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Abstract

Given a family of lattice polytopes, two common questions in Ehrhart Theory are
determining when a polytope has the integer decomposition property and determining
when a polytope is reflexive. While these properties are of independent interest, the
confluence of these properties is a source of active investigation due to conjectures
regarding the unimodality of the h∗-polynomial. In this paper, we consider the Newton
polytopes arising from two families of polynomials in algebraic combinatorics: Schur
polynomials and inflated symmetric Grothendieck polynomials. In both cases, we prove
that these polytopes have the integer decomposition property by using the fact that
both families of polynomials have saturated Newton polytope. Furthermore, in both
cases, we provide a complete characterization of when these polytopes are reflexive. We
conclude with some explicit formulas and unimodality implications of the h∗-vector in
the case of Schur polynomials.
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1 Introduction

Of central interest in algebraic combinatorics are polynomials f ∈ C[x1, x2, . . . , xm], which
commonly appear as generating functions that encode some combinatorial information. As-
sociated to each polynomial f is the Newton polytope Newt(f), which is the convex hull of
the exponent vectors occurring in the monomials in f . A polynomial has saturated New-
ton polytope if every lattice point appearing in the Newton polytope corresponds to the
exponent vector of a monomial in f with nonzero coefficient [18].

If a polynomial f has saturated Newton polytope, then checking if a monomial has
nonzero coefficient is equivalent to checking if the corresponding integer lattice point is in
the Newton polytope. Adve, Robichaux and Yong [1] use this perspective to study the
computational complexity of the “nonvanishing problem” for polynomials, with a focus on
Schubert polynomials.

In this paper, we study Newton polytopes arising from Schur polynomials and a general-
ization of symmetric Grothendieck polynomials, which we call inflated symmetric Grothendieck
polynomials. We denote these polytopes by Newt(sλ) and Newt(Gh,λ), respectively. The
polytopes Newt(sλ) and Newt(G1,λ) have previously been studied by Monical, Tokcan, and
Yong [18] and Escobar and Yong [11], but many open questions remain. We are particularly
interested in determining when Newt(sλ) and Newt(Gh,λ) are reflexive and when they have
the integer decomposition property (IDP), both of which we define in Section 2.

The Ehrhart series of a lattice polytope P is a combinatorial tool that enumerates the
lattice points in dilations of P . The h∗-vector of P , denoted h∗(P), records the coefficients
in the numerator of the rational function representing the Ehrhart series. Understanding
the h∗-vectors of reflexive polytopes has been a topic of extensive recent research [4]. Hibi
showed that reflexive polytopes have palindromic h∗-vectors [14].

A lattice polytope P is Gorenstein if some positive integer dilate of P is reflexive,
and hence the Gorenstein property is a relaxation of reflexivity. The following conjecture is
commonly attributed to Ohsugi and Hibi [19] in the modern literature, though it is a special
case of conjectures of Brenti [5] and of Stanley [25].

Conjecture 1.1 (Ohsugi–Hibi [19]). If P is a Gorenstein polytope that has the integer
decomposition property, then h∗(P) is unimodal.

A prominent open question in Ehrhart Theory is whether the h∗-vector of every lattice
polytope with IDP is unimodal [22]; this is related to a conjecture of Stanley’s on the
unimodality of h-vectors of Cohen-Macaulay and Gorenstein domains [26]. Schepers and Van
Langenhoven [22] show that lattice parallelepipeds, which are among the simplest examples of
polytopes that have IDP, also have unimodal h∗-vectors. We show Newt(sλ) and Newt(Gh,λ)
have IDP and then consider unimodality of the h∗-vector of Newt(sλ).

Our main contributions in this paper are as follows. We show that all Newton polytopes
that arise from Schur polynomials have IDP, and characterize which of these are reflexive.
We present closed-form expressions for the h∗-vectors of those that are reflexive and show
that these vectors are all unimodal. This is a family for which Conjecture 1.1 holds. Further,
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we consider symmetric Grothendieck polynomials, which are linear combinations of Schur
polynomials and can be thought of as their inhomogeneous analogue. We show that all
Newton polytopes arising from inflated symmetric Grothendieck polynomials have IDP, and
characterize the very few that are reflexive.

Acknowledgments: The authors would like to thank Federico Castillo and Semin Yoo for
helpful discussions and contributions to the early stages of the project. We would also like
to thank Michel Marcus and Avery St. Dizier for helpful comments on a previous version of
the paper.

This work was completed in part at the 2019 Graduate Research Workshop in Combina-
torics, which was supported in part by NSF grant #1923238, NSA grant #H98230-18-1-0017,
a generous award from the Combinatorics Foundation, and Simons Foundation Collaboration
Grants #426971 (to M. Ferrara) and #315347 (to J. Martin). Margaret Bayer was partially
supported by a University of Kansas General Research Fund grant. Bennet Goeckner was
partially supported by an AMS-Simons travel grant. Martha Yip was partially supported
by a Simons Collaboration grant.

