
On Weighted Prefix Normal Words
Yannik Eikmeier
Kiel University, Germany
stu204329@mail.uni-kiel.de

Pamela Fleischmann
Kiel University, Germany
fpa@informatik.uni-kiel.de

Dirk Nowotka
Kiel University, Germany
dn@informatik.uni-kiel.de

Abstract
A prefix normal word is a binary word whose prefixes contain at least as many 1s as any of its factors
of the same length. Introduced by Fici and Lipták in 2011 the notion of prefix normality is so far only
defined for words over the binary alphabet. In this work we investigate possible generalisations for
finite words over arbitrary finite alphabets, namely weighted and subset prefix normality. We prove
that weighted prefix normality is more expressive than both binary and subset prefix normality and
investigate the existence of a weighted prefix normal form. While subset prefix normality directly
inherits most properties from the binary case, weighted prefix normality comes with several new
peculiarities that did not already occur in the binary case. We characterise these issues and solve
further questions regarding the weighted prefix normality and weighted prefix normal form.
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1 Introduction

Complexity measures of words, like for example the number of different factors of a word,
are a central topic of investigation when dealing with properties of sequences. Characterising
the maximum density of a particular letter in the set of factors of a given length, hence
considering an abelian setting, falls into that category. Such characterisations inevitably
prompt the search for and investigation of normal forms representing words with equivalent
measures. Prefix normality is the concept considered in this paper and was firstly introduced
by Fici and Lipták in 2011 [10] as a property describing the distribution of a designated letter
within a binary word. A word over the binary alphabet {0, 1} is prefix normal w.r.t. 1 if its
prefixes contain at least as many 1s as any of its factors of the same lengths. For example
the word 1101001 is 1-prefix normal but not 0-prefix normal, since 0 is a factor but not a
prefix. In a sense, prefixes of 1-prefix normal words give an upper bound for the amount of
1s any other factor of the word may contain. For a given binary word w the maximum-ones
function maps a length to the maximum amount of 1s, a factor of w of that length can have.
This leads to the 1-prefix normal form of a binary word, which is the 1-prefix normal word
with an identical maximum-ones function. For instance, the 1-prefix normal form of
1001101 is 1101001 because they have the same maximum-ones function and the second
word is 1-prefix normal. The 0-prefix normal form is defined analogously. In [7] Burcsi et al.
show that there exists exactly one 1-prefix normal form in the set of all binary words that
have an identical maximum-ones function.

From an application point of view this complexity measure is directly connected to the
Binary Jumbled Pattern Matching Problem (BJPM) (see e.g. [1, 3, 5]). The BJPM problem
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is to determine whether a given finite binary word has factors containing given amounts of 1s
and 0s. In [10] prefix normal forms were used to construct an index for the BJPM problem in
O(n) time where n is the given word’s length. The best known algorithm for this problem has
a runtime of O(n1.864) (see [8]). In [2] Balister and Gerke showed that the number of prefix
normal words of length n is 2n−Θ(log2(n)) and the class of a given prefix normal word contains
at most 2n−O(

√
n log(n)) elements. In more theoretical settings, the language of binary prefix

normal words has also been extended to infinite binary words [9]. Prefix normality has been
shown to be connected to other fields of research within combinatorics on words, e.g. Lyndon
words [10], and bubble languages [6]. Furthermore, efforts have been made
to recursively construct prefix normal words, via the notions of extension critical words
(collapsing words) and prefix normal palindromes [11, 6]. The goal therein was to learn
more about the number of words with the same prefix normal form and the number of prefix
normal palindromes. Very recently in [4] a Gray code for prefix normal words in amortized
polylogarithmic time per word was generated. The sequences related to prefix normal words
can be found in the On-Line Encyclopedia of Integer Sequences ([12]): A194850 (number
of prefix normal words of length n), A238109 (list of prefix normal words over the binary
alphabet), A238110 (maximum number of binary words of length n having the same prefix
normal form), and A308465 (number of prefix normal palindromes of length n).

Our contribution. In this work, we investigate generalisations of prefix normality for
finite words over arbitrary finite alphabets. We define a weight measure, which is a morphic
function assigning a weight to every letter (and thus to every word) over an arbitrary finite
alphabet. Based on those weights we can again compare factors and prefixes of words over
this alphabet w.r.t. their weight. We define weighted prefix normality as follows: a word
is prefix normal w.r.t a weight measure if no factor has a higher weight than the prefix of
the same length as the factor. Note here, for some weight measures not every word has a
unique prefix normal form. We prove basic properties of weight measures and weighted prefix
normality, and give a characterisation of weight measures for which every word has a prefix
normal form. Based on this, we define a generalised weight measure which only depends on
the alphabetic order of the letters. Later we will also discuss the naïve approach to generalise
binary prefix normality by selecting a subset X of the alphabet Σ: then every letter in X is
treated like a 1 and the rest like 0s as in the binary case. We prove that this approach can
already be obtained by the use of a weight measure with binary weights.

This paper is organized as follows: In Section 2, we define the basic terminology and
notions needed to discuss weighted prefix normality. In Section 3, we prove that weighted
prefix normality is indeed a proper generalisation of the binary case and present our results
on the existence of a weighted prefix normal form. Following that, in Section 4, we further
investigate special weight measures and their effect on weighted prefix normality. And
finally, in Section 5, we present the aforementioned naïve subset approach to generalise prefix
normality and compare it to weighted prefix normality.

2 Preliminaries

Let N denote the natural numbers {1, 2, 3, . . . } and let N0 := N ∪ {0}. For all k ∈ N we
define N>k := {n ∈ N | n > k}, and analogously N<k,N≤k,N≥k. Let Z denote the integer
numbers. We define the interval [i, j] := {n ∈ N | i ≤ n ≤ j}, for i, j ∈ N. Similarly we define
[n] := [1, n], for n ∈ N, and [n]0 := [0, n]. Let P ⊂ N denote the prime numbers. We say a
triple (X, ·, χ) is a monoid if X is a set and · : X2 → X is a associative binary operation
with the neutral element χ, i.e. a · χ = χ · a = a holds for all a ∈ X. Furthermore we say a
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quadruple (X, ·, χ,≺) is a strictly totally ordered monoid with the strict and total order ≺ on
X. For monoids (A, ∗, ε), (B, ◦, λ) a function µ : A→ B is a morphism if µ(x∗y) = µ(x)◦µ(y)
holds for all x, y ∈ A. Notice, if the domain A is a free monoid over some set S, a morphism
from A→ B is sufficiently defined by giving a mapping from S to B.

An alphabet Σ is a finite set of letters. Let Σ2 be the binary alphabet {0, 1}. A word is a
finite sequence of letters from a given alphabet. Σ∗ denotes the set of all finite words over
Σ, i.e. the free monoid over Σ. Let ε denote the empty word and set Σ+ := Σ∗\{ε} as the
free semi-group over Σ. We denote the length of a word w ∈ Σ∗ by |w|, i.e. the number
of letters in w. Thus |ε| = 0 holds. Let w be a word of length n ∈ N. Let w[i] denote the
ith letter of w for i ∈ [|w|], and set w[i . . . j] = w[i] . . . w[j] for i, j ∈ [|w|] and i ≤ j. Let
w[i . . . j] = ε if i > j. The number of occurrences of a letter a ∈ Σ in w is denoted by
|w|a = |{i ∈ [|w|] | w[i] = a}|. We generalise this notation to |w|X := |{i ∈ [|w|] | w[i] ∈ X}|
for X ⊆ Σ, i.e. |w|X is the number of letters of w that are elements of X. Notice that
| · |a = | · |{a} holds for any a ∈ Σ. We say x ∈ Σ∗ is a factor of w if there exists u, v ∈ Σ∗
with w = uxv holds and in this case u is called a prefix. We denote the set of w’s factors
(prefixes) by Fact(w) (Pref(w) resp.) and Facti(w) (Prefi(w)) denotes the set of all factors
(prefix resp.) of length i ∈ [|w|].

