
AN EXPERIMENTAL MATHEMATICS APPROACH
TO SEVERAL COMBINATORIAL PROBLEMS

By

YUKUN YAO

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Doron Zeilberger

And approved by

New Brunswick, New Jersey

May, 2020

ar
X

iv
:2

00
5.

08
46

1v
1

 [
m

at
h.

C
O

]
 1

8
M

ay
 2

02
0

ABSTRACT OF THE DISSERTATION

An Experimental Mathematics Approach to Several

Combinatorial Problems

By YUKUN YAO

Dissertation Director: Doron Zeilberger

Experimental mathematics is an experimental approach to mathematics in which

programming and symbolic computation are used to investigate mathematical objects,

identify properties and patterns, discover facts and formulas and even automatically

prove theorems.

With an experimental mathematics approach, this dissertation deals with several

combinatorial problems and demonstrates the methodology of experimental mathemat-

ics.

We start with parking functions and their moments of certain statistics. Then we

discuss about spanning trees and “almost diagonal” matrices to illustrate the methodol-

ogy of experimental mathematics. We also apply experimental mathematics to Quick-

sort algorithms to study the running time. Finally we talk about the interesting peace-

able queens problem.

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Doron Zeilberger, for all of his

help, guidance and encouragement throughout my mathematical adventure in graduate

school at Rutgers. He introduced me to the field of experimental mathematics and

many interesting topics in combinatorics. Without him, this dissertation would not be

possible.

I am grateful to many professors at Rutgers: Michael Kiessling, for serving on

my oral qualifying exam and thesis defense committee; Vladimir Retakh, for serving

on my defense committee; Shubhangi Saraf and Swastik Kopparty, for teaching me

combinatorics and serving on my oral exam committee.

I am also grateful to Neil Sloane, for introducing me to the peaceable queens problem

and numerous amazing integer sequences and for serving on my defense committee.

I would like to thank other combinatorics graduate students here at Rutgers. From

them I learned about a lot of topics in this rich and fascinating area.

I would like to express my appreciation to my officemate, Lun Zhang, for interesting

conversation and useful remarks.

I appreciate Shalosh B. Ekhad’s impeccable computing support and the adminis-

trative support from graduate director Lev Borisov and graduate secretary Kathleen

Guarino.

Finally, I thank my parents. They always support and encourage me to pursue what

I want in all aspects of my life.

iii

Table of Contents

Abstract . ii

Acknowledgements . iii

List of Figures . vi

1. Introduction . 1

2. The Statistics of Parking Functions . 4

2.1. Introduction . 4

2.2. An Experimental Mathematics Motivated Proof 6

2.3. Bijection between a-Parking Functions & Labelled Rooted Forests . . . 11

2.4. From Enumeration to Statistics . 14

2.5. The Sum and Area Statistics of Parking Functions 16

2.6. The Limiting Distribution . 20

2.7. Truly Exact Expressions for the Factorial Moments 21

3. The Gordian Knot of the C-finite Ansatz 26

3.1. Introduction . 26

3.2. The Human Approach to Enumerating Spanning Trees of Grid Graphs . 29

3.3. The GuessRec Maple procedure . 33

3.4. Application of GuessRec to Enumerating Spanning Trees of Grid Graphs

and G× Pn . 36

3.5. The Statistic of the Number of Vertical Edges 42

3.6. Application of the C-finite Ansatz to Almost-Diagonal Matrices 44

3.7. The Symbolic Dynamic Programming Approach 47

3.8. Remarks . 53

iv

4. Analysis of Quicksort Algorithms . 54

4.1. Introduction . 54

4.2. Related Work . 55

4.3. Number of Swaps of 1-Pivot Quicksort 58

4.4. Explorations for Multi-Pivot Quicksort 69

4.5. Limiting Distribution . 75

4.6. Remarks . 76

5. Peaceable Queens Problem . 78

5.1. Introduction . 78

5.2. Jubin’s Construction . 79

5.3. Single Connected Component . 83

5.4. Two Components . 88

5.5. Remarks . 95

References . 96

v

List of Figures

2.1. The Forest Associated with (*) . 13

2.2. The Labelled Rooted Forest Which the 2-Parking Function 5842121 is

mapped to . 14

2.3. The Indexed Labelled Rooted Forest . 15

2.4. A Histogram of the Area of Parking Functions of Length 100 21

2.5. The Scaled Distribution of the Area of Parking Functions of Length 100 22

2.6. The Scaled Distribution of the Area of Parking Functions of Length 120 23

4.1. The Recurrence Relation for the Expected Number of Swaps 68

5.1. Benoit Jubin’s Construction for a Unit Square 80

5.2. The Optimal Rectangle for a 120 by 120 Chess Board 84

5.3. The Optimal Parallelogram for a 120 by 120 Chess Board 85

5.4. The Optimal Triangle for a 120 by 120 Chess Board 86

5.5. The Nearly Best Lower Bound Configuration for a 100 by 100 Chess Board 88

5.6. The Nearly Optimal Two Identical Squares Configuration for a 200 by

200 Chess Board . 89

5.7. The Nearly Optimal Two Identical Isosceles Right Triangles with the

Same Orientation Configuration for a 200 by 200 Chess Board 92

5.8. An Example of Two Identical Isosceles Right Triangles with Different

Orientations Configuration for a 200 by 200 Chess Board 93

5.9. The Nearly Optimal One Square and One Triangle (with the same side

length) Configuration for a 200 by 200 Chess Board 94

vi

1

Chapter 1

Introduction

Since the creation of computers, they have been playing a more and more important role

in our everyday life and the advancement of science and technology, bringing efficiency

and convenience and reshaping our world.

Especially, the use of computers is becoming increasingly popular in mathematics.

The proof of the four color theorem would be impossible without computers. Compared

with human beings, computers are faster, more powerful, tireless, less error-prone.

Computers can do much more than numerical computation. With the development of

computer science and symbolic computation, experimental mathematics, as an area of

mathematics, has been growing fast in the last several decades.

With experimental mathematics, it is much more efficient and easier to look for a

pattern, test a conjecture, utilize data to make a discovery, etc. Computers can be pro-

grammed to make conjectures and provide rigorous proofs with little or no human inter-

vention. They can also do what humans cannot do or what takes too long to complete,

e.g., solving a large linear system, analyzing a large data set, symbolically computing

complicated recurrence relations. Just as machine learning revolutionizes computer sci-

ence, statistics and information technology, experimental mathematics revolutionizes

mathematics.

The main theme of the dissertation is to use the methods of experimental math-

ematics to study different problems, and likewise, to illustrate the methodology and

power of experimental mathematics by showing some case studies and how experimen-

tal mathematics works under various situations.

In Chapter 2, we discuss the first problem that is related to the area statistic of of

2

parking functions. Our methods are purely finitistic and elementary, taking full advan-

tage, of course, of our beloved silicon servants. We first introduce the background and

definition of parking functions and their generalizations. For a-parking functions, we

derive the recurrence relation and the number of them when the length is n. Further-

more, a bijection between a-parking functions and labelled rooted forests is discovered

(or possibly re-discovered). Then we consider the sum and area statistics. With the

weighted counting of these statistics, the explicit formula between expectation and

higher moments can be found. We also look at the limiting distribution of the area

statistic, which is Airy distribution.

In Chapter 3, we use two instructive case studies on spanning trees of grid graphs

and “almost diagonal” matrices, to show that often, just like Alexander the Great before

us, the simple, “cheating” solution to a hard problem is the best. So before you spend

days (and possibly years) trying to answer a mathematical question by analyzing and

trying to ‘understand’ its structure, let your computer generate enough data, and then

let it guess the answer. Often its guess can be proved by a quick ‘hand-waving’ (yet

fully rigorous) ‘meta-argument’.

In Chapter 4, we apply experimental mathematics to algorithm analysis. Using

recurrence relations, combined with symbolic computations, we make a detailed study

of the running times of numerous variants of the celebrated Quicksort algorithms, where

we consider the variants of single-pivot and multi-pivot Quicksort algorithms as discrete

probability problems. With nonlinear difference equations, recurrence relations and

experimental mathematics techniques, explicit expressions for expectations, variances

and even higher moments of their numbers of comparisons and swaps can be obtained.

For some variants, Monte Carlo experiments are performed, the numerical results are

demonstrated and the scaled limiting distribution is also discussed.

In Chapter 5, finally, we discuss, and make partial progress on, the peaceable queens

problem, the protagonist of OEIS sequence A250000. Symbolically, we prove that Ju-

bin’s construction of two pentagons is at least a local optimum. Numerically, we find

the exact numerical optimums for some specific configurations. Our method can be

easily applied to more complicated configurations with more parameters.

3

All accompanying Maple packages and additional input/output files can be found

at the author’s homepage:

http://sites.math.rutgers.edu/~yao .

The accompanying Maple package for Chapter 2 is ParkingStatistics.txt. There

are lots of output files and nice pictures on the front of this chapter.

The accompanying Maple packages for Chapter 3 are JointConductance.txt, GFMa-

trix.txt and SpanningTrees.txt. There are also numerous sample input and output

files on the front of this chapter.

The accompanying Maple packages for Chapter 4 are QuickSort.txt and Findrec.

txt. QuickSort.txt is the main package of this chapter and all procedures mentioned

in the chapter are from this package unless noted otherwise. Findrec.txt is mainly

used to find a recurrence relation, i.e., difference equation of moments from the empirical

data.

The accompanying Maple package for Chapter 5 is PeaceableQueens.txt. There

are lots of output files and nice pictures on the front of this chapter as well.

Experimental mathematics has made a huge impact on mathematics itself and how

mathematicians discover new mathematics so far and is the mathematics of tomorrow.

In the information era, the skyscraper of mathematics is becoming taller and taller.

Hence we need tools better than pure human logic to maintain and continue building this

skyscraper. While the computing capacity, patience and time of humans are limited,

experimental mathematics, and ultimately, automated theorem proving, will be the

choice of history.

4

Chapter 2

The Statistics of Parking Functions

This chapter is adapted from [48], which has been published on The Mathematical

Intelligencer. It is also available on arXiv.org, number 1806.02680.

2.1 Introduction

Once upon a time, way back in the nineteen-sixties, there was a one-way street (with

no passing allowed), with n parking spaces bordering the sidewalk. Entering the street

were n cars, each driven by a loyal husband, and sitting next to him, dozing off, was

his capricious (and a little bossy) wife. At a random time (while still along the street),

the wife wakes up and orders her husband, park here, darling!. If that space is

unoccupied, the hubby gladly obliges, and if the parking space is occupied, he parks,

if possible, at the next still-empty parking space. Alas, if all the latter parking spaces

are occupied, he has to go around the block, and drive back to the beginning of this

one-way street, and then look for the first available spot. Due to construction, this

wastes half an hour, making the wife very cranky.

Q: What is the probability that no one has to go around the block?

A: (n+ 1)n−1/nn � e
n+1 .

Both the question and its elegant answer are due to Alan Konheim and Benji Weiss

[30].

Suppose wife i (1 ≤ i ≤ n) prefers parking space pi, then the preferences of the wives

can be summarized as an array (p1, . . . , pn), where 1 ≤ pi ≤ n. So altogether there are

nn possible preference-vectors, starting from (1, . . . , 1) where it is clearly possible for

everyone to park, and ending with (n, ..., n) (all n), where every wife prefers the last

parking space, and of course it is impossible. Given a preference vector (p1, . . . , pn), let

5

(p(1), . . . , p(n)) be its sorted version, arranged in (weakly) increasing order.

For example if (p1, p2, p3, p4) = (3, 1, 1, 4) then (p(1), p(2), p(3), p(4)) = (1, 1, 3, 4).

We invite our readers to convince themselves that a parking space preference vector

(p1, . . . , pn) makes it possible for every husband to park without inconveniencing his

wife if and only if p(i) ≤ i for 1 ≤ i ≤ n. This naturally leads to the following definition.

Definition 2.1 (Parking Function). A vector of positive integers (p1, . . . , pn) with 1 ≤

pi ≤ n is a parking function if its (non-decreasing) sorted version (p(1), . . . , p(n)) (i.e.

p(1) ≤ p(2) ≤ · · · ≤ p(n), and the latter is a permutation of the former) satisfies

p(i) ≤ i, (1 ≤ i ≤ n).

As we have already mentioned above, Alan Konheim and Benji Weiss [30] were the

first to state and prove the following theorem.

Theorem 2.2 (The Parking Function Enumeration Theorem). There are (n + 1)n−1

parking functions of length n.

There are many proofs of this lovely theorem, possibly the slickest is due to the

brilliant human Henry Pollak, (who apparently did not deem it worthy of publication.

It is quoted, e.g. in [16]). It is nicely described on pp. 4-5 of [42] (see also [43]),

hence we will not repeat it here. Instead, as a warm-up to the ‘statistical’ part, and to

illustrate the power of experiments, we will give a much uglier proof, that, however, is

motivated.

Before going on to present our (very possibly not new) ‘humble’ proof, we should

mention that one natural way to prove the Konheim-Weiss theorem is by a bijection with

labeled trees on n+ 1 vertices, that Arthur Cayley famously proved is also enumerated

by (n+1)n−1. The first such bijection, as far as we know, was given by the great formal

linguist, Marco Schützenberger [38]. This was followed by an elegant bijection by the

classical combinatorial giants Dominique Foata and John Riordan [16], and others.

Since we know (at least!) 16 different proofs of Cayley’s formula (see, e.g. [54]),

and at least four different bijections between parking functions and labeled trees, there

are at least 64 different proofs (see also [45], ex. 5.49) of the Parking Enumeration

theorem. To these one must add proofs like Pollak’s, and a few other ones.

6

Curiously, our ‘new’ proof has some resemblance to the very first one in [30], since

they both use recurrences (one of the greatest tools in the experimental mathematician’s

tool kit!), but our proof is (i) motivated and (ii) experimental (yet fully rigorous).

2.2 An Experimental Mathematics Motivated Proof

When encountering a new combinatorial family, the first task is to write a computer

program to enumerate as many terms as possible, and hope to conjecture a nice formula.

One can also try and “cheat” and use the great OEIS, to see whether anyone came up

with this sequence before, and see whether this new combinatorial family is mentioned

there.

A very brute force approach, that will not go very far (but would suffice to get the

first five terms needed for the OEIS) is to list the superset, in this case all the nn vectors

in {1 . . . n}n and for each of them sort it, and see whether the condition p(i) ≤ i holds

for all 1 ≤ i ≤ n. Then count the vectors that pass this test.

But a much better way is to use dynamical programming to express the desired

sequence, let’s call it a(n), in terms of values a(i) for i < n.

Let’s analyze the anatomy of a typical parking function of length n. A natural

parameter is the number of 1’s that show up, let’s call it k (0 ≤ k ≤ n). i.e.

p(1) = 1, . . . , p(k) = 1, 2 ≤ p(k+1) ≤ k + 1, . . . , p(n) ≤ n.

Removing the 1’s yields a shorter weakly-increasing vector

2 ≤ p(k+1) ≤ p(k+2) ≤ . . . ≤ p(n),

satisfying

p(k+1) ≤ k + 1, p(k+2) ≤ k + 2, . . . , p(n) ≤ n.

Define

(q1, . . . , qn−k) := (p(k+1) − 1, . . . , p(n) − 1).

The vector (q1, . . . , qn−k) satisfies

1 ≤ q1 ≤ · · · ≤ qn−k,

7

and

q1 ≤ k, q2 ≤ k + 1, . . . , qn−k ≤ n− 1.

We see that the set of parking functions with exactly k 1’s may be obtained by

taking the above set of vectors of length n−k, adding 1 to each component, scrambling

it in every which way, and inserting the k 1’s in every which way.

Alas, the ‘scrambling’ of the set of such q-vectors is not of the original form. We

are forced to consider a more general object, namely scramblings of vectors of the form

p(1) ≤ · · · ≤ p(n) with the condition

p(1) ≤ a, p(2) ≤ a+ 1, . . . , p(n) ≤ a+ n− 1,

for a general, positive integer a, not just for a = 1. So in order to get the dynamical

programming recurrence rolling we are forced to introduce a more general object, called

an a-parking function. This leads to the following definition.

Definition 2.3 (a-Parking Function). A vector of positive integers (p1, . . . , pn) with

1 ≤ pi ≤ n + a − 1 is an a-parking function if its (non-decreasing) sorted version

(p(1), . . . , p(n)) (i.e. p(1) ≤ p(2) ≤ · · · ≤ p(n), and the latter is a permutation of the

former) satisfies

p(i) ≤ a+ i− 1, (1 ≤ i ≤ n).

Note that the usual parking functions are the special case a = 1. So if we would be

able to find an efficient recurrence for counting a-parking functions, we would be able

to answer our original question.

So let’s redo the above ‘anatomy’ for these more general creatures, and hope that

the two parameters n and a would suffice to establish a recursive scheme, and we

won’t need to introduce yet more general creatures.

Let’s analyze the anatomy of a typical a-parking function of length n. Again, a

natural parameter is the number of 1’s that show up, let’s call it k (0 ≤ k ≤ n). i.e.

p(1) = 1, . . . , p(k) = 1, 2 ≤ p(k+1) ≤ a+ k, . . . , p(n) ≤ a+ n− 1.

Removing the 1’s yields a sorted vector

2 ≤ p(k+1) ≤ p(k+2) ≤ . . . ≤ p(n),

8

satisfying

p(k+1) ≤ k + a, p(k+2) ≤ k + a+ 1, . . . , p(n) ≤ n+ a− 1.

Define

(q1, . . . , qn−k) := (p(k+1) − 1, . . . , p(n) − 1).

The vector (q1, . . . , qn−k) satisfies

q1 ≤ · · · ≤ qn−k

and

q1 ≤ k + a− 1, q2 ≤ k + a, . . . , qn−k ≤ n+ a− 1.

We see that the set of a-parking functions with exactly k 1’s may be obtained by

taking the above set of vectors of length n−k, adding 1 to each component, scrambling

it in every which way, and inserting the k 1’s in every which way.

But now the set of scramblings of the vectors (q1, . . . , qn−k) is an old friend!. It is

the set of (a+ k − 1)-parking functions of length n− k. To get all a-parking functions

of length n with exactly k ones we need to take each and every member of the set of

(a+k−1)-parking functions of length n−k, add 1 to each component, and insert k ones

in every which way. There are
(
n
k

)
ways of doing it. Hence the number of a-parking

functions of length n with exactly k ones is
(
n
k

)
times the number of (a+k−1)-parking

functions of length n − k. Summing over all k between 0 and n we get the following

recurrence.

Proposition 2.4 (Fundamental Recurrence for a-parking functions). Let p(n, a) be the

number of a-parking functions of length n. We have the recurrence

p(n, a) =
n∑
k=0

(
n

k

)
p(n− k, a+ k − 1),

subject to the boundary conditions p(n, 0) = 0 for n ≥ 1, and p(0, a) = 1 for a ≥ 0.

Note that in the sense of Wilf [47], this already answers the enumeration problem

to compute p(n, a) and hence p(n, 1) = p(n), since this gives us a polynomial time

algorithm to compute p(n) (and p(n, a)).

9

Moving the term k = 0 from the right to the left, and denoting p(n, a) by pn(a) we

have

pn(a)− pn(a− 1) =
n∑
k=1

(
n

k

)
pn−k(a+ k − 1).

Hence we can express pn(a) as follows, in terms of pm(a) with m < n.

pn(a) =

a∑
b=0

(
n∑
k=1

(
n

k

)
pn−k(b+ k − 1)

)
.

Here is the Maple code that implements it

p:=proc(n,a) local k,b:

if n=0 then

RETURN(1)

else

factor(subs(b=a,sum(expand(add(binomial(n,k)*subs(a=a+k-1,p(n-k,a)),

k=1..n)),a=1..b))):

fi:

end:

If you copy-and-paste this onto a Maple session, as well as the line below,

[seq(p(i,a),i=1..8)];

you would immediately get

[a, a (a+ 2) , a (a+ 3)2 , a (a+ 4)3 , a (a+ 5)4 , a (a+ 6)5 , a (a+ 7)6 , a (a+ 8)7].