2 Background

In this section, we briefly recall notions from convex geometry, Ehrhart theory, and the study
of Newton polytopes in algebraic combinatorics.

2.1 Convex polytopes and Ehrhart theory

A polytope P ⊂ Rm is the convex hull of finitely many points v1, . . . ,vk ∈ Rm. That is,

P = conv{v1, . . . ,vk} :=

{
x =

k∑
i=1

νivi

∣∣∣∣ 0 ≤ νi ≤ 1 and
k∑
i=1

νi = 1

}
.

The inclusion-minimal set V ⊆ Rm such that P = conv(V ) is called the vertex set of P .
A polytope is called lattice (resp. rational) if P = conv(V ) for V ⊆ Zm (resp. V ⊆ Qm).
Given a polytope P ⊆ Rm, the classical Minkowski–Weyl theorem states that we can express
P as a bounded set of the form

P = {x ∈ Rm | 〈ai,x〉 ≤ bi for i = 1, . . . , `}

where 〈ai,x〉 =
∑m

j=1 aijxj, for some a1, . . . , a` ∈ Rm and b1, . . . , b` ∈ R. If none of these
inequalities are redundant, these inequalities define the facets, or codimension 1 faces of P .
The dimension of P , denoted dim(P), is defined to be the dimension of its affine span in
Rm.

Let P be a lattice polytope with dim(P) = d ≤ m. Given a positive integer t, let
tP := {tx | x ∈ P} be the t-th dilate of P . The lattice point enumeration function

ehrP(t) := #(tP ∩ Zm)
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is called the Ehrhart polynomial of P . By a classical result of Ehrhart [10], this function
agrees with a polynomial of degree d in the variable t. Equivalently, one may also consider
the Ehrhart series of P which is defined to be the formal power series

EhrP(z) := 1 +
∑
t≥1

ehrP(t)zt =
1 + h∗1z + · · ·+ h∗d−1z

d−1 + h∗dz
d

(1− z)d+1
.

The numerator of the Ehrhart series is called the h∗-polynomial and the vector of coeffi-
cients h∗(P) = (1, h∗1, . . . , h

∗
d) the h∗-vector. By a result of Stanley [26], (1, h∗1, . . . , h

∗
d) ∈

Zd+1
≥0 .

Studying h∗(P) often informs the algebraic and geometric structure of a lattice polytope
P . If 0 is in the interior of P , the (polar) dual polytope of P is the rational polytope

P∗ := {y ∈ Rm | 〈y,x〉 ≤ 1 for all x ∈ P} .

A polytope P with 0 in its interior is called reflexive if P∗ is a lattice polytope. Equivalently,
P is reflexive (up to translation and lattice preserving transformations) if it contains a unique
lattice point p in its interior, and for any facet P∩{x ∈ Rm | 〈a,x〉 = b} where a is primitive
(meaning the greatest common divisor of the coordinates of a is 1) we have |〈a,p〉 − b | = 1.
This final quantity is called the lattice distance of p from the facet.

Theorem 2.1 (Hibi [14]). Let P be a lattice polytope of dimension d containing the origin
in its interior and having Ehrhart series

EhrP(z) =
h∗0 + h∗1z + · · ·+ h∗d−1z

d−1 + h∗dz
d

(1− z)d+1
.

Then P is reflexive if and only if h∗i = h∗d−i for all 0 ≤ i ≤ bd
2
c.

In other words, the h∗-polynomial of a reflexive lattice polytope is a palindromic poly-
nomial of degree d.

A relaxation of reflexivity is the Gorenstein property. We say that P is Gorenstein if
there is some positive integer c such that cP is a reflexive polytope, and the integer c is
called the Gorenstein index of P . Similarly, this is completely detected by the Ehrhart
series, as P is Gorenstein if and only if its h∗-polynomial is palindromic of degree d− c+ 1
by a result of De Negri and Hibi [9].

Given a lattice polytope P , one can consider the interplay between the convex geometry
of P in Rm with the induced arithmetic structure of P ∩ Zm. This motivates the discussion
of triangulations and the integer decomposition property. A (lattice) triangulation T of
P is a decomposition of P as a lattice simplicial complex. We say that T is regular if
the triangulation is induced as the domains of linearity of a piecewise-linear, convex function
σ : P → R. We say that T is unimodular if each maximal simplex ∆ ∈ T is a unimodular
simplex, that is, if the vertices of ∆ generate Zd. We say that P has the integer decom-
position property (IDP) if for any positive integer t and any lattice point p ∈ tP ∩ Zm,
there are t lattice points v1, . . . ,vt ∈ P ∩Zm such that p = v1 + · · ·+ vt. The existence of a
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(regular) unimodular triangulation of P ensures that P has IDP. This implication is strict,
as one can construct examples of polytopes with IDP without a unimodular triangulation
(see, e.g., [7, 12]).

A sequence a0, a1, . . . , an of real numbers is unimodal if there is some 0 ≤ j ≤ n such
that a0 ≤ a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ an. A common investigatory theme in
Ehrhart theory is determining under what conditions one may ensure that coefficients of the
h∗-vector form a unimodal sequence. The most notable sufficient result is the following.

