every Gc, we have that

P(fisom(G) = y |Gc) = ic(v) pky (1− p)2(
v
2)−ky = ic(v) pky (1− p)v(v−1)−ky .

Term ic(v) corresponds to the size of the corresponding isomorphism class. Specifically, when p is not
too small and cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1, it can be inferred that each isomorphism class in
the universe contains at most 2(v!)2 labeled graphs. The remaining n! − 2(v!)2 permutations yield
isomorphic graphs with cut larger than one.

Claim C.1. For any δ > 0, cut(Va,V \ Va) = cut(Vb,V \ Vb) = 1, and p ≥ (δ + logv)/v, we have
ic(v) ≤ 2(v!)2 with probability at least e−2e

−δ
+ o(1).
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Proof. To see this consider a labeled graph G ∈ X and let G′ = (V ′, E ′) be a second labeled graph
that is isomorphic to G, induced by a the label permutation V ′ = (Π(u) : u ∈ V). I claim that, if there
exist vi, vj ∈ Va for which Π(vi) ∈ Va and Π(vj) ∈ Vb, then G′ /∈ X (and the same holds if there exist
vi, vj ∈ Vb for which Π(vi) ∈ Vb and Π(vj) ∈ Vb).

The claim is proven by contradiction: suppose (for now) that Ga and Gb are connected. Then, for every
set S of cardinality v that is a strict subset of both Va and Vb (S corresponds to the nodes with labels
(1, · · · , v) in G′) the cut between S and its complement must be cut(S,V \S) =

∑
vi,vj
{vi ∈ S and vj /∈

S} =
∑
vi,vj
{vi ∈ S and vj ∈ (Va\S)}+

∑
vi,vj
{vi ∈ S and vj ∈ (Vb\S)} ≥ 1+1. The latter, however,

is impossible as we have assumed that ∀G′ ∈ X , we must have cut(V ′a,V ′ \ V ′a) = cut(V ′b,V ′ \ V ′b) = 1.
Therefore, the only valid permutations Π are those that abide to either (i) if vi ∈ Va → Π(vi) ∈ Va
and if vi ∈ Vb → Π(vi) ∈ Vb (there are (v!)2 such permutations), or (ii) if vi ∈ Va → Π(vi) ∈ Vb and if
vi ∈ Va → Π(vi) ∈ Va (there are (v!)2 such permutations).

In the studied distribution, there is a non-zero probability that a disconnected graph appears. However,
the probability is exponentially small when p > log v/v. It is well known (see e.g., Theorem 4.1
by Frieze and Karoński [2016]) that, for any δ > 0 and p = δ+log v

v , a random graph on v nodes is
connected with probability

P(Ga is connected) = P(Gb is connected) = e−e
−δ

+ o(1)

and, by independence, P(G is connected) = e−2e
−δ

+ o(1).

Based on the above observation, the conditional entropy of f(G) can be rewritten as

H2(fisom(G)|Gc) =
∑
y∈Y

P(fisom(G) = y|Gc) log2

(
1

P(fisom(G) = y|Gc)

)

≥
v(v−1)∑
k=0

(
v(v−1)
k

)
ic(v)

ic(v) pk(1− p)v(v−1)−ky log2

(
1

ic(v) pk(1− p)v(v−1)−k

)

=

v(v−1)∑
k=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−k

(
− log2 ic(v) + v(v − 1) log2

(
1

1− p

)
+ k log2

(
1− p
p

))

= log2

(
1− p
p

)v(v−1)∑
k=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−kk

+ v(v − 1) log2

(
1

1− p

)
− log2 ic(v)

≥ log2

(
1− p
p

)v(v−1)∑
k=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−kk

+ v(v − 1) log2

(
1

1− p

)
− log2 ic(v)

Let B be a binomial random variable with parameters v(v−1) and p. The summation term is equivalent
to the expectation of B:

v(v−1)∑
m=0

(
v(v − 1)

k

)
pk(1− p)v(v−1)−kk = E[B] = v(v − 1)p
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and, therefore,

H2(Lπ) ≥ log2

(
1− p
p

)
v(v − 1)p+ v(v − 1) log2

(
1

1− p

)
− log2 ic(v)

= v(v − 1)H2(p)− log2 ic(v) (by definition H2(p) = log2

(
1−p
p

)
p+ log2

(
1

1−p

)
)

