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Abstract.

Given an odd prime number p, we present three different ways, of compara-
ble levels of elegance and sophistication, to relate modulo p certain truncated
convolutions of divided Bernoulli numbers to certain full convolutions of divided
Bernoulli numbers.

One approach consists of computing modulo p3 the Stirling numbers on p
letters with odd indices in two different ways: on one hand using some p-adic
analysis on the polynomial Xp−1 + (p − 1)! with p-adic integer coefficients (as
in [15] 2019) – where the truncated convolutions of divided Bernoulli numbers
emerge – and on the other hand using Newton’s formulas – where the full con-
volutions of divided Bernoulli numbers arise.

Another approach is based on Hiroo Miki’s identity ([17] 1978) relating a
convolution of divided Bernoulli numbers to a binomial convolution of divided
Bernoulli numbers and harmonic numbers. It also crucially uses an identity
which computes an alternating binomial sum of harmonic numbers and which
is due to Michael Spivey ([21] 2007).

A third approach is based on computing modulo p3 the multiple harmonic
sums on the first p − 1 integers, using both Newton’s formulas and Zhi-Hong
Sun’s pioneering result ([22] 2000) for computing modulo p3 the generalized
harmonic numbers with even indices. These multiple harmonic sums get related
to the Stirling numbers modulo p3 by using James Whitbread Lee Glaisher’s
formula ([12] 1900), namely (p− 1)! = pBp−1 − p mod p2.

If the Stirling numbers with even indices are known modulo p3 since Glaisher,
little is known about the Stirling numbers with odd indices modulo p3. Equiv-
alently, we do not know how to resolve the convolution of divided Bernoulli
numbers modulo p in the general case. The situation is similar with multiple
harmonic sums. Equivalently, we do not know how to resolve the truncated con-
volutions of divided Bernoulli numbers. Of course, we have proven that both
problems are equivalent. However, a few special cases can be worked out.

For instance, Jianqiang Zhao ([28] 2007) determines the multiple harmonic
sum on two integers modulo p3. He relates it to the harmonic number Hp−1
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on p− 1 integers. We extend by our method Zhao’s result to the multiple har-
monic sum on four integers. Moreover, the full convolution of divided Bernoulli
numbers of order p − 5 corresponds to the case when there is a single term in
the truncated convolution and is thus revealed. From there, we also deduce the
Stirling number on five disjoint cycles modulo p3.

The implication of Zhao’s result with the surrounding works goes as follows.
Wolstenholme’s theorem asserts that Hp−1 is divisible by p2. Sun provides a
way for computing the generalized harmonic numbers to the modulus p3. By
combining our method, Sun’s work applied to H2 and Zhao’s result, we are able
to provide Hp−1 modulo p4. This is a result which pre-existed in Sun’s work
without proof.

Additionally, from knowing the multiple harmonic sum on two integers mod-
ulo p3 and Hp−1 modulo p4, we derive the Stirling number on three cycles mod-
ulo p3 and then deduce the convolution of divided Bernoulli numbers of order
p− 3 modulo p.

As part of our work, we also obtain the inverse of (p−1)! modulo p3, namely
we have the following congruence in terms of divided Bernoulli numbers.

1

(p− 1)!
= 3(pBp−1 − 1)− pB2(p−1) −

1

2
p2B2

p−1 mod p3

This inverse is the multiple harmonic sum on p − 1 integers. Our proof relies
on a generalization of Wilson’s theorem to the modulus p3 by Zhi-Hong Sun as
well as his computation for the generalized harmonic number Hp−1 modulo p3.

Interestingly, our work shows that if p is aWilson prime and Bp−1+(p−1−2n) =
Bp−1−2n mod p2 for some 2n ∈ {4, 6, . . . , p−7}, then the truncated convolution
T CB(p+1− 2n, p− 3) is the opposite of the full convolution of order p− 1− 2n
modulo p.
It is unknown whether or not there would exist such primes.
It was shown by Richard Crandall, Karl Dilcher and Carl Pomerance that there
are only three Wilson primes below 5× 108, namely 5, 13 and 563 ([6] 1997).
As for the first congruence above on the divided Bernoulli numbers, it holds
modulo p as it is a congruence of Kümmer type.
Reijo Ernvall and Tauno Metsänkylä have shown that if (p, p − 1 − 2n) is an
irregular pair, then the congruence cannot hold modulo p2.
When p = 13, the choices for 2n are 4 or 6 and the congruences are not satisfied
modulo p2: B20 6≡ B8 mod 132 and B18 6≡ B6 mod 132.
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1 Introduction, notations and useful results

1.1 Introduction and Main results

Unless otherwise mentioned, p will be a given odd prime. By times it will be
necessary to impose p ≥ 5 or even p ≥ 7. But our work is interesting for large
primes as we deal with symmetric groups of order p! and small orders can be
easily worked out by hand.
This paper arose from the interest in computing the sum (28) of [15] modulo p,
namely

k−1
∑

r=1

B2rB2k−2r

2r
mod p,

in order to obtain a nice expression for the Stirling numbers

[

p
p− 2k

]

modulo

p3. Stirling numbers, as just denoted by their brackets, with odd or even indices
s are interesting numbers because, as one of their combinatorial facets, they
count the number of permutations on p letters that decompose into a disjoint
product of s cycles.
Knowing the p-adic expansion of these numbers can be useful in a variety of
situations. Earlier on, British mathematician Glaisher was already aware of
that. Around the turn of the 20th century, he was first to realize their p-adic
analysis up to the modulus p2 and up to the modulus p3 for the even indices.
The reference on the topic is [12], a work that is also based on [11].
A method based on Newton’s formulas and originating a century later in Sun’s
work [22] had allowed us in [15] to:

(i) Retrieve Glaisher’s formula for the even indices, see [15].
(ii) Obtain the congruence (28) of [15] for the odd indices.

For the details regarding points (i) and (ii), the reader is referred to forthcom-
ing Result 8 of the current introduction which states the result of [15].
For convenience, we will refer to this method as ”Manner I”.

Our original goal presently was to compute the Stirling numbers modulo p3

with odd indices in a different way, say ”Manner II”, namely one which uses
some elementary p-adic analysis on the polynomial Xp−1 + (p− 1)! with p-adic
integer coefficients. Unfortunately, after far more efforts than those deployed
for Manner I, we obtain the same formula as previously, thus failing at resolving
the convolution. However, in order to show the certainly non-trivial equivalence
between the results provided independently by Manner I and Manner II, we
expand on resolving congruences involving truncated convolutions of divided
Bernoulli numbers in terms of full convolutions of such numbers, using Hiroo
Miki’s identity. These are interesting congruences in their own right. Miki’s
identity relates convolutions of divided Bernoulli numbers to binomial convolu-
tions of divided Bernoulli numbers and harmonic numbers.
Another approach to our work is thus the following. The congruence that we
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get between the two types of convolutions which is derived from a central use
of Miki’s identity and which we just discussed above can be obtained from con-
fronting Manner I and Manner II for the computation of the Stirling numbers
on p letters with odd indices modulo p3, independently from Miki’s identity. We
note the strong interconnection between Miki’s identity and the Stirling num-
bers. Ira Gessel had already highlighted this interconnection in [10], when he
gave a simpler proof than Miki’s original proof for Miki’s identity. However,
he uses Stirling numbers of the second kind instead of the first kind, that is
the number of ways to partition a set of n objects into k non-empty subsets

(denoted by

{

n
k

}

). Gessel’s proof is based on two different expressions for

Stirling numbers of the second kind. We note that Miki’s original proof was
based on some p-adic analysis and also used the Fermat quotient qp(a). An-
other proof of Miki’s identity using p-adic analysis appears in [19]. So far we
have seen two approaches, namely the ”Miki approach” and the ”polynomial
approach” for deriving congruences concerning these truncated convolutions of
divided Bernoulli numbers.
We now describe a third versant of this research. By using Newton’s formulas,
we are able to relate the multiple harmonic sums modulo p3 to the truncated
convolutions. Then, we are able to relate the multiple harmonic sums A⋆

2n (sums
of products of 2n reciprocals amongst p − 1) to the Stirling numbers Ap−1−2n

onto (2n + 1) cycles. Moreover, when 2n = p − 1, the truncated convolution
is the full convolution which is also related to (p − 1)!. Then, we obtain A⋆

p−1

modulo p3, that is we obtain the inverse of (p− 1)! modulo p3.
The method also provides a third and independent way of relating the truncated
convolutions to the full convolutions modulo p3.
Since the first Stirling numbers A4, A6, A8, etc may be computed easily modulo
p3 using the values of the Bernoulli numbers with small indices, we obtain some
neat formulas for the mirror multiple harmonic sums A⋆

p−5, A
⋆
p−7, A

⋆
p−9, etc.