Given a total order < over Σ let <lex denote the extension of < to a lexicographic
order over Σ∗. Fixing an strictly totally ordered alphabet Σ = {a1, a2, . . . , an} with ai < aj
for 1 ≤ i < j ≤ n, the Parikh vector of a word is defined by p : Σ∗ → Nn : w 7→
(|w|a1 , |w|a2 , . . . , |w|an). For some function f : B → C and A ⊆ B, A,B,C sets, we define
f(A) := {f(a) | a ∈ A} and the composition of functions (assumed B = C) by f i := f ◦ f i−1

inductively with f0 being the identity function for all i ∈ N. For two sets of words A,B ⊆ Σ∗
we define their concatenation by AB := {vw | v ∈ A,w ∈ B}. For other common definitions
and background on the topic of words see Combinatorics on Words [14].

Before we define the weight measures and weighted prefix normality we recall the definition
for binary prefix normality as introduced by Fici and Lipták in [10].

I Definition 1. ([10]) Given w ∈ Σ∗2 the maximum-ones function fw and the prefix-ones
function pw are defined by

fw : [|w|]0 → N0, i 7→ max(|Facti(w)|1) and pw : [|w|]0 → N0, i 7→ |Prefi(w)|1.

The word w is called binary-prefix normal if fw = pw holds.

Our generalisation of binary prefix normality is based on so called weight measures, i.e.
we apply weights - represented by elements from a strictly totally ordered monoid - to every
letter of the alphabet.

I Definition 2. Let (A, ◦, λ,≺) be a strictly totally ordered monoid. A morphism µ : Σ∗ → A

is a weight measure over the alphabet Σ w.r.t. (A, ◦, λ,≺) if µ(vw) = µ(wv) and µ(w) ≺ µ(wv)
hold for all words w ∈ Σ∗ and v ∈ Σ+. We refer to the second property as increasing property.
We say the weights of the letters of Σ are base weights so µ(Σ) is the set of all base weights.

I Remark 3. Notice that if there exists a weight measure µ w.r.t. some monoid (A, ◦, λ,≺)
then |A| is infinite, ◦ is commutative, and µ(ε) = λ holds. Moreover, the increasing property
of weight measures ensures that only the neutral element of Σ∗, namely ε is mapped to the
neutral element λ of A. Consequently we will see that our factor- and prefix-weight functions
are strictly monotonically increasing in contrast to the functions defined in [10]. However, if
we allow letters from Σ to also be assigned the neutral weight λ, we get the known results
for binary alphabets.
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I Remark 4. A weight measure µ can be defined for any alphabet Σ in two simple steps. First,
choose some infinite commutative monoid with a total and strictly order, e.g. (N,+, 0, <).
Second, assign a base weight that is greater than the neutral element to every letter in Σ.
By the morphic property, the weight measure µ is well defined for all words in Σ∗.

In the following definition we introduce seven special weight measures.

I Definition 5. A weight measure µ over the alphabet Σ w.r.t. (A, ◦, λ,≺). is
injective if µ is injective on Σ,
alphabetically ordered if Σ is strictly totally ordered by < and µ(a) ≺ µ(b) holds for all
a, b ∈ Σ with a < b,
binary if |µ(Σ)| = 2 holds, and non-binary if |µ(Σ)| > 2 (the unary case is not of interest),
natural if A is N0 or N with ≺ being the usual "less than" relation,
a sum weight measure if it is natural with N0, ◦ = +, and λ = 0,
a product weight measure if it is natural with N, ◦ = ∗, and λ = 1,
prime if it is a product weight measure and µ(Σ) ⊆ P holds.

Consider for example the alphabet Σ = {a, b, c}. The weight measure µ over Σ with
µ(a) = 1, µ(b) = 2, and µ(c) = 3 is non-binary, natural, and with the strictly totally ordered
monoid (N0,+, 0, <) it is a sum weight measure. It can not be a product weight measure with
(N, ∗, 1, <) because then µ(a) = 1 would violate the increasing property of weight measures.
However the weight measure µ over Σ w.r.t. (N, ∗, 1, <) with µ(a) = 2, µ(b) = 3, and
µ(c) = 5 is not only a product weight measure, but also a prime weight measure.

I Remark 6. For the binary alphabet Σ2 = {0, 1} a sum weight measure µ with µ(w) = |w|1
for all w ∈ Σ∗2 can not exist since we would have µ(0) = 0 = µ(ε) which is a contradiction to
the increasing property of weight measures. Later on we are going to circumvent this problem
by setting µ(w) = |w|1 + |w| for all w ∈ Σ∗2 when implementing binary prefix normality via
the usage of weight measures. Alternatively, we may relax the increasing property and allow
µ(0) = 0; this results in the binary case in exactly the same properties of [10].

I Remark 7. If µ is a injective prime weight measure then the weight of any word is
characteristic for its Parikh vector by the uniqueness of the prime factorisation: By the
Fundamental Theorem of Arithmetic [13] we know that every natural number can be
represented uniquely up to order as the product of prime numbers (with 1 being the empty
product), i.e. for every weight of a word there is a unique way to partition it into primes.
Because the weight measure is injective, these primes have to be the exact weights of all the
word’s letters. In conclusion: any two words with the same weight under an injective prime
weight measure must have the exact same letters, i.e. the same Parikh vectors.

We now define the analogons for the maximum-ones and prefix-ones function.

I Definition 8. Let w ∈ Σ∗ and µ be a weight measure over the alphabet Σ w.r.t. (A, ◦, λ,<).
Define the factor-weight function fw,µ and the prefix-weight function pw,µ by

fw,µ : [|w|]0 → A, i 7→ max(µ(Facti(w))) and pw,µ : [|w|]0 → A, i 7→ µ(Prefi(w)).

(Notice that for any word w ∈ Σ∗ and weight measure µ over Σ, fw,µ(0) = pw,µ(0) = 0 holds
- we included the 0 only to have more convenience later on.)

Let µ be a sum weight measure, i.e. the target monoid A is given by (N0,+, 0, <), with
the base weights µ(a) = 1, µ(n) = 2, µ(b) = 3 for the alphabet Σ = {a, n, b}. Now consider
the words banana and nanaba. Table 1 shows the mappings of their prefix- and factor-weight



Y. Eikmeier, P. Fleischmann, D. Nowotka XX:5

i 1 2 3 4 5 6
pnanaba,µ(i) 2 3 5 6 9 10
fnanaba,µ(i) 3 4 6 7 9 10

pbanana,µ(i), fbanana,µ(i) 3 4 6 7 9 10
Table 1 Comparing banana’s and nanaba’s prefix- and factor-weight function.

functions. The factor-weight function of nanaba is realised by the factors b, ab, nab, anab,
nanab, nanaba.

In the following we define a more general version of the binary position function defined
in [10]. With the binary context in mind this function is defined to give the position of the
ith 1 in the word w, i.e. posw(i) := min{k | pw(k) = i} for all i ∈ [pw(|w|)] and w ∈ Σ∗2.
However, in the weighted context for most words not every weight corresponds to a prefix
with exactly the same weight. Consequently we do not define a single exact position function,
but two functions (maxpos and minpos) which together enclose the position within a word
where a certain weight is reached. Only if both functions return the same position for
some word and weight, that word’s prefix up to that position has exactly that weight (see
Lemma 11).

I Definition 9. Let w ∈ Σ∗, and µ be a weight measure over Σ w.r.t. (A, ◦, λ,<). We define
the max-position function and min-position function by

maxposw,µ : A→ [|w|]0, i 7→ max{k ∈ [|w|]0 | pw,µ(k) ≤ i},
minposw,µ : A→ [|w|]0, i 7→ min{k ∈ [|w|]0 | pw,µ(k) ≥ i}.

We now define a generalised approach for binary prefix normality, namely the weighted
prefix normality for a given weight measure µ. As in the binary case, for a prefix normal
word the factor-weight function and the prefix-weight function have to be identical, i.e. each
factor is at most as heavy as the prefix of the same length.

I Definition 10. Let w ∈ Σ∗, and µ be a weight measure over Σ w.r.t. (A, ◦, λ,<). We say
w is µ-prefix normal (or weighted prefix normal w.r.t. µ) if pw,µ = fw,µ holds.