Note that these are rigorously proved exact expressions, in terms of general a (i.e.

symbolic a) for pn(a), for 1 ≤ n ≤ 10, and we can easily get more. The following guess

immediately comes to mind

p(n, a) = pn(a) = a(a+ n)n−1.

How to prove this rigorously? If you set q(n, a) := a(a + n)n−1, since q(n, 0) = 0

and q(0, a) = 1, the fact that p(n, a) = q(n, a) would follow by induction once you

prove that q(n, a) also satisfies the same fundamental recurrence.

10

q(n, a) =

n∑
k=0

(
n

k

)
q(n− k, a+ k − 1).

In other words, in order to prove that p(n, a) = a(n + a)n−1, we have to prove the

identity

a(a+ n)n−1 =
n∑
k=0

(
n

k

)
(a+ k − 1)(a+ n− 1)n−k−1.

Proof. Let’s define

f(x) :=
n∑
k=0

(
n

k

)
(a+ k − 1)xn−k−1,

hence

f(x) =
a− 1

x

n∑
k=0

(
n

k

)
xn−k +

n∑
k=0

k

(
n

k

)
xn−k−1

=
a− 1

x

n∑
k=0

(
n

k

)
xn−k + n

n∑
k=0

(
n

k

)
xn−k−1 −

n∑
k=0

(n− k)

(
n

k

)
xn−k−1

=
a− 1 + n

x

n∑
k=0

(
n

k

)
xn−k −

n∑
k=0

(n− k)

(
n

k

)
xn−k−1.

As an immediate consequence of the binomial theorem:

n∑
k=0

(
n

k

)
xn−k = (1 + x)n

and
n∑
k=0

(n− k)

(
n

k

)
xn−k−1 = n(1 + x)n−1,

which is trivial to both humans and machines, we have

f(x) =
a− 1 + x

x
(1 + x)n − n(1 + x)n−1.

By setting x = a+ n− 1, we get

f(x) = (a+ n)n − n(a+ n)n−1

= a(a+ n)n−1.

This completes the proof.

We have just rigorously reproved the following well-known theorem.

11

Theorem 2.5. The number of a-parking functions of length n is

p(n, a) = a (a+ n)n−1.

In particular, by substituting a = 1, we reproved the original Konheim-Weiss theorem

that p(n, 1) = (n+ 1)n−1.

2.3 Bijection between a-Parking Functions & Labelled Rooted Forests

We consider forests with a components and totally a+n vertices where the roots in the a

components are 1, 2, . . . , a. Vertices which are not roots are labelled a+1, a+2, . . . , a+n.

Let t(n, a) be the number of such labelled rooted forests with a components and

a+ n vertices.

Theorem 2.6. The number of labelled rooted forests with a components and a + n

vertices is

t(n, a) = a(a+ n)n−1.

Proof. When n = 0, obviously t(n, a) = 1 for any a. When n ≥ 1 and a = 0, t(n, a) = 0

since there does not exist such a tree with zero component and a positive number of

vertices.

Since we want to prove t(n, a) = p(n, a), the number of a-parking functions of

length n and they satisfy the same boundary condition, it is natural to think about the

recurrence relation for t(n, a). Consider the number of neighbors of vertex 1, say, the

number is k, (0 ≤ k ≤ n), then remove them with their own subtrees as new components

and delete vertex 1. Then there are a+k−1 components and n−k non-rooted vertices.

Though in this case the labeling of vertices does not follow our rule, there is a unique

relabeling which makes it do. When the number of neighbors of vertex 1 is k, there are(
n
k

)
choices, so

t(n, a) =
n∑
k=0

(
n

k

)
t(n− k, a+ k − 1).

It has exactly the same recurrence relation as p(n, a), hence

t(n, a) = p(n, a) = a(a+ n)n−1.

12

As p(n, a) and t(n, a) are the same, it would be interesting to find some meaningful

bijection between a-parking functions of length n and labelled rooted forests with a

components and a+n vertices. We discover or possibly re-discover a bijection between

them. This bijection can be best demonstrated via an example as follows.

Assume we already have a 2-parking function with length 7, say 5842121, we’d like

to map it to a labelled rooted forests with 2 components and 9 vertices where 1 and 2

are the roots for the components. Because the vertices 1 and 2 are already roots, we

use the following two-line notation (#):

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 5 8 4 2 1 2 1

Let’s consider the weakly-increasing version (*) first where we just sort the second

line of (#):

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 1 1 2 2 4 5 8

We interpret (*) as follows: the parent of vertices 3 and 4 is 1, 5’s and 6’s parent is

2, etc. Hence we have the following forest.

If we sort both lines of (#) according to the second line, then we have

vertices : 7 9 6 8 5 3 4

2− parkingfunction : 1 1 2 2 4 5 8

Comparing the first line with that of (*), we have a map

3 4 5 6 7 8 9

↓ ↓ ↓ ↓ ↓ ↓ ↓

7 9 6 8 5 3 4

So the 2-parking function 5842121 is mapped to the following forest: One convention

13

Figure 2.1: The Forest Associated with (*)

is that when we draw the forests, for the same parent, we always place its children in

an increasing order (from left to right).

Conversely, if we already have the forest in Figure 2.2 and we’d like to map it to a

2-parking function, then we start with indexing each vertex. The rule is that we start

from the first level, i.e. the root and start from the left, then we index the vertices 1,

2, . . . as follows with indexes in the bracket:

Now let the first line still be 3456789. For each of them in the first line, the second

line number should be the index of its parent. Thus we have

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 5 8 4 2 1 2 1

which is exactly (#).

There are other bijections. For example, in the paper [7], the authors define a

bijection without using recurrence between the set of a-parking functions of length n

to the set of rooted labelled forests with a components and a+ n vertices, for which(
n+ 1

2

)
− Sum(p1, . . . , pn) = inv(F),

14

Figure 2.2: The Labelled Rooted Forest Which the 2-Parking Function 5842121 is
mapped to

where Sum(p1, . . . , pn) is the sum statistic of parking functions defined in Section 2.5,

inv(F) is the inversion of a forest F , and the parking function (p1, . . . , pn) is mapped

to the forest F (vice versa).

2.4 From Enumeration to Statistics

Often in enumerative combinatorics, the class of interest has natural ‘statistics’, like

height, weight, and IQ for humans, and one is interested rather than, for a finite set A,

|A| :=
∑
a∈A

1,

called the naive counting, and getting a number (obviously a non-negative integer),

by the so-called weighted counting,

|A|x :=
∑
a∈A

xf(a),

where f := A → Z is the statistic in question. To go from the weighted enumeration

(a certain Laurent polynomial) to straight enumeration, one sets x = 1, i.e. |A|1 = |A|.

Since this is mathematics, and not accounting, the usual scenario is not just one

specific set A, but a sequence of sets {An}∞n=0, and then the enumeration problem

15

Figure 2.3: The Indexed Labelled Rooted Forest

is to have an efficient description of the numerical sequence an := |An|, ready to be

looked-up (or submitted) to the OEIS, and its corresponding sequence of polynomials

Pn(x) := |An|x.

It often happens that the statistic f , defined on An, has a scaled limiting distribution.

In other words, if you draw a histogram of f on An,, and do the obvious scaling, they

get closer and closer to a certain continuous curve, as n goes to infinity.

The scaling is as follows. Let En(f) and V arn(f) the expectation and variance of

the statistic f defined on An, and define the scaled random variable, for a ∈ An, by

Xn(a) :=
f(a)− En(f)√

V arn(f)
.

If you draw the histograms of Xn(a) for large n, they look practically the same, and

converge to some continuous limit.

A famous example is coin tossing. If An is {−1, 1}n, and f(v) is the sum of v, then

the limiting distribution is the bell shaped curve aka standard normal distribution aka

Gaussian distribution.

As explained in [55], a purely finitistic approach to finding, and proving, a limiting

scaled distribution, is via the method of moments. Using symbolic computation, the

16

computer can rigorously prove exact expressions for as many moments as desired, and

often (like in the above case, see [55]) find a recurrence for the sequence of moments.

This enables one to identify the limits of the scaled moments with the moments of the

continuous limit (in the example of coin-tossing [and many other cases], e−x2/2
√
2π

, whose

moments are famously 1, 0, 1 ·3, 0, 1 ·3 ·5, 0, 1 ·3 ·5 ·7, 0, . . .) . Whenever this is the case

the discrete family of random variables is called asymptotically normal. Whenever this

is not the case, it is interesting and surprising.

2.5 The Sum and Area Statistics of Parking Functions

Let P(n, a) be the set of a-parking functions of length n.

A natural statistic is the sum

Sum(p1, . . . , pn) := p1 + p2 + · · ·+ pn =

n∑
i=1

pi.

Another, even more natural (see the beautiful article [8]), happens to be

Area(p) :=
n(2a+ n− 1)

2
− Sum(p).

Let P (n, a)(x) be the weighted analog of p(n, a), according to Sum, i.e.

P (n, a)(x) :=
∑

p∈P(n,a)

xSum(p).

Analogously, let Q(n, a)(x) be the weighted analog of p(n, a), according to Area, i.e.

Q(n, a)(x) :=
∑

p∈P(n,a)

xArea(p).

Clearly, one can easily go from one to the other

Q(n, a)(x) = x(2a+n−1)n/2 P (n, a)(x−1), P (n, a)(x) = x(2a+n−1)n/2Q(n, a)(x−1).

How do we compute P (n, a)(x)?, (or equivalently, Q(n, a)(x)?). It is readily seen

that the analog of Fundamental Recurrence for the weighted counting is

P (n, a)(x) = xn
n∑
k=0

(
n

k

)
P (n− k, a+ k − 1)(x),

17

subject to the initial conditions P (0, a)(x) = 1 and P (n, 0)(x) = 0.

So it is almost the same, the “only” change is sticking xn in front of the sum on the

right hand side.

Equivalently,

Q(n, a)(x) =
n∑
k=0

(
n

k

)
xk(k+2a−3)/2Q(n− k, a+ k − 1)(x),

subject to the initial conditions Q(0, a)(x) = 1 and Q(n, 0)(x) = 0.

Once again, in the sense of Wilf, this is already an answer, but because of the

extra variable x, one can not go as far as we did before for the naive, merely numeric,

counting.

It is very unlikely that there is a “closed form” expression for P (n, a)(x) (and hence

Q(n, a)(x)), but for statistical purposes it would be nice to get “closed form” expressions

for

• the expectation,

• the variance,

• as many factorial moments as possible, from which the ‘raw’ moments, and latter

the centralized moments and finally the scaled moments can be gotten. Then we can

take the limits as n goes to infinity, and see if they match the moments of any of

the known continuous distributions, and prove rigorously that, at least for that many

moments, the conjectured limiting distribution matches.

In our case, the limiting distribution is the intriguing so-called Airy distribution,

that Svante Janson prefers to call “the area under Brownian excursion”. This result

was stated and proved in [8], by using deep and sophisticated continuous probability

theory and continuous martingales. Here we will “almost” prove this result, in the

sense of showing that the limits of the scaled moments of the area statistic on parking

functions coincide with the scaled moments of the Airy distribution up to the 30-th

moment, and we can go much further.

But we can do much more than continuous probabilists. We (or rather our comput-

ers, running Maple) can find exact polynomial expressions in n and the expectation

18

E1(n). We can do it for any desired number of moments, say 30. Unlike continu-

ous probability theorists, our methods are entirely elementary, only using high school

algebra.

We can also do the same thing for the more general a-parking functions. Now the

expressions are polynomials in n, a, and the expectation E1(n, a).

Finally, we believe that our approach, using the fundamental recurrence of area

statistic, can be used to give a full proof (for all moments), by doing it asymptotically,

and deriving a recurrence for the leading terms of the asymptotics for the factorial

moments that would coincide with the well-known recurrence for the moments of the

Airy distribution given, for example in Eqs. (4) and (5) of Svante Janson’s article [23].

This is left as a challenge to our readers.

The expectation of the sum statistic, let’s call it Esum(n, a) is given by

Esum(n, a) =
P ′(n, a)(1)

P (n, a)(1)
=

P ′(n, a)(1)

a(a+ n)n−1
,

where the prime denotes, as usual, differentiation w.r.t. x.

Can we get a closed-form expression for P ′(n, a)(1), and hence for Esum(n, a)?

Differentiating the fundamental recurrence of P (n, a)(x) with respect to x, using

the product rule, we get

P (n, a)′(x) = xn
n∑
k=0

(
n

k

)
P (n−k, a+k−1)′(x) + nxn−1

n∑
k=0

(
n

k

)
P (n−k, a+k−1)(x).

Plugging-in x = 1 we get that P (n, a)′(1) satisfies the recurrence

P (n, a)′(1)−
n∑
k=0

(
n

k

)
P (n−k, a+k−1)′(1) = n

n∑
k=0

(
n

k

)
P (n−k, a+k−1)(1) = n p(n, a).

Using this recurrence, we can, just as we did for p(n, a) above, get expressions, as

polynomials in a, for numeric 1 ≤ n ≤ 10, say, and then conjecture that

P ′(n, a)(1) =
1

2
an (a+ n− 1) (a+ n)n−1 − 1

2

n∑
j=1

(
n

j

)
j! a (a+ n)n−j .

To prove it, one plugs in the left side into the above recurrence of P (n, a)′(1), changes

the order of summation, and simplifies. This is rather tedious, but since at the end

19

of the day, these are equivalent to polynomial identities in n and a, checking it for

sufficiently many special values of n and a would be a rigorous proof.

It follows that

Esum(n, a) =
n(a+ n+ 1)

2
− 1

2

n∑
j=1

n!

(n− j)!(a+ n)j−1
.

This formula first appears in [31].

Equivalently,

Earea(n, a) =
n (a− 2)

2
+

1

2

n∑
j=1

n!

(n− j)!(a+ n)j−1
.

In particular, for the primary object of interest, the case a = 1, we get

Earea(n, 1) = −n
2

+
1

2

n∑
j=1

n!

(n− j)!(n+ 1)j−1
.

This rings a bell! It may written as

Earea(n, 1) = −n
2

+
1

2
Wn+1,

where Wn is the iconic quantity,

Wn =
n!

nn−1

n−2∑
k=0

nk

k!
,

proved by Riordan and Sloane [35] to be the expectation of another very important

quantity, the sum of the heights on rooted labeled trees on n vertices. In addition to its

considerable mathematical interest, this quantity, Wn, has great historical significance,

it was the first sequence, sequence A435 of the amazing On-Line Encyclopedia of Integer

Sequences (OEIS), now with more than 300000 sequences! See [12] for details, and far-

reaching extensions, analogous to the present chapter.

[The reason it is not sequence A1 is that initially the sequences were arranged in

lexicographic order.]

Another fact, that will be of great use later in this chapter, is that, as noted in [35],

Ramanujan and Watson proved that Wn (and hence Wn+1) is asymptotic to

√
2π

2
n3/2.

20

It is very possible that the formula Earea(n, 1) = −n
2 + 1

2Wn+1 may also be deduced

from the Riordan-Sloane result via one of the numerous known bijections between

parking functions and rooted labeled trees. More generally, the results below, for the

special case a = 1, might be deduced, from those of [12], but we believe that the

present methodology is interesting for its own sake, and besides in our current approach

(that uses recurrences rather than the Lagrange Inversion Formula), it is much faster

to compute higher moments, hence, going in the other direction, would produce many

more moments for the statistic on rooted labeled trees considered in [12], provided that

there is indeed such a correspondence that sends the area statistic on parking functions

(suitably tweaked) to the Riordan-Sloane statistic on rooted labeled trees.

2.6 The Limiting Distribution

Given a combinatorial family, one can easily get an idea of the limiting distribution

by taking a large enough n, say n = 100, and generating a large enough number of

random objects, say 50000, and drawing a histogram, see Figure 2 in Diaconis and

Hicks’ insightful article [8]. But, one does not have to resort to simulation. While

it is impractical to consider all 10199 parking functions of length 100, the generating

function Q(100, 1)(x) contains the exact count for each conceivable area from 0 to
(
100
2

)
.

But an even more informative way to investigate the limiting distribution is to draw

the histogram of the probability generating function of the scaled distribution

Xn(p) :=
Area(p)− En√

V arn
,

where En and V arn are the expectation and variance respectively.

As proved in [8] (using deep results in continuous probability due to David Aldous,

Svante Janson, and Chassaing and Marcket) the limiting distribution is the Airy dis-

tribution. We will soon “almost” prove it, but do much more by discovering exact

expressions for the first 30 moments, not just their limiting asymptotics.

21

Figure 2.4: A Histogram of the Area of Parking Functions of Length 100

2.7 Truly Exact Expressions for the Factorial Moments

In [32] there is an “exact” expression for the general moment, that is not very useful for

our purposes. If one traces their proof, one can, conceivably, get explicit expressions

for each specific moment, but they did not bother to implement it, and the asymptotics

are not immediate.

We discovered, the following important fact.

Fact. Let E1(n, a) := Earea(n, a) be the expectation of the area statistic on a-

parking functions of length n, given above, and let Ek(n, a) be the k-th factorial moment

Ek(n, a) :=
Q(k)(n, a)(1)

a(a+ n)n−1
,

then there exist polynomials Ak(n, a) and Bk(n, a) such that

Ek(n, a) = Ak(n, a) + Bk(n, a)E1(n, a).

22

Figure 2.5: The Scaled Distribution of the Area of Parking Functions of Length 100

The beauty of experimental mathematics is that these can be found by cranking

out enough data, using the sequence of probability generating functions Q(n, a)(x),

obtained by using the fundamental recurrence of area statistic, getting sufficiently many

numerical data for the moments, and using undetermined coefficients. These can be

proved a posteriori by taking these truly exact formulas and verifying that the implied

recurrences for the k-th factorial moment, in terms of the previous ones. But this is

not necessary. Since, at the end of the day, it all boils down to verifying polynomial

identities, so, once again, verifying them for sufficiently many different values of (n, a)

constitutes a rigorous proof. To be fully rigorous, one needs to prove a priori bounds

for the degrees in n and a, but, in our humble opinion, it is not that important, and

could be left to the obtuse reader.

Theorem 2.7 (equivalent to a result in [31]). The expectation of the area statistic on

23

Figure 2.6: The Scaled Distribution of the Area of Parking Functions of Length 120

parking functions of length n is

E1(n) := −n
2

+
1

2

(n+ 1)!

(n+ 1)n

n−1∑
k=0

(n+ 1)k

k!
,

and asymptotically it equals
√
2π
4 · n

3/2 +O(n).

Theorem 2.8. The second factorial moment of the area statistic on parking functions

of length n is

−7

3
(n+ 1)E1(n) +

5

12
n3 − 1

12
n2 − 1

3
n,

and asymptotically it equals 5
12 · n

3 +O(n5/2).

Theorem 2.9. The third factorial moment of the area statistic on parking functions

of length n is

−175

192
n4 − 283

192
n3 +

199

192
n2 +

259

192
n+

(
15

32
n3 +

521

96
n2 +

1219

96
n+

743

96

)
E1(n),

and asymptotically it equals 15
128

√
2π · n9/2 +O(n4).

24

Theorem 2.10. The fourth factorial moment of the area statistic on parking functions

of length n is

221

1008
n6 +

63737

30240
n5 +

101897

15120
n4 +

22217

5040
n3 − 1375

189
n2 − 187463

30240
n

+

(
−35

16
n4 − 449

27
n3 − 130243

2520
n2 − 7409

105
n− 503803

15120

)
E1(n),

and asymptotically it equals 221
1008 · n

6 +O(n11/2).

Theorem 2.11. The fifth factorial moment of the area statistic on parking functions

of length n is

−105845

110592
n7 − 2170159

290304
n6 − 99955651

3870720
n5 − 30773609

725760
n4

−94846903

11612160
n3 +

24676991

483840
n2 +

392763901

11612160
n

+(
565

2048
n6 +

1005

128
n5 +

9832585

165888
n4 +

1111349

5184
n3 +

826358527

1935360
n2

+
159943787

362880
n+

1024580441

5806080
)E1(n),

and asymptotically it equals 565
8192

√
2π · n15/2 +O(n7).