Establishing congruences modulo pr with r ≥ 3 for the Stirling numbers
∑

1≤i1<i2<···<ir≤p−1

i1i2 . . . ir

or for their conjugates

∑

1≤i1<i2<···<ir≤p−1

1

i1i2 . . . ir
,

the so-called multiple harmonic sums is both difficult and yet unknown in the
general case.
Multiple harmonic sums have drawn much attention from mathematicians be-
cause they are part of a larger framework, namely they are special values of
multiple zeta functions at positive integers.
In [28], Jianqiang Zhao shows that

∑

1≤i<j≤p−1

1

ij
=

Hp−1

p
mod p3
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but no systematic study gets performed by him nor by other authors.
In the congruence above, Hp−1 denotes the harmonic number of order (p− 1),
sometimes denoted by Hp−1,1 within a context of generalized harmonic num-
bers. Wolstenholme’s theorem asserts that Hp−1 is divisible by p2. Sun’s result
(see point (a) of Result 4 in forthcoming section § 1.2) asserts that Hp−1,1 =
p2Bp−3 mod p3. By confronting our method and Zhao’s result, we will find out
Hp−1,1 modulo p4.

Theorem.0.0.
Hp−1,1 = −p2(B2p−4 − 2Bp−3) mod p4

Note, the modulus p3 case is consistent with Kümmer’s congruences (see forth-
coming Result 5 of § 1.2). Theorem 0.0 is a special case of Sun’s more general
result. In his ground breaking paper [22], Sun reveals without proof the general-
ized harmonic numbers Hp−1,k modulo p4. His result gets stated in his Remark
5.1.

From our discussion earlier, the knowledge of A⋆
2 modulo p3 provides the

knowledge of the Stirling number Ap−3 modulo p3. The statement appears in
the following theorem, where qa denotes the Fermat quotient in base a.

Theorem.0.1.

[

p
3

]

= (pBp−1 − p) pBp−3 −
p2

2

p−1
∑

a=1

q2a
a2

mod p3

As we will see, a consequence of Theorem 0.1 is the following, where wp

denotes the Wilson quotient.

Theorem.0.2.

CB(p− 3) :=

p−5
∑

i=2

BiBp−3−i = 2wp Bp−3 −

p−1
∑

a=1

q2a
a2

mod p

As part of our work here, we will determine A⋆
4.

Theorem.0.3. Using the notations of forthcoming Definition 1, we have:

A⋆
4 = pBp−5 + p2

(1

2
B2
p−3 − (B2(p−3) − Bp−5)1

)

mod p3

[

p
5

]

= −pBp−5 + p2
(

−
1

2
B2
p−3 + wp Bp−5 +

(

B2(p−3) − Bp−5

)

1

)

mod p3

CB(p− 5) :=

p−7
∑

i=2

BiBp−5−i = −B2
p−3 + 2wpBp−5 + 2(B2(p−3) − Bp−5)1 mod p

Outside of this study by Zhao for A⋆
2, part of the progress on the topic

of multiple harmonic sums so far appears to be the existence of congruences
that have become commonly referred to as ”curious congruences on multiple
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harmonic sums”, once one of the authors had qualified these congruences of
”curious” and named them this way. These congruences originate in [28] when
Zhao proves that for any prime p ≥ 5,

∑

i+ j + k = p
i, j, k > 0

1

ijk
= −2Bp−3 mod p

In [4], Chun-Gang Ji provides an independent proof using some combinatorial
techniques. Their result got generalized in [31] to

∑

l1 + l2 + · · ·+ ln = p
l1, . . . , ln > 0

1

l1l2 . . . ln
=

{

−(n− 1)!Bp−n mod p if n is odd

− n!np

2 (n+1) Bp−n−1 mod p2 if n is even

The most recent and elaborate versions go to higher powers of p but only in the
case of reciprocal products of 2, 3 or 4 integers that are prime to p. On one
hand in [24], the authors show that for every positive integer r and prime p > 2,

∑

i+ j + k = pr

(i, j, k) ∧ p = 1

1

ijk
= −2 pr−1Bp−3 mod pr

On the other hand in [30], Zhao considers the case of reciprocal products of 2
or 4 integers. He shows that for every positive integer r ≥ n

2 with n ∈ {2, 4},
and prime p ≥ 5, we have

∑

i1 + · · ·+ in = pr

(i1, . . . , in) ∧ p = 1

1

i1i2 . . . in
= −

n!

n+ 1
pr Bp−n−1 mod pr+1

Later on in [25], Liuquan Wang generalizes Jianqiang Zhao’s result to sums
involving reciprocal products of 6 integers, stating that for any prime p ≥ 11
and any integer r ≥ 2,

∑

l1 + l2 + · · ·+ l6 = pr

(l1, . . . , l6) ∧ p = 1

1

l1l2l3l4l5l6
= −

5!

18
pr−1 B2

p−3 mod pr

The author had first studied the case of five variables in [26] namely showing
that

∑

l1 + l2 + · · ·+ l5 = pr

(l1, . . . , l5) ∧ p = 1

1

l1l2l3l4l5
= −

5!

6
pr−1 B2

p−5 mod pr
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Closing this digression on these ”curious congruences”, we will now state our
results. Before that, we introduce some notations.

Definition 1. (Hensel’s p-adic expansion). If x is any p-adic integer, we will
denote the coefficients of its expansion by the (x)i’s as in

x =

+∞
∑

i=0

(x)i p
i ∈ Zp

By times, we may also use a notation of [15], which consists of writing x(i)

instead of (x)i.

Definition 2. (Kümmer prime and Kümmer pair). We say that p is a Kümmer
prime if B2(p−1)−2n = Bp−1−2n mod p2 for some integer n with 2 ≤ 2n ≤ p− 3.
For such an n when it exists, we will say that (p, p− 1− 2n) is a Kümmer pair.

Remark 1. In [9], Ernvall and Metsänkylä show that if (p, p − 1 − 2n) is an
irregular pair, then (p, p− 1− 2n) is not a Kümmer pair.

Definition 3. (Truncated convolution of divided Bernoulli numbers).
Let n be an integer with 4 ≤ 2n ≤ p− 3. We define:

T CB(p+ 1− 2n, p− 3) :=

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

Definition 4. (Multiple harmonic sums). Define,

A⋆
k :=

∑

1≤i1<···<ik≤p−1

1

i1 . . . ik

Our main results get listed below.

Theorem 1.

(i) Assume that 4 ≤ 2n ≤ p− 7.

p2

2

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i =−
p2

2

p−1−2n−2
∑

i=2

BiBp−1−2n−i

+ p
(

B2(p−1)−2n − Bp−1−2n

)

+ p2
(

(pBp−1)1 − 1

)

Bp−1−2n mod p3

(ii) Case 2n = p− 3.

p2
p−3
∑

i=4

BiBp+1−i = 2pBp+1 + p2B2 + 2pB2(pBp−1) mod p3

8



(iii) Case 2n = p− 5.

p2
p−3
∑

i=6

BiBp+3−i =
7

720
p2 + 2pBp+3 + 2pB4(pBp−1) mod p3

We note that by Glaisher’s result, stated as Result 1 in § 1.2, the Wilson quo-

tient wp := (p−1)!+1
p

mod p is equal to (pBp−1)1 − 1. In particular, we see that

if p is a Wilson prime and (p, p− 1− 2n) is a Kümmer pair, then the truncated
convolution T CB(p+1− 2n, p− 3) is congruent modulo pZp to the opposite of
the full convolution of order p− 1− 2n when 4 ≤ 2n ≤ p− 7.
In [6], the authors showed that there are only three Wilson primes less than
5 × 108, namely 5, 13 and 563. It is unknown whether there exists any newly
defined Kümmer prime and even more unknown whether there exist any Wilson
primes that are also Kümmer primes.

Our next theorem deals with multiple harmonic sums modulo p3.

Theorem 2.

(I) Multiple harmonic sums modulo p3.