Let µ be a sum weight measure over {a, b, n} with the base weights µ(a) = 1, µ(n) = 2,
and µ(b) = 3. Then the word banana is µ-prefix normal but the word w = nanaba is not
µ-prefix normal witnessed by fw,µ(1) = 3 6= 2 = pw,µ(1).

3 Weighted Prefix Normal Words and Weighted Prefix Normal Form

In this section we show that weighted prefix normality is a proper generalisation of binary
prefix normality and further investigate the weighted prefix normal form. We then examine
special properties of weight measures and define gapfree weight measures for which every
word has a weighted prefix normal equivalent.

Firstly we show some useful basic properties of the prefix- and factor-weight function,
and the min- and max-position function which are direct generalisations of the binary case.

I Lemma 11. Let µ be a weight measure over Σ w.r.t. (A, ◦, λ,<), w ∈ Σ∗, j, k ∈ [|w|]0
and x, y ∈ A. Then pw,µ and fw,µ and have the following properties:

(1) j < k iff fw,µ(j) < fw,µ(k) iff pw,µ(j) < pw,µ(k),
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(2) pw,µ(maxposw,µ(x)) ≤ x ≤ pw,µ(minposw,µ(x)),
(3) maxposw,µ(pw,µ(k)) = minposw,µ(pw,µ(k)) = k,
(4) if j > maxposw,µ(x) then pw,µ(j) > x and if j < minposw,µ(x) then pw,µ(j) < x,
(5) maxposw,µ(x) ≤ minposw,µ(x),
(6) x < y implies maxposw,µ(x) ≤ maxposw,µ(y) as well as minposw,µ(x) ≤ minposw,µ(y).

Proof.
(1) With the increasing property of weight measures the equivalences follow from the

definition of the factor-weight function as the maximum over all factors and the fact that
every prefix itself is a prefix of every longer prefix.

(2) Directly follows by the definition of the max-position and min-position function as
maxposw,µ(x) = max{i ∈ [|w|]0 | pw,µ(i) ≤ x} and minposw,µ(x) = min{i ∈ [|w|]0 |
pw,µ(i) ≥ x}.

(3) Follows by the definition of the max-position and min-position function and the fact that
the prefix-weight function is strictly increasing (see (1)).

(4) Follows by the definition of the max-position function as a maximum and the min-position
function as a minimum.

(5) Follows by (1) and (2).
(6) Suppose otherwise, so let x < y but maxposw,µ(x) > maxposw,µ(y) holds. With (4)

we then have pw,µ(maxposw,µ(x)) > y and with (2) we have pw,µ(maxposw,µ(x)) ≤ x.
Together these are a contradiction to x < y. Now suppose minposw,µ(x) > minposw,µ(y)
holds. Analogously to before with (4) we have pw,µ(minposw,µ(y)) < x and with (2) we
have pw,µ(minposw,µ(y)) ≥ y. Which is again a contradiction to x < y.

J

I Lemma 12. For a weight measure µ over the alphabet Σ w.r.t. (A, ◦, λ,<) and w ∈ Σ∗
there holds fw,µ(j) ≤ fw,µ(i) ◦ fw,µ(j − i) for all i, j ∈ [|w|]0 with i < j.

Proof. Let i, j ∈ [|w|]0 be indexes with i < j. Now suppose fw,µ(j) > fw,µ(i) ◦ fw,µ(j − i).
Let u ∈ Factj(w) be a factor of w with µ(u) = fw,µ(j). Then by the definition of the
factor-weight function, µ(u[1 . . . i]) ≤ fw,µ(i) and µ(u[(i+ 1) . . . j]) ≤ fw,µ(j − i) both hold.
And thus fw,µ(j) > µ(u[1 . . . i]) ◦ µ(u[(i + 1) . . . j]) = µ(u) holds. This is a contradiction
because u was chosen with µ(u) = fw,µ(j), so the original claim follows. J

I Proposition 13. For a weight measure µ over the alphabet Σ w.r.t. (A, ◦, λ,<) and w ∈ Σ∗
the following properties are equivalent:

(1) w is µ-prefix normal,
(2) pw,µ(j) ≤ pw,µ(i) ◦ pw,µ(j − i) for all i, j ∈ [|w|]0 with i < j,
(3) minposw,µ(µ(v)) ≤ |v| for all v ∈ Fact(w),
(4) maxposw,µ(a) + minposw,µ(b) ≤ minposw,µ(a ◦ b) for all a, b ∈ A, a ◦ b ≤ µ(w).

Proof. (1)⇒(2). Follows by Lemma 12, since for any prefix normal word the prefix- and
factor-weight function are equal by definition.

(2)⇒(3). Assume we have (2) but suppose there exists v ∈ Fact(w) with |v| <
minposw,µ(µ(v)). Now we write v as v = w[i+ 1 . . . j] for some i, j ∈ [|w|]0 with i < j. Then
we have pw,µ(j) = pw,µ(i) ◦µ(v). And by Lemma 11 (8) we know that µ(v) > pw,µ(|v|) holds
so in total we have pw,µ(j) > pw,µ(i) ◦ pw,µ(|v|). Which is a contradiction to (2), because
we have |v| = |w[i+ 1 . . . j]| = j − i.
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(3)⇒(1). Assume we have (3). Let i ∈ [|w|] and let v ∈ Fact(w) with µ(v) =
fw,µ(i) then we have |v| ≥ minposw,µ(µ(v)). By Lemma 11 (2,4) follows pw,µ(|v|) ≥
pw,µ(minposw,µ(µ(v))) ≥ µ(v) from which (1) follows directly because we now have pw,µ(i) ≥
fw,µ(i).

(3)⇒(4). Let a, b ∈ A with a ◦ b ≤ µ(w), m = minposw,µ(a ◦ b) and n = maxposw,µ(a).
Now consider w’s factor v = w[n+ 1 . . .m] which has a length of m− n. So pw,µ(n) ◦ µ(v) =
pw,µ(m) and |v| = m − n each follow. By Lemma 11 (3,4) we know a ◦ µ(v) ≥ a ◦ b and
therefore µ(v) ≥ b holds. Again by Lemma 11 (11) we get minposw,µ(µ(v)) ≥ minposw,µ(b).
So in total with (3) follows minposw,µ(b) ≤ minposw,µ(µ(v)) ≤ |v| = m− n = minposw,µ(a ◦
b)−maxposw,µ(a).

(4)⇒(3). Let v ∈ Fact(w), we write v as v = w[i + 1 . . . j] for some i, j ∈ [|w|]0.
So with Lemma 11 we have minposw,µ(pw,µ(i)) = i and minposw,µ(pw,µ(i) ◦ µ(v)) =
minposw,µ(pw,µ(j)) = j. By (4) we then have minposw,µ(µ(v)) ≤ minposw,µ(pw,µ(i) ◦
µ(v))−minposw,µ(pw,µ(i)) = j − i = |v|. J

Before we define the analogon to the prefix-equivalence for factor weights, we show that
weighted prefix normality is more general and more expressive than binary prefix normality,
i.e. every statement on binary prefix normality can be expressed by weighted prefix normality
but not vice versa.

I Theorem 14. Weighted prefix normality is a generalisation of binary prefix normality.

Proof. W.l.o.g. consider just 1-prefix normality for the binary case. We construct a sum
weight measure µ over the alphabet Σ2. Let µ(1) = 2 and µ(0) = 1. Then |w|1 + |w| = µ(w)
holds for any binary word w ∈ Σ2. It follows that fw(i) + |w| = max(|Facti(w)|1) + |w| =
max(µ(Facti(w))) = fw,µ(i) and pw(i) + |w| = pw,µ(i) hold for all i ∈ [|w|]. Therefore, w is
µ-prefix normal if and only if it is 1-prefix normal. So, with such a weight measure every
statement on binary prefix normality can be transformed into an analogue using weighted
prefix normality. J

Analogously to the binary case we define an equivalence relation on words based on
equality of the factor-weight function.

I Definition 15. Let µ be a weight measure over Σ w.r.t. (A, ◦, λ,<). Two words w,w′ ∈ Σ∗
are factor-weight equivalent (w ∼µ w′) if fw,µ = fw′,µ holds.