Theorem 2.12. The sixth factorial moment of the area statistic of parking functions

of length n is

82825

576576
n9 +

373340075

110702592
n8 +

9401544029

332107776
n7 +

14473244813

127733760
n6 +

414139396709

1660538880
n5

+
88215445651

332107776
n4 − 18783816473

332107776
n3 − 643359542029

1660538880
n2 − 358936540409

1660538880
n

+(−3955

2048
n7 − 186349

6144
n6 − 259283273

1161216
n5 − 119912501

129024
n4 − 149860633081

63866880
n3

−601794266581

166053888
n2 − 864000570107

276756480
n− 921390308389

830269440
)E1(n),

and asymptotically it equals 82825
576576 · n

9 +O(n17/2).

For Theorems 7-30, see the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oParkingStatistics7.txt

Let {ek}∞k=1 be the sequence of moments of the Airy distribution, defined by the

recurrence given in Equations (4) and (5) in Svante Janson’s interesting survey paper

[23]. Our computers, using our Maple package, proved that

Ek(n) = ekn
3k
2 +O(n

3k−1
2),

25

for 1 ≤ k ≤ 30. It follows that the limiting distribution of the area statistic is (most

probably) the Airy distribution, since the first 30 moments match. Of course, this was

already known to continuous probability theorists, and we only proved it for the first

30 moments, but:

• Our methods are purely elementary and finitistic.

• We can easily go much farther, i.e. prove it for more moments.

•We believe that our approach, using recurrences, can be used to derive a recurrence

for the leading asymptotics of the factorial moments, Ek(n), that would turn out to be

the same as the above mentioned recurrence (Eqs. (4) and (5) in [23]). We leave this

as a challenge to the reader.

We also have the results of the exact expressions for the first 10 moments of the

area statistic for general a-parking. To see expressions in a, n, and E1(n, a), for the

first 10 moments of a-parking, see

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oParkingStatistics8.txt.

26

Chapter 3

The Gordian Knot of the C-finite Ansatz

This chapter is adapted from [49], which has been accepted on Algorithmic Combinatorics-

Enumerative Combinatorics, Special Functions, and Computer Algebra: In honor of

Peter Paule’s 60th birthday. It is also available on arXiv.org, number 1812.07193.

This chapter is dedicated to Peter Paule, one of the great pioneers of experimental

mathematics and symbolic computation. In particular, it is greatly inspired by his

masterpiece, co-authored with Manuel Kauers, The Concrete Tetrahedron [25], where a

whole chapter is dedicated to our favorite ansatz, the C−finite ansatz.

3.1 Introduction

Once upon a time there was a knot that no one could untangle, it was so complicated.

Then came Alexander the Great and, in one second, cut it with his sword.

Analogously, many mathematical problems are very hard, and the current party line

is that in order for it be considered solved, the solution, or answer, should be given a

logical, rigorous, deductive proof.

Suppose that you want to answer the following question:

Find a closed-form formula, as an expression in n, for the real part of the n-th

complex root of the Riemann zeta function, ζ(s) .

Let’s call this quantity a(n). Then you compute these real numbers, and find out that

a(n) = 1
2 for n ≤ 1000. Later you are told by Andrew Odlyzko that a(n) = 1

2 for all

1 ≤ n ≤ 1010. Can you conclude that a(n) = 1
2 for all n? we would, but, at this time

of writing, there is no way to deduce it rigorously, so it remains an open problem. It is

very possible that one day it will turn out that a(n) (the real part of the n-th complex

27

root of ζ(s)) belongs to a certain ansatz, and that checking it for the first N0 cases

implies its truth in general, but this remains to be seen.

There are also frameworks, e.g. Pisot sequences (see [11], [59]), where the inductive

approach fails miserably.

On the other hand, in order to (rigorously) prove that 13 + 23 + 33 + · · · + n3 =

(n(n + 1)/2)2, for every positive integer n, it suffices to check it for the five special

cases 0 ≤ n ≤ 4, since both sides are polynomials of degree 4, hence the difference is

a polynomial of degree ≤ 4, given by five ‘degrees of freedom’.

This is an example of what is called the ‘N0 principle’. In the case of a polynomial

identity (like this one), N0 is simply the degree plus one.

But our favorite ansatz is the C-finite ansatz. A sequence of numbers {a(n)} (0 ≤

n <∞) is C-finite if it satisfies a linear recurrence equation with constant coefficients.

For example the Fibonacci sequence that satisfies F (n)− F (n− 1)− F (n− 2) = 0 for

n ≥ 2.

The C-finite ansatz is beautifully described in Chapter 4 of the masterpiece The

Concrete Tetrahedron [25], by Manuel Kauers and Peter Paule, and discussed at length

in [58].

Here the ‘N0 principle’ also holds (see [60]), i.e. by looking at the ‘big picture’ one

can determine a priori, a positive integer, often not that large, such that checking that

a(n) = b(n) for 1 ≤ n ≤ N0 implies that a(n) = b(n) for all n > 0.

A sequence {a(n)}∞n=0 is C-finite if and only if its (ordinary) generating function

f(t) :=
∑∞

n=0 a(n) tn is a rational function of t, i.e. f(t) = P (t)/Q(t) for some

polynomials P (t) and Q(t). For example, famously, the generating function of the

Fibonacci sequence is t/(1− t− t2).

Phrased in terms of generating functions, the C-finite ansatz is the subject of chapter

4 of yet another masterpiece, Richard Stanley’s ‘Enumerative Combinatorics’ (volume

1) [44]. There it is shown, using the ‘transfer matrix method’ (that originated in

physics), that in many combinatorial situations, where there are finitely many states,

one is guaranteed, a priori, that the generating function is rational.

28

Alas, finding this transfer matrix, at each specific case, is not easy! The human has

to first figure out the set of states, and then using human ingenuity, figure out how they

interact.

A better way is to automate it. Let the computer do the research, and using ‘sym-

bolic dynamical programming’, the computer, automatically, finds the set of states, and

constructs, all by itself (without any human pre-processing), the set of states and the

transfer matrix. But this may not be so efficient for two reasons. First, at the very end,

one has to invert a matrix with symbolic entries, hence compute symbolic determinants,

that is time-consuming. Second, setting up the ‘infrastructure’ and writing a program

that would enable the computer to do ‘machine-learning’ can be very daunting.

In this chapter, we will describe two case studies where, by ‘general nonsense’, we

know that the generating functions are rational, and it is easy to bound the degree of

the denominator (alias the order of the recurrence satisfied by the sequence). Hence a

simple-minded, empirical, approach of computing the first few terms and then ‘fitting’

a recurrence (equivalently rational function) is possible.

The first case-study concerns counting spanning trees in families of grid-graphs,

studied by Paul Raff [34], and F.J. Faase [15]. In their research, the human first

analyzes the intricate combinatorics, manually sets up the transfer matrix, and only at

the end lets a computer-algebra system evaluate the symbolic determinant.

Our key observation, that enabled us to ‘cut the Gordian knot’ is that the terms

of the studied sequences are expressible as numerical determinants. Since computing

numerical determinants is so fast, it is easy to compute sufficiently many terms, and

then fit the data into a rational function. Since we easily have an upper bound for the

degree of the denominator of the rational function, everything is rigorous.

The second case-study is computing generating functions for sequences of deter-

minants of ‘almost diagonal matrices’. Here, in addition to the ‘naive’ approach of

cranking enough data and then fitting it into a rational function, we also describe the

‘symbolic dynamical programming method’, that surprisingly, is faster for the range of

examples that we considered. But we believe that for sufficiently large cases, the naive

approach will eventually be more efficient, since the ‘deductive’ approach works equally

29

well for the analogous problem of finding the sequence of permanents of these almost

diagonal matrices, for which the naive approach will soon be intractable.

This chapter may be viewed as a tutorial, hence we include lots of implementation

details, and Maple code. We hope that it will inspire readers (and their computers!) to

apply it in other situations

3.2 The Human Approach to Enumerating Spanning Trees of Grid

Graphs

In order to illustrate the advantage of “keeping it simple”, we will review the human

approach to the enumeration task that we will later redo using the ‘Gordian knot’ way.

While the human approach is definitely interesting for its own sake, it is rather painful.

Our goal is to enumerate the number of spanning trees in certain families of graphs,

notably grid graphs and their generalizations. Let’s examine Paul Raff’s interesting

approach described in his paper Spanning Trees in Grid Graph [34]. Raff’s approach

was inspired by the pioneering work of F. J. Faase [15].

The goal is to find generating functions that enumerate spanning trees in grid graphs

and the product of an arbitrary graph and a path or a cycle.

Grid graphs have two parameters, let’s call them, k and n. For a k × n grid graph,

let’s think of k as fixed while n is the discrete input variable of interest.

Definition 3.1. The k × n grid graph Gk(n) is the following graph given in terms of

its vertex set V and edge set E:

V = {vij |1 ≤ i ≤ k, 1 ≤ j ≤ n},

S = {{vij , vi′j′}||i− i′|+ |j − j′| = 1}.

The main idea in the human approach is to consider the collection of set-partitions

of [k] = {1, 2, . . . , k} and figure out the transition when we extend a k × n grid graph

to a k × (n+ 1) one.

Let Bk be the collection of all set-partitions of [k]. Bk = |Bk| are called the Bell

number. Famously, the exponential generating function of Bk, namely
∑∞

k=0
Bk
k! t

k,

30

equals ee
t−1.

A lexicographic ordering on Bk is defined as follows:

Definition 3.2. Given two partitions P1 and P2 of [k], for i ∈ [k], let Xi be the block

of P1 containing i and Yi be the block of P2 containing i. Let j be the minimum number

such that Xi 6= Yi. Then P1 < P2 iff

1. |P1| < |P2| or

2. |P1| = |P2| and Xj ≺ Yj where ≺ denotes the normal lexicographic order.

For example, here is the ordering for k = 3:

B3 = {{{1, 2, 3}}, {{1}, {2, 3}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}}.

For simplicity, we can rewrite it as follows:

B3 = {123, 1/23, 12/3, 13/2, 1/2/3}.

Definition 3.3. Given a spanning forest F of Gk(n), the partition induced by F is

obtained from the equivalence relation

i ∼ j ⇐⇒ vn,i, vn,j are in the same component of F .

For example, the partition induced by any spanning tree of Gk(n) is 123 . . . k because

by definition, in a spanning tree, all vn,i, 1 ≤ i ≤ k are in the same component. For the

other extreme, where every component only consists of one vertex, the corresponding

set-partition is 1/2/3/ . . . /k− 1/k because no two vn,i, vn,j are in the same component

for 1 ≤ i < j ≤ k.

Definition 3.4. Given a spanning forest F of Gk(n) and a set-partition P of [k], we

say that F is consistent with P if:

1. The number of trees in F is precisely |P |.

2. P is the partition induced by F .

Let En be the set of edges E(Gk(n)\E(Gk(n− 1)), then En has 2k − 1 members.

Given a forest F of Gk(n − 1) and some subset X ⊆ En, we can combine them

to get a forest of Gk(n) as follows. We just need to know how many subsets of En

31

can transfer a forest consistent with some partition to a forest consistent with another

partition. This leads to the following definition:

Definition 3.5. Given two partitions P1 and P2 in Bk, a subset X ⊆ En transfers

from P1 to P2 if a forest consistent with P1 becomes a forest consistent with P2 after

the addition of X. In this case, we write X � P1 = P2.

With the above definitions, it is natural to define a Bk ×Bk transfer matrix Ak by

the following:

Ak(i, j) = |{A ⊆ En+1|A � Pj = Pi}|.

Let’s look at the k = 2 case as an example. We have

B2 = {12, 1/2}, En+1 = {{v1,n, v1,n+1}, {v2,n, v2,n+1}, {v1,n+1, v2,n+1}}.

For simplicity, let’s call the edges in En+1 e1, e2, e3. Then to transfer the set-partition

P1 = 12 to itself, we have the following three ways: {e1, e2}, {e1, e3}, {e2, e3}. In order

to transfer the partition P2 = 1/2 into P1, we only have one way, namely: {e1, e2, e3}.

Similarly, there are two ways to transfer P1 to P2 and one way to transfer P2 to itself

Hence the transfer matrix is the following 2× 2 matrix:

A =

3 1

2 1

 .
Let T1(n), T2(n) be the number of forests of Gk(n) which are consistent with the par-

titions P1 and P2, respectively. Let

vn =

T1(n)

T2(n)

 ,
then

vn = Avn−1.

The characteristic polynomial of A is

χλ(A) = λ2 − 4λ+ 1.

By the Cayley-Hamilton Theorem, A satisfies

A2 − 4A+ 1 = 0.

32

Hence the recurrence relation for T1(n) is

T1(n) = 4T1(n− 1)− T1(n− 2),

the sequence is {1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, . . . } (OEIS A001353)

and the generating function is

x

1− 4x+ x2
.

Similarly, for the k = 3 case, the transfer matrix

A3 =

8 3 3 4 1

4 3 2 2 1

4 2 3 2 1

1 0 0 1 0

3 2 2 2 1

.

The transfer matrix method can be generalized to general graphs of the form G× Pn,

especially cylinder graphs.

As one can see, we had to think very hard. First we had to establish a ‘canonical’

ordering over set-partitions, then define the consistence between partitions and forests,

then look for the transfer matrix and finally worry about initial conditions.

Rather than think so hard, let’s compute sufficiently many terms of the enumeration

sequence, and try to guess a linear recurrence equation with constant coefficients, that

would be provable a posteriori just because we know that there exists a transfer matrix

without worrying about finding it explicitly. But how do we generate sufficiently many

terms? Luckily, we can use the celebrated Matrix Tree Theorem.

Theorem 3.6 (Matrix Tree Theorem). If A = (aij) is the adjacency matrix of an

arbitrary graph G, then the number of spanning trees is equal to the determinant of any

co-factor of the Laplacian matrix L of G, where

L =

a12 + · · ·+ a1n −a12 . . . −a1,n

−a21 a21 + · · ·+ a2n . . . −a2,n
...

...
. . .

...

−an1 −an2 . . . an1 + · · ·+ an,n−1

.

33

For instance, taking the (n, n) co-factor, we have that the number of spanning trees

of G equals ∣∣∣∣∣∣∣∣∣∣∣∣∣

a12 + · · ·+ a1n −a12 . . . −a1,n−1

−a21 a21 + · · ·+ a2n . . . −a2,n−1
...

...
. . .

...

−an−1,1 −an−1,2 . . . an−1,1 + · · ·+ an−1,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since computing determinants for numeric matrices is very fast, we can find the gener-

ating functions for the number of spanning trees in grid graphs and more generalized

graphs by experimental methods, using the C-finite ansatz.

3.3 The GuessRec Maple procedure

Our engine is the Maple procedure GuessRec(L) that resides in the Maple packages

accompanying this chapter. Naturally, we need to collect enough data. The input is

the data (given as a list) and the output is a conjectured recurrence relation derived

from that data.

Procedure GuessRec(L) inputs a list, L, and attempts to output a linear recur-

rence equation with constant coefficients satisfied by the list. It is based on procedure

GuessRec1(L,d) that looks for such a recurrence of order d.

The output of GuessRec1(L,d) consists of the the list of initial d values (‘initial

conditions’) and the recurrence equation represented as a list. For instance, if the

input is L = [1, 1, 1, 1, 1, 1] and d = 1, then the output will be [[1], [1]]; if the input is

L = [1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316] as the k = 2 case for grid graphs

and d = 2, then the output will be [[1, 4], [4,−1]]. This means that our sequence

satisfies the recurrence a(n) = 4a(n − 1) − a(n − 2), subject to the initial conditions

a(0) = 1, a(1) = 4.

Here is the Maple code:

GuessRec1:=proc(L,d) local eq,var,a,i,n:

if nops(L)<=2*d+2 then

print(‘The list must be of size >=‘, 2*d+3):

34

RETURN(FAIL):

fi:

var:={seq(a[i],i=1..d)}:

eq:={seq(L[n]-add(a[i]*L[n-i],i=1..d),n=d+1..nops(L))}:

var:=solve(eq,var):

if var=NULL then

RETURN(FAIL):

else

RETURN([[op(1..d,L)],[seq(subs(var,a[i]),i=1..d)]]):

fi:

end:

The idea is that having a long enough list L (|L| > 2d+ 2) of data, we use the data

after the d-th one to discover whether there exists a linear recurrence relation, the first

d data points being the initial condition. With the unknowns a1, a2, . . . , ad, we have

a linear systems of no less than d + 3 equations. If there is a solution, it is extremely

likely that the recurrence relation holds in general. The first list of length d in the

output constitutes the list of initial conditions while the second list, R, codes the linear

recurrence, where [R[1], . . . R[d]] stands for the following recurrence:

L[n] =
d∑
i=1

R[i]L[n− i].

Here is the Maple procedure GuessRec(L):

GuessRec:=proc(L) local gu,d:

for d from 1 to trunc(nops(L)/2)-2 do

gu:=GuessRec1(L,d):

if gu<>FAIL then

RETURN(gu):

fi:

od:

FAIL:

35

end:

This procedure inputs a sequence L and tries to guess a recurrence equation with

constant coefficients satisfying it. It returns the initial values and the recurrence equa-

tion as a pair of lists. Since the length of L is limited, the maximum degree of recur-

rence cannot be more than b|L|/2 − 2c. With this procedure, we just need to input

L = [1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316] to get the recurrence (and initial

conditions) [[1, 4], [4,−1]].

Once the recurrence relation, let’s call it S, is discovered, procedure CtoR(S,t) finds

the generating function for the sequence. Here is the Maple code:

CtoR:=proc(S,t) local D1,i,N1,L1,f,f1,L:

if not (type(S,list) and nops(S)=2 and type(S[1],list) and

type(S[2],list) and nops(S[1])=nops(S[2]) and type(t, symbol)) then

print(‘Bad input‘):

RETURN(FAIL):

fi:

D1:=1-add(S[2][i]*t**i,i=1..nops(S[2])):

N1:=add(S[1][i]*t**(i-1),i=1..nops(S[1])):

L1:=expand(D1*N1):

L1:=add(coeff(L1,t,i)*t**i,i=0..nops(S[1])-1):

f:=L1/D1:

L:=degree(D1,t)+10:

f1:=taylor(f,t=0,L+1):

if expand([seq(coeff(f1,t,i),i=0..L)])<>expand(SeqFromRec(S,L+1))

then

print([seq(coeff(f1,t,i),i=0..L)],SeqFromRec(S,L+1)):

RETURN(FAIL):

else

RETURN(f):

fi:

36

end:

Procedure SeqFromRec used above (see the package) simply generates many terms using

the recurrence.

Procedure CtoR(S,t) outputs the rational function in t, whose coefficients are the

members of the C-finite sequence S. For example:

CtoR([[1, 1], [1, 1]], t) =
1

−t2 − t+ 1
.

Briefly, the idea is that the denominator of the rational function can be easily deter-

mined by the recurrence relation and we use the initial condition to find the starting

terms of the generating function, then multiply it by the denominator, yielding the

numerator.

3.4 Application of GuessRec to Enumerating Spanning Trees of Grid

Graphs and G× Pn

With the powerful procedures GuessRec and CtoR, we are able to find generating func-

tions for the number of spanning trees of generalized graphs of the form G × Pn. We

will illustrate the application of GuessRec to finding the generating function for the

number of spanning trees in grid graphs.

First, using procedure GridMN(k,n), we get the k × n grid graph.

Then, procedure SpFn uses the Matrix Tree Theorem to evaluate the determinant of

the co-factor of the Laplacian matrix of the grid graph which is the number of spanning

trees in this particular graph. For a fixed k, we need to generate a sufficiently long

list of data for the number of spanning trees in Gk(n), n ∈ [l(k), u(k)]. The lower

bound l(k) can’t be too small since the first several terms are the initial condition; the

upper bound u(k) can’t be too small as well since we need sufficient data to obtain the

recurrence relation. Notice that there is a symmetry for the recurrence relation, and to

take advantage of this fact, modified GuessRec to get the more efficient GuessSymRec

(requiring less data). Once the recurrence relation, and the initial conditions, are

given, applying CtoR(S,t) will give the desirable generating function, that, of course,

is a rational function of t. All the above is incorporated in procedure GFGridKN(k,t)

37

which inputs a positive integer k and a symbol t, and outputs the generating function

whose coefficient of tn is the number of spanning trees in Gk(n), i.e. if we let s(k, n) be

the number of spanning trees in Gk(n), the generating function

Fk(t) =
∞∑
n=0

s(k, n)tn.