A⋆
k =



































































k+1
2 p2 Bp−2−k if k is odd and k ≤ p− 4

p

2 − p2 + 1
2 (pBp−1)1p

2 if k = p− 2

p
(

2Bp−1−k − B2(p−1)−k

)

+ p2

2 T CB(p+ 1− k, p− 3) if k is even and k ≤ p− 5

p
12 − 11p2

24 + p2

12 (pBp−1)1 if k = p− 3

3(pBp−1 − 1)− pB2(p−1) −
1
2p

2 B2
p−1 if k = p− 1

(II) Let wp denote the Wilson quotient, namely wp = (pBp−1)1 − 1.
Suppose k ∈ {1, . . . , p− 2}. The following congruence holds.

A⋆
k = −Ap−1−k + (−1)k wp p

2 Bp−1−k mod p3

(III) Let j ∈ {1, . . . , p− 2}. The A⋆
j ’s are all divisible by p and

Ap−1−j = (pBp−1 − p)A⋆
j mod p3

1.2 Notations and some useful results

Throughout the paper it will be useful to know the following generalization of
Wilson’s theorem, established by Glaisher in 1900 [12]. See also [15] for an
independent proof of that result.
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Result 1. (Wilson’s theorem modulo p2, Glaisher [12], 1900)

(p− 1)! = pBp−1 − p mod p2

Some sums of importance throughout the paper are the sums of powers of
the first (p − 1) integers and the generalized harmonic numbers Hp−1,k which
for convenience we sometimes simply denote by Hk:

Sk =

p−1
∑

a=1

ak and Hk =

p−1
∑

a=1

1

ak

We are especially interested in congruences concerning these sums modulo pow-
ers of p. A result of [22] reads

Result 2. (Sun [22], 2000) Let k be an integer with k ≥ 2. Then, we have:

Sk = pBk +
p2

2
k Bk−1 +

p3

6
k(k − 1)Bk−2 mod p3

An extensively used result on the Bernoulli numbers dating from the 19th cen-
tury and due to Von Staudt [23] and independently Clausen [5], implies that
the denominators of the Bernoulli number B2m consists of a product of primes
q with multiplicities one, such that q− 1 divides 2m. This is particularly useful
to know when dealing with congruences modulo powers of p.
Regarding the harmonic numbers, a classical result is the Wolstenholme’s the-
orem [27] dating from 1862 which asserts that

Hp−1,1 = 0 mod p2 and Hp−1,2 = 0 mod p

The result got generalized by Bayat in 1997 in [1]. Bayat deals with other k’s
as well with k ≥ 3. His result is stated below.

Result 3. (Bayat’s generalization of Wolstenholme’s theorem, 1997 [1]).
Let m be a positive integer and let p be a prime number with p ≥ m+ 3. Then,

p−1
∑

k=1

1

km
≡

{

0 mod p if m is even

0 mod p2 if m is odd

We also recall below one of the main results of [22].

Result 4. (Sun [22], 2000). Let p be a prime greater than 3. Then,
(a) If k ∈ {1, 2, . . . , p− 4} then,

p−1
∑

a=1

1

ak
=







k(k+1)
2

Bp−2−k

p−2−k
p2 mod p3 if k is odd

k

(

B2p−2−k

2p−2−k
− 2

Bp−1−k

p−1−k

)

p mod p3 if k is even

(b)
p−1
∑

a=1

1

ap−3
=

(

1

2
− 3Bp+1

)

p−
4

3
p2 mod p3
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(c)
p−1
∑

a=1

1

ap−2
= −

(

2 + pBp−1

)

p+
5

2
p2 mod p3

(d)
p−1
∑

a=1

1

ap−1
= pB2p−2 − 3pBp−1 + 3(p− 1) mod p3

We will also use the well-known Kümmer congruences from [14] which we
recall below. We also state the generalization by Sun in [22] to the modulus p2.

Result 5. (Kümmer’s congruences, 1850 [14], followed by Sun’s generalization,
2000 [22])
Let p be an odd prime and let b > 0 be an even integer such that p−1 6 | b. Then,
we have for all nonnegative integer k,

Bk(p−1)+b

k(p− 1) + b
≡

Bb

b
mod p

Bk(p−1)+b

k(p− 1) + b
≡ k

Bp−1+b

p− 1 + b
− (k − 1)(1− pb−1)

Bb

b
mod p2

When k = 1, Sun’s generalization is a trivial congruence. While studying the
irregular primes, Ernvall and Metsänkylä have shown the following congruence,
where qa denotes the Fermat quotient in base a.

Result 6. (Ernvall and Metsänkylä [9], 1991) Let n be an even integer with
4 ≤ n ≤ p− 3. Then, we have:

Bp−1+n = Bn −
p

2

p−1
∑

a=1

q2a a
n mod p2

A useful version of Result 4 modulo p2 for the even indices is originally due
to Glaisher and can be derived from his results stated as Result 2 and Theorem
4 in [15]. In the case when 2k ≤ p− 5, it can also be derived from Sun’s version
in the second row of (a) in Result 4 by using the Kümmer congruences above
with integers 1 and p− 1−k (recall that k is even). We state this useful version
as Result 7 below.

Result 7. Let k be an integer with 1 ≤ k ≤ p−3
2 . Then, we have

H2k =
2k

2k + 1
pBp−1−2k mod p2

We will sometimes denote the unsigned Stirling numbers of the first kind
[

p
s

]

by Ap−s, using Glaisher’s notation of [12]. We now recall a result of [15].
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Result 8. (Stirling numbers modulo p3, cf [15], preprint 2019).
Let k be an integer with 1 ≤ k ≤ p−1

2 . We have,

(k ≤
p− 3

2
) A2k+1 =

p2

2

2k + 1

2k
B2k mod p3

(k 6= 1) A2k = −
1

2k

(

pB2k − p2
k−1
∑

r=1

B2rB2k−2r

2r

)

mod p3

and A1 =
p(p− 1)

2
mod p3

(p ≥ 5) and A2 =
1

2

(

−
p

6
+

3 p2

4

)

mod p3

One of the formulas above involves a convolution of divided Bernoulli numbers
with Bernoulli numbers. Convolutions involving Bernoulli numbers have drawn
the interest of mathematicians over the centuries. Already Euler had found an
identity.

Result 9. (Euler’s identity, see e.g. [20])

∀ n ≥ 1,

n
∑

j=0

(

n

j

)

BjBn−j = −nBn−1 − (n− 1)Bn

Japanese mathematician Hiroo Miki comes up with an identity in 1978 which
involves both a binomial convolution and an ordinary convolution of divided
Bernoulli numbers, see [17]. Denoting

Bn =
Bn

n
, and Hn = 1 +

1

2
+ · · ·+

1

n
,

his identity reads:

Result 10. (Miki’s identity [17], 1978)

∀n > 2,
n−2
∑

i=2

BiBn−i =
n−2
∑

i=2

(

n

i

)

BiBn−i + 2HnBn

Miki shows that both sides of the identity are congruent modulo p for suffi-
ciently large p, which implies that they are equal. A more elementary proof of
Miki’s identity was given more recently by Ira Gessel [10], using two different
expressions for the Stirling numbers of the second kind.
Another version of Miki’s identity, whose proof is inspired from quantum field
theory, is due to Gerald V. Dunne and Christian Schubert and is the following.

Result 11. (Modified form of Miki’s identity by Dunne and Schubert [8], 2004)

n−1
∑

k=1

B2kB2n−2k

2k(2n− 2k)
=

1

n

n−1
∑

k=1

B2kB2n−2k

2k

(

2n

2k

)

+
B2n

n
H2n

12



Other Miki type identities, for instance concerning non divided Bernoulli num-
bers, get listed in [7].

Along the paper, we will use Vandermonde’s binomial convolution which we
recall below.

Result 12. (Chu-Vandermonde’s convolution, Chu Shi-Chieh 1303 and Alexandre-
Théophile Vandermonde 1772).
Let m, n and r be non-negative integers. Then,

(

m+ n

r

)

=

r
∑

k=0

(

m

k

)(

n

r − k

)

Last, we will make use of the polynomial

f = Xp−1 + (p− 1)! ∈ Zp[X ]

For an integer k such that 1 ≤ k ≤ p−1, we will define, using the same notations
as in [15], δ0(k) and δ1(k) so that:

kp−1 = 1 + p δ0(k) + p2δ1(k) mod p3

Thus, δ0(k) is the residue of the Fermat quotient qp(k) modulo p.
It is shown in [15] that the polynomial f factors as:

Result 13. (Factorization of Xp−1 + (p− 1)! in Zp[X ], cf [15], 2019)

f = (X − 1− pt1)(X − 2− pt2) . . . (X − (p− 1)− ptp−1),

with ti =
∑∞

s=0 t
(s)
i ∈ Zp and

pt
(0)
i = i(1 + (p− 1)! + p δ0(i)) mod p2

t
(1)
i = i

(

δ0(i) + δ1(i) +
(

p−1
∑

k=1

δ0(k)
)2

+ (1 + δ0(i))

p−1
∑

k=1

δ0(k)

)

mod p

2 The Stirling numbers modulo p
3

2.1 Stirling numbers with even indices

We first compute the Stirling numbers with even indices modulo p3. Due to
the past works of Glaisher and Sun, our method will show relevant for the odd
indices only, but we start with the even indices anyway in order to get familiar
with it.