I Remark 16. The proof that ∼µ is in fact an equivalence relation is straightforward. We
denote the equivalence classes by [w]∼µ := {w′ ∈ Σ∗ | w ∼µ w′}.

We already saw (Table 1) that banana and nanaba over Σ = {a, b, n} (with the there
given weight measure µ) are factor-weight equivalent. The complete equivalence class is given
by [banana]∼µ = {ananab, anaban, abanan, nanaba, nabana, banana}. Notice that all words
in the class have the same Parikh vector. Also notice that only banana is µ-prefix normal.
But for example if we were to add c to Σ and expand µ by µ(c) = µ(n) = 2 then [banana]∼µ
would contain all words previously in it but also those where some ns are substituted by
c. So now [banana]∼µ would contain four µ-prefix normal words, namely banana, bacana,
banaca, and bacaca. Lastly, consider the sum weight measure ν over the same alphabet
Σ = {a, n, b} and with the base weights µ(a) = 1, µ(n) = 2, µ(b) = 4. Now [babn]∼ν only
contains babn and its reverse nbab. Interestingly none of the two words are ν-prefix normal,
witnessed by fbabn,ν = fnbab,ν = (4, 6, 9, 11), pbabn,ν = (4, 5, 9, 11), and pnbab,ν = (2, 6, 7, 11)
(the functions are written as sequence for brevity). In a sense a letter with weight 3 is missing
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to fill the gap between fbabn,ν(2) = 6 and fbabn,ν(3) = 9. For example with such a letter
x in Σ with ν(x) = 3 the word bnxn is ν-prefix normal and in [babn]∼ν . These examples
show that factor-weight equivalence classes can contain words with different Parikh vectors,
multiple prefix normal words, and even no prefix normal words at all.

We now investigate the question which equivalence classes contain a single prefix normal
word that can be used to represent that class, i.e. a normal form, as it always exists for the
binary case [10].

I Definition 17. For w ∈ Σ∗ and a weight measure µ over Σ we define the µ-prefix normal
subset of the factor-weight equivalence class of w by Pµ(w) := {v ∈ [w]∼µ | pv,µ = fv,µ}.

In the example above, multiple prefix normal words in a single class are a result of
ambiguous base weights, i.e. multiple letters having the same weight. That is because all
letters with the same weights are interchangeable in any word with no effect on the weight of
that word, so there exist multiple prefix normal words for a word w if w is affected by the
non-injectivity of the weight measure. By choosing an injective weight measure we can avoid
this behaviour. However, the problematic case where some equivalence classes contain no
prefix normal words at all still remains. We now give a characterisation of special, so called
gapfree, weight measures and show that they guarantee the existence of a prefix normal word
in every equivalence class of the factor-weight equivalence. Before we prove the just stated
claims we define formally the previous observations of gaps.

I Definition 18. We say a weight measure µ over the alphabet Σ w.r.t. (A, ◦, λ,≺) is
gapfree, if for all words w ∈ Σ∗ and all i ∈ [|w|] there exists an a ∈ Σ such that fw,µ(i) =
fw,µ(i − 1) ◦ µ(a) holds. Otherwise, if for some word w ∈ Σ∗ and i ∈ [|w|] there exists no
a ∈ Σ such that fw,µ(i) = fw,µ(i− 1) ◦ µ(a) holds we say µ is gapful and has a gap over the
word w at the index i.

Let Σ = {a, b, c} and let µ be a sum weight measure over Σ with µ(a) = 2, µ(b) = 4, and
µ(c) = 6. We show that µ is gapfree by proving the existence of a letter in Σ with weight
x ∈ N such that fw,µ(i) = fw,µ(i−1)◦x holds for all w ∈ Σ∗ and i ∈ [|w|]. The factor-weight
function is defined as a maximum consequently x can at most be equal to µ(c) = 6. On
the other hand x has to be at least µ(a) = 2 because the factor-weight function is strictly
increasing. And because all the base weights µ(Σ) = {2, 4, 6} are even, so are fw,µ(i) and
fw,µ(i− 1). Thus x has to be even as well. In total we then have x ∈ {2, 4, 6} = µ(Σ). So
there is a letter in Σ with the correct weight to fill every possible gap, i.e. µ is gapfree. On
the other hand the sum weight measure ν over Σ with ν(a) = 1, ν(b) = 3, and ν(c) = 4 is
gapful. Consider the word w = bcac then ν has a gap over w at the index 3 since fw,ν(3) = 9
(witnessed by the factor cac) and fw,ν(2) = 7 (witnessed by the factor bc).

I Theorem 19. Let µ be a weight measure over Σ. Then
there exists a w ∈ Σ∗ such that |Pµ(w)| = 0 iff µ is gapful,
there exists a w ∈ Σ∗ such that |Pµ(w)| > 1 iff µ is not injective, and
for all w ∈ Σ∗ we have |Pµ(w)| = 1 iff µ gapfree and injective.

Proof. Let µ be a weight measure over Σ w.r.t. (A, ◦, λ,≺). For the first equivalence consider
firstly that µ is gapful. Then there exists some word w ∈ Σ∗ and an index i ∈ [|w|] such that
w has a gap at i. Thus there exists no n ∈ A for which fw,µ(i) = fw,µ(i− 1) ◦ n holds. Now
suppose there exists some word w′ ∈ Pµ(w). For such a word pw′,µ(i) = fw′,µ(i) = fw,µ(i) and
pw′,µ(i− 1) = fw′,µ(i− 1) = fw,µ(i− 1) both must hold. Thus we get fw,µ(i− 1) ◦µ(w′[i]) =
fw′,µ(i − 1) ◦ µ(w′[i]) = pw′,µ(i − 1) ◦ µ(w′[i]) = pw′,µ(i) = fw′,µ(i) = fw,µ(i). Which is
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a contradiction to the gap, so Pµ(w) = ∅ holds. For the second direction choose w ∈ Σ∗
with Pµ(w) = ∅. Suppose µ is gapfree, so fw,µ(i) = fw,µ(i− 1) ◦ µ(a) holds for all i ∈ [|w|]
and appropriate a ∈ Σ. Then we have a contradiction by constructing a word w′ ∈ Pµ(w)
as follows: Choose w′[1] ∈ Σ with µ(w′[1]) = fw,µ(1), which is possible according to
the assumption for i = 1. And for i ∈ [|w|] we can inductively choose w′[i] ∈ Σ with
fw,µ(i) = fw,µ(i − 1) ◦ µ(w′[i]), which is also possible according to the assumption. Now
pw′,µ = fw′,µ and pw′,µ = fw,µ hold by construction, so w′ ∈ Pµ(w) holds.

For the second claim let µ be not injective. Now there exist some distinct letters a, b ∈ Σ
which have the same weight µ(a) = µ(b) = i ∈ A. So [a]∼µ = [b]∼µ and pa,µ = fb,µ both
hold directly. From which {a, b} ⊆ Pµ(a) follows. For the second direction consider now
w, u, v ∈ Σ∗ with u 6= v and {u, v} ⊆ Pµ(w). Now by the definition of Pµ(w), the prefix-
weight function of u and v are both equal to the factor-weight function of w. So pu,µ = pv,µ
holds, and therefore µ(u[j]) = µ(v[j]) holds for all j ∈ [|u|]. On the other hand because u
and v are different words, there exists some i ∈ [|u|] with u[i] 6= v[i]. In other words, µ is not
injective.

The third claim follows directly from the first two. J

I Definition 20. Let µ be a gapfree and injective weight measure over Σ and w ∈ Σ∗. Then
|Pµ(w)| = 1 holds and w′ ∈ Pµ(w) (or short Pµ(w)) is the µ-prefix normal form of w.

With the alphabet Σ = {a, n, b, x, y} and the sum weight measure µ over Σ with base
weights µ(a) = 1, µ(n) = 2, µ(b) = 3, µ(x) = 4, and µ(y) = 4 we have Pµ(nanaba) =
{banana} and Pµ(bbax) = {xnnb, ynnb}. So banana is the µ-prefix normal form of nanaba
and in the second case we see that bbax has no true µ-prefix normal form. Also if n were
not in Σ we see µ would have a gap over bbax and Pµ(bbax) would be empty. Additionally,
ignoring the y, bbax is an example of a word whose prefix normal form differs in its Parikh
vector from the original word.