We now list the generating functions Fk(t) for 1 ≤ k ≤ 7: Except for k = 7, these

were already found by Raff [34] and Faase [15], but it is reassuring that, using our new

approach, we got the same output. The case k = 7 seems to be new.

Theorem 3.7. The generating function for the number of spanning trees in G1(n) is:

F1(t) =
t

1− t
.

Theorem 3.8. The generating function for the number of spanning trees in G2(n) is:

F2 =
t

t2 − 4 t+ 1
.

Theorem 3.9. The generating function for the number of spanning trees in G3(n) is:

F3 =
−t3 + t

t4 − 15 t3 + 32 t2 − 15 t+ 1
.

Theorem 3.10. The generating function for the number of spanning trees in G4(n) is:

F4 =
t7 − 49 t5 + 112 t4 − 49 t3 + t

t8 − 56 t7 + 672 t6 − 2632 t5 + 4094 t4 − 2632 t3 + 672 t2 − 56 t+ 1
.

For 5 ≤ k ≤ 7, since the formulas are too long, we present their numerators and

denominators separately.

Theorem 3.11. The generating function for the number of spanning trees in G5(n) is:

F5 =
N5

D5

where

N5 = −t15 + 1440 t13 − 26752 t12 + 185889 t11 − 574750 t10 + 708928 t9 − 708928 t7

+574750 t6 − 185889 t5 + 26752 t4 − 1440 t3 + t,

38

D5 = t16 − 209 t15 + 11936 t14 − 274208 t13 + 3112032 t12 − 19456019 t11 + 70651107 t10

−152325888 t9 + 196664896 t8 − 152325888 t7 + 70651107 t6 − 19456019 t5

+3112032 t4 − 274208 t3 + 11936 t2 − 209 t+ 1.

Theorem 3.12. The generating function for the number of spanning trees in G6(n) is:

F6 =
N6

D6

where

N6 = t31 − 33359 t29 + 3642600 t28 − 173371343 t27 + 4540320720 t26 − 70164186331 t25

+634164906960 t24 − 2844883304348 t23 − 1842793012320 t22 + 104844096982372 t21

−678752492380560 t20 + 2471590551535210 t19 − 5926092273213840 t18

+9869538714631398 t17 − 11674018886109840 t16 + 9869538714631398 t15

−5926092273213840 t14 + 2471590551535210 t13 − 678752492380560 t12

+104844096982372 t11 − 1842793012320 t10 − 2844883304348 t9 + 634164906960 t8

−70164186331 t7 + 4540320720 t6 − 173371343 t5 + 3642600 t4 − 33359 t3 + t,

D6 = t32 − 780 t31 + 194881 t30 − 22377420 t29 + 1419219792 t28 − 55284715980 t27

+1410775106597 t26 − 24574215822780 t25 + 300429297446885 t24

−2629946465331120 t23 + 16741727755133760 t22 − 78475174345180080 t21

+273689714665707178 t20 − 716370537293731320 t19 + 1417056251105102122 t18

−2129255507292156360 t17 + 2437932520099475424 t16 − 2129255507292156360 t15

+1417056251105102122 t14 − 716370537293731320 t13 + 273689714665707178 t12

−78475174345180080 t11 + 16741727755133760 t10 − 2629946465331120 t9

+300429297446885 t8 − 24574215822780 t7 + 1410775106597 t6 − 55284715980 t5

+1419219792 t4 − 22377420 t3 + 194881 t2 − 780 t+ 1.

39

Theorem 3.13. The generating function for the number of spanning trees in G7(n) is:

F7 =
N7

D7

where

N7 = −t47− 142 t46 + 661245 t45− 279917500 t44 + 53184503243 t43− 5570891154842 t42

+341638600598298 t41 − 11886702497030032 t40 + 164458937576610742 t39

+4371158470492451828 t38−288737344956855301342 t37+7736513993329973661368 t36

−131582338768322853956994 t35 + 1573202877300834187134466 t34

−13805721749199518460916737 t33 + 90975567796174070740787232 t32

−455915282590547643587452175 t31 + 1747901867578637315747826286 t30

−5126323837327170557921412877 t29 + 11416779122947828869806142972 t28

−18924703166237080216745900796 t27 + 22194247945745188489023284104 t26

−15563815847174688069871470516 t25 + 15563815847174688069871470516 t23

−22194247945745188489023284104 t22 + 18924703166237080216745900796 t21

−11416779122947828869806142972 t20 + 5126323837327170557921412877 t19

−1747901867578637315747826286 t18 + 455915282590547643587452175 t17

−90975567796174070740787232 t16 + 13805721749199518460916737 t15

−1573202877300834187134466 t14 + 131582338768322853956994 t13

−7736513993329973661368 t12 + 288737344956855301342 t11

−4371158470492451828 t10 − 164458937576610742 t9

+11886702497030032 t8 − 341638600598298 t7 + 5570891154842 t6 − 53184503243 t5

+279917500 t4 − 661245 t3 + 142 t2 + t,

D7 = t48−2769 t47+2630641 t46−1195782497 t45+305993127089 t44−48551559344145 t43

40

+5083730101530753 t42 − 366971376492201338 t41

+18871718211768417242 t40 − 709234610141846974874 t39

+19874722637854592209338 t38 − 422023241997789381263002 t37

+6880098547452856483997402 t36 − 87057778313447181201990522 t35

+862879164715733847737203343 t34 − 6750900711491569851736413311 t33

+41958615314622858303912597215 t32 − 208258356862493902206466194607 t31

+828959040281722890327985220255 t30 − 2654944041424536277948746010303 t29

+6859440538554030239641036025103 t28 − 14324708604336971207868317957868 t27

+24214587194571650834572683444012 t26 − 33166490975387358866518005011884 t25

+36830850383375837481096026357868 t24 − 33166490975387358866518005011884 t23

+24214587194571650834572683444012 t22 − 14324708604336971207868317957868 t21

+6859440538554030239641036025103 t20 − 2654944041424536277948746010303 t19

+828959040281722890327985220255 t18 − 208258356862493902206466194607 t17

+41958615314622858303912597215 t16 − 6750900711491569851736413311 t15

+862879164715733847737203343 t14 − 87057778313447181201990522 t13

+6880098547452856483997402 t12 − 422023241997789381263002 t11

+19874722637854592209338 t10−709234610141846974874 t9+18871718211768417242 t8

−366971376492201338 t7 +5083730101530753 t6−48551559344145 t5 +305993127089 t4

−1195782497 t3 + 2630641 t2 − 2769 t+ 1.

Note that, surprisingly, the degree of the denominator of F7(t) is 48 rather than

the expected 64 since the first six generating functions’ denominator have degree 2k−1,

1 ≤ k ≤ 6. With a larger computer, one should be able to compute Fk for larger k,

using this experimental approach.

41

Generally, for an arbitrary graph G, we consider the number of spanning trees in

G × Pn. With the same methodology, a list of data can be obtained empirically with

which a a generating function follows.

The original motivation for the Matrix Tree Theorem, first discovered by Kirchhoff

(of Kirchhoff’s laws fame) came from the desire to efficiently compute joint resistances

in an electrical network.

Suppose one is interested in the joint resistance in an electric network in the form

of a grid graph between two diagonal vertices [1, 1] and [k, n]. We assume that each

edge has resistance 1 Ohm. To obtain it, all we need is, in addition for the number of

spanning trees (that’s the numerator), the number of spanning forests SFk(n) of the

graph Gk(n) that have exactly two components, each component containing exactly one

of the members of the pair {[1, 1], [k, n]} (this is the denominator). The joint resistance

is just the ratio.

In principle, we can apply the same method to obtain the generating function Sk.

Empirically, we found that the denominator of Sk is always the square of the denomi-

nator of Fk times another polynomial Ck. Once the denominator is known, we can find

the numerator in the same way as above. So our focus is to find Ck.

The procedure DenomSFKN(k,t) in the Maple package JointConductance.txt, cal-

culates Ck. For 2 ≤ k ≤ 4, we have

C2 = t− 1,

C3 = t4 − 8t3 + 17t2 − 8t+ 1,

C4 = t12 − 46t11 + 770t10 − 6062t9 + 24579t8 − 55388t7 + 72324t6 − 55388t5 + 24579t4

−6062t3 + 770t2 − 46t+ 1.

Remark By looking at the output of our Maple package, we conjectured that

R(k, n), the resistance between vertex [1, 1] and vertex [k, n] in the k × n grid graph,

Gk(n), where each edge is a resistor of 1 Ohm, is asymptotically n/k, for any fixed k,

as n → ∞. We proved it rigorously for k ≤ 6, and we wondered whether there is a

human-generated “electric proof’. Naturally we emailed Peter Doyle, the co-author of

the delightful masterpiece [9], who quickly came up with the following argument.

42

Making the horizontal resistors into almost resistance-less gold wires gives the lower

bound R(k, n) ≥ (n−1)/k since it is a parallel circuit of k resistors of n−1 Ohms. For

an upper bound of the same order, put 1 Ampere in at [1,1] and out at [k, n], routing

1/k Ampere up each of the k verticals. The energy dissipation is k(n− 1)/k2 +C(k) =

(n − 1)/k + C(k), where the constant C(k) is the energy dissipated along the top and

bottom resistors. Specifically, C(k) = 2(1 − 1/k)2 + (1 − 2/k)2 + · · · + (1/k)2). So

(n− 1)/k ≤ R(k, n) ≤ (n− 1)/k + C(k).

We thank Peter Doyle for his kind permission to reproduce this electrifying argu-

ment.

3.5 The Statistic of the Number of Vertical Edges

As mentioned in Section 2.4, often in enumerative combinatorics, the class of interest

has natural ‘statistics’.

In this section, we are interested in the statistic ‘the number of vertical edges’,

defined on spanning trees of grid graphs. For given k and n, let, as above, Gk(n)

denote the k × n grid-graph. Let Fk,n be its set of spanning trees. if the weight is 1,

then
∑

f∈Fk,n
1 = |Fk,n| is the naive counting. Now let’s define a natural statistic

ver(T) = the number of vertical edges in the spanning tree T

and the weight w(T) = vver(T), then the weighted counting follows:

V erk,n(v) =
∑

T∈Fk,n

w(T)

where Fk,n is the set of spanning trees of Gk(n).

We define the bivariate generating function

gk(v, t) =
∞∑
n=0

V erk,nt
n.

More generally, with our Maple package GFMatrix.txt, and procedure VerGF, we are

able to obtain the bivariate generating function for an arbitrary graph of the form

G × Pn. The procedure VerGF takes inputs G (an arbitrary graph), N (an integer

determining how many data we use to find the recurrence relation) and two symbols v

and t.

43

The main tool for computing VerGF is still the Matrix Tree Theorem and GuessRec.

But we need to modify the Laplacian matrix for the graph. Instead of letting aij = −1

for i 6= j and {i, j} ∈ E(G×Pn), we should consider whether the edge {i, j} is a vertical

edge. If so, we let ai,j = −v, aj,i = −v. The diagonal elements which are (−1)× (the

sum of the rest entries on the same row) should change accordingly. The following

theorems are for grid graphs when 2 ≤ k ≤ 4 while k = 1 is a trivial case because there

are no vertical edges.

Theorem 3.14. The bivariate generating function for the weighted counting according

to the number of vertical edges of spanning trees in G2(n) is:

g2(v, t) =
vt

1− (2 v + 2) t+ t2
.

Theorem 3.15. The bivariate generating function for the weighted counting according

to the number of vertical edges vertical edges of spanning trees in G3(n) is:

g3(v, t) =
−t3v2 + v2t

1− (3 v2 + 8 v + 4) t− (−10 v2 − 16 v − 6) t2 − (3 v2 + 8 v + 4) t3 + t4
.

Theorem 3.16. The bivariate generating function for the weighted counting according

to the number of vertical edges of spanning trees in G4(n) is:

g4(v, t) =
numer(g4)

denom(g4)

where

numer(g4) = v3t+
(
−16 v5 − 24 v4 − 9 v3

)
t3 +

(
8 v6 + 40 v5 + 48 v4 + 16 v3

)
t4

+
(
−16 v5 − 24 v4 − 9 v3

)
t5 + v3t7

and

denom(g4) = 1−
(
4 v3 + 20 v2 + 24 v + 8

)
t−
(
−52 v4 − 192 v3 − 256 v2 − 144 v − 28

)
t2

−
(
64 v5 + 416 v4 + 892 v3 + 844 v2 + 360 v + 56

)
t3

−
(
−16 v6 − 160 v5 − 744 v4 − 1408 v3 − 1216 v2 − 480 v − 70

)
t4

−
(
64 v5 + 416 v4 + 892 v3 + 844 v2 + 360 v + 56

)
t5

−
(
−52 v4 − 192 v3 − 256 v2 − 144 v − 28

)
t6 −

(
4 v3 + 20 v2 + 24 v + 8

)
t7 + t8.

44

With the Maple package BiVariateMoms.txt and its Story procedure from

http://sites.math.rutgers.edu/~zeilberg/tokhniot/BiVariateMoms.txt,

the expectation, variance and higher moments can be easily analyzed. We calculated

up to the 4th moment for G2(n). For k = 3, 4, you can find the output files from

http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=3.txt,

http://sites.math.rutgers.edu/~yao/OutputStatisticVerticalk=4.txt.

Theorem 3.17. The moments of the statistic: the number of vertical edges in the

spanning trees of G2(n) are as follows:

Let b be the largest positive root of the polynomial equation

b2 − 4b+ 1 = 0

whose floating-point approximation is 3.732050808, then the size of the n-th family (i.e.

straight enumeration) is very close to

bn+1

−2 + 4 b
.

The average of the statistics is, asymptotically

1

3
+

1

3

(−1 + 2 b)n

b
.

The variance of the statistics is, asymptotically

−1

9
+

1

9

(7 b− 2)n

−1 + 4 b
.

The skewness of the statistics is, asymptotically

780 b− 209

(4053 b− 1086)n3 + (−7020 b+ 1881)n2 + (4053 b− 1086)n− 780 b+ 209
.

The kurtosis of the statistics is, asymptotically

3
(32592 b− 8733)n2 + (−56451 b+ 15126)n+ 21728 b− 5822

(32592 b− 8733)n2 + (−37634 b+ 10084)n+ 10864 b− 2911
.

3.6 Application of the C-finite Ansatz to Almost-Diagonal Matrices

So far, we have seen applications of the C-finite ansatz methodology for automatically

computing generating functions for enumerating spanning trees/forests for certain infi-

nite families of graphs.

45

The second case study is completely different, and in a sense more general, since

the former framework may be subsumed in this new context.

Definition 3.18. Diagonal matrices A are square matrices in which the entries outside

the main diagonal are 0, i.e. aij = 0 if i 6= j.

Definition 3.19. An almost-diagonal matrix A is a square matrices in which ai,j = 0

if j − i ≥ k1 or i − j ≥ k2 for some fixed positive integers k1, k2 and ∀i1, j1, i2, j2, if

i1 − j1 = i2 − j2, then ai1j1 = ai2j2.

For simplicity, we use the notation L =[n, [the first k1 entries in the first row], [the

first k2 entries in the first column]] to denote the n×n matrix with these specifications.

Note that this notation already contains all information we need to reconstruct this

matrix. For example, [6, [1,2,3], [1,4]] is the matrix

1 2 3 0 0 0

4 1 2 3 0 0

0 4 1 2 3 0

0 0 4 1 2 3

0 0 0 4 1 2

0 0 0 0 4 1

.

The following is the Maple procedure DiagMatrixL (in our Maple package GFMatrix.txt),

which inputs such a list L and outputs the corresponding matrix.

DiagMatrixL:=proc(L) local n, r1, c1,p,q,S,M,i:

n:=L[1]:

r1:=L[2]:

c1:=L[3]:

p:=nops(r1)-1:

q:=nops(c1)-1:

if r1[1] <> c1[1] then

return fail:

fi:

46

S:=[0$(n-1-q), seq(c1[q-i+1],i=0..q-1), op(r1), 0$(n-1-p)]:

M:=[0$n]:

for i from 1 to n do

M[i]:=[op(max(0,n-1-q)+q+2-i..max(0,n-1-q)+q+1+n-i,S)]:

od:

return M:

end:

For this matrix, k1 = 3 and k2 = 2. Let k1, k2 be fixed and M1,M2 be two lists of

numbers or symbols of length k1 and k2 respectively, Ak is the almost-diagonal matrix

represented by the list Lk = [k,M1,M2]. Note that the first elements in the lists M1

and M2 must be identical.

Having fixed two lists M1 of length k1 and M2 of length k2, (where M1[1] = M2[1]), it

is of interest to derive automatically, the generating function (that is always a rational

function for reasons that will soon become clear),
∑∞

k=0 ak t
k, where ak denotes the

determinant of the k × k almost-diagonal matrix whose first row starts with M1, and

first column starts with M2. Analogously, it is also of interest to do the analogous

problem when the determinant is replaced by the permanent.

Here is the Maple procedure GFfamilyDet which takes inputs (i) A: a name of a

Maple procedure that inputs an integer n and outputs an n × n matrix according to

some rule, e.g., the almost-diagonal matrices, (ii) a variable name t, (iii) two integers

m and n which are the lower and upper bounds of the sequence of determinants we

consider. It outputs a rational function in t, say R(t), which is the generating function

of the sequence.

GFfamilyDet:=proc(A,t,m,n) local i,rec,GF,B,gu,Denom,L,Numer:

L:=[seq(det(A(i)),i=1..n)]:

rec:=GuessRec([op(m..n,L)])[2]:

gu:=solve(B-1-add(t**i*rec[i]*B,i=1..nops(rec)), B):

Denom:=denom(subs(gu,B)):

Numer:=Denom*(1+add(L[i]*t**i, i=1..n)):

47

Numer:=add(coeff(Numer,t,i)*t**i, i=0..degree(Denom,t)):

Numer/Denom:

end:

Similarly we have procedure GFfamilyPer for the permanent. Let’s look at an example.

The following is a sample procedure which considers the family of almost diagonal

matrices which the first row [2, 3] and the first column [2, 4, 5].

SampleB:=proc(n) local L,M:

L:=[n, [2,3], [2,4,5]]:

M:=DiagMatrixL(L):

end:

Then GFfamilyDet(SampleB, t, 10, 50) will return the generating function

− 1

45 t3 − 12 t2 + 2 t− 1
.

It turns out, that for this problem, the more ‘conceptual’ approach of setting up a

transfer matrix also works well. But don’t worry, the computer can do the ‘research’

all by itself, with only a minimum amount of human pre-processing.

We will now describe this more conceptual approach, that may be called symbolic dy-

namical programming, where the computer sets up, automatically, a finite-state scheme,

by dynamically discovering the set of states, and automatically figures out the transfer

matrix.

3.7 The Symbolic Dynamic Programming Approach

Recall from Linear Algebra 101,

Theorem 3.20 (Cofactor Expansion). Let |A| denote the determinant of an n × n

matrix A, then

|A| =
n∑
j=1

(−1)i+jaijMij , ∀i ∈ [n],

where Mij is the (i, j)-minor.

48

We’d like to consider the Cofactor Expansion for almost-diagonal matrices along the

first row. For simplicity, we assume while ai,j = 0 if j − i ≥ k1 or i − j ≥ k2 for some

fixed positive integers k1, k2, and if −k2 < j1 − i1 < j2 − i2 < k1, then ai1j1 6= ai2j2 .

Under this assumption, for any minors we obtain through recursive Cofactor Expansion

along the first row, the dimension, the first row and the first column should provide

enough information to reconstruct the matrix.

For an almost-diagonal matrix represented by L =[Dimension, [the first k1 entries

in the first row], [the first k2 entries in the first column]], any minor can be represented

by [Dimension, [entries in the first row up to the last nonzero entry], [entries in the first

column up to the last nonzero entry]].