By definition,

[

p
2n

]

is the unsigned coefficient of X2n−1 in

(X − 1)(X − 2) . . . (X − (p− 1))

13



Because

[

p
p− 1

]

can be computed directly and is simply p(p−1)
2 modulo p3,

from now on we will focus on the even indices 2n such that 2 ≤ 2n ≤ p− 3.
By [15], we have the factorization in Zp[X ],

Xp−1 − 1 = (X − 1− pt1)(X − 2− pt2) . . . (X − (p− 1)− ptp−1),

with the first two coefficients of the p-adic expansion of the ti’s provided in [15]
and recalled here further below. In what follows, we will denote this polynomial
by f(X) or simply f . We look at the coefficient in X2n−1 in both factored and
expanded form of f modulo p3. We have, where the range of integers lies in
{1, . . . , p− 1},

[

p
2n

]

=−
1

(2n− 1)!

∑

m0

p t(0)m0
(p− 1)!m0

∑

m1 6=m0

1

m1

∑

m2 6=m1,m0

1

m2
· · ·

∑

m2n−1 6=m0,...,m2n−2

1

m2n−1

−
1

(2n− 1)!

∑

m0

p2 t(1)m0
(p− 1)!m0

∑

m1 6=m0

1

m1

∑

m2 6=m1,m0

1

m2
· · ·

∑

m2n−1 6=m0,...,m2n−2

1

m2n−1

−
(p− 1)!

2(2n− 1)!

∑

m0

pt
(0)
m0

m0

∑

m1 6=m0

pt
(0)
m1

m1

∑

m2 6=m0,m1

1

m2
· · ·

∑

m2n 6=m0,m1,...,m2n−1

1

m2n
mod p3

(1)

We will denote the first (resp second, resp third) row by S1 (resp S2, resp S3).
We will deal with each row independently.
Thus, we have:

[

p
2n

]

= S1 + S2 + S3 mod p3 (2)

We proceed the sums from right to left by first summing over all the (p − 1)
terms and then subtracting the exceeding terms. We will show the following
lemma.

Lemma 1. We have,

(i) S1 = H2n−1 − Sp−2n + p2
p−1
∑

m0=1

δ1(m0)

m2n−1
0

mod p3

(ii) S2 = −p2
p−1
∑

m0=1

δ1(m0)

m2n−1
0

mod p3

(iii) S3 = n
(

S2p−2n−1 − 2Sp−2n +H2n−1

)

mod p3

Corollary 1. We have,

[

p
2n

]

= (n+ 1)H2n−1 + nS2p−2n−1 − (2n+ 1)Sp−2n mod p3

14



Proof of Lemma 1. We first deal with S1. By Bayat’s result and since
we work modulo p3, there can be at most one ”full” sum when we consider the
last 2n− 1 sums. Moreover, we will distinguish between ”exactly one full sum”
and ”no full sum”. In the latter case, we get the contribution:

(p− 1)!

p−1
∑

m0=1

p t
(0)
m0

m2n
0

(3)

We now examine ”exactly one full sum”. A general form for the contribution is:

−
(p− 1)!

(2n− 1)!

n−1
∑

s=1

C2s

p−1
∑

m=1

1

m2s

p−1
∑

m0=1

p t
(0)
m0

m2n−2s
0

(4)

for some integer coefficients C2s’s. There is actually no need to evaluate these
integer coefficients as we can show directly that (4) is congruent to zero modulo
p3Zp. Indeed, we have by [15],

pt(0)m0
= m0(1 + (p− 1)! + p δ0(m0)) mod p2

with
mp−1

0 = 1 + pδ0(m0) + p2δ1(m0) mod p3

Then, replacing in (4) yields:

−
(p− 1)!

(2n− 1)!

n−1
∑

s=1

C2sH2s

p−1
∑

m0=1

1 + (p− 1)! + p δ0(m0)

m2n−2s−1
0

Next, by Bayat’s theorem, we know that

H2s = 0 mod p and H2n−2s−1 = 0 mod p2

Also, by Congruence (5.1) of [22], we have

Sp−2n+2s = 0 mod p2

It follows that (4) is congruent to zero modulo p3.
It remains to evaluate (3) modulo p3. Modulo p3, expression (3) reduces to

(p− 1)!

(

Sp−2n −H2n−1 − p2
p−1
∑

m0=1

δ1(m0)

m2n−1
0

)

,

which in turn reduces to

H2n−1 − Sp−2n + p2
p−1
∑

m0=1

δ1(m0)

m2n−1
0

,

after application of Wilson’s theorem since

Sp−2n = 0 mod p2 and H2n−1 = 0 mod p2

15



This settles point (i) of Lemma 1. Next, we note that S2 is obtained from S1

by replacing p t
(0)
m0

by p2 t
(0)
m1

. Then, there is no full sum to be kept during the
evaluation.
We thus get:

S2 = −

p−1
∑

m0=1

p2t
(1)
m0

m2n
0

mod p3

Moreover, we have by Lemma 3 of [15],

t(1)m0
= m0

(

δ0(m0) + δ1(m0) +
(

p−1
∑

i=1

δ0(i)
)2

+ (1 + δ0(m0))

p−1
∑

i=1

δ0(i)

)

mod p

After inspection, there is only one term contributing to S2 modulo p3. Namely
we get,

S2 = −p2
p−1
∑

m0=1

δ1(m0)

m2n−1
0

mod p3,

which constitutes point (ii) of Lemma 1.
It remains to deal with S3. No sum to the right when excluding the first two
sums may contribute fully. Also, if the second sum to the left contributes fully,
then we get a term in

∑

m0

pt
(0)
m0

mr
0

∑

m1

pt
(0)
m1

ms
1

with r+s = 2n+1. In particular, we see that r and s have distinct parity, hence
after investigation, the term is congruent to zero modulo p3. Consequently, we
simply obtain

S3 = −n(p− 1)!
∑

m0

p2(t
(0)
m0)

2

m2n+1
0

mod p3

It then reduces to

S3 = −n(p− 1)!
∑

m0

p2 δ0(m0)
2

m2n−1
0

mod p3

And so, we get

S3 = −n(p− 1)!
(

S2p−2n−1 − 2Sp−2n +H2n−1

)

mod p3

All the indices inside the parenthesis are odd, hence (p − 1)! must be taken
modulo p. We thus obtain point (iii) of Lemma 1.

We immediately derive Corollary 1.
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Further, by Congruence (5.1) of [22] stated as Result 2 in the introduction,
we have when 2 ≤ 2n ≤ p− 3,

S2p−2n−1 = −(2n+ 1)
p2

2
B2p−2n−2 mod p3

Sp−2n = −np2Bp−2n−1 mod p3

Also, by Theorem 5.1 of [22] stated as Result 4 in the introduction, we have
when 2 ≤ 2n ≤ p− 3,

H2n−1 = −
n(2n− 1)

2n+ 1
p2Bp−2n−1 mod p3

Then, Corollary 1 rewrites as:

[

p
2n

]

= n
2n2 + 3n+ 2

2n+ 1
p2 Bp−2n−1 −

n(2n+ 1)

2
p2 B2p−2n−2 mod p3 (5)

Moreover, by Kümmer’s congruences, we have since p− 1 does not divide 2n:

Bp−1+p−2n−1

p− 1 + p− 2n− 1
=

Bp−2n−1

p− 2n− 1
mod p

Hence, it comes:

B2p−2n−2 =
2(n+ 1)

2n+ 1
Bp−2n−1 mod p (6)

Gathering (5) and (6), it follows that:

[

p
2n

]

=
n

2n+ 1
p2 Bp−2n−1 mod p3

This is precisely Glaisher’s result from [12] which is stated as Result 4 in [15]
using Glaisher’s notations and which is also listed in Result 8 of the introduction.