We now give a naïve inductive construction for a word’s weighted prefix normal form.

I Remark 21. Let µ be a gapfree and injective weight measure over the alphabet Σ w.r.t.
(A, ◦, 0,≺) and w ∈ Σ∗. Then the µ-prefix normal form w′ = Pµ(w) can be constructed
inductively over |w| as follows:

w′[1] = a ∈ Σ ,where fw,µ(1) = µ(a),
w′[i] = a ∈ Σ ,where fw,µ(i) = fw,µ(i− 1) ◦ µ(a) and i ∈ [|w|], i > 1.

For a gapfree non-injective weight measure this inductive construction can be used to non-
deterministically construct any prefix normal word within the factor-weight equivalence class
of a word. We can see that this construction always results in a prefix normal word by the
following arguments.

First, such a w′ exists because µ is gapfree and therefore for all i ∈ [|w|] there exists
an a ∈ Σ with fw,µ(i) = fw,µ(i − 1) ◦ µ(a). Second, w′ is unambiguous because µ is
injective and therefore there exists exactly one a ∈ Σ for any specific weight. And third,
the word w′ is in [w]∼µ and is µ-prefix normal because its prefixes are constructed to
have exactly the weight of w’s corresponding factor with the maximum weight. So we
have w′ = Pµ(w). We show this by induction over i ∈ [|w|]. For i = 1, we directly have
pw′,µ(1) = µ(w′[1]) = fw,µ(1) by construction. Now assuming the claim holds for some
i ∈ [|w| − 2], we then have pw′,µ(i+ 1) = µ(w′[1 . . . i+ 1]) = pw′,µ(i) ◦ µ(w′[i+ 1]) which is
equal to fw,µ(i) ◦ µ(w′[i+ 1]) = fw,µ(i+ 1) by our inductive assumption.
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4 Grapfree and Injective Weight Measures

In this section we investigate the behaviour of gapfree and injective weight measures in more
detail. First of all, by their definition we can infer that every binary weight measure is
gapfree and prime weight measures are in general gapful.

I Lemma 22. All binary weight measures are gapfree.

Proof. Let µ be a binary weight measure over Σ w.r.t. (A, ◦, λ,≺) and with the two base
weights µ(Σ) = {x, y}, where x ≺ y. W.l.o.g. let µ be injective, so Σ is binary as well.
Furthermore w.l.o.g. let Σ = Σ2 and µ(0) = x, µ(1) = y. Now let w ∈ Σ∗ and i ∈ [|w|].
Then fw,µ(i) is realised by some factor u ∈ Facti(w) with µ(u) = fw,µ(i) and fw,µ(i− 1) is
realised by some factor v ∈ Facti(v) with µ(v) = fw,µ(i− 1). Now |v|1 − |u|1 ∈ {0, 1} holds
because otherwise µ(v) or µ(u) would not be the maximum weight a factor of length i or
i− 1 could have. In total either fw,µ(i) = fw,µ(i− 1) ◦ µ(1) or fw,µ(i) = fw,µ(i− 1) ◦ µ(0)
holds. Therefore µ is gapfree. J

I Remark 23. With the above we see that when modelling binary prefix normality by means
of weighted prefix normality (e.g. in the proof of Theorem 14) we have the existence of a
unique binary prefix normal form as expected.

I Lemma 24. All non-binary prime weight measures are gapful.

Proof. By the definition of the prime numbers none of them can be obtained by multiplying
two other natural numbers. Let µ be a non-binary prime weight measure over an alphabet
Σ and let a, b, c ∈ Σ with µ(a) < µ(b) < µ(c). Consider the word w =: bcac ∈ Σ∗ then
fw,µ(3) = µ(cac) and fw,µ(2) = µ(bc) both hold. But there cannot exist an a ∈ µ(Σ)
such that µ(cac) = µ(bc) ∗ a would hold, because all base weights are prime numbers and
if such an a existed the uniqueness of the prime number factorisation would be violated.
Consequently µ has a gap over w at the index 3 and therefore µ is gapful. J

We now give an alternative condition under which a weight measure is gapfree. In most
cases this condition is easier to prove than the original statement on gapfree weight measures.
We will also see that this condition is a proper characterisation for gapfree weight measures
w.r.t. certain kinds of monoids.

I Definition 25. Let (A, ◦, λ,≺) be a strictly totally ordered monoid. A step function is a
function σ : A→ A for which there exists an s ∈ A (the step) such that we have σ(a) = a ◦ s
for all a ∈ A. A weight measure µ over Σ w.r.t (A, ◦, λ,≺). has stepped base weights if
there exists a step function σ such that µ(Σ) = {σi(min(µ(Σ))) | i ∈ [0, |µ(Σ)| − 1]} holds.

I Remark 26. In other words a weight measure µ has stepped base weights if every base
weight µ(Σ) is of the form σi(min(µ(Σ))) = min(µ(Σ))◦s · · ·◦s where σ is some step function
and s its step. Additionally for each step from the minimum up to the maximum in µ(Σ)
there has to exist a letter with that exact weight.

In the previous example for Σ = {a, b, c} the weight measure µ over Σ with µ(a) = 2,
µ(b) = 4, and µ(c) = 6 has stepped base weights with the step of 2. In contrast the sum weight
measure ν over Σ with ν(a) = 1, ν(b) = 3, and ν(c) = 4 does not, because the difference
between ν(a) and ν(b) is 2 but between ν(b) and ν(c) it is only 1. Consequently there cannot
be any one step s ∈ N such that we would have ν(a) + s = ν(b) and ν(c) + s = ν(c).

The following two propositions characterise the relation between gapfree weight measures
and stepped base weights.



Y. Eikmeier, P. Fleischmann, D. Nowotka XX:11

I Proposition 27. All non-binary weight measures with stepped base weights are gapfree.

Proof. Let µ be a non-binary weight measure over Σ w.r.t (A, ◦, λ,≺) with stepped base
weights. W.l.o.g let µ be injective and let Σ be of the form {a0, a1, . . . , an−1}, where the letters
are in ascending order of their weight, so µ(ai) ≺ µ(aj) holds for all i < j, i, j ∈ [0, n− 1].

There exists a step function σ with the step s ∈ A such that µ(Σ) is of the form
{σi(min(µ(Σ))) | i ∈ [0, |µ(Σ)| − 1]}. Consequently the weight of every letter in Σ is
µ(ai) = σi(min(µ(Σ))) for all i ∈ [0, n− 1]. In particular we have µ(a0) = min(µ(Σ)). Now
consider some word w ∈ Σ∗ and index l ∈ [|w|], then fw,µ(l) is realised by some factor
ap1 . . . apl ∈ Factl(w) with some sequence p1, . . . , pl ∈ [0, n − 1]. Therefore fw,µ(l) is of
the form σp1(µ(a0)) ◦ · · · ◦ σpl(µ(a0)). And similarly fw,µ(l − 1) is realised by some other
factor aq1 . . . aql−1 ∈ Factl−1(w) for some sequence q1, . . . , ql−1 ∈ [0, n − 1], and we have
fw,µ(l − 1) = σq1(µ(a0)) ◦ · · · ◦ σli(µ(a0)). Now let m =

∑l
i=1(pi) and o =

∑l−1
i=1(qi) be the

number of steps in the weights fw,µ(l) and fw,µ(l− 1). So they are the maximum number of
steps any of w’s factors of length l and l − 1 can have in their weight.