Our goal in this section is the same as the last one, to get a generating function for

the determinant or permanent of almost-diagonal matrices Ak with dimension k. Once

we have those almost-diagonal matrices, the first step is to do a one-step expansion as

follows:

ExpandMatrixL:=proc(L,L1)

local n,R,C,dim,R1,C1,i,r,S,candidate,newrow,newcol,gu,mu,temp,p,q,j:

n:=L[1]:

R:=L[2]:

C:=L[3]:

p:=nops(R)-1:

q:=nops(C)-1:

dim:=L1[1]:

R1:=L1[2]:

C1:=L1[3]:

if R1=[] or C1=[] then

return :

elif R[1]<>C[1] or R1[1]<>C1[1] or dim>n then

return fail:

else

49

S:={}:

gu:=[0$(n-1-q), seq(C[q-i+1],i=0..q-1), op(R), 0$(n-1-p)]:

candidate:=[0$nops(R1),R1[-1]]:

for i from 1 to nops(R1) do

mu:=R1[i]:

for j from n-q to nops(gu) do

if gu[j]=mu then

candidate[i]:=gu[j-1]:

fi:

od:

od:

for i from n-q to nops(gu) do

if gu[i] = R1[2] then

temp:=i:

break:

fi:

od:

for i from 1 to nops(R1) do

if i = 1 then

mu:=[R1[i]*(-1)**(i+1), [dim-1,[op(i+1..nops(candidate), candidate)],

[seq(gu[temp-i],i=1..temp-n+q)]]]:

S:=S union mu:

else

mu:=[R1[i]*(-1)**(i+1), [dim-1, [op(1..i-1, candidate),

op(i+1..nops(candidate), candidate)], [op(2..nops(C1), C1)]]]:

S:=S union mu:

fi:

od:

return S:

50

fi:

end:

The ExpandMatrixL procedure inputs a data structure L = [Dimension, first row=[

], first col=[]] as the matrix we start and the other data structure L1 as the current

minor we have, expands L1 along its first row and outputs a list of [multiplicity, data

structure].

We would like to generate all the ”children” of an almost-diagonal matrix regardless

of the dimension, i.e., two lists L represent the same child as long as their first rows

and first columns are the same, respectively. The set of ”children” is the scheme of the

almost diagonal matrices in this case.

The following is the Maple procedure ChildrenMatrixL which inputs a data struc-

ture L and outputs the set of its ”children” under Cofactor Expansion along the first

row:

ChildrenMatrixL:=proc(L) local S,t,T,dim,U,u,s:

dim:=L[1]:

S:={[op(2..3,L)]}:

T:={seq([op(2..3,t[2])],t in ExpandMatrixL(L,L))}:

while T minus S <> {} do

U:=T minus S:

S:=S union T:

T:={}:

for u in U do

T:=T union {seq([op(2..3,t[2])],t in ExpandMatrixL(L,[dim,op(u)]))}:

od:

od:

for s in S do

if s[1]=[] or s[2]=[] then

S:=S minus {s}:

fi:

51

od:

S:

end:

After we have the scheme S, by the Cofactor Expansion of any element in the scheme,

a system of algebraic equations follows. For children in S, it’s convenient to let the

almost-diagonal matrix be the first one C1 and for the rest, any arbitrary ordering will

do. For example, if after Cofactor Expansion for C1, c2 ”copies” of C2 and c3 ”copies”

of C3 are obtained, then the equation will be

C1 = 1 + c2tC2 + c3tC3.

However, if the above equation is for Ci, i 6= 1, i.e. Ci is not the almost-diagonal matrix

itself, then the equation will be slightly different:

Ci = c2tC2 + c3tC3.

Here t is a symbol as we assume the generating function is a rational function of t.

Here is the Maple code that implements how we get the generating function for the

determinant of a family of almost-diagonal matrices by solving a system of algebraic

equations:

GFMatrixL:=proc(L,t) local S,dim,var,eq,n,A,i,result,gu,mu:

dim:=L[1]:

S:=ChildrenMatrixL(L):

S:=[[op(2..3,L)], op(S minus {[op(2..3,L)]})]:

n:=nops(S):

var:={seq(A[i],i=1..n)}:

eq:={}:

for i from 1 to 1 do

result:=ExpandMatrixL(L,[dim,op(S[i])]):

for gu in result do

if gu[2][2]=[] or gu[2][3]=[] then

52

result:=result minus {gu}:

fi:

od:

eq:=eq union {A[i] - 1 - add(gu[1]*t*A[CountRank(S,

[op(2..3, gu[2])])], gu in result)}:

od:

for i from 2 to n do

result:=ExpandMatrixL(L,[dim,op(S[i])]):

for gu in result do

if gu[2][2]=[] or gu[2][3]=[] then

result:=result minus gu:

fi:

od:

eq:=eq union {A[i] - add(gu[1]*t*A[CountRank(S, [op(2..3, gu[2])])],

gu in result)}:

od:

gu:=solve(eq, var)[1]:

subs(gu, A[1]):

end:

GFMatrixL([20, [2, 3], [2, 4, 5]], t) returns

− 1

45 t3 − 12 t2 + 2 t− 1
.

Compared to empirical approach, the ‘symbolic dynamical programming’ method is

faster and more efficient for the moderate-size examples that we tried out. However, as

the lists will grow larger, it is likely that the former method will win out, since with this

non-guessing approach, it is equally fast to get generating functions for determinants

and permanents, and as we all know, permanents are hard.

The advantage of the present method is that it is more appealing to humans, and

does not require any ‘meta-level’ act of faith. However, both methods are very versatile

53

and are great experimental approaches for enumerative combinatorics problems. We

hope that our readers will find other applications.

3.8 Remarks

Rather than trying to tackle each enumeration problem, one at a time, using ad hoc

human ingenuity each time, building up an intricate transfer matrix, and only using

the computer at the end as a symbolic calculator, it is a much better use of our beloved

silicon servants (soon to become our masters!) to replace ‘thinking’ by ‘meta-thinking’,

i.e. develop experimental mathematics methods that can handle many different types

of problems. In the two case studies discussed here, every thing was made rigorous,

but if one can make semi-rigorous and even non-rigorous discoveries, as long as they

are interesting, one should not be hung up on rigorous proofs. In other words, if you

can find a rigorous justification (like in these two case studies) that’s nice, but if you

can’t, that’s also nice!

54

Chapter 4

Analysis of Quicksort Algorithms

This chapter is adapted from [50], which has been published on Journal of Difference

Equations and Applications. It is also available on arXiv.org, number 1905.00118.

4.1 Introduction

A sorting algorithm is an algorithm that rearranges elements of a list in a certain

order, the most frequently used orders being numerical order and lexicographical order.

Sorting algorithms play a significant role in computer science since efficient sorting is

important for optimizing the efficiency of other algorithms which require input data to

be in sorted lists. In this chapter, our focus is Quicksort.

Quicksort was developed by British computer scientist Tony Hoare in 1959 and

published in 1961. It has been a commonly used algorithm for sorting since then and

is still widely used in industry.

The main idea for Quicksort is that we choose a pivot randomly and then compare

the other elements with the pivot, smaller elements being placed on the left side of the

pivot and larger elements on the right side of the pivot. Then we recursively apply

the same operation to the sublists obtained from the partition step. As for the specific

implementations, there can be numerous variants, some of which are at least interesting

from a theoretical perspective despite their rare use in the real world.

It is well-known that the worst-case performance of Quicksort is O(n2) and the

average performance is O(n log n). However, we are also interested in the explicit

closed-form expressions for the moments of Quicksort’s performance, i.e., running time,

in terms of the number of comparisons and/or the number of swaps. In this chapter,

only lists or arrays containing distinct elements are considered.

55

The chapter is organized as follows. In Section 4.2, we review related work on the

number of comparisons of 1-pivot Quicksort, whose methodology is essential for further

study. In Section 4.3, the numbers of swaps of several variants of 1-pivot Quicksort are

considered. In Section 4.4, we extend our study to multi-pivot Quicksort. In Section

4.5, the technique to obtain more moments and the scaled limiting distribution are

discussed. In the last section we discuss some potential improvements for Quicksort,

summarize the main results of this chapter and make final remarks on the methodology

of experimental mathematics.

4.2 Related Work

In the masterpiece of Shalosh B. Ekhad and Doron Zeilberger [13], they managed to find

the explicit expressions for expectation, variance and higher moments of the number of

comparisons of 1-pivot Quicksort with an experimental mathematics approach, which

is also considered as some form of “machine learning.” Here we will review the results

they discovered or rediscovered.

Let Cn be the random variable “number of comparisons in Quicksort applied to lists

of length n,” n ≥ 0.

Theorem 4.1 ([25], p.8, end of section 1.3; [17], Eq. (2.14), p. 29, and other places).

E[Cn] = 2(n+ 1)H1(n)− 4n.

Here H1(n) are the Harmonic numbers

H1(n) :=
n∑
i=1

1

i
.

More generally, in following theorems, we introduce the notation

Hk(n) :=

n∑
i=1

1

ik
.

Theorem 4.2 (Knuth, [27], answer to Ex. 8(b) in section 6.2.2)).

var[Cn] = n(7n+ 13) − 2 (n+ 1)H1(n)− 4 (n+ 1)2H2(n).

Its asymptotic expression is

(7 − 2

3
π2)n2 + (13− 2 ln(n)− 2 γ − 4/3π2)n− 2 ln(n)− 2 γ − 2/3π2 + o(1).

56

Theorem 4.3 (Zeilberger, [13]). The third moment about the mean of Cn is

−n(19n2 + 81n+ 104) +H1(n)(14n+ 14) + 12 (n+ 1)2H2(n) + 16 (n+ 1)3H3(n).

It is asymptotic to

(−19 + 16 ζ(3))n3 + (−81 + 2π2 + 48 ζ(3))n2 + (−104 + 14 ln(n) + 14 γ + 4π2

+48 ζ(3))n+ 14 ln(n) + 14 γ + 2π2 + 16 ζ(3) + o(1).

It follows that the limit of the scaled third moment (skewness) converges to

−19 + 16 ζ(3)

(7− 2/3π2)3/2
= 0.8548818671325885

Theorem 4.4 (Zeilberger, [13]). The fourth moment about the mean of Cn is

1

9
n(2260n3 + 9658n2 + 15497n+ 11357)− 2 (n+ 1)(42n2 + 78n+ 77)H1(n)

+12 (n+ 1)2(H1(n))2 + (−4 (42n2 + 78n+ 31)(n+ 1)2 + 48 (n+ 1)3H1(n))H2(n)

+48 (n+ 1)4(H2(n))2 − 96 (n+ 1)3H3(n)− 96 (n+ 1)4H4(n).

It is asymptotic to

(
2260

9
− 28π2 +

4

15
π4)n4 + (

9658

9
− 84 ln(n)− 84 γ + 1/6 (−648 + 48 ln(n) + 48 γ)π2

+
16

15
π4 − 96 ζ(3))n3

+(
15497

9
− 240 ln(n)− 240 γ + 12 (ln(n) + γ)2 + 1/6 (−916 + 144 ln(n) + 144 γ)π2

+8/5π4 − 288 ζ(3))n2

+(
11357

9
− 310 ln(n)− 310 γ + 24 (ln(n) + γ)2 + 1/6 (−560 + 144 ln(n) + 144 γ)π2

+
16

15
π4 − 288 ζ(3))n

−154 ln(n)− 154 γ + 12 (ln(n) + γ)2 + 1/6 (−124 + 48 ln(n) + 48 γ)π2

+
4

15
π4 − 96 ζ(3) + o(1).

It follows that the limit of the scaled fourth moment (kurtosis) converges to

2260
9 − 28π2 + 4

15 π
4

(7− 2/3π2)2
= 4.1781156382698542

57

Results for higher moments, more precisely, up to the eighth moment, are also

discovered and discussed by Shalosh B. Ekhad and Doron Zeilberger in [13].

Before this article, there are already human approaches to find the expectation and

variance for the number of comparisons. Let cn = E[Cn]. Since the pivot can be the

k-th smallest element in the list (k = 1, 2, . . . , n), we have the recurrence relation

cn =
1

n

n∑
k=1

((n−1)+ck−1 +cn−k) = (n−1)+
1

n

n∑
k=1

(ck−1 +cn−k) = (n−1)+
2

n

n∑
k=1

ck−1,

because the expected number of comparisons for the sublist before the pivot is ck−1 and

that for the sublist after the pivot is cn−k. From this recurrence relation, complicated

human-generated manipulatorics is needed to rigorously derive the closed form. For

the variance, the calculation is much more complicated. For higher moments, we doubt

that human approach is realistic.

The experimental mathematics approach is more straightforward and more powerful.

For the expectation, a list of data can be obtained through the recurrence relation and

the initial condition. Then with an educated guess that cn is a polynomial of degree

one in both n and H1(n), i.e.,

cn = a+ bn+ cH1(n) + dnH1(n)

where a, b, c, d are undetermined coefficients, we can solve for these coefficients by plug-

ging sufficiently many n and cn in this equation.

For higher moments, there is a similar recurrence relation for the probability gen-

erating function of Cn. With the probability generating function, a list of data of any

fixed moment can be obtained. Then with another appropriate educated guess of the

form of the higher moments, the explicit expression follows.

In [13], it is already discussed that this experimental mathematics approach, which

utilizes a recurrence relation to study the Quicksort algorithms, is actually rigorous by

pointing out that this is a finite calculation and by referring to results in [36] and [37].

58

4.3 Number of Swaps of 1-Pivot Quicksort

The performance of Quicksort depends on the number of swaps and comparisons per-

formed. In reality, a swap usually takes more computing resources than a comparison.

The difficulty in studying the number of swaps is that the number of swaps depends on

how we implement the Quicksort algorithm while the number of comparisons are the

same despite the specific implementations.

Since only the number of comparisons is considered in [13], the Quicksort model in

[13] is that one picks the pivot randomly, compares each non-pivot element with the

pivot and then places them in one of the two new lists L1 and L2 where the former

contains all elements smaller than the pivot and the latter contains those greater than

the pivot. Under this model there is no swap, but a lot of memory is needed. For

convenience, let’s call this model Variant Nulla.

In this section, we consider the random variable, the number of swapsXn, in different

Quicksort variants. Some of them may not be efficient or widely used in industry;

however, we treat them as an interesting problem and model in permutations and

discrete mathematics. In the first subsection, we also demonstrate our experimental

mathematics approaches step by step.

4.3.1 Variant I

The first variant is that we always choose the first (or equivalently, the last) element in

the list of length n as the pivot, then we compare the other elements with the pivot.

We compare the second element with the pivot first. If it is greater than the pivot,

it stays where it is, otherwise we remove it from the list and then insert it before the

pivot. Though this is somewhat different from the “traditional swap,” we define this

operation as a swap. Generally, every time we find an element smaller than the pivot,

we insert it before the pivot.

Hence, after n−1 comparisons and some number of swaps, the partition is achieved,

i.e., all elements on the left of the pivot are smaller than the pivot and all elements on

the right of the pivot are greater than the pivot. The difference between this variant

59

and Variant Nulla is that this one does not need to create new lists so that it saves

memory.

Let Pn(t) be the probability generating function for the number of swaps, i.e.,

Pn(t) =
∞∑
k=0

P (Xn = k) tk,

where for only finitely many integers k, we have that P (Xn = k) is nonzero.

We have the recurrence relation

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)t
k−1,

with the initial condition P0(t) = P1(t) = 1 because for any fixed k ∈ {1, 2, . . . , n}, the

probability that the pivot is the k-th smallest is 1
n and there are exactly k − 1 swaps

when the pivot is the k-th smallest.

The Maple procedure SwapPQs(n,t) in the package Quicksort.txt implements the

recurrence of the probability generating function.

Recall that the r-th moment is given in terms of the probability generating function

E[Xr
n] = (t

d

dt
)rPn(t) |t=1.

The moment about the mean

mr(n) := E[(Xn − cn)r],

can be easily derived from the raw moments {E[X l
n] | 1 ≤ l ≤ r}, using the binomial

theorem and linearity of expectation. Another way to get the moment about the mean

is by considering

mr(n) = (t
d

dt
)r(

Pn(t)

tcn
) |t=1.

Recall that

Hk(n) :=
n∑
i=1

1

ik
.

Our educated guess is that there exists a polynomial of r+1 variables Fr(x0, x1, . . . , xr)

such that

mr(n) = Fr(n,H1(n), . . . ,Hr(n)).

60

With the Maple procedure QsMFn, we can easily obtain the following theorems by just

entering QsMFn(SwapPQs, t, n, Hn, r) where r represents the moment you are in-

terested in. When r = 1, it returns the explicit expression for its mean rather than the

trivial “first moment about the mean”.

Theorem 4.5. The expectation of the number of swaps of Quicksort for a list of length

n under Variant I is

E[Xn] = (n+ 1)H1(n)− 2n.

Theorem 4.6. The variance of Xn is

2n(n+ 2)− (n+ 1)H1(n)− (n+ 1)2H2(n).

Theorem 4.7. The third moment about the mean of Xn is

−9

4
n(n+ 3)2 + (4n+ 4)H1(n) + 3(n+ 1)2H2(n) + 2(n+ 1)3H3(n).

Theorem 4.8. The fourth moment about the mean of Xn is

1

18
n(335n3 + 1568n2 + 3067n+ 2770)− 3(n+ 1)(4n2 + 8n+ 9)H1(n) + 3(n+ 1)2H1(n)2

+(−(12n2 + 24n+ 19)(n+ 1)2 + 6(n+ 1)3H1(n))H2(n) + 3(n+ 1)4H2(n)2

−12(n+ 1)3H3(n)− 6(n+ 1)4H4(n).

The explicit expressions for higher moments can be easily calculated automatically

with the Maple procedure QsMFn and the interested readers are encouraged to find those

formulas on their own.

4.3.2 Variant II

The second variant is similar to the first one. One tiny difference is that instead of

choosing the first or last element as the pivot, the index of the pivot is chosen uniformly

at random. For example, we choose the i-th element, which is the k-th smallest, as the

pivot. Then we compare those non-pivot elements with the pivot. If i 6= 1, the first

element will be compared with the pivot first. If it is smaller than the pivot, it stays

there, otherwise it is moved to the end of the list. After comparing all the left-side

61

elements with the pivot, we look at those elements whose indexes are originally greater

than i. If they are greater than the pivot, no swap occurs; otherwise insert them before

the pivot.

In this case, the recurrence of the probability generating function Pn(t) is more

complicated as a consequence of that the number of swaps given that i and k is known

is still a random variable rather than a fixed number as the case in Variant I.

Let Q(n, k, i, t) be the probability generating function for such a random variable.

In fact, given a random permutation in the permutation group Sn and that the i-th

element is k, the number of swaps equals to the number of elements which are before k

and greater than k or after k and smaller than k. Hence, if there are j elements which

are before k and smaller than k, then there are i − 1 − j elements which are before k

and greater than k and there are k− 1− j elements which are after k and smaller than

k. So in this case the number of swaps is i+ k − 2− 2j.

Then we need to determine the range of j. Obviously it is at least 0. In total

there are k − 1 elements which are less than k, at most n − i of them occurring after

k, so j ≥ k − 1 − n + i. As for the upper bound, since there are only i − 1 elements

before k, we have j ≤ i − 1. Evidently, j ≤ k − 1 as well. Therefore the range of j is

[max(k − 1− n+ i, 0), min(i− 1, k − 1)].

As for the probability that there are exactly j elements which are before k and

smaller than k, it equals to(
i− 1

j

) j−1∏
s=0

k − 1− s
n− 1− s

i−j−2∏
s=0

n− k − s
n− 1− j − s

.

Consequently, the probability generating function is

Q(n, k, i, t) =

min(i−1,k−1)∑
j=max(k−1−n+i,0)

(
i− 1

j

) j−1∏
s=0

k − 1− s
n− 1− s

i−j−2∏
s=0

n− k − s
n− 1− j − s

ti+k−2−2j ,

which is implemented by the Maple procedure PerProb(n, k, i, t). For example,

PerProb(9, 5, 5, t) returns

1

70
t8 +

8

35
t6 +

18

35
t4 +

8

35
t2 +

1

70
.

62

We have the recurrence relation

Pn(t) =
1

n2

n∑
k=1

n∑
i=1

Pk−1(t)Pn−k(t)Q(n, k, i, t),

with the initial condition P0(t) = P1(t) = 1, which is implemented by the Maple

procedure SwapPQ(n, t). The following theorems follow immediately.