= v(v − 1)H2(p)− 2 log2 v!− 1 (see Claim C.1 ic(v) ≤ 2(v!)2)

≥ v(v − 1)H2(p)− 2

(
v log2

(v
e

)
+

1

2
log2

(
ve2
))
− 1 (since x! ≤

√
xe2 (x/e)x)

= v2 H2(p)− v
(

2 log2

(v
e

)
+ H2(p)

)
− log2

(
2ve2

)
Invoking Lemma C.1, one obtains:

cbothfisom(Bv,p) ≥ min
Gc

H2(fisom(G)|Gc)
log2 s

≥ v2 Hs(p)− v
(

2 logs

(v
e

)
+ Hs(p)

)
− logs

(
2ve2

)
= β (9)

Then Lemma D.1 gives:

cone
fisom(Bv,p) log2 s ≥ cbothfisom(Bv,p) log2 s− max

Gb,Gc
logs (|{fisom(Ga, Gb, Gc) : Ga ∈ Xa}|) log2 s

= cbothfisom(Bv,p) log2 s− log2

(
|Xa|
v!

)
= cbothfisom(Bv,p) log2 s−

v(v − 1)

2
+ log2 (v!)

≥ v(v − 1)

(
H2(p)− 1

2

)
−
(
v log2

(v
e

)
+

1

2
log2

(
ve2
))
− 1

= v2H2(p)− v

2

(
2 log2

(v
e

)
+ H2(p)

)
− 1

2
log2

(
2ve2

)
− v2 − v + vH2(p) + 1

2

=
β log2 s− v2 + v(1−H2(p))− 1

2

implying cone
fisom

(Bv,p) ≥ β
2 −

v2−v(1−H2(p))+1
2 log2 s

.

C.4 Proof of Theorem 3.3

According to Otter [1948], the number of unlabeled trees on v nodes grows like

t(v) ∼ c αv v−5/2,

where the values c and α known to be approximately 0.5349496 and 2.9557652 (sequence A051491
in the OEIS). Moreover, it was shown in the proof of Theorem 3.1, the number of monochromatic
rectangles is at least (t(v) + 1) t(v)/2.

Corollary B.1 then implies

cbothfisom ≥ logs

(
(t(v) + 1) t(v)

2

)
≥ logs

(
t(v)2

2

)
∼ 2 logs

(
αv v−5/2

)
− logs (c2/2) ∼ 2v logs α− 5 logs v + logs 7 = β

21



Further, from Lemma D.1 one can derive:

cone
fisom ≥ c

both
fisom − max

Gb,Gc
logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|)

= cbothfisom − logs t(v)

∼ logs

(
αv v−5/2

)
− logs (c/2) ∼ v logs α−

5

2
logs v +

1

2
logs 14

implying cone
fisom

≥ β+logs 2
2 .

Let me now consider the case that G is sampled uniformly at random from the set of all trees in X . It
is a consequence of Lemma C.1 that when the graph (Ga, Gb, Gc) ∼ G (conditioned on Gc) is sampled
uniformly at random from a collection of isomorphism classes, the expected communication complexity
is at least

cbothfisom(Tv) ≥ min
Gc

logs |{f(Ga, Gb, Gc) : G ∈ X s.t. Gc}|.

This can be seed to be identical to the worst-case bound encountered above. The derivation thus can
be carried out analogously (and the same holds for cone

fisom
(Tv) by Lemma D.1).

C.5 Proof of Proposition 3.1

In general terms, the impossibility statement comes as a consequence of the definition of communication
complexity: if the number of required exchanged symbols exceeds the symbols the learner can exchange
(i.e., its communication capacity) then the latter will not be able to identify exactly fisom. The factor
of 2 comes in because N can exchange 2cN symbols overall (cN from Alice to Bob and cN from Bob to
Alice).

The specifics depend on the appropriate definition:

Majority-voting necessitates |MG| ≥ µ, meaning that when |MG| ≥ µ > n− 2v at least one of the two
parties should have gathered sufficient information to determine fisom(G) at the final layer. Therefore,
m should be “one”. With consensus on the other hand, we have that |MG| ≥ n − µ > n − v which
implies that both parties need to know the class.