First of all m − o ≥ 0 holds because we know the factor-weight function is strictly
increasing and otherwise m would not be the maximum for length l. We also know m−o < n

holds because if m− o ≥ n held, o would not be the maximum number of steps in a factor of
length l − 1. We now know fw,µ(l) and fw,µ(l − 1) only differ by k := m − o steps where
0 ≤ k < n holds. Consequently fw,µ(l) = fw,µ(l−1)◦σk(a0) holds and because µ has stepped
base weights there exists such a letter ak ∈ Σ with µ(ak) = σk(a0). Thus µ is gapfree. J

For the converse statement to hold we unfortunately need the additional prerequisite that
there exist elements in the chosen monoid that are able to fulfil the property of stepped base
weights. For every two weights a < b we need an element x such that b = a ◦ x holds. To see
that this is necessary, consider for example the alphabet Σ = {a, b, c} and the strictly totally
ordered monoid (A, ◦, λ,≺) where A is the set {

(
a
b

)
| a, b ∈ N0}, ◦ is the usual addition

on vectors, λ =
(

0
0
)
, and ≺ is the order obtained by the lexicographical expansion of the

usual less than onto vectors. So for example
(

0
0
)
≺
(

0
2
)
≺
(

1
1
)
≺
(

2
0
)
holds. Now the weight

measure µ over Σ with the base weights µ(a) =
(

0
2
)
, µ(b) =

(
1
1
)
and µ(c) =

(
2
0
)
is gapfree.

For seeing this, let u ∈ Facti+1(w) and v ∈ Facti+1(w) determine fw,µ(i + 1) and fw,µ(i)
respectively. If v is a prefix or a suffix of u, the claim holds immediately. Thus consider that
v is neither a prefix nor suffix of u; indeed we can also assume that they are overlap-free
since the overlap would count for µ(u) and µ(v) in the same way. If we fix the different
amount of a and c between v and u, namely r and t, the amount of b in both u and v is
given by their length and therefore we assume |u|b = 0. Now by combining µ(u) � µ(v),
µ(v) � µ(u[1..|u| − 1]), µ(u[2..|u|]), and |v|+ 1 = |u| we get that t− r ∈ {−1, 0}. Evaluating
both cases gives us fw,µ(i+ 1) = fw,µ(i) + µ(a) and fw,µ(i+ 1) = fw,µ(i) + µ(b) respectively.
(A full prove can be found in the appendix in Proposition 41). But even though µ is gapfree,
µ(Σ) = {

(
0
2
)
,
(

1
1
)
,
(

2
0
)
} can never be of the form {σi(

(
0
0
)
) | i ∈ [0, 2]} for any step function

σ(a) = a ◦
( x
y

)
. This is the case because there exists no

( x
y

)
∈ A such that

(
1
1
)

=
( 0+x

2+y
)
,(

2
0
)

=
( 1+x

1+y
)
, or

(
2
0
)

=
( 0+x

2+y
)
would hold.

I Proposition 28. Let µ be a non-binary, gapfree weight measure over Σ w.r.t (A, ◦, λ,≺). If
additionally, for all a, b ∈ Σ with µ(a) ≺ µ(b) there exists an s ∈ A such that µ(b) = µ(a) ◦ s
then µ has stepped base weights.

Proof. W.l.o.g let µ be injective and let Σ be of the form {a0, a1, . . . , an−1}, where the letters
are in ascending order of their weight, so µ(ai) ≺ µ(aj) holds for all i < j, i, j ∈ [0, n− 1].

We prove inductively the existence of s ∈ A by extending a word that contains the
possible combinations of letters that define fw,µ. Consider the word w = a1a2a0a2 ∈ Σ∗.
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Then fw,µ(2) = µ(a1a2) and fw,µ(3) = µ(a2a0a2) both hold. Because µ is gapfree there
exists some ax ∈ Σ with x ∈ [0, n − 1] for which µ(a2a0a2) = µ(a1a2) ◦ µ(ax) holds.
Consequently µ(a2a0) = µ(a1ax) holds. And together with µ(a0) ≺ µ(a1) ≺ µ(a2) follows
that µ(a0) ≺ µ(ax) ≺ µ(a2) holds. In other words we now have 0 < x < 2. So x = 1 and
µ(a2a0) = µ(a1a1) hold. Now by the additional prerequisite there exists an s ∈ A such that
µ(a1) = µ(a0) ◦ s and so µ(a2a0) = µ(a1a0) ◦ s holds. Consequently also µ(a2) = µ(a1) ◦ s
and µ(a1) = µ(a0) ◦ s hold.

So we already know that σ(a) = a ◦ s is the step function we need. And finally, by
inductively repeating the argument from above for the words a1+ia2+ia0+ia2+i ∈ Σ∗ for all
i ∈ [1, n−3] it follows that µ has stepped base weights with the step function σ. For instance,
from µ being gapfree over the word a2a3a1a2 ∈ Σ∗ it follows that also µ(a3) = µ(a2) ◦ s
holds. J

I Corollary 29. For all natural, non-binary weight measures the additional property holds
and consequently for such a weight measure µ we have that it is gapfree iff it has stepped
base weights.

Proof. The claim follows directly by the structure of N. J

Following this characterisation we get another generalisation for weight measures.

I Theorem 30. For a strictly totally ordered alphabet Σ, all weight measures that are natural,
alphabetically ordered, and gapfree behave similarly to one another, i.e. for two such weight
measures µ and ν the following holds for all words v, w ∈ Σ∗ with |v| = |w|

µ(w) = µ(v) iff ν(w) = ν(v) and µ(w) < µ(v) iff ν(w) < ν(v).

Proof. Let µ and ν be alphabetically ordered, natural, gapfree weight measures over the
strictly totally ordered alphabet Σ = {a0, a1, . . . , an−1} for some n ∈ N and with µ(ai) < µ(aj)
for all i < j, i, j ∈ [0, n − 1]. And let v, w ∈ Σ∗ with |v| = |w|. Then µ and ν are both
injective because they both are alphabetically ordered.

In case Σ is binary, so are µ and ν. Therefore if µ(v) = µ(w) holds |v|a0 = |w|a0 and
|v|a1 = |w|a1 must hold, and so we have ν(v) = ν(w). The converse and the same for "<"
hold analogously.

In the non-binary case both µ and ν have stepped base weights by Proposition 28. Thus
two step functions σµ for µ and σν for ν exist. Notice, the number of steps in any letter
ai ∈ Σ is always i for both of those step functions. Therefore the weights of all words have
the same number of steps in their weight regardless of which one of the two weight measures
is considered. Now assume µ(v) = µ(w) holds, then both words have the same number of
steps in their µ-weight. Thus also their ν-weight must have this number of steps and so
ν(v) = ν(w) holds. Again the converse and the same for "<" hold analogously. J

Theorem 30 essentially shows that the monoid and the individual base weights of any
natural, alphabetically ordered, and gapfree weight measure do not impact the relative
behaviour of such weight measures, e.g. the prefix normal form of any word is the same
w.r.t. different such natural, alphabetically ordered, and gapfree weight measures. This
behaviour leads us to the definition of a generalised weight measure that only depends on
the alphabetic order of the letters. By Theorem 30 this alphabetic weight measure behaves
like every other natural, alphabetically ordered, and gapfree weight measure in most ways.

I Definition 31. Let Σ = {a1, a2, . . . , an} be a strictly totally ordered alphabet, with n ∈ N.
We define µΣ as the alphabetically ordered sum weight measure with base weights: µ(ai) = i

for all i ∈ [n]. We say µΣ is the alphabetic weight measure for Σ.



Y. Eikmeier, P. Fleischmann, D. Nowotka XX:13

I Lemma 32. The alphabetic weight measure is gapfree.

Proof. Follows directly by Proposition 27 with σ(n) = n+ 1 with n ∈ N. J

I Conjecture 1. We conjecture that the statement of Theorem 30 holds not only for natural,
alphabetically ordered, and gapfree weight measures (or weight measures with the afore-
mentioned composition property) but also for any alphabetically ordered, gapfree weight
measures.

In the remaining part of this section we investigate injective weight measures, specifically
we provide a construction that can be used to transform any weight measure into an injective
one. This enables us to consider injective weight measures w.l.o.g most of the time.

I Definition 33. Let µ be a weight measure over Σ w.r.t. (A, ◦, λ,≺). First, we define
the µ-projected alphabet as Σµ := {[a]µ | a ∈ Σ}, where [a]µ is the set of all letters with
the same weight as a ∈ Σ, i.e. [a]µ := {b ∈ Σ | µ(b) = µ(a)} for a ∈ Σ. Then we define
µ’s projected weight measure as the weight measure µ̂ over Σµ w.r.t. (A, ◦, λ,≺) and with
the base weights µ̂([a]µ) = µ(a). Finally for a word w ∈ Σ∗ we construct its µ-projection
wµ ∈ Σ∗µ with wµ := [w[1]]µ . . . [w[|w|]]µ.