Theorem 4.9. The expectation of the number of swaps of Quicksort for a list of length

n under Variant II is

E[Xn] = (n+ 1)H1(n)− 2n.

Theorem 4.10. The variance of Xn is

1

6
n(11n+ 17)− 1

3
(n+ 1)H1(n)− (n+ 1)2H2(n).

Theorem 4.11. The third moment about the mean of Xn is

−1

6
n(14n2 + 57n+ 73) + (2n+ 2)H1(n) + (n+ 1)2H2(n) + 2(n+ 1)3H3(n).

Theorem 4.12. The fourth moment about the mean of Xn is

1

90
n(1496n3 + 5531n2 + 8527n+ 6922)− 1

15
(n+ 1)(55n2 + 85n+ 173)H1(n)

+
1

3
(n+ 1)2H1(n)2 + (−1

3
(33n2 + 51n+ 25)(n+ 1)2 + 2(n+ 1)3H1(n))H2(n)

+3(n+ 1)4H2(n)2 − 4(n+ 1)3H3(n)− 6(n+ 1)4H4(n).

Higher moments can also be easily obtained by entering QsMFn(SwapPQ, t, n, Hn,

r) where r represents the r-th moment you are interested in.

Comparing with Variant I where the index of the pivot is fixed, we find that these

two variants have the same expected number of swaps. However, the variance and

actually all even moments of the second variant are smaller. Considering that the

average performance is already O(n log n) which is not far from the best scenario, it

is favorable that a Quicksort algorithm has smaller variance. In conclusion, for this

model, a randomly-chosen-index pivot can improve the performance of the algorithm.

63

4.3.3 Variant III

Next we’d like to study the most widely used in-place Quicksort. This algorithm is

called Lomuto partition scheme, which is attributed to Nico Lomuto and popularized by

Bentley in his book Programming Pearls and Cormen, et al. in their book Introduction

to Algorithms. This scheme chooses a pivot that is typically the last element in the

list. Two indexes, i, the insertion index, and j, the search index are maintained. The

following is the pseudo code for this variant.

algorithm quicksort(A, s, t) is

if s < t then

p := partition(A, s, t)

quicksort(A, s, p - 1)

quicksort(A, p + 1, t)

algorithm partition(A, s, t) is

pivot := A[t]

i := s

for j := s to t - 1 do

if A[j] < pivot then

swap A[i] with A[j]

i := i + 1

swap A[i] with A[t]

return i

From the algorithm we can see that when the pivot is the k-th smallest, there are k−1

elements smaller than the pivot. As a result, there are k− 1 swaps in the if statement

of the algorithm partition. Including the last swap outside the if statement, there are

k total swaps. We have the recurrence relation for its probability generating function

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)t
k

with the initial condition P0(t) = P1(t) = 1.

64

Theorem 4.13. The expectation of the number of swaps of Quicksort for a list of length

n under Variant III

E[Xn] = (n+ 1)H1(n)− 4

3
n− 1

3
.

Theorem 4.14. The variance of the number of swaps of Quicksort for a list of length

n under Variant III

var[Xn] = 2n2 +
187

45
n+

7

45
− 2

3n
− (n2 + 2n+ 1)H2(n)− (n+ 1)H1(n).

Note that for this variant, and some other ones in the remainder of the chapter,

to find out its explicit expression of moments, we may need to modify our educated

guess to a “rational function” of n and Hk(n) for some k (see procedure QsMFnRat and

QsMFnRatG). Moreover, sometimes when we solve the equations obtained by equalizing

the guess with the empirical data, some initial terms should be disregarded since the

increasing complexity of the definition of the Quicksort algorithms may lead to the

“singularity” of the first several terms of moments. Usually, the higher the moment is,

the more initial terms should be disregarded.

4.3.4 Variant IV

In Variant III, every time when A[j] < pivot, we swap A[i] with A[j]. However, it

is a waste to swap them when i = j. If we modify the algorithm such that a swap is

performed only when the indexes i 6= j, the expected cost will be reduced. Besides, if

the pivot is actually the largest element, there is no need to swap A[i] with A[t] in

the partition algorithm. To popularize Maple in mathematical and scientific research,

we attach Maple code for the partition part here, the ParIP procedure in the package

QuickSort.txt, in which Swap(S, i, j) is a subroutine to swap the i-th element with

the j-th in a list S.

ParIP:=proc(L) local pivot,i,j,n,S:

n:=nops(L):

pivot:=L[n]:

S:=L:

65

i:=1:

for j from 1 to n-1 do

if S[j]<=pivot then

if i<>j then

S:=Swap(S, i, j):

i:=i+1:

else

i:=i+1:

fi:

fi:

od:

if i<>n then

return Swap(S, i, n), i:

else

return S, i:

fi:

end:

Lemma 4.15. Let Yn(k) be the number of swaps needed in the first partition step in

an in-place Quicksort without swapping the same index for a list L of length n when

the pivot is the k-th smallest element, then

Yn(k) =

| {i ∈ [n] |L[i] ≤ pivot ∧ ∃j < i, L[j] > pivot} | k < n

0 k = n

.

Proof. When k = n, it is obvious that for each search index j, the condition S[j] <=

pivot is satisfied, hence the insertion index i is always equal to j, which means there

is no swap inside the loop. Since eventually i = n, there is also no need to swap the

pivot with itself. So the number of swaps is 0 in this case.

When k < n, notice that the first time i is smaller than j is when we find the

first element greater than the pivot. After that, i will always be less than j, which

66

implies that for each element smaller than the pivot and the pivot itself, one swap is

performed.

The Maple procedure IPProb(n,k,t) takes inputs n, k as defined above and a sym-

bol t, and outputs the probability generating function Q(n, k, t) for the number of swaps

in the first partition when the length of the list is n and the last element, which is chosen

as the pivot, is the k-th smallest.

When k < n, the probability that there are s swaps is(
k − 1

k − s

)
(k − s)!(n− k)(n− k − 2 + s)!

(n− 1)!
=
n− k
n− 1

(
k−1
k−s
)(

n−2
k−s
) .

Therefore the probability generating function

Q(n, k, t) =
k∑
s=1

n− k
n− 1

(
k−1
k−s
)(

n−2
k−s
) ts.

The recurrence relation for the probability generating function Pn(t) of the total number

of swaps follows immediately:

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)Q(n, k, t)

with the initial condition P0(t) = P1(t) = 1.

Theorem 4.16. The expectation of the number of swaps of Quicksort for a list of length

n under Variant IV

E[Xn] = (n+ 2)H1(n)− 5

2
n− 1

2
.

Theorem 4.17. The variance of the number of swaps of Quicksort for a list of length

n under Variant IV

var[Xn] = 2n2− 215

12
n+

1

12
+ (11n+ 14)H1(n)− (n2− 2n− 2)H2(n)− (2n+ 2)H1(n)2.

Comparing these results with Theorem 4.5 and Theorem 4.9, it shows that

Variant IV has better average performances, notwithstanding the “broader” definition

of “swap” in the first two subsections. And of course, it is better than the in-place

Quicksort which swaps the indexes even when they are the same. We fully believe that

the additional cost to check whether the insertion and search indexes are the same is

worthwhile.

67

4.3.5 Variant V

This variant might not be practical, but we find that it is interesting as a combinatorial

model. As is well-known, if a close-to-median element is chosen as a pivot, the Quicksort

algorithm will have better performance than average in this case. Hence if additional

information is available so that the probability distribution of chosen pivots is no longer

a uniform distribution but something Gaussian-like, it is to our advantage.

Assume that the list is a permutation of [n] and we are trying to sort it, pretending

that we do not know the sorted list must be [1, 2, . . . , n]. Now the rule is that we choose

the first and last number in the list, look at the numbers and choose the one which is

closer to the median. If the two numbers are equally close to the median, then choose

one at random.

Without loss of generality, we can always assume that the last element in the list is

chosen as the pivot; otherwise we just need to run the algorithm in the last subsection

“in reverse”, putting both the insertion and search indexes on the last element and

letting larger elements be swapped to the left side of the pivot, etc. So the only

difference with Variant IV is the probability distribution of k, which is no longer 1
n

for each k ∈ [n].

Considering symmetry, Pr(n)(pivot = k) = Pr(n)(pivot = n + 1 − k), so we only

need to consider 1 ≤ k ≤ (n+ 1)/2. When n is even, let n = 2m. Then Pr(n)(pivot =

k) = 4k−3
(2m−1)2m . When n is odd, let n = 2m− 1, then Pr(n)(pivot = k) = 4k−3

(2m−1)(2m−2)

when k < m and Pr(n)(pivot = m) = 2
2m−1 .

With this minor modification, the recurrence relation for Pn(t) follows.

Pn(t) =

n∑
k=1

Pk−1(t)Pn−k(t)Q(n, k, t)Pr(n)(pivot = k)

with the initial condition P0(t) = P1(t) = 1.

Though an explicit expression seems difficult in this case, we can still analyze the

performance of the algorithm by evaluating its expected number of swaps. By exploiting

the Maple procedure MomFn(f,t,m,N), which inputs a function name f , a symbol t, the

order of the moment m and the upper bound of the length of the list N and outputs a

list of m-th moments for the Quicksort described by the probability generating function

68

f of lists of length 1, 2, . . . , N , we find that Variant V has better average performance

than Variant IV when n is large enough. For example, MomFn(PQIP, t, 1, 20) returns

[0,
1

2
,
7

6
, 2,

179

60
,
41

10
,
747

140
,
187

28
,
20459

2520
,
1013

105
,
312083

27720
,
25631

1980
,
353201

24024
,
1488737

90090
,

6634189

360360
,
814939

40040
,
273855917

12252240
,
4983019

204204
,
97930039

3695120
,
20210819

705432
],

and MomFn(PQIPk, t, 1, 20) returns

[0,
1

2
,
4

3
,
20

9
,
155

48
,
1957

450
,
2341

420
,
4055

588
,
55829

6720
,
794

81
,
630547

55440
,
170095

13068
,
12735487

864864
,

3864281

234234
,
2521865

137592
,
36424327

1801800
,
4343228489

196035840
,
107768347

4463316
,
15673532207

598609440
,
1136599735

40209624
].

We notice that for n ≥ 14, Variant V consistently has better average performance.

From this result we can conclude that it is worth choosing a pivot from two candidates

since the gains of efficiency are far more than its cost.

Moreover, we can obtain a recurrence for the expected number xn of the random

variable Xn. The Findrec(f,n,N,MaxC) procedure in the Maple package Findrec.txt

inputs a list of data L, two symbols n and N , where n is the discrete variable,

and N is the shift operator, and MaxC which is the maximum degree plus order.

Findrec(MomFn(PQIPk, t, 1, 80), n, N, 11) returns

Figure 4.1: The Recurrence Relation for the Expected Number of Swaps

As previously mentioned, N is the shift operator. Since this formula is too long, to

see its detailed interpretation, please look at Theorem 4.23 as reference.

We can also look at more elements to choose the middle-most one as the pivot. In

case that we do not want to store so much information, some other variants involving a

“look twice” idea could be that if the first selected element is within some satisfactory

interval, e.g., [n4 ,
3n
4] for a permutation of n, then it is chosen as the pivot. Otherwise we

69

choose a second element as the pivot without storing information about the first one.

It is also likely to improve the algorithm with “multiple looks” to choose the pivot and

the requirement to choose the current element as the pivot without continuing to look

at the next one could vary and ideally the requirement should be more relaxed as the

number of “looks” increases. We also refer the readers to [26] where P. Kirschenhofer,

H. Prodinger and C. Martinez chose the median of a random sample of three elements as

the pivot and obtained explicit expressions for this variant’s performance with methods

of hypergeometric differential equations. In general, it is ideal to have a probability

distribution of pivots where an element closer to the median is more likely to be chosen.

4.4 Explorations for Multi-Pivot Quicksort

With the same general idea as the 1-pivot Quicksort, it is natural to think about

“what if we choose more pivots.” In k-pivot Quicksort, k indexes are chosen and the

correspondent elements become pivots. The k pivots need to be sorted and then the

other elements will be partitioned into one of the k + 1 sublists. Compared to 1-

pivot Quicksort, multi-pivot Quicksort is much more complicated because we need to

determine how to sort the pivots, how to allocate each non-pivot element to the sublist

they belong to and how to sort a sublist containing less than k elements. Therefore,

there are a few multi-pivot Quicksort variants. We refer the reader to [21] for other

versions of multi-pivot. When k is large, it seems difficult to have an in-place version, so

we mainly consider the random variable, the number of comparisons Cn, in this section

since a swap might be difficult to define in this case.

4.4.1 Dual-Pivot Quicksort

Let’s start from the simplest multi-pivot Quicksort: dual-pivot. The model for dual-

pivot Quicksort is that two pivots p1 and p2 are randomly chosen. After one comparison,

they are sorted, say p1 < p2. Non-pivot elements should be partitioned into one of the

three sublists L1, L2 and L3. L1 contains elements smaller than p1, L2 contains elements

between p1 and p2 while L3 contains elements greater than p2. Each non-pivot element

70

is compared with p1 first. If it is smaller than p1, we are done. Otherwise it is compared

with p2 to determine whether it should go to L2 or L3.

Given that the list contains n distinct elements and the two pivots are the i-th

and j-th smallest element (i < j), we need one comparison to sort the pivot and

i − 1 + 2(n − i − 1) = 2n − i − 3 comparisons to distribute non-pivot elements to the

sublists. Hence the total number of comparison is 2n− i−2 and the recurrence relation

for the probability generating function Pn(t) of the total number of comparisons Cn of

dual-pivot Quicksort is

Pn(t) =
1(
n
2

) n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)t
2n−i−2

with the initial condition P0(t) = P1(t) = 1 and P2(t) = t.

The above recurrence is implemented by the procedure PQc2. With the aforemen-

tioned Maple procedure QsMFn it is easy to get the following theorems.

Theorem 4.18. The expectation of the number of comparisons in dual-pivot Quicksort

algorithms is

E[Cn] = 2(n+ 1)H1(n)− 4n.

Theorem 4.19. The variance of the number of comparisons in dual-pivot Quicksort

algorithms is

var[Cn] = n(7n+ 13) − 2 (n+ 1)H1(n)− 4 (n+ 1)2H2(n).

Theorem 4.20. The third moment about the mean of Cn is

−n(19n2 + 81n+ 104) +H1(n)(14n+ 14) + 12 (n+ 1)2H2(n) + 16 (n+ 1)3H3(n).

Theorem 4.21. The fourth moment about the mean of Cn is

1

9
n(2260n3 + 9658n2 + 15497n+ 11357)− 2 (n+ 1)(42n2 + 78n+ 77)H1(n)

+12 (n+ 1)2(H1(n))2 + (−4 (42n2 + 78n+ 31)(n+ 1)2 + 48 (n+ 1)3H1(n))H2(n)

+48 (n+ 1)4(H2(n))2 − 96 (n+ 1)3H3(n)− 96 (n+ 1)4H4(n).

71

As usual, any higher moment can be easily obtained with a powerful silicon servant.

Careful readers may notice that the above four theorems are exactly the same as the

ones in Section 4.2. It is natural to ask whether they indeed have the same probability

distribution. The answer is yes. In Section 4.1.2 of [20] the author gives a sketch of

proof showing that 1-pivot and dual-pivot Quicksorts’s numbers of comparisons satisfy

the same recurrence relation and initial condition. From an experimental mathematical

point of view, a semi-rigorous proof obtained by checking sufficiently many special cases

is good enough for us. For example, the first 10 probability generating function, Pn(t)

for 1 ≤ n ≤ 10 can be calculated in a nanosecond by entering [seq(PQc2(i, t), i =

1..10)] and we have

P1(t) = 1,

P2(t) = t,

P3(t) =
2

3
t3 +

1

3
t2,

P4(t) =
1

3
t6 +

1

6
t5 +

1

2
t4,

P5(t) =
2

15
t10 +

1

15
t9 +

1

5
t8 +

4

15
t7 +

1

3
t6,

...

which are exactly the same as the probability generating function for the number of

comparisons of 1-pivot Quicksort.

In conclusion, in terms of probability distribution of the number of comparisons, the

dual-pivot Quicksort does not appear to be better than the ordinary 1-pivot Quicksort.

As for the random variable Xn, the number of swaps, it depends on the specific

implementation of the algorithm and the definition of a “swap.” As a toy model, we

do an analogue of Section 4.3.1. Assume the list is a permutation of [n]. The first and

last elements are chosen as the pivot. Let’s say they are i and j. If i > j then we swap

them and still call the smaller pivot i. For each element less than i, we move it to the

left of i, and for each element greater than j, we move it to the right of j and call this

kind of operations a swap.

72

The recurrence relation for the probability generating function of Xn is

Pn(t) =
1(
n
2

)(
1

2
+

1

2
t)

n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)t
n−1+i−j

with the initial conditions P0(t) = P1(t) = 1 and P2(t) = 1
2 + 1

2 t.

Theorem 4.22. The expectation of the number of swaps in the above dual-pivot Quick-

sort variant is

E[Xn] =
4

5
(n+ 1)H1(n)− 39

25
n− 1

100
.

Note that this result is better than those in Sections 4.3.1 and 4.3.2.

4.4.2 Three-Pivot Quicksort

As mentioned at the beginning of this section, to define a 3-pivot Quicksort, we need

to define 1) how to sort the pivots, 2) how to partition the list and 3) how to sort a

list or sublist containing less than 3 pivots. Since this chapter is to study Quicksort,

we choose 1-pivot Quicksort for 1) and 3). For 2), it seems that the binary search is a

good option since for each non-pivot element exactly 2 comparisons with the pivots are

needed.

The Maple procedure PQs(n,t) outputs the probability generating function for 1-

pivot Quicksort of a list of length n. Hence during the process of sorting the pivots and

partitioning the list, the probability generating function of the number of comparisons

is PQs(3, t)t2n−6, which equals to

(
2

3
t3 +

1

3
t2)t2n−6 =

2

3
t2n−3 +

1

3
t2n−4.

So the recurrence relation for the probability generating function Pn(t) of the total

number of comparisons for 3-pivot Quicksort of a list of length n is

Pn(t) =
1(
n
3

) n∑
k=3

k−1∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pk−j−1(t)Pn−k(t)(
2

3
t2n−3 +

1

3
t2n−4)

with initial conditions P0(t) = P1(t) = 1, P2(t) = t and P3(t) = 2
3 t

3 + 1
3 t

2. This

recurrence is implemented by the procedure PQd3.

73

The explicit expression seems to be difficult to obtain in this case, but numerical

tests imply that 3-pivot Quicksort has better performances than dual-pivot, and of

course 1-pivot since it is indeed equivalent to dual-pivot.

By exploiting the Maple procedure MomFn(f,t,m,N) again, we can compare the

expectations of different Quicksort variants.

For instance, MomFn(PQc2, t, 1, 20) returns

[0, 1,
8

3
,
29

6
,
37

5
,
103

10
,
472

35
,
2369

140
,
2593

126
,
30791

1260
,
32891

1155
,
452993

13860
,
476753

12870
,
499061

12012
,

2080328

45045
,
18358463

360360
,
18999103

340340
,
124184839

2042040
,
127860511

1939938
,
26274175

369512
],

and MomFn(PQd3, t, 1, 20) returns

[0, 1,
8

3
,
14

3
,
106

15
,
49

5
,
64

5
,
561

35
,
1226

63
,
5192

225
,
465316

17325
,
533509

17325
,
714008

20475
,
61615768

1576575
,

342234824

7882875
,
754600981

15765750
,
1404956027

26801775
,
15298397599

268017750
,
31489234438

509233725
,
1697926310039

25461686250
].

We notice that for each fixed n > 3, 3-pivot Quicksort’s average performance is better

than 2-pivot and 1-pivot. This numerical test is also possible for all previous Quicksort

variants but seems unnecessary when the explicit expressions are easily accessible.

As in Section 4.3.5, a recurrence relation of the expected number of comparisons

can be obtained. Findrec(MomFn(PQd3, t, 1, 40),n,N,8) returns

(3n+ 4)
(
n2 − 5n+ 12

)
(n+ 4) (n+ 3) (3n+ 1)

−
(
12n4 + 13n3 − 12n2 + 59n+ 24

)
N

(3n+ 1) (n+ 4) (n+ 3) (n+ 2)

+3
(n+ 1) (6n+ 5)nN2

(n+ 4) (n+ 3) (3n+ 1)
− (n+ 1) (12n+ 7)N3

(n+ 4) (3n+ 1)
+N4,

which leads to the following theorem.