2.2 Stirling numbers with odd indices

We now deal with the case of interest, namely compute the Stirling numbers
modulo p3 with odd indices. We adapt the work we did with the even indices.
This case is more complicated due to the fact that the generalized harmonic
numbers with even indices are only congruent to zero modulo p instead of being
congruent to zero modulo p2 like their homologs with the odd indices (cf Bayat’s
generalization of Wolstenholme’s theorem). Likewise, the sums of powers with
even powers are no longer divisible by p2, unlike their homologs with the odd
powers.
First, we will get some general expressions involving some convolutions and
inside them some yet unknown integer coefficients. Second, we will do the com-
binatorial analysis of these coefficients. Third, we will resolve the convolutions.

We start below with the first point.

17



2.2.1 General calculation

By looking at the coefficient of X2n in the polynomial f in both factored and
expanded forms, we get modulo p3:

0 =

[

p
2n+ 1

]

+
(p− 1)!

(2n)!

∑

m0

p t
(0)
m0

m0

∑

m1 6=m0

1

m1

∑

m2 6=m1,m0

1

m2
· · ·

∑

m2n 6=m0,...,m2n−1

1

m2n

+
(p− 1)!

(2n)!

∑

m0

p2 t
(1)
m0

m0

∑

m1 6=m0

1

m1

∑

m2 6=m1,m0

1

m2
· · ·

∑

m2n 6=m0,...,m2n−1

1

m2n

+
(p− 1)!

2(2n)!

∑

m0

pt
(0)
m0

m0

∑

m1 6=m0

pt
(0)
m1

m1

∑

m2 6=m0,m1

1

m2
· · ·

∑

m2n+1 6=m0,m1,...,m2n

1

m2n+1

mod p3

(7)

Like before, the range of integers for the respective sums lies in {1, . . . , p− 1}.
Also, we will denote the sum on the first (resp second, resp third) row by S

′

1

(resp S
′

2, resp S
′

3), so that

[

p
2n+ 1

]

= −S
′

1 − S
′

2 − S
′

3 mod p3

We show the following lemma.

Lemma 2. We have,
(i)

S
′

1 = (2p− 1− 2pBp−1)H2n + (pBp−1 − p)Sp−1−2n +
∑

m0

p2δ1(m0)

m2n
0

+
1

(2n)!

n−1
∑

s=1

DsH2s(Sp−1−2n+2s −H2n−2s) mod p3

(ii)

S
′

2 = (pBp−1 + 1)(H2n − Sp−1−2n)−
∑

m0

p2δ1(m0)

m2n
0

mod p3

(iii)

S
′

3 =
2n+ 1

2

(

(2p− 1− 2pBp−1)H2n + S2p−2−2n + 2(pBp−1 − p)Sp−1−2n

)

−
1

2(2n)!

n−1
∑

k=1

Gk(Sp−1−2k −H2k)(Sp−1−2n+2k −H2n−2k) mod p3

18



Corollary 2.

[

p
2n+ 1

]

=
(

(2n+ 2) pBp−1 − (2n+ 3)p+
2n+ 1

2

)

H2n

(

− (2n+ 1) pBp−1 + (2n+ 2)p+ 1
)

Sp−1−2n

−
2n+ 1

2
S2p−2n−2

−
1

(2n)!

n−1
∑

s=1

DsH2s(Sp−1−2n+2s −H2n−2s)

+
1

2(2n)!

n−1
∑

k=1

Gk(Sp−1−2k −H2k)(Sp−1−2n+2k −H2n−2k) mod p3

with the Ds’s and the Gk’s some integer coefficients to determine.

Proof of Lemma 2. We proceed like in the even case. There can be at
most one full sum when processing S

′

1.

(a) If there is no full sum, we obtain the contribution modulo p3,

(p− 1)!

p−1
∑

m0=1

p t
(0)
m0

m2n+1
0

(8)

Modulo p3, the expression (8) is congruent to

− (1 + (p− 1)!)
∑

m0

1

m2n
0

+ (p− 1)!
∑

m0

pδ0(m0)

m2n
0

, (9)

which in turn is congruent modulo p3 to

(2p− 1− 2pBp−1)H2n + (pBp−1 − p)Sp−1−2n +
∑

m0

p2δ1(m0)

m2n
0

, (10)

where we used Result 1 from the introduction.

(b) If there is exactly one full sum, the general form for the contribution modulo
p3 is

−
(p− 1)!

(2n)!

n
∑

s=1

Ds

∑

m

1

m2s

∑

m0

pt
(0)
m0

m2n+1−2s
0

, (11)

with some integer coefficients Ds’s to be determined.
The term arising from 2s = 2n yields a null contribution. Thus, Expression
(11) is in turn congruent modulo p3 to

1

(2n)!

n−1
∑

s=1

Ds H2s

(

Sp−1−2n+2s −H2n−2s

)

(12)

19



Point (i) of Lemma 2 is then obtained by gathering the results from points (a)
and (b) above.

We now process S
′

2. Using the terminology from before, there is no full sum
to be kept. We must evaluate modulo p3,

−

p−1
∑

m0=1

p2 t
(1)
m0

m2n+1
0

(13)

Recall from [15] that

(p− 1)! = −1 + p

p−1
∑

k=1

δ0(k) mod p2

This is Theorem 1 of [15]. It is obtained from using some p-adic techniques such
as Hensel’s lifting algorithm for lifting the p-adic integer roots of the polynomial
f to the first power of p. Using this fact together with Result 13, we obtain
point (ii) of Lemma 2.

It remains to tackle S
′

3. Again, there is no full sum to be kept concerning
the last 2n sums since we work modulo p3.

Now, there are two cases:

(c) Either we take the first two full sums to the left and we thus have a term in

(p− 1)!

2(2n)!

∑

m0

pt
(0)
m0

mr
0

∑

m1

pt
(0)
m1

ms
1

,

with r + s = 2n + 2. We see that either r and s are both even or r and s
are both odd. In the first case we get zero modulo p3. Only the second case
yields a non-zero contribution. More precisely, we get

(p− 1)!

2(2n)!

n
∑

k=0

Gk

∑

m0

pt
(0)
m0

m2k+1
0

∑

m1

pt
(0)
m1

m2n+2−2k−1
1

, (14)

for some adequate integer coefficients Gk’s. Then, by using Result 13, we
get

(p− 1)!

2(2n)!

n−1
∑

k=1

Gk

∑

m0

1 + (p− 1)! + pδ0(m0)

m2k
0

∑

m1

1 + (p− 1)! + pδ0(m1)

m2n−2k
1

(15)
From there, the only contribution that is left modulo p3 is

(p− 1)!

2(2n)!

n−1
∑

k=1

Gk

∑

m0

pδ0(m0)

m2k
0

∑

m1

pδ0(m1)

m2n−2k
1

(16)
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And a new reduction modulo p3 yields:

−
1

2(2n)!

n−1
∑

k=1

Gk(Sp−1−2k −H2k)(Sp−1−2n+2k −H2n−2k) (17)

(d) Or we take no full sum except the very first one. We get modulo p3,

2n+ 1

2

∑

m0

p2
(

t
(0)
m0

)2

m2n+2
0

(18)

It yields after reduction modulo p3:

2n+ 1

2

(

(2p− 1− 2pBp−1)H2n +S2p−2−2n +2(pBp−1 − p)Sp−1−2n

)

(19)

The results obtained in (c) and (d) are gathered in Point (iii) of Lemma 2.
The next step is to calculate the integer coefficients Ds’s and Gk’s.

2.2.2 Combinatorial analysis of the coefficients Ds’s and Gk’s

Lemma 3.

(i) Let s be an integer with 1 ≤ s ≤ n− 1. We have,

Ds =
(2n)!

2s
(20)

(ii) Let k be an integer with 1 ≤ k ≤ n− 1. We have,

Gk = (2n)! (21)

Proof of Lemma 3.

The integer coefficient Ds counts the number of ways to fix one full sum with
even power 2s, e.g.,

∑

mi

1
m2s

i

, such that the withdrawal process like explained

before on all the other indices in

∑

m1

pt
(0)
m1

m1

∑

m2 6=m1

1

m2
· · ·
∑

mi

1

mi

· · ·
∑

m2n+1 6=m1,...,m2n

1

m2n+1

leads to
∑

m1

pt
(0)
m1

m2n−2s+1
1

∑

mi

1

m2s
i

The full sum will receive from the corrections of its right neighbors 2s−1 power
contributions. We pick 2s indices amongst 2n. The left most sum corresponding
to these indices will play the role of full sum. The other 2s− 1 sums will unload
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onto the latter sum. They can unload directly onto that sum or unload within
their own group and so there are (2s−1)! possible ways. The (2n−2s) remaining
sums will unload within their own group or on onto the first sum in m1, in
(2n− 2s)! possible ways. Then,

Ds = (2n− 2s)!(2s− 1)!