I Lemma 34. For a weight measure µ over an alphabet Σ and a word w ∈ Σ∗ we have
µ̂(wµ) = µ(w) and the projected weight measure µ̂ is injective on Σµ.

Proof. The first statement holds directly by the construction of the projected weight measure
with the base weights µ̂([a]µ) = µ(a) for all a ∈ Σ. For the second claim choose [a]µ, [b]µ ∈ Σµ
with µ̂([a]µ) = µ̂([b]µ). Then µ(a) = µ(b) holds and therefore both b ∈ [a]µ and a ∈ [b]µ
hold. In other words [a]µ = [b]µ, so µ̂ is injective on Σµ. J

I Remark 35. With this construction a word w and its µ-projection wµ for some weight
measure µ behave the same way under any functions that are based on the weights of
the letters in the words, e.g. fw,µ = fwµ,µ̂, pw,µ = pwµ,µ̂, maxposw,µ = maxposwµ,µ̂,
and minposw,µ = minposwµ,µ̂ all hold. Analogously, all other statements that depend
on those functions follow for the µ-projection words and alphabets. For example µ is
gapfree iff µ̂ is gapfree. In some sense the word wµ represents all words within the set
{v ∈ Σ∗ | v[i] ∈ w[i] for all i ∈ [|w|]}.

The following theorem essentially shows that the prefix normal form of a projected word
like in Definition 33 represents the set of prefix normal words that are factor-weight equivalent
to the original word. In other words, for some w ∈ Σ∗ the sets Pµ(w) and Pµ̂(wµ) represent
the same prefix normal words over Σ that are equivalent to w. Thus, also in the non-injective
case we are able to obtain one prefix normal form by considering projections.

I Theorem 36. Let µ be a gapfree weight measure over Σ w.r.t. (A, ◦, λ,≺) and w ∈ Σ∗.
Then with w′ = Pµ̂(wµ) we have Pµ(w) = {v ∈ Σ∗ | v[i] ∈ w′[i] for all i ∈ [|w|]}.

Proof. Let w′ be the prefix normal form of w’s µ-projection wµ, so w′ := Pµ̂(wµ). This is
possible because µ̂ is gapfree and injective by Lemma 34. Notice here that |w| = |wµ| = |w′|
holds by construction. We now show the claim by two subset-proofs.

First, let v ∈ {u ∈ Σ∗ | u[i] ∈ w′[i] for all i ∈ [|w|]}. To show v ∈ Pµ(w) we show that v is
in [w]∼µ and v is µ-prefix normal. Firstly, fv,µ = fw′,µ̂ holds by the choice of v, fw′,µ̂ = fwµ,µ̂
holds by the choice of w′ as the prefix normal form of wµ, and fwµ,µ̂ = fw,µ holds by the
construction of wµ and µ̂. In total fv,µ = fw,µ holds and we have v ∈ [w]∼µ . Secondly, also
pv,µ = pw′,µ′ holds by the choice of v and also pw′,µ̂ = fwµ,µ̂ holds by the choice of w′ as the
prefix normal form of wµ. In total pv,µ = fwµ,µ̂ = fw,µ holds and so v is µ-prefix normal.
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For the second part of the proof, let v ∈ Pµ(w). To show v ∈ {u ∈ Σ∗ | u[i] ∈
w′[i] for all i ∈ [|w|]} we prove that v[i] ∈ w′[i] for all i ∈ [|v|]. Let i ∈ [|v|]. By the
construction of the prefix normal form (Proposition 21) we know that v[i] = a for some
a ∈ Σ such that fw,µ(i) = fw,µ(i− 1) ◦ µ(a) holds. We also know w′[i] = x for some x ∈ Σµ
such that fwµ,µ̂(i) = fwµ,µ̂(i− 1) ◦ µ̂(x) holds. And because fwµ,µ̂ = fw,µ again holds by the
construction of wµ and µ̂, we have µ̂(x) = µ(a). So in total, because x is the subset of Σ with
all the letters of weight µ̂(x), by the construction of Σµ, we have a ∈ x, i.e. v[i] ∈ w′[i]. J

With Theorem 36 we can also accurately calculate the cardinality of Pµ(w) for some
word w ∈ Σ∗ and a non-injective weight measure µ.

I Corollary 37. Let µ be gapfree weight measure over the alphabet Σ, w ∈ Σ∗, and w′ =
Pµ̂(wµ). Then |Pµ(w)| = |w′[1]| ∗ |w′[2]| . . . |w′[|w|]| =

∏|w|
i=1 |w′[i]| holds.

Proof. Follows directly by Proposition 36. J

We conclude this section by revisiting an example w.r.t. the projected weight measure.
Again consider the sum weight measure µ over Σ = {a, n, c, b} with the base weights
µ(a) = 1, µ(n) = µ(c) = 2, and µ(b) = 3. Then µ’s projected weight measure µ̂ is a
weight measure over the alphabet Σµ = {{a}, {n, c}, {b}} with the base weights µ̂({a}) = 1,
µ̂({n, c}) = 2, and µ̂({b}) = 3 and we see that µ̂ is injective on Σµ. We already know that
nanaba has multiple factor-weight equivalent words that are prefix normal, specifically we
have Pµ(nanaba) = {banana, bacana, banaca, bacaca}. With the µ-projection of nanaba
being (nanaba)µ = {n, c}{a}{n, c}{a}{b}{a} this word now has the prefix normal form
Pµ̂((nanaba)µ) = {b}{a}{n, c}{a}{n, c}{a}. All of nanaba’s factor-weight equivalent and
prefix normal words are represented by this word when reading it as a non-deterministic
concatenation of letters, like shown in Theorem 36. In other words, we have Pµ(nanaba) =
{v ∈ Σ∗ | v[i] ∈ Pµ̂((nanaba)µ)[i], i ∈ [6]}.

5 Subset Prefix Normal Words

In this section we briefly investigate a naïve approach to generalise binary prefix normality
and prove that it is already covered by the weight measure approach. The main idea is if Σ
is a finite alphabet to take a subset X ⊆ Σ and instead of counting the amount of 1 or 0
resp. we count how many letters in a prefix or factor are contained in X.

I Definition 38. Let w ∈ Σ∗ and X ⊆ Σ. We define the prefix-X-function pw,X and the
maximum-X-factor function fw,X by

pw,X : [|w|]0 → N, i 7→ |Prefi(w)|X and fw,X : [|w|]0 → N, i 7→ max(|Facti(w)|X).

We say that w is X-prefix normal (or subset prefix normal w.r.t X) if pw,X = fw,X holds.

We now show that subset prefix normality is indeed a generalisation of binary prefix
normality, and also that subset prefix normality can already be expressed by means of
weighted prefix normality. However this is not possible the other way around. So in
total we see that weighted prefix normality is more expressive and therefore a more useful
generalisation.

I Theorem 39. Subset prefix normality is a generalisation of binary prefix normality.
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Proof. W.l.o.g. consider just 1-prefix normality for the binary case. We choose X ⊆ Σ
with X = {1}. Then |w|1 = |w|X holds for any binary word w ∈ Σ2. It follows that
fw(i) = max(|Facti(w)|1) = max(|(Facti(w)|X) = fw,X(i) and pw(i) = pw,X(i) hold for all
i ∈ [|w|]. Therefore, w is X-prefix normal if and only if it is 1-prefix normal. So, with such
an X every statement on binary prefix normality can be transformed into an analogue using
subset prefix normality. J

In other words, in the context of the binary alphabet {1}-prefix normality and 1-prefix
normality are the same.

I Theorem 40. Weighted prefix normality is a generalisation of subset prefix normality.