Theorem 4.23. The expected number of comparisons Cn of 3-pivot Quicksort for a

list of length n satisfies the following recurrence relation:

Cn+4 =
(n+ 1) (12n+ 7)

(n+ 4) (3n+ 1)
Cn+3 − 3

(n+ 1) (6n+ 5)n

(n+ 4) (n+ 3) (3n+ 1)
Cn+2

+

(
12n4 + 13n3 − 12n2 + 59n+ 24

)
(3n+ 1) (n+ 4) (n+ 3) (n+ 2)

Cn+1 −
(3n+ 4)

(
n2 − 5n+ 12

)
(n+ 4) (n+ 3) (3n+ 1)

Cn.

The recurrence relations for higher moments are also obtainable, but a long enough

list of data is needed.

74

4.4.3 k-Pivot Quicksort

More generally, k-pivot Quicksort can be considered with the convention that 1) the k

pivots are sorted with 1-pivot Quicksort, 2) binary search is used to partition the list

into k + 1 sublists, 3) we use 1-pivot Quicksort to sort lists with length less than k.

In the package QuickSort.txt the procedure PQck(n, t, k) outputs the probabil-

ity generating function for the number of comparisons of k-pivot Quicksort where each

element is compared with pivots in a linearly increasing order. Obviously this is not

efficient when k is large. However, the problem for binary search is that when k 6= 2i−1

for some i, it is hard to get an expression for the number of comparisons in the binary

search step since the number highly depends on the specific implementation where some

boundary cases may vary and the floor and ceiling functions will be involved, which

leads to an increasing difficulty to find the explicit expressions for moments.

There is a procedure QsBC(L, k) which inputs a list of distinct numbers L and

an integer k representing the number of pivots and outputs the sorted list and the

total number of comparisons. For convenience of Monte Carlo experiments, we use

MCQsBC(n, k, T) where n is the length of the list, k is the number of pivots and T

is the number of times we repeat the experiments. Because of the limit of computing

resources, we only test for k = 3, 4, 5, 6 and n = 10, 20, 30, 40, 50.

[seq(MCQsBC(10 ∗ i, 3, 100), i = 1..5)] = [22.95, 65.75, 118.71, 178.28, 239.45],

[seq(MCQsBC(10 ∗ i, 4, 100), i = 1..5)] = [23.78, 67.77, 120.91, 180.35, 251.19],

[seq(MCQsBC(10 ∗ i, 5, 100), i = 1..5)] = [23.54, 65.74, 119.59, 178.36, 241.03],

[seq(MCQsBC(10 ∗ i, 6, 100), i = 1..5)] = [23.14, 66.22, 120.07, 176.43, 236.46],

75

Our observation is that for large enough n, the more pivots we use, the less com-

parisons are needed. However, when k is too close to n, the increase of pivots may lead

to inefficiency.

4.5 Limiting Distribution

The main purpose of this chapter is to find explicit expressions for the moments of

the number of swaps or comparisons of some variants of Quicksort, to compare their

performances and to explore more efficient Quicksort algorithms. However, it is also of

interest to find more moments for large n and calculate their floating number approxi-

mation of the scaled limiting distribution.

As mentioned in [13], if we are only interested in the first few moments, then it is

wasteful to compute the full probability generating function Pn(t). Let t = 1 + w and

use the fact that

Pn(1 + w) =
∞∑
r=0

fr(n)

r!
wr

where fr(n) are the factorial moments. The straight moments E[Xr
n], and the moments-

about-the-mean, mr(n) follow immediately.

As a case study, let’s use Variant IV from Section 4.3.4 as an example. The recur-

rence relation is

Pn(1 + w) =
1

n

n∑
k=1

Pk−1(1 + w)Pn−k(1 + w)Q(n, k, 1 + w),

where Q is as defined in Section 4.3.4.

Since only the first several factorial moments are considered, in each step truncation

is performed and only the first several coefficients in w is kept. With this method we

can get more moments in a fixed time. The procedure TrunIP implements the truncated

factorial generating function.

With the closed-form expressions for both the expectation, cn, and the variance

m2(n) := var(Xn), the scaled random variable Zn is defined as follows.

Zn :=
Xn − cn√
m2(n)

.

76

We are interested in the floating point approximations of the limiting distribution

limn→∞ Zn. Of course its expectation is 0 and its variance is 1.

For instance, if we’d like to know the moments up to order 10, TrunIP(100, z,

10) returns

1 +
7617634712836831344646726224164628686543

27341323619495089084130905464828354336
z

+
1169146867836246319480317311960440606057785761234433183813484643

29517287662514914280390084303910684938635848245569645536000
z2

+

For 1 ≤ r ≤ 10, the coefficient of zr times r! is the r-th factorial moment. By

E[Xr] =
r∑
j=0

{
r

j

}
E[(X)j]

where the curly braces denote Stirling numbers of the second kind, we can get the raw

moments. And with the procedure MtoA a sequence of raw moments are transformed

to moments about the mean. Divided by m2(n)
r
2 , the 3rd through 10th moments in

floating point approximations are

[0.7810052982, 3.942047050, 9.146681877, 37.12169647, 137.7143092,

613.5286860, 2872.409923, 14709.75560].

The same technique can be applied to other variants of Quicksort in this chapter and

we leave this to interested readers.

4.6 Remarks

In such a rich and active research area as Quicksort, there are still several things we

could think about to improve the algorithms’ performances. Just to name a few, in

2-pivot Quicksort when we compare non-pivot elements with the pivots to determine

which sublist they belong to, if the history is tracked, we might be able to use the

history to determine which pivot to compare with first for the next element. The

optimal strategy would vary with the additional information about the range of the

numbers or the relative ranking of the two pivots among all the elements.

77

As for k-pivot Quicksort, our naive approach only distinguishes two cases: whether

the currently to-be-sorted list has length less than k or not. If the length is less than k,

we use 1-pivot Quicksort; otherwise we still choose k pivots. However, we might be able

to improve the performance if the number of pivots varies according to the length of the

to-be-sorted list or sublist. Let’s say there is a function g(n), where n is the length of

the list. So we pick g(n) pivots at the beginning. After we obtain the g(n) + 1 sublists

with length ni, 1 ≤ i ≤ g(n) + 1, for each one of them, we choose g(ni) pivots. It would

be interesting whether we can find an optimal g in terms of its average performance.

Additionally, when k is large, it might make sense to use multi-pivot Quicksort to sort

the k pivots as well.

Of course, it is also interesting to study the explicit expressions of the numbers

of swaps in multi-pivot Quicksort. But it appears to be dependent on the specific

implementation of the algorithm so it is of significance to look for variants which save

time and space complexity.

The main results of this chapter are those explicit expressions of moments and

recurrence relations for either the number of comparisons or the number of swaps of

various Quicksort variants. Though all of their asymptotics are O(n log n), the constant

before this term varies a lot and some comparisons of these variants are also discussed.

When there is difficulty getting the explicit expressions, numerical tests and Monte

Carlo experiments are performed. We also have a demonstration on how to get more

moments and find the numeric approximation of the scaled limiting distribution.

Nevertheless, more important than those results is the illustration of a methodology

of experimental mathematics. From ansatzes and sufficient data we have an alternative

way to obtain results that otherwise might be extremely difficult or even impossible to

get via traditional human approaches to algorithm analysis.

78

Chapter 5

Peaceable Queens Problem

This chapter is adapted from [51], which has been published on Experimental Mathe-

matics. It is also available on arXiv.org, number 1902.05886.

5.1 Introduction

One of the fascinating problems described in the recent article [40], about the great On-

Line Encyclopedia of Integer Sequences, and in the beautiful and insightful video

[41] is the peaceable queens problem. It was chosen, by popular vote, to be assigned the

milestone ‘quarter-million’ A-number, A250000.

The question is the following:

What is the maximal number, m, such that it is possible to place m white queens

and m black queens on an n × n chess board, so that no queen attacks a queen of the

opposite color.

Currently only fifteen terms are known:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a(n) : 0 0 1 2 4 5 7 9 12 14 17 21 24 28 32

In this chapter, we’d like to consider this peaceable queens problem as a continuous

problem by normalizing the chess board to be the unit square U := [0, 1]2 = {(x, y) | 0 ≤

x, y ≤ 1}. Let W ⊆ U be the region where white queens are located. Then the non-

attacking region B of W can be defined as

B = {(x, y) ∈ U | ∀(u, v) ∈W,x 6= u, y 6= v, x+ y 6= u+ v, y − x 6= v − u}.

79

So the continuous version of the peaceable queens problem is to find

max
W∈2U

(min(Area(W),Area(B))).

Considering that the queen is able to move any number of squares vertically, hor-

izontally and diagonally, it is reasonable to let W be a convex polygon or a disjoint

union of convex polygons whose boundary consists of vertical, horizontal and slope ±1

line segments, otherwise we can increase the area of white queens without decreasing

the area of black queens.

In this chapter, we use a list L of lists [[a1, b1] , [a2, b2] , . . . , [an, bn]] to denote the

n-gon whose vertices are the n pairs in the list L and whose sides are the straight line

segments connecting [ai, bi] and [ai+1, bi+1], (1 ≤ i ≤ n− 1), and [an, bn] and [a1, b1].

This chapter is organized as follows. At first we look at Jubin’s construction and

prove that it is a local optimum. Though there is no rigorous proof, we conjecture

and reasonably believe that it is indeed a global optimum at least for “the continuous

chess board”, after numerous experiments with one, two and more components. Then

we consider the optimal case under more restrictions, or under certain configurations,

e.g., only one component or two identical squares or two identical triangles, etc. In

some cases, the exact optimal parameters and areas can be obtained. Note that in this

chapter’s figures, for convenience of demonstration, the color red is used to represent

white queens and blue is for black queens.

5.2 Jubin’s Construction

As mentioned in [40] (and [39], sequence A250000), it is conjectured that Benoit Jubin’s

construction given in Fig. 5 of [40], see also here:

http://sites.math.rutgers.edu/~zeilberg/tokhniot/peaceable/P1.html

or Figure 5.1, is optimal for n ≥ 10. Its value is b7n2

48 c.

While we are, at present, unable to prove this, we did manage to prove that when

one generalizes Jubin’s construction and replaces the sides of the two pentagons with

arbitrary parameters (of course subject to the obvious constraints so that both white

80

Figure 5.1: Benoit Jubin’s Construction for a Unit Square

and black queens reside in two pentagons), then Jubin’s construction is indeed (asymp-

totically) optimal, i.e. in the limit as n goes to infinity.

Lemma 5.1. Normalizing the chess board to be the unit square {(x, y) | 0 ≤ x, y ≤ 1}, if

the white queens are placed in the union of the interiors of the following two pentagons

[[0, 0] , [a, a] , [a, a+ b− e] , [a− e, a+ b− e] , [0, b]],

and

[[g, 0] , [g + c, 0] , [g + c, c− 2 f + d] , [g + c− f, c− f + d] , [g, d]],

where a, b, c, d, e, f, g are between 0 and 1 and all coordinates and side lengths in Fig.

5.1 are non-negative and appropriate so that black queens also reside in two pentagons,

then the black queens are located in the interiors of the pentagons

[[g, 1] , [a, 1] , [a, g+ 2 c− 2 f + d− a] , [
1

2
g+

1

2
d− 1

2
b+ c− f, 1

2
g+

1

2
d+

1

2
b+ c− f] ,

81

[g, g + b]],

and

[[1, 1] , [g + c, g + c] , [g + c, a+ b− e] , [a+ b− e+ g − d, a+ b− e] , [1, 1 + d− g]].

Proof. Since we only consider cases when the black queens also reside in two pentagons,

this requirement provides natural constraints for these parameters a, b, c, d, e, f, g. Just

to name a few, a ≤ g because the two pentagons are not overlapped, g+ c ≤ 1 because

the right pentagon of white queens should entirely reside in the unit square, d ≤ g

because otherwise the right pentagon of black queens will not exist and c − f + d,

which is the y-coordinate of the highest point in the right pentagon of white queens,

cannot be too large to ensure the right pentagon of black queens does not degenerate

to a parallelogram. In these constraints we always use “≤” instead of “<” so that the

Lagrange multipliers will be able to work in a closed domain.

With school geometry, it is obvious that black queens cannot reside in 0 ≤ x < a

since it is attacked by the left pentagon of white queens. Similar arguments work for

the area 0 < y ≤ a + b and g < x < g + c. Now the leftover on the unit square is

a union of two rectangles. By excluding x + y < g + 2c − 2f + d, 0 < y − x < b and

y − x < d− g, these two rectangles are shaped into two pentagons and the coordinates

of their vertices follow immediately.

Lemma 5.2. The area of the white queens is

ab − 1

2
e2 + cd +

1

2
c2 − f2,

while the area of the black queens is

−a− 3

4
d2+2 g−d−cd−ab−f2− 1

2
e2− 3

2
c2+2 bc−2 af+3 ac+2 ad+2 cf−ec−ed+be

+ae− bf + fd+
3

2
bd− a2 − 3

4
b2 − 2 gc+

1

2
gd− 1

2
gb+ ag + gf − 7

4
g2.

Proof. For white queens, the left pentagon is a rectangle minus two triangles. Hence

the area is

a(a+ b− e)− 1

2
a2 − 1

2
(a− e)2 = ab− 1

2
e2.

82

The area of the right pentagon is

c(d+ c− f)− 1

2
f2 − 1

2
(c− f)2 =

1

2
c2 + cd− f2.

So the area of the white queens follows. For black queens, similarly, with the coordinates

of the vertices in Lemma 5.1, simple calculation leads to the formula of its area.

Theorem 5.3. The optimal case of the two-pentagon configuration is Jubin’s construc-

tion.

Proof. The procedure MaxC(L,v) in the Maple package PeaceableQueens.txt takes a

list of length 2, L, consisting of polynomials in the list of variables v, and v as inputs

and outputs all the extreme points of L[1], subject to the constraint L[1] = L[2], using

Lagrange multipliers.

Optimally, the areas of the white queens and black queens should be the same.

Maximizing this quantity with the procedure MaxC under this constraint shows that the

maximum value is

7

48
,

and this is indeed achieved by Jubin’s construction, in which the white queens are

located inside the pentagons

[[0, 0] , [
1

4
,
1

4
] , [

1

4
,
1

2
] , [

1

6
,
1

2
] , [0,

1

3
]],

and

[[
1

2
, 0] , [

3

4
, 0] , [

3

4
,
1

4
] , [

2

3
,
1

3
] , [

1

2
,
1

6
]],

and the black queens reside inside the pentagons

[[
1

2
, 1] , [

1

4
, 1] , [

1

4
,
3

4
] , [

1

3
,
2

3
] , [

1

2
,
5

6
]],

and

[[1, 1] , [
3

4
,
3

4
] , [

3

4
,
1

2
] , [

5

6
,
1

2
] , [1,

2

3
]].

83

It seems natural that two components are optimal because if there is only one con-

nected component for white queens, black queens still have two connected components.

From the view of symmetry, it seems good to add the other component for white queens.

In the rest of the chapter, it is shown that with only one connected component it is

unlikely to surpass the 7
48 result. And by experimenting with three or more connected

components for the white queens, it seems that it is not possible to improve on Jubin’s

construction, hence we believe that it is indeed optimal (at least asymptotically). By

the way, Donald Knuth kindly informed us that what we (and the OEIS) call Jubin’s

construction already appears in Stephen Ainley’s delightful book Mathematical Puzzles

[1], p. 31, Fig, 28(A) .

5.3 Single Connected Component

In this section, we try to find the optimal case when W is a single connected component

and when the configuration is restricted to rectangles, parallelograms, triangles and

finally obtain a lower bound for the optimal case of one connected component.

5.3.1 A Single Rectangle

Let the rectangle for white queens be [[0, 0] , [a, 0] , [a, b] , [0, b]], with the obvious fact

that for a rectangle with a given size, placing it in the corner will lead to the largest

non-attacking area. The area for white queens is ab and the area for black queens is

(1− a− b)2. We’d like to find the maximum of ab under the condition

ab = (max(1− a− b, 0))2, 0 ≤ a, b ≤ 1.

Since a and b are symmetric, the maximum must be on the line a = b. Hence the

optimal case is when

a = b =
1

3

and the largest area for peaceable queens when the configuration for white queens is a

rectangle is 1
9 .

84

Figure 5.2: The Optimal Rectangle for a 120 by 120 Chess Board

5.3.2 A Single Parallelogram

Let the parallelogram for white queens be [[0, 0] , [a, a] , [a, a+ b] , [0, b]].

Note that as mentioned in the beginning of this section, because the line segment

must be vertical, horizontal or of slope ±1 and the corner is the best place to locate a

shape, there are only two kinds of parallelograms, the other one being [[0, 0], [b, 0], [a+

b, a], [a, a]]. Obviously they are symmetric with respect to the line y = x, so let’s focus

on one of them.

The area for white queens is still ab and the area for black queens is still (max(1−

a− b, 0))2. So similarly with the rectangle case, the maximum area 1
9 is reached when

a = b =
1

3
.

85

Figure 5.3: The Optimal Parallelogram for a 120 by 120 Chess Board

5.3.3 A Single Triangle

With similar arguments as in the last subsection, the optimal triangle must have the

format: [[0, 0] , [0, a] , [a, a]]. The area for white queens is

1

2
a2

and the area for black queens is

1

2
(1− a)2.

with the condition 0 ≤ a ≤ 1.

Hence, when a = 1
2 the area reaches its maximum 1

8 , which is better than the

rectangle or parallelogram configuration.

By the way, [[0, 0] , [0, a] , [a, 0]] won’t be a good candidate for optimal triangles be-

cause we can always extend it to a square [[0, 0] , [0, a] , [a, a] , [a, 0]] without decreasing

86

Figure 5.4: The Optimal Triangle for a 120 by 120 Chess Board

the area of black queens. Then its maximum cannot exceed the maximum of rectangles,

which is 1
9 .

5.3.4 A Single Hexagon

After looking at specific configurations in the above three subsections, we’d like to find

some numerical lower bounds for the single connected component configuration. It is

interesting to find out or at least get a numerical estimation how large the area of white

or black queens can be if the white queens are in a single connected component. Note

that from rectangles and parallelogram we get a lower bound 1
9 ≈ 0.1111 and from

triangles we get a better lower bound 1
8 = 0.125.

The natural thing is that we want to place the polygon in a corner. Because of

the restriction of the orientations of its sides, at most it can be an octagon. Let’s

place the polygon in the lower left corner. Then we immediately realize that it is a

87

waste if the polygon doesn’t fill the lower left corner of the unit square. It is the

same for the upper right side of the polygon. If part of its vertices are [[a, b] , [a, b +

c] , [a− d, b+ c+ d] , [a− d− f, b+ c+ d]], then we can always extend the polygon to

[. . . , [a, b] , [a, b+ c+d] , [a−d− f, b+ c+d] , . . .] without decreasing the area of black

queens.

Hence the general shape is a hexagon

[[0, 0] , [a, 0] , [a+ b, b] , [a+ b, b+ c] , [d, b+ c] , [0, b+ c− d]]

with four parameters. Then the area for white queens is

(a+ b)(b+ c)− 1

2
(b2 + d2),

and the area for black queens is

1

2
(1− a− b− c)2 +

1

2
(1− a− 2b− c+ d)2.

With the procedure MaxC, one of the local maximums found using Lagrange multipliers

is when

a = c = d =
1

2
, b = 0.

However, actually this is the optimal triangle with an area of 1
8 .

Another local maximum is when a = b = c = d. In that case, we have

3a2 = (1− 3a)2.

Hence when

a =
3−
√

3

6
≈ 0.2113248654,

the area of white queens is maximized at

3a2 =
2−
√

3

2
≈ 0.1339745962.

The best configuration of hexagons is found and at least we have a numerical lower

bound 0.1339745962 for the best single component configuration.