The worst-case communication complexity definition guarantees that there exists at least one input
for which the required number of symbols is c(m)

fisom
. Thus, since D is densely supported on X , the

impossibility must occur with strictly positive probability. The impossibility also applies to any
universe X ′ that is a strict superset of X . This can be easily derived by conditioning on X ⊂ X ′
(which can only decrease the communication complexity) and repeating the analysis identically.

Finally, to comprehend the implications of the expected complexity bound, fix π∗ to be the protocol
that achieves minimal expected length and let βm be an upper bound of π∗ length over all inputs. By
Lemma D.3, for any δ ∈ [0, 1] one has

P
(
‖π∗(G)‖m > 2δ cmfisom(G)

)
≥ 1− δ

(cmfisom(G)/βm)− δ
.

and the protocol length is at most

βone ≤ logs (min{|Xa|, |Xb|}) and βboth ≤ logs (|Xa|+ |Xb|),

which corresponds to Alice sending the index of Ga in Xa (resp. for Bob) [Rao and Yehudayoff, 2020].
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D Helpful lemmata

Lemma D.1. In the universe considered in Section 3, the following hold for any D:

cone
f ≥ cbothf − max

Gb,Gc
logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|)

cone
f (D) ≥ cbothf (D)− max

Gb,Gc
logs (|{f(Ga, Gb, Gc) : Ga ∈ Xa}|).

Proof. Consider the setting of cone
f , where for a successful termination it suffices for one party to

computing the output of f . Suppose w.l.o.g., that this party is Alice. In particular, Alice determines
class y = f(Ga, Gb, Gc) based on a protocol π of minimal length. In this setting, Bob does not know y
but he is aware of X `b (and Gc), where ` is the leaf of the protocol tree at input (Ga, Gb, Gc). Therefore,
both parties know that the class must belong to the set {f(Ga, Gb, Gc) : Gb ∈ X `b and Ga ∈ Xa}. It
is a consequence that there exists a protocol π′ of length

‖π′(Ga, Gb, Gc)‖both ≤ ‖π(Ga, Gb, Gc)‖one + logs |{f(Ga, Gb, Gc) : Gb ∈ X `b and Ga ∈ Xa}|

that results in both parties knowing y. The protocol π′ entails first simulating π and then Alice
sending to Bob the index of y in the set of feasible classes. Moreover, since f corresponds to the
graph isomorphism problem, for Alice to know y, she must also know the isomorphism class of Bob.
Therefore, the feasible set of classes contains only the feasible subgraph isomorphism classes of Ga,
which are at most

|{f(Ga, Gb, Gc) : Gb ∈ X `b and Ga ∈ Xa}| ≤ max
Gb,Gc

|{f(Ga, Gb, Gc) : Ga ∈ Xa}|

The claimed inequalities then follow by the optimality of the protocol π and since the same construction
can be repeated for every input.

Lemma D.2. Let X be a categorical random variable with sample space X . For any partitioning
X = A1, · · · ,Ak we have that

Hs(X) ≥
k∑
i=1

P(X ∈ Ai) logs

(
1

P(X ∈ Ai)

)

Proof. The proof is elementary. It relies on the inequality P(X = x) ≤ P(X ∈ Ai) that holds for all
x ∈ Ai:

H2(X) =

k∑
i=1

P(X ∈ Ai)
∑
x∈Ai

P(X = x)

P(X ∈ Ai)
logs

(
1

P(X = x)

)

≥
k∑
i=1

P(X ∈ Ai) min
x∈Ai

logs

(
1

P(X = x)

)

=

k∑
i=1

P(X ∈ Ai) logs

(
1

maxx∈Ai P(X = x)

)

≥
k∑
i=1

P(X ∈ Ai) logs

(
1∑

x∈Ai P(X = x)

)
=

k∑
i=1

P(X ∈ Ai) logs

(
1

P(X ∈ Ai)

)
,

as claimed.
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Lemma D.3. For any random variable X ≤ β and δ ∈ [0, 1] we have P(X > δ E[X]) ≥ 1−δ
r−δ , where

r = β/E[X].

Proof. For any t ≤ β,

E[X] =
∑
x≤t

P(X)x+
∑
x>t

P(X)x ≤ P(X ≤ t) t+ P(X > t)β = (1− P(X > t))t+ P(X > t)β

or, equivalently, P(X > t) ≥ (E[X]−t)/(β−t). The final inequality is obtained by setting t = δE[X].
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