Proof. Let Σ be an alphabet and let X ⊆ Σ. We construct a sum weight measure µ over
Σ. Let µ(x) = 2 and µ(y) = 1 for every x ∈ X and y ∈ Σ\X. Then |w|1 + |w| = µ(w)
holds for any word w ∈ Σ. It follows that fw,X(i) + |w| = max(|Facti(w)|X) + |w| =
max(µ(Facti(w))) = fw,µ(i) and pw,X(i) + |w| = pw,µ(i) hold for all i ∈ [|w|]. Therefore, w
is µ-prefix normal if and only if it is X-prefix normal. So, with such a weight measure every
statement on subset prefix normality can be transformed into an analogue using weighted
prefix normality. J

By Theorem 40 we immediately see that subset prefix normality behaves exactly like
weighted prefix normality when using a binary weight measure, which we know by Lemma 22
is gapfree.

6 Conclusions

In this work we presented the generalisation of prefix normality on binary alphabets as
introduced by [10] to arbitrary alphabets by applying weights to the letters and comparing
the weight of a factor with the weight of the prefix of the same length. Since one of the main
properties of binary prefix normality, namely the existence of a unique prefix normal form
does not hold in general for weighted prefix normality, we investigated necessary restrictions
to obtain a unique prefix normal form even in the generalised setting. Here, it is worth
noticing that we did not only generalise the size of the alphabet but also the weights are
rather general: they belong to any (totally ordered) monoid. This is of interest because
some peculiarities do not occur if N or N0 are chosen. In Section 3 we have proved that
there always exists a unique prefix normal form if the weight measure is chosen gapfree and
injective. We further characterised natural, gapfree weight measures to have stepped base
weights. This led to a generalisation of such gapfree weight measures, the alphabetic weight
measure, which allows for more convenience when working with weighted prefix normality.
We have also shown how in the case of a non-injective weight measure the alphabet and
the weight measure can be altered to group the prefix normal forms to obtain a unique
representative. In the last section we briefly investigated a naïve approach of generalising
the binary prefix normality by subsets of the alphabets and showed that this generalisation
can be expressed by weighted prefix normality.

However, the exact behaviour of the weighted prefix normal form, or generally factor-
weight equivalent words, regarding changes in their Parikh vectors remains an open problem.
Also our Conjecture 1 that all alphabetically ordered and gapfree weight measures behave
relatively the same way is an open problem that requires further investigation. Moreover a
reconnection of weighted prefix normality to the initial problem of indexed jumbled pattern
matching would be of some interest and might prove useful when investigating pattern
matching problems w.r.t. a non-binary alphabet.
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Appendix

I Proposition 41. Let Σ = {a, b, c} and let (A, ◦, λ,≺) be the strictly totally ordered monoid
where A is the set {

(
a
b

)
| a, b ∈ N0}, ◦ is the usual addition on vectors, λ =

(
0
0
)
, and ≺ is

the order obtained by the lexicographical expansion of the usual less than onto vectors, e.g(
0
0
)
≺
(

0
2
)
≺
(

1
1
)
≺
(

2
0
)
holds. The weight measure µ over Σ with base weights µ(a) =

(
0
2
)
,

µ(b) =
(

1
1
)
, and µ(c) =

(
2
0
)
is gapfree.

Proof. For i ∈ [|w|] let u ∈ Facti+1(w) be the factor determining fw,µ(i+1) and v ∈ Facti(w)
be the factor determining fw,µ(i) such that i is minimal with u and v not overlapping (if they
overlap, the non-overlapping parts are taken as u and v respectively). Now choose r, s, t ∈ Z
with r = |u|a − |v|a, s = |u|b − |v|b, and t = |u|c − |v|c. Thus we have r + s+ t = 1 by

r + s+ t = |u|a − |v|a + |u|b − |v|b + |u|c − |v|c = |u| − |v| = i+ 1− i = 1.

Moreover we have

µ(u) =
(
|u|b + 2|u|c
2|u|a + |u|b

)
=
(
|v|b + s+ 2|v|c + 2t
2|v|a + 2r + |v|b + s

)
= µ(v) +

(
s+ 2t
2r + s

)
.

And with |v|b = |u|b − s = |u|b + r + t− 1 we get

µ(u) =
(
|u|b + 2|v|c + 2t
|u|b + 2|v|a + 2r

)
and µ(v) =

(
|u|b + r + t− 1 + 2|v|c
2|v|a + |u|b + r + t− 1

)
.

By evaluating fw,µ(i + 1) = µ(u) � µ(v) = fw,µ(i) we get the following two cases: if
|u|b + 2|v|c + 2t = |u|b + r + t− 1 + 2|v|c and |u|b + 2|v|a + 2r > 2|v|a + |u|b + r + t− 1 hold
we get t = r − 1 and r > t− 1, thus t+ 1 = r. If |u|b + 2|v|c + 2t > |u|b + r + t− 1 + 2|v|c
holds we get t+ 1 > r. Hence, in general we know t+ 1 ≥ r must hold. Now set u′ = u[2..|u|]
(the case u′ = u[1..|u| − 1] is symmetric). By the assumption that v and u do not overlap we
have µ(u′) ≺ µ(v). We now evaluate this inequality in a similar fashion but also considering
the three possible letters for u[1].
case 1: u[1] = a
We have µ(u′) =

(|u′|b+2|u′|c
2|u′|a+|u′|b

)
=
( |u|b+2|u|c

2(|u|a−1)+|u|b

)
=
( |u|b+2|v|c+2t

2|v|a+2r−2+|u|b

)
. By µ(u′) ≺ µ(v) we have

either |u|b+2|v|c+2t = |u|b+r+t−1+2|v|c and 2|v|a+2r−2+|u|b < 2|v|a+|u|b+r+t−1 which
implies t = r−1 and r−1 < t, which is a contradiction, or |u|b+2|v|c+2t < |u|b+r+t−1+2|v|c
which implies t < r − 1, which is a contradiction to t+ 1 ≥ r. Hence we get u[1] 6= a
case 2: u[1] = b
We have µ(u′) =

(|u′|b+2|u′|c
2|u′|a+|u′|b

)
=
(|u|b−1+2|u|c

2|u|a+|u|b−1
)

=
(|u|b−1+2|v|c+2t

2|v|a+2r+|u|b−1
)
. By µ(u′) ≺ µ(v) we have

either |u|b−1+2|v|c +2t = |u|b +r+t−1+2|v|c and 2|v|a +2r+|u|b−1 < 2|v|a +|u|b +r+t−1
which gives again a contradiction by t = r and r < t, or |u|b−1+2|v|c+2t < |u|b+r+t−1+2|v|c
which implies t < r.
case 3: u[1] = c
We have µ(u′) =

(|u′|b+2|u′|c
2|u′|a+|u′|b

)
=
(|u|b+2(|u|c−1)

2|u|a+|u|b

)
=
(|u|b+2|v|c+2t−2

2|v|a+2r+|u|b

)
. By µ(u′) ≺ µ(v) we

have here either |u|b + 2|v|c + 2t − 2 = |u|b + r + t − 1 + 2|v|c and 2|v|a + 2r + |u|b <

2|v|a + |u|b + r + t − 1 which leads to the contradiction t − 1 = r and r < t − 1, or
|u|b + 2|v|c + 2t− 2 < |u|b + r + t− 1 + 2|v|c which implies t < r + 1.
Hence, in all cases we get t < r + 1 and by t+ 1 ≥ r we know t = r − 1 or t = r must hold.
We can now prove that µ is gapfree by distinguishing these cases.
case 1: t = r − 1
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By r + s+ t = 1 we get s = −2t and consequently

fw,µ(i+ 1) = fw,µ(i) +
(
s+ 2t
2r + s

)
= fw,µ(i) +

(
0

2r − 2t

)
= fw,µ(i) +

(
0

2(r − t)

)
= fw,µ(i) +

(
0
2

)
= fw,µ(i) + µ(a).

case 2: t = r

By r + s+ t = 1 we get s = 1− 2t and consequently

fw,µ(i+ 1) = fw,µ(i) +
(
s+ 2t
2r + s

)
= fw,µ(i) +

(
1
1

)
= fw,µ(i) + µ(b).

Thus in both cases exists an x ∈ Σ with fw,µ(i+ 1) = fw,µ(i) + µ(x). J
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