(

2n

2s

)

=
(2n)!

2s

The integer coefficient Gk counts the number of withdrawal processes of

∑

m0

pt
(0)
m0

m0

∑

m1 6=m0

pt
(0)
m1

m1

∑

m2 6=m0,m1

1

m2
· · ·

∑

mi 6=m0,...,mi−1

1

mi

· · ·
∑

m2n+1 6=m0,m1,...,m2n

1

m2n+1

leading to
∑

m0

pt
(0)
m0

m2k+1
0

∑

m1

pt
(0)
m1

m2n+2−2k−1
1

It suffices to pick 2k indices amongst the 2n right sums which will globally
unload onto the first sum in (2k)! possible ways. The remaining 2n− 2k sums
unload onto the second sum in (2n− 2s)! possible ways. Then,

Gk = (2n− 2k)!(2k)!

(

2n

2k

)

= (2n)!

This ends the proof of Lemma 3.

2.2.3 Where we resolve the truncated convolutions

This is the last step of our mod p3 adventure.
We first deal with the sum of Corollary 2 that involves the coefficients Dk’s.
First, we introduce some new notations.

Notation 1. Let

C1 :=

n−1
∑

k=1

H2k Sp−1−2n+2k

2k
mod p3 (22)

C2 := −
n−1
∑

k=1

H2k H2n−2k

2k
mod p3 (23)

We show that the second sum C2 is a sum of two truncated convolutions, namely
one of divided Bernoulli numbers and one of divided Bernoulli numbers with
Bernoulli numbers, as in the following lemma.

Lemma 4.

C2 = p2

(

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i +

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

i

)

mod p3
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Proof of Lemma 4. By Result 7, we know that

H2k =
2k

2k + 1
pBp−1−2k mod p2

H2n−2k =
2n− 2k

2n− 2k + 1
pBp−1−(2n−2k) mod p2

Using the latter two congruences in C2, we get

C2 = −p2
n−1
∑

k=1

Bp−1−2k

p− 1− 2k
.

Bp−1−(2n−2k)

p− 1− (2n− 2k)
. (2n− 2k) mod p3, (24)

since the two denominators in (24) can be taken modulo p by von Staudt-
Clausen’s theorem since p− 1 does not divide 2k nor 2n+2− 2k when k ranges
between integers 1 and n− 1.
In turn, we write after doing the change of indices i = p− 1− 2n+ 2k,

C2 = p2
p−3
∑

i=p+1−2n

(i + 1)
Bi

i
.

B2(p−1)−2n−i

2(p− 1)− 2n− i
mod p3 (25)

Hence Lemma 4. The following lemma states a similar result for the sum C1.

Lemma 5.

C1 = −p2
p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

i
mod p3

We pleasantly see that some of the terms in Lemma 4 and 5 cancel each other.

From now on, whenever this is omitted, it will be understood that

we work modulo p.

We must compute
p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

We will deal with the cases 2n = p− 3 and 2n = p− 5 separately.

Assume for now that 2n < p− 5.

We will consider the full convolution instead, namely

D :=

2(p−1)−2n−2
∑

i=2

BiB2(p−1)−2n−i
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We decompose it as

p−1−2n
∑

i=2

BiB2(p−1)−2n−i +

2(p−1)−2n−2
∑

i=p−1

BiB2(p−1)−2n−i

+

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

(26)

Moreover, we may group the first two terms together as

2

p−1−2n
∑

i=2

BiB2(p−1)−2n−i (27)

Further, for this range of i except for the upper bound, we have p− 1 > 2n+ i.
Hence Kümmer’s congruence applies and yields

B2(p−1)−2n−i = Bp−1−2n−i

Thus, we get

D = 2 Bp−1−2n Bp−1 + 2

p−1−2n−2
∑

i=2

Bi Bp−1−2n−i

+

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

(28)

Notice that the first sum of (28) is now a convolution of divided Bernoulli
numbers. We will apply Miki’s identity to that convolution and to D as well.
In the latter case (take n := 2(p− 1)− 2n in Result 10), we get:

D =

2(p−1)−2n−2
∑

i=2

(

2(p− 1)− 2n

i

)

BiB2(p−1)−2n−i

+ 2H2(p−1)−2n B2(p−1)−2n

(29)

When p− 1− 2n ≤ i ≤ p− 1, we have 2(p− 1)− 2n− i+ 1 ≤ p, so that

(

2(p− 1)− 2n

i

)

=
(2(p− 1)− 2n) . . . (2(p− 1)− 2n− i+ 1)

i!
= 0

However, when i = p − 1 or i = p − 1 − 2n, the product of divided Bernoulli
numbers reads Bp−1−2nBp−1 and p divides the denominator of Bp−1 by Von
Staudt-Clausen’s theorem. In that case, the binomial coefficient should not get
canceled modulo pZp.
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Also, when i ≤ p− 1− 2n− 2, we have p− 1− 2n− i > 0. Hence, we get after
applying Kümmer’s congruence,

D = 2

p−1−2n−2
∑

i=2

(

2(p− 1)− 2n

i

)

BiBp−1−2n−i

+ 2

(

2(p− 1)− 2n

p− 1

)

Bp−1−2nBp−1

+ 2H2(p−1)−2n B2(p−1)−2n

(30)

Another application of Miki’s identity yields:

2

p−1−2n−2
∑

i=2

Bi Bp−1−2n−i =2

(p−1−2n)−2
∑

i=2

(

p− 1− 2n

i

)

Bi Bp−1−2n−i

+ 4Hp−1−2n Bp−1−2n

(31)

By gathering all the information so far, we obtain:

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i =

2

p−1−2n−2
∑

i=2

{

(

2(p− 1)− 2n

i

)

−

(

p− 1− 2n

i

)

}

BiBp−1−2n−i

+ 2

{

(

2(p− 1)− 2n

p− 1

)

− 1

}

Bp−1−2nBp−1

+ 2B2(p−1)−2nH2(p−1)−2n − 4Bp−1−2n Hp−1−2n

(32)

Next, we apply the Chu-Vandermonde convolution (Result 12 with m := p− 1,
n := p− 1− 2n and r := i),

(

2(p− 1)− 2n

i

)

=

i
∑

j=0

(

p− 1

j

)(

p− 1− 2n

i− j

)

(33)

Applying further Lemma 5 of [16], we derive

(

2(p− 1)− 2n

i

)

=
i
∑

j=0

(−1)j
(

p− 1− 2n

i− j

)

(34)
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Denoting the first sum to the right hand side of (32) by S, we get successively,

S = 2

p−1−2n−2
∑

i=2

{

i
∑

j=1

(−1)j
(

p− 1− 2n

i− j

)

}

BiBp−1−2n−i (35)

= 2

p−1−2n−2
∑

i=2

{

i−1
∑

j=0

(−1)j
(

p− 1− 2n

j

)

}

BiBp−1−2n−i (36)

= 2

p−1−2n−2
∑

i=2

(−1)i−1

(

p− 2− 2n

i − 1

)

BiBp−1−2n−i (37)

= −2

p−1−2n−2
∑

i=2

(

p− 2− 2n

i− 1

)

BiBp−1−2n−i (38)

For the calculation of the alternating sum of binomial coefficients in (36), see
for instance [2].
We now consider the sum of (38) without its factor. We distinguish between
two cases. Either we sum an even number of terms or we sum an odd number
of terms. In the latter case, the middle index corresponds to

i =
p− 1

2
− n

and we have
(

p− 2− 2n
p−1
2 − n

)

=

(

p− 2− 2n
p−1
2 − n− 1

)

Then, if we consider twice the sum of (38), the middle term contributes to

(

p− 1− 2n
p−1
2 − n

)

B p−1

2
−nB p−1

2
−n (39)

And the other terms contribute to

∑

2 ≤ i ≤ p− 1− 2n− 2

i 6= p−1
2 − n

(

p− 1− 2n

i

)

BiBp−1−2n−i (40)

If we sum an even number of terms, we get directly

p−1−2n−2
∑

i=2

(

p− 1− 2n

i

)

BiBp−1−2n−i (41)

Therefore, after a new application of Miki’s identity, we get:

S = 2 Hp−1−2n Bp−1−2n −

p−1−2n−2
∑

i=2

Bi Bp−1−2n−i (42)
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It remains to deal with the second row of Congruence (32). Denote this term
by T . First and foremost, we also apply the Vandermonde-Chu equality and
obtain