88

Figure 5.5: The Nearly Best Lower Bound Configuration for a 100 by 100 Chess Board

5.4 Two Components

Since in Jubin’s construction, there are two pentagons, it is natural to think of the

optimum of certain two-component configurations. The difficulty for analyzing the

two-component is that more parameters are introduced and the area formula for black

queens becomes a much more complicated piece-wise function.

In this section, the cylindrical algebraic decomposition algorithm in quantifier elim-

ination is applied to find out the exact optimal parameters and the maximum areas.

Given a set S of polynomials in Rn, a cylindrical algebraic decomposition is a decom-

position of Rn into semi-algebraic connected sets called cells, on which each polynomial

has constant sign, either +, - or 0. With such a decomposition it is easy to give a

solution of a system of inequalities and equations defined by the polynomials, i.e. a real

polynomial system.

89

5.4.1 Two Identical Squares

To keep the number of parameters as few as possible, the configuration of two identical

squares is the first we’d like to study. There are two parameters, the side length a and

the x-coordinate s of the lower left vertex of the right square, the left square’s lower

left vertex being the origin.

The two squares are

[[0, 0] , [a, 0] , [a, a] , [0, a]]

and

[[s, 0] , [s+ a, 0] , [s+ a, a] , [s, a]].

Figure 5.6: The Nearly Optimal Two Identical Squares Configuration for a 200 by 200
Chess Board

Based on this configuration, the domain is

0 ≤ a ≤ 1

2
, a ≤ s ≤ 1− a.

90

The area of white queens is

2a2.

Actually the formula for black queens is very complicated, especially when a is small

there may be a lot of components for B. However, by experimentation (procedure

FindM2Square), we found that for all mid-range s ∈ [0.24, 0.76], a around 0.23 will

always maximize the area. Then we just need to focus on the shape of B when a is not

far from its optimum.

The area of black queens is

(s− a)(1− s− a) +
1

4
(s− a)2 + (max(1− s− 2a, 0))2 + max(s− 2a, 0)(1− s− a).

The domain for a and s is a triangle. The area formula for black queens shows

that the two lines s = 2a and s = 1 − 2a separate the domain into 4 regions. In each

region, we have a polynomial formula for the area of black queens. Since the area of

white queens W is just a simple formula of a, we need to maximize a with the condition

W = B.

When s ≥ 2a and s ≥ 1− 2a, by cylindrical algebraic decomposition we obtained

1
2(−1 +

√
2) ≤ a < 1

27(1 + 2
√

7) s = 4+a
7 + 2

7

√
4− 19a+ 9a2

1
27(1 + 2

√
7) ≤ a < 1

18(19−
√

217) s = 4+a
7 ±

2
7

√
4− 19a+ 9a2

a = 1
18(19−

√
217) s = 4+a

7 −
2
7

√
4− 19a+ 9a2

.

When s ≤ 2a and s ≥ 1− 2a, the result is an empty set.

When s ≤ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

7
(3−

√
2), s = 2− 7a− 2

√
−2a+ 9a2.

When s ≥ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

27
(1 + 2

√
7), s = 3a− 2√

3

√
1− 7a+ 12a2.

Comparing the four cases, we found that the largest area occurred in case 1, when

a =
1

18
(19−

√
217) ≈ 0.2371711193,

s =
13

18
− 1

126

√
217 ≈ 0.6053101598.

The largest area is 289
81 −

19
√
217

81 ≈ 0.112500281.

91

5.4.2 Two Identical Triangles

The configuration of two identical isosceles right triangles with the same orientation

is the next to be considered. There are also two parameters, the leg length a and the

x-coordinate s of the lower left vertex of the triangle on the right. Note that the slopes

of both triangles’ hypotenuses are +1.

The two isosceles right triangles are

[[0, 0] , [a, 0] , [a, a]]

and

[[s, 0] , [a+ s, 0] , [a+ s, a]].

The domain for the two parameters a and s is also

0 ≤ a ≤ 1

2
, a ≤ s ≤ 1− a.

The area of white queens is a2 and for the area of black queens, by numerical experi-

mentation, we found that for all mid-range s ∈ [0.32, 0.68], the area is maximized when

a is around 0.31. Hence for a around 0.31, we have that the area of black queens is

2(s− a)(1− s− a) +
1

2
(s− a)2 +

1

2
(1− s− a)2 +

1

2
(max(1− s− 2a, 0))2.

When s ≥ 1− 2a, by cylindrical algebraic decomposition we obtained

1
2(2−

√
2) ≤ a < 1

4(−1 +
√

5) s = 1
2 + 1

2

√
3− 12a+ 8a2

1
4(−1 +

√
5) ≤ a < 1

4(3−
√

3) s = 1
2 ±

1
2

√
3− 12a+ 8a2

a = 1
4(3−

√
3) s = 1

2 −
1
2

√
3− 12a+ 8a2

.

When s ≤ 1− 2a, we obtained

1

11
(5−

√
3) ≤ a ≤ 1

4
(−1 +

√
5), s = 2a−

√
2− 10a+ 12a2.

Hence the area is maximized when

a =
1

4
(3−

√
3) ≈ 0.316987298,

s =
1

2
.

92

Figure 5.7: The Nearly Optimal Two Identical Isosceles Right Triangles with the Same
Orientation Configuration for a 200 by 200 Chess Board

The largest area is 3
4 −

3
8

√
3 ≈ 0.1004809470.

Actually, a larger area can be obtained if two identical isosceles right triangles with

different orientations are considered. For example, if we take the two triangles to be

[[0, 0] , [a, 0] , [a, a]]

and

[[1− a, 0] , [1, 0] , [1− a, a]],

then the area of black queens is

a(1− 2a) + (
1

2
− a)2 = −a2 +

1

4
.

Equalizing the areas of white queens and black queens, we get

Area(W) = a2 =
1

8
,

93

which is greater than the optimal case of two identical isosceles right triangles with the

same orientation.

Figure 5.8: An Example of Two Identical Isosceles Right Triangles with Different Ori-
entations Configuration for a 200 by 200 Chess Board

5.4.3 One Square and One Triangle with the Same Side Length

With the same notations as the above two subsections, let W be the union of the square

[[0, 0] , [a, 0] , [a, a] , [0, a]]

and the triangle

[[s, 0] , [a+ s, 0] , [a+ s, a]].

Then the area of white queens is 3
2a

2 and the area of black queens is

a(s− a)(1− s− a) +
1

4
(s− a)2 + (max(1− s− 2a, 0))2

94

Figure 5.9: The Nearly Optimal One Square and One Triangle (with the same side
length) Configuration for a 200 by 200 Chess Board

when a is around its optimum 0.27 and s ∈ [0.28, 0.72]. It is obtained that when

s ≥ 1− 2a

1
2(−2 +

√
6) ≤ a < 1

21(1 +
√

22) s = 4−a
7 + 1

7

√
16− 64a+ 22a2

1
21(1 +

√
22) ≤ a < 2

11(8−
√

42) s = 4−a
7 ±

1
7

√
16− 64a+ 22a2

a = 2
11(8−

√
42) s = 4−a

7 −
1
7

√
16− 64a+ 22a2

,

and when s ≤ 1− 2a

1

15
(6−

√
6) ≤ a ≤ 1

21
(1 +

√
22), s =

7a

3
− 1

3

√
12− 72a+ 106a2.

Consequently, we have the maximized area when

a =
2

11
(8−

√
42) ≈ 0.276228965,

s =
112

33
− 14

33

√
42− 50

33

√
7 +

52

33

√
6 ≈ 0.495622162.

95

The largest area is 636
121 −

96
121

√
42 ≈ 0.1144536616. Among the three configurations

where CAD is applied in this section, we found that this configuration with one square

and one triangle has the largest area.

5.5 Remarks

Our method can be easily generalized for configurations with more components and/or

more parameters. For instance, let’s consider the configuration of two squares, not

necessarily identical. Then there are three parameters, the side length a of the left

square, the side length b of the right square and the x-coordinate s of the right square’s

lower left vertex. For fixed b and s, we can find the interval of a in which the optimum

is located. Then for each fixed s, we are able to find the interval of b such that its

corresponding a will lead to the largest area a2 + b2. When the estimated optimal

parameters are determined, a piece-wise function of the area of black queens follows.

The main difficulty of this peaceable queens problem lies in the number of parame-

ters and the complexity of the area formula of black queens. When there are multiple

components, as long as the number of parameters is limited, it should be still doable.

For example, the configuration of three identical squares which are placed equidistantly

has only one parameter, the side length a. When the chess board is 240 by 240, the op-

timal a is around 40, which means in the unit square the optimal side length is around

1
6 .

In conclusion, in this chapter we prove that Jubin’s configuration is a local optimum.

Optimal cases of some certain configurations are discussed. Future work includes the

exact solution of complicated configurations with numerous parameters, whether the

white queens have two components under the best configuration, and proof or disproof

that Jubin’s configuration is indeed the best.

96

References

[1] Stephen Ainley, Matematical puzzles, Prentice Hall, Upper Saddle River, NJ,
1977.

[2] Saugata Basu, Richard Pollack and Marie-Franoise Roy, Algorithms in real alge-
braic geometry, second edition. Algorithms and Computation in Mathematics 10,
Springer-Verlag, Berlin, 2006.

[3] Robert Bosch, Peaceably coexisting armies of queens, Optima (Newsletter of the
Mathematical Programming Society) 62.6-9: 271, 1999.

[4] Christopher W. Brown, Simple CAD Construction and Its Applications, Journal
of Symbolic Computation, 31, 521-547, 2001.

[5] Bob Caviness and Jeremy Johnson (Eds.), Quantifier Elimination and Cylindrical
Algebraic Decomposition, Springer-Verlag, New York, 1998.

[6] Michael Cramer, A note concerning the limit distribution of the quicksort algo-
rithm, Informatique Theériques et Applications, 30, 195-207, 1996.

[7] Antonio G. De Oliveira and Michel L. Vergnas, Parking Functions and Labelled
Trees, Seminaire Lotharingien de Combinatoire 65 (2011), Article B65e.

[8] Persi Diaconis and Angela Hicks, Probabilizing Parking Functions, Adv. in Appl.
Math. 89 (2017), 125-155.

[9] Peter Doyle and Laurie Snell, “Random Walks and Electrical Networks”, Carus
Mathematical Monographs (# 22), Math. Assn. of America, 1984.

[10] Marianne Durand, Asymptotic analysis of an optimized Quicksort algorithm, In-
form. Proc. Lett., 85 (2): 73-77, 2003.

[11] Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or
Disproof) of Linear Recurrences Satisfied by Pisot Sequences, The Personal Jour-
nal of Shalosh B. Ekhad and Doron Zeilberger. Available from
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/pisot.html .

[12] Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane’s FIRST
LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees,
The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger, July 19, 2016.
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/a435.html .

[13] Shalosh B. Ekhad and Doron Zeilberger, A Detailed Analysis of Quicksort Run-
ning Time, The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger,
math.rutgers.edu/ zeilberg/pj.html .
Also in: arxiv.org/abs/1903.03708 .

97

[14] Shalosh B. Ekhad and Doron Zeilberger, Explicit Expressions for the Variance and
Higher Moments of the Size of a Simultaneous Core Partition and its Limiting
Distribution, The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger,
math.rutgers.edu/ zeilberg/pj.html.
Also in: arxiv.org/abs/1508.07637 .

[15] F. J. Faase, On the number of specific spanning subgraphs of the graphs g × pn,
Ars Combinatoria, 49 (1998) 129-154.

[16] Dominique Foata and John Riordan, Mapping of acyclic and parking functions,
Aequationes Mathematicae 10 (1974), 490-515.

[17] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, “Concrete Mathe-
matics”, Addison-Wesley, 1989.

[18] P. Hennequin, Combinatorial analysis of quicksort algorithm, RAIRO Theor. In-
form. Appl., 23 (3): 317-333, 1989.

[19] C.A.R. Hoare, Quicksort, The Computer Journal, 5:1, 10-15, 1962.

[20] Vasileios Iliopoulos, The Quicksort algorithm and related topics,
arxiv.org/abs/1503.02504.

[21] Vasileios Iliopoulos, A note on multipivot Quicksort, Journal of Information and
Optimization Sciences, 39:5, 1139-1147, 2018.

[22] Vasileios Iliopoulos and David B. Penman, Dual pivot Quicksort, Discrete Math-
ematics, Algorithms and Applications, Vol. 04, No. 03, 1250041, 2012.

[23] Svante Janson, Brownian excursion area, Wrights constants in graph enumera-
tion, and other Brownian areas, Probab. Surveys, 4(2007), 80-145.
projecteuclid.org/euclid.ps/1178804352 .

[24] Benoit Jubin, Improved lower bound for A250000,
oeis.org/A250000/a250000 1.txt .

[25] Manuel Kauers and Peter Paule, “The Concrete Tetrahedron”, Springer, 2011.

[26] P. Kirschenhofer, H. Prodinger, C. Martinez, Analysis of Hoare’s FIND algorithm
with Median-of-three partition, Random Structures and Algorithms, 10:1-2, 143-
156, 1997.

[27] Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and
Searching, Addison-Wesley, 1973.

[28] Charles Knessl and Wojciech Szpankowski, Quicksort algorithm again revisited,
Discrete Mathematics and Theoretical Computer Science, 3, 43-64, 1999.

[29] Donald E. Knuth, Satisfiability, Fascicle 6, volume 4 of The Art of Computer
Programming, Addison-Wesley, 2015.

[30] Alan G. Konheim and Benjamin Weiss, An occupancy discipline and applications,
SIAM J. Applied Math. 14 (1966), 1266-1274.

98

[31] J.P. Kung and C. Yan, Expected sums of general parking functions, Annals of
Combinatorics 7 (2003), 481-493.

[32] J.P. Kung and C. Yan, Exact formulas for the moments of sums of classical
parking functions, Advances in Applied Mathematics 31 (2003), 215-241.

[33] Alois Panholzer, Analysis of multiple quickselect variants, Theor. Comput. Sci.,
302 (1-3): 45-91, 2003.

[34] Paul Raff, Spanning Trees in Grid Graph,
arxiv.org/abs/0809.2551.

[35] John Riordan and Neil J. A. Sloane, The enumeration of rooted trees by total
height, J. Australian Math. Soc. 10 (1969), 278-282.
neilsloane.com/doc/riordan-enum-trees-by-height.pdf .

[36] Carsten Schneider, The Summation package Sigma, A Mathematica package avail-
able from
www3.risc.jku.at/research/combinat/software/Sigma/index.php .

[37] Carsten Schneider, Symbolic Summation Assists Combinatorics,
Sem.Lothar.Combin. 56 (2007), Article B56b (36 pages).
www3.risc.jku.at/research/combinat/software/Sigma/pub/SLC06.pdf .

[38] Marcel-Paul Schützenberger, On an enumeration problem, J. Combinatorial The-
ory 4 (1968), 219-221.

[39] Neil J.A. Sloane, The On-Line Encyclopedia of Integer Sequences,
oeis.org/ .

[40] Neil J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, Notices of the
American Mathematical Society 65 #9 , 1062-1074, 2018.

[41] Neil J.A. Sloane, Peaceable Queens - Numberphile video, available from
www.youtube.com/watch?v=IN1fPtY9jYg.

[42] Richard Stanley, Parking functions,
www-math.mit.edu/~rstan/transparencies/parking.pdf .

[43] Richard Stanley, A survey of parking functions,
www-math.mit.edu/~rstan/transparencies/parking3.pdf .

[44] Richard Stanley, “Enumerative Combinatorics, Volume 1”. First edition:
Wadsworth & Brooks/Cole, 1986. Second edition: Cambridge University Press,
2011.

[45] Richard Stanley, “Enumerative Combinatorics, Volume 2”, Cambridge University
Press, 1999.

[46] Wikipedia, , Quicksort,
en.wikipedia.org/wiki/Quicksort .

[47] Herbert S. Wilf, What is an Answer?, The American Mathematical Monthly 89
(1982), 289-292.

99

[48] Yukun Yao and Doron Zeilberger, An Experimental Mathematics Approach to the
Area Statistic of Parking Functions, Mathematical Intelligencer volume 41, issue
2 (June 2019), 1-8.

[49] Yukun Yao and Doron Zeilberger, Untying The Gordian Knot via Experimen-
tal Mathematics, to appear in Algorithmic Combinatorics-Enumerative Combi-
natorics, Special Functions, and Computer Algebra: In honor of Peter Paule’s
60th birthday, Springer, edited by Veronika Pillwein and Carsten Schneider.
arxiv.org/abs/1812.07193 .

[50] Yukun Yao, Using Non-Linear Difference Equations to Study Quicksort Algo-
rithms, Journal of Difference Equations and Applications volume 26, issue 2
(2020), 275-294.

[51] Yukun Yao and Doron Zeilberger, Numerical and Symbolic Studies of
the Peaceable Queens Problem, Experimental Mathematics (2019), DOI:
10.1080/10586458.2019.1616338.

[52] Doron Zeilberger, Symbolic Moment Calculus I.: Foundations and Permutation
Pattern Statistics, Annals of Combinatorics 8 (2004), 369-378.
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/smcI.html.

[53] Doron Zeilberger, Symbolic Moment Calculus II.: Why is Ramsey Theory Sooooo
Eeeenormously Hard?, INTEGERS 7(2)(2007), A34.
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/smcII.html.

[54] Doron Zeilberger, The nn−2-th proof for the number of labeled trees, The Personal
Journal of Shalosh B. Ekhad and Doron Zeilberger, undated (c. 1998),
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/labtree.html .

[55] Doron Zeilberger, The Automatic Central Limit Theorems Generator (and Much
More!), “Advances in Combinatorial Mathematics: Proceedings of the Waterloo
Workshop in Computer Algebra 2008 in honor of Georgy P. Egorychev”, chapter
8, pp. 165-174, (I.Kotsireas, E.Zima, eds. Springer Verlag, 2009.)
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/georgy.html.

[56] Doron Zeilberger, A Holonomic Systems Approach To Special Functions, J. Com-
putational and Applied Math 32 (1990), 321-368,
math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/holonomic.pdf.

[57] Doron Zeilberger, HISTABRUT: A Maple Package for Symbol-Crunching in Prob-
ability theory, the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger,
posted Aug. 25, 2010,
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/histabrut.html.

[58] Doron Zeilberger, The C-finite Ansatz, Ramanujan Journal 31 (2013), 23-32.
Available from
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.html .

[59] Doron Zeilberger, Why the Cautionary Tales Supplied by Richard Guy’s Strong
Law of Small Numbers Should not be Overstated, The Personal Journal of Shalosh
B. Ekhad and Doron Zeilberger. Available from
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/small.html.

100

[60] Doron Zeilberger, An Enquiry Concerning Human (and Computer!) [Mathemati-
cal] Understanding, in: C.S. Calude, ed., “Randomness & Complexity, from Leib-
niz to Chaitin” World Scientific, Singapore, 2007, pp. 383-410. Available from
math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/enquiry.html.

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	2 The Statistics of Parking Functions
	2.1 Introduction
	2.2 An Experimental Mathematics Motivated Proof
	2.3 Bijection between a-Parking Functions & Labelled Rooted Forests
	2.4 From Enumeration to Statistics
	2.5 The Sum and Area Statistics of Parking Functions
	2.6 The Limiting Distribution
	2.7 Truly Exact Expressions for the Factorial Moments

	3 The Gordian Knot of the C-finite Ansatz
	3.1 Introduction
	3.2 The Human Approach to Enumerating Spanning Trees of Grid Graphs
	3.3 The GuessRec Maple procedure
	3.4 Application of GuessRec to Enumerating Spanning Trees of Grid Graphs and G Pn
	3.5 The Statistic of the Number of Vertical Edges
	3.6 Application of the C-finite Ansatz to Almost-Diagonal Matrices
	3.7 The Symbolic Dynamic Programming Approach
	3.8 Remarks

	4 Analysis of Quicksort Algorithms
	4.1 Introduction
	4.2 Related Work
	4.3 Number of Swaps of 1-Pivot Quicksort
	4.4 Explorations for Multi-Pivot Quicksort
	4.5 Limiting Distribution
	4.6 Remarks

	5 Peaceable Queens Problem
	5.1 Introduction
	5.2 Jubin's Construction
	5.3 Single Connected Component
	5.4 Two Components
	5.5 Remarks

	References