(

2(p− 1)− 2n

p− 1− 2n

)

=

p−1−2n
∑

j=0

(

p− 1

j

)(

p− 1− 2n

p− 1− 2n− j

)

(43)

Second, by Proposition 6 of [16], we have (with H0 = 0):

(

p− 1

j

)

= (−1)j(1− pHj) mod p2 (44)

We thus have,

1

2
p2T = −(p+1)pBp−1pBp−1−2n

p−1−2n
∑

j=1

(−1)j(1−pHj)

(

p− 1− 2n

p− 1− 2n− j

)

mod p3

(45)
Denote the binomial sum above by BS. We have

BS =

p−2−2n
∑

j=0

(−1)j
(

p− 1− 2n

j

)

− p

p−1−2n
∑

j=1

(−1)j
(

p− 1− 2n

j

)

Hj (46)

= −1 +
p

p− 1− 2n
(47)

The alternating binomial harmonic sum identity is due to Spivey and appears
in [21], identity 20. The sum BS must be considered modulo p2, hence we get:

1

2
p2T = −(p+ 1)pBp−1pBp−1−2n

(

− 1−
p

2n+ 1

)

(48)

We are now ready to give the almost final form of Congruence (32). We
state it in the following proposition. We used the fact that Hp−1−2n is a p-adic
integer, hence

Bp−1−2nHp−1−2n = B2(p−1)−2nHp−1−2n mod pZp

We also list below the special cases 2n ∈ {p − 3, p − 5} which can be easily
processed by hand.

Proposition 1. Assume 4 ≤ 2n ≤ p− 7.

p2
p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i =− p2
p−1−2n−2
∑

i=2

BiBp−1−2n−i

+ 2pB2(p−1)−2n p
(

H2(p−1)−2n −Hp−1−2n

)

+ 2(p+ 1) pBp−1

(

1 +
p

2n+ 1

)

pBp−1−2n mod p3

(49)
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Case 2n = p− 3.

p2
p−3
∑

i=4

BiBp+1−i = 2pBp+1 + p2B2 + 2pB2(pBp−1) mod p3 (50)

Case 2n = p− 5.

p2
p−3
∑

i=6

BiBp+3−i =
7

720
p2 + 2pBp+3 + 2pB4(pBp−1) mod p3 (51)

Remark 2. For a list of the first Bernoulli numbers, see [3] or [18].
Congruence (51) got tested on prime p = 11. Both sides of the congruence
evaluated successfully to 1210 modulo 113.
Congruence (50) got verified on prime p = 17 leading to 1734 modulo 173 on
both sides.

Before moving further, it is time to step back and go back to the expression
modulo p3 for the Stirling numbers as provided in [15]. This is Result 8 of the
introduction. First, we introduce some notations for convolutions of divided
Bernoulli numbers.

Notation 2. Let

CB(n) :=

n−2
∑

i=2

BiBn−i

By Result 8 applied with 2k = p− 1− 2n, we have when 0 ≤ 2n ≤ p− 5,

[

p
2n+ 1

]

= −
1

p− 1− 2n

(

pBp−1−2n − p2
p−3−2n
∑

i=2

BiBp−1−2n−i

)

mod p3

(52)
Moreover, notice that twice the sum participating into (52) is congruent modulo
pZp to

−(2n+ 1)

p−3−2n
∑

i=2

BiBp−1−2n−i

Hence we get the following result:

Proposition 2. Assume 0 ≤ 2n ≤ p− 5. Then, we have:

p2

2
CB(p− 1− 2n) =

[

p
2n+ 1

]

+ pBp−1−2n mod p3 (53)

In particular, we have

p2

2
CB(p− 1) = pB2(p−1) −

1

2
p2B2

p−1 mod p3 (54)
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Congruence (54) is Congruence (53) using the original fact from [22] that

(p− 1)! = −pBp−1 + pB2p−2 −
1

2
p2B2

p−1 mod p3 (55)

See also Corollary 6 of [15] where Sun’s formula gets proven using part of the
methodology of the current paper.

We now process the last sum of Corollary 2. Again, we split the sum, this
time into four contributing parts. We introduce some notations in order to refer
to the different parts.

Notation 3.

C3 :=
n−1
∑

k=1

Sp−1−2kSp−1−2n+2k mod p3 (56)

C4 := −

n−1
∑

k=1

Sp−1−2kH2n−2k mod p3 (57)

C5 := −

n−1
∑

k=1

H2kSp−1−2n+2k mod p3 (58)

C6 :=

n−1
∑

k=1

H2kH2n−2k mod p3 (59)

(60)

We see with a simple change of indices that C4 and C5 are equal. Moreover,
their common value modulo p3 is

−p2
n−1
∑

k=1

2k

2k + 1
Bp−1−2kBp−1−2n+2k

We can group the sums again adequately and obtain:

6
∑

i=3

Ci = p2
n−1
∑

k=1

(

1−
2k

2k + 1

)

Bp−1−2kBp−1−2n+2k

− p2
n−1
∑

k=1

2k

2k + 1

(

1−
2n− 2k

2n− 2k + 1

)

Bp−1−2kBp−1−2n+2k

mod p3

(61)

Hence, we have:

6
∑

i=3

Ci = −p2
n−1
∑

k=1

Bp−1−2kBp−1−2n+2k

+ p2
n−1
∑

k=1

2k

2k + 1
Bp−1−2kBp−1−2n+2k mod p3

(62)
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So finally,

6
∑

i=3

Ci = −p2
n−1
∑

k=1

Bp−1−2kBp−1−2n+2k

+ p2
n−1
∑

k=1

Bp−1−2kBp−1−2n+2k

+ p2
n−1
∑

k=1

Bp−1−2kBp−1−2n+2k mod p3

(63)

And after cancelation of the first two terms, we get

6
∑

i=3

Ci = p2
n−1
∑

k=1

Bp−1−2kBp−1−2n+2k (64)

= p2
p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i mod p3 (65)

2.2.4 Final expression and confrontation with the result issued from

Manner I

By Sun’s result taken from [22] and expressed in Result 4, (a) of § 1.2, we have

When 2n 6= p− 3, H2n = 2n
(

pB2p−2−2n − 2pBp−1−2n

)

mod p3 (66)

Also, we have:

Sp−1−2n = (p− 1− 2n) pBp−1−2n mod p3 (67)

S2p−2n−2 = (2p− 2n− 2) pB2p−2n−2 mod p3 (68)

p2B2p−2n−2 = p2Bp−1−2n mod p3 (69)

Using these facts as well as Corollary 2 and the expressions for the sums Ci’s
with 1 ≤ i ≤ 6, we have

When 2n 6= p− 3,

[

p
2n+ 1

]

=−
p2

2

p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i

+ pB2p−2n−2

+
(

p(pBp−1)1 − p− 2
)

pBp−1−2n

mod p3

(70)

When 2n = p− 3, we use the Sun congruences (cf Results 2 and 4 (b)),

Hp−3 =
(1

2
− 3Bp+1

)

p−
4

3
p2 mod p3 (71)

S2 = pB2 + p2 B1 mod p3 (72)

Sp+1 = pBp+1 mod p3 (73)
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And so we have,

[

p
p− 2

]

= −
p2

2

p−3
∑

i=4

BiBp+1−i+pBp+1+
p2

12
(pBp−1)1+

p2

3
−

p

6
mod p3 (74)

Before we use Proposition 1, we need a lemma.

Lemma 6. Assume 2n < p− 5. The following congruence holds.

p

(

H2(p−1)−2n −Hp−1−2n

)

= 1 +
p

2n+ 1
mod p2 (75)

Proof of Lemma 6. We have

p

(

H2(p−1)−2n −Hp−1−2n

)

= p

(

1

p− 1− 2n+ 1
+

1

p− 1− 2n+ 2
+ · · ·+

1

p− 1− 2n+ 2n

+
1

p− 1− 2n+ 2n+ 1

+
1

p− 1− 2n+ 2n+ 2
+ · · ·+

1

p− 1− 2n+ 2n+ p− 1− 2n

)

= −pH2n + 1 + pHp−(2n+2) mod p2 (76)

= −pH2n + 1 + pH2n+1 mod p2 (77)

= 1 +
p

2n+ 1
mod p2 (78)

with (77) following from an application of Wolstenholme’s theorem (see [16], § 4
p. 22). Assume 2n < p− 5. In light of Lemma 6, Proposition 1 rewrites as

p2
p−3
∑

i=p+1−2n

BiB2(p−1)−2n−i =− p2CB(p− 1− 2n)

+ 2pB2(p−1)−2n − 2(p+ p2)Bp−1−2n

+ 2(pBp−1)1 p
2Bp−1−2n mod p3

(79)

Point (i) of Theorem 1 is a rearrangement of Congruence (79) and is thus proven.
Points (ii) and (iii) are respectively Congruences (50) and (51) of Proposition
1.
The conjunction of Congruences (70) and (79) leads precisely to Congruence
(53) of Proposition 2, which is the result arising from Manner I.
It is also a straightforward (but fastidious) verification that the formulas from

Manner 1 and Manner 2 for the Stirling number

[

p
p− 4

]

modulo p3 coincide.

And the formula arising from Manner 2 for computing

[

p
p− 2

]

yields the same

result as the one issued from a direct calculation (see last row of Result 8 of the
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introduction).

The next part deals with multiple harmonic sums and relates them in par-
ticular modulo p3 to the Stirling numbers in a reverse way than the trivial usual
way, that is Ap−1−j = (p− 1)!A⋆

j .

3 The multiple harmonic sums modulo p
3

This part is based on the use of Newton’s formulas which we recall right below.

Result 14. (Newton’s formula, see [13]). Let x1, . . . , xm be complex numbers.
Let Pk = xk

1 + . . . xk
m and Ak =

∑

1≤i1<···<ik≤m xi1 . . . xik .
Then, for k = 0, 1, . . . ,m we have:

Pk −A1Pk−1 +A2Pk−2 + · · ·+ (−1)k−1Ak−1P1 + (−1)kkAk = 0 (80)

Our complex numbers are chosen to be the first p − 1 reciprocals of integers.
And so Pk = Hk and Ak = A⋆

k. Then, Equality (80) rewrites as:

A⋆
k =

(−1)k−1

k

(

Hk +

k−1
∑

r=1

(−1)rA⋆
r Hk−r

)

∀k = 1, . . . , p− 1 (81)

Note, when k = 1, A⋆
1 = H1, hence the equality still holds.

We will follow Sun’s idea exploited in a different context. By Bayat’s result,
we know that p divides H1, . . . , Hp−3. Moreover, by Sun’s result 4 (c) or by
Corollary 4 of [15], we know that p also divides Hp−2. Then we see from (81)
that p divides all of A⋆

1, . . . , A
⋆
p−1 (note the latter fact can also be seen directly

from Ap−1−j = (p − 1)!A⋆
j and the fact that p divides the Stirling numbers

A1, . . . , Ap−2. This implies in turn that p2 divides the sum of (81) and so we
have,

A⋆
k =

(−1)k−1

k
Hk mod p2 ∀ k = 1, . . . , p− 1 (82)

Now if we work modulo p3, the multiple harmonic sums must be considered
modulo p2 in the sum of (81). Thus, we get

A⋆
k =

(−1)k−1

k

(

Hk −
k−1
∑

r=1

Hr Hk−r

r

)

mod p3 ∀k = 1, . . . , p− 1 (83)

Moreover, by Corollary 5.1 of [22], we have

Hr =
r

r + 1
pBp−1−r mod p2 when r < p− 1

Then,

A⋆
k =

(−1)k−1

k

(

Hk−p2
k−1
∑

r=1

(k−r)Bp−1−rBp−1−k+r

)

mod p3 ∀k = 1, . . . , p−1

(84)
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If in the sum of (84), we do the change of indices i = p− 1− k + r, we obtain:

A⋆
k =

(−1)k−1

k

(

Hk+p2
p−2
∑

i=p−k

(i+1)BiB2(p−1)−k−i

)

mod p3 ∀k = 1, . . . , p−1

(85)
It follows that

A⋆
k =

(−1)k−1

k

(

Hk−
k

2
p2

p−3
∑

i=p+1−k

BiB2(p−1)−k−i

)

mod p3 ∀k = 1, . . . , p− 1

(86)
When k is odd, 2(p− 1)−k− i and i have distinct parity, hence the sum of (86)
vanishes. If k is even, say k = 2n, the sum is the well studied truncated sum of
§ 2.2.3, namely T CB(p−1−2n, p−3) using the notations from the introduction.

From there, point (I) of Theorem 2 can be derived from our Theorem 1 and
from Sun’s result listed as Result 4 of the introduction.
As for point (II) of Theorem 2, it can be obtained directly from (82) by multi-
plying each side of the congruence by pwp.
Finally, point (III) follows from the fact that p divides H1, . . . , Hp−2 and so p
divides A⋆

1, . . . , A
⋆
p−2 by (82), as we have already seen before. Hence, it follows

from Glaisher’s result for (p− 1)! modulo p2 that

Ap−1−j = (p− 1)!A⋆
j = (pBp−1 − p)A⋆

j mod p3 ∀j = 1, . . . , p− 2 (87)

It is easy to check that A1 = (pBp−1 − p)A⋆
p−2 and A2 = (pBp−1 − p)A⋆

p−3,
this modulo p3. We note moreover that the conjunction of Proposition 2 of
§ 2.2.3 and of congruences (86) and (87) provides a third independent proof for
the relationship between the truncated convolution and the full convolution of
interests modulo p3.

We end this part by proving Theorems 0.0., 0.1., 0.2. and 0.3.

By Zhao’s congruence (14) in [28], we have

H1 = pA⋆
2 mod p4 (88)

By Equality (81) with k = 2, we have

A⋆
2 = −

1

2
(H2 −A⋆

1H1) (89)

= −
1

2
(H2 −H2

1 ) (90)

By Wolstenholme’s theorem, p2 divides H1, hence p4 divides H2
1 . Thus, we get

A⋆
2 = −

1

2
H2 mod p3 (91)

= −p(B2p−4 − 2Bp−3) mod p3 (92)
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Then,
H1 = −p2(B2p−4 − 2Bp−3) mod p4

This settles Theorem 0.0.
Regarding Theorem 0.1, it can be derived from Theorem 0.0 in the following
way.

Ap−3 = (pBp−1 − p)A⋆
2 mod p3 (93)

= (pBp−1 − p)
H1

p
mod p3 (94)

= (pBp−1 − p) pBp−3 −
p2

2

p−1
∑

a=1

q2a
a2

mod p3 (95)

As far as Theorem 0.2, we derive from Proposition 2 applied with 2n = 2 and
from Theorem 0.1 that

p2

2
CB(p− 3) = (pBp−1 − p+ 1)pBp−3 −

p2

2

p−1
∑

a=1

q2a
a2

mod p3

Hence,

p CB(p− 3) = 2(pBp−1 − p+ 1)Bp−3 − p

p−1
∑

a=1

q2a
a2

mod p2

Thus, in terms of the Agoh-Giuga quotient and then the Wilson quotient, we
obtain:

CB(p− 3) = 2

(

(pBp−1 + 1

p

)

− 1

)

Bp−3 −

p−1
∑

a=1

q2a
a2

mod p (96)

= 2wp Bp−3 −

p−1
∑

a=1

q2a
a2

mod p (97)

Regarding the convolution of order p−5, Theorem 0.3. is derived from a special
case of Theorem 1 point (i) applied with 2n = 4. It provides CB(p− 5) modulo
p. We then obtain the Stirling numbers on 5 disjoint cycles modulo p3 by the
congruence (53) of Proposition 2. The multiple harmonic sum A⋆

4 modulo p3 is
finally deduced from the congruence of Theorem 2, point (II), or directly from
Congruence (86).
We have thus ”resolved” the convolutions CB(p− 1), CB(p− 3) and CB(p− 5)
to the modulus p.

Remark 3. In [29] p. 97, Jianqiang Zhao proved using generalized multiple
harmonic sums that

∀p ≥ 7, CB(p− 3) = −2Bp−3 mod p (98)

∀p ≥ 9, CB(p− 5) = −
2

3
B2

p−3 − 2Bp−5 mod p (99)

where CB denotes convolutions of ordinary Bernoulli numbers.
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4 Concluding words

The p-adic analysis on the polynomial Xp−1 + (p− 1)! ∈ Zp[X ] joint with some
century(ies) old mathematics allows to bypass more recent and technical re-
sults concerning Miki’s identity or the knowledge of the generalized harmonic
numbers modulo p3 which uses in particular a generalization of Kümmer’s con-
gruences to the modulus p2 by Zhi-Hong Sun.
We have resolved the convolutions only for special cases and there is far more
work to be done.
At the level of the modulus p4, it is to expect that the whole set of tools detailed
here will prove useful and non intersecting.

Email address: clairelevaillant@yahoo.fr
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