Theorem 2.2. (Bruns and Römer [8], Athanasiadis [3, Theorem 1.3]1) If P is Gorenstein
and admits a regular, unimodular triangulation, then h∗(P) is a unimodal sequence.

Given that these conditions are rather restrictive, it is natural to consider relaxations
to determine if unimodality still holds. It is known that Gorenstein is not sufficient for
unimodality as indicated by Payne [20], though none of these examples exhibit IDP.

The following even broader question was posed by Scheppers and Van Langenhoven:

Question 2.3 (Scheppers and Van Langenhoven [22]). If P has the integer decomposition
property, is h∗(P) a unimodal sequence?

2.2 Newton polytopes

Given a polynomial f =
∑

α cαx
α ∈ C[x1, x2, . . . , xm] where α ∈ Zm≥0, the Newton polytope

Newt(f) of f is defined as the convex hull of the exponent vectors of f . That is,

Newt(f) := conv{α | cα 6= 0}.

A polynomial f has saturated Newton polytope (SNP) if every lattice point α ∈
Newt(f) ∩ Zm appears as an exponent vector of f , that is, cα 6= 0. This notion was in-
troduced by Monical, Tokcan, and Yong in [18].

We now define our main objects of study in this paper, Newton polytopes arising from
Schur polynomials and from inflated symmetric Grothendieck polynomials, both of which
have SNP. A partition of a nonnegative integer n with at mostm parts is λ = (λ1, λ2, . . . , λm)
with λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and

∑m
i=1 λi = n. This is denoted by λ ` n. The number of

positive parts of λ is denoted by `(λ). The Young diagram associated to λ is an arrange-
ment of boxes with λi boxes in the i-th row, with rows aligned at the left. Given partitions
µ and λ such that the Young diagram of λ is contained in the Young diagram of µ, the skew
shape µ/λ is the Young diagram consisting of boxes in µ which are not in λ. A semis-
tandard Young tableau is a filling of a Young diagram with positive integers such that
entries are weakly increasing along each row and strictly increasing along each column. Let
SSYT[m](µ/λ) denote the set of all semistandard Young tableaux of shape µ/λ with fillings
from [m] = {1, . . . ,m}.

1In this paper, the author also acknowledges unpublished work of Hibi and Stanley
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Definition 2.4. Let x = (x1, . . . , xm). The Schur polynomial in m variables indexed by
λ ` n is

sλ(x) =
∑

T∈SSYT[m](λ)

xT ,

where xT = x
d1(T )
1 · · · xdm(T )

m such that di(T ) is the number of times i appears in T .

Example 2.5. Consider the partition λ = (3, 0, 0) ` 3. Let m = 3 and x = (x1, x2, x3). The
semistandard Young tableaux are

1 1 1 2 2 2 3 3 3 1 1 2 1 1 3 1 2 2 1 3 3 2 2 3 2 3 3 1 2 3

and the associated Schur polynomial is

s(3,0,0)(x) = x31 + x32 + x33 + x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3 + x1x2x3.

The Newton polytope Newt(s(3,0,0)(x)) is the convex hull of the points

(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3).

Example 2.6. Consider the partition λ = (2, 1, 0) ` 3. Let m = 3 and x = (x1, x2, x3). The
semistandard Young tableaux are

1 1
2

1 1
3

1 2
2

1 3
3

2 2
3

2 3
3

1 2
3

1 3
2

and the associated Schur polynomial is

s(2,1,0)(x) = x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3 + 2x1x2x3.

The Newton polytope Newt(s(2,1,0)(x)) is the convex hull of the points

(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1).

Since Schur polynomials are homogeneous polynomials, we have that Newt(sλ(x1, . . . , xm))
is an (m− 1)-dimensional polytope in Rm. Consequently, the polytopes for the Schur poly-
nomials in Example 2.5 and Example 2.6 are 2-dimensional polytopes in R3. In Figure 1, we
have depicted these polytopes (equivalently) in the plane for convenience. It is known that
Schur polynomials have SNP [18, Proposition 2.5].

In Section 4.1, we characterize which Newton polytopes arising from Schur polynomi-
als are reflexive. Figure 2 illustrates examples of reflexive and nonreflexive Newt(sλ(x)),
generated using Normaliz [6] and SageMath [27].

Remark 2.7. The Newton polytope Newt(sλ(x)) of a Schur polynomial can be realized
as the (m − 1)-dimensional λ-permutohedron Pmλ in Rm, which is the convex hull of the
Sm-orbit of (λ1, . . . , λm) ∈ Rm.

Symmetric Grothendieck polynomials can be thought of as an inhomogeneous analogue
of Schur polynomials. The following definition is due to Lenart [17, Theorem 2.2].
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Figure 1: Newton polytopes for Schur polynomials in Example 2.5 (left) and Example 2.6
(right) drawn in R2 rather than in a 2-dimensional subspace of R3. Both of these polytopes
can be shown to be reflexive if we translate them so that their unique interior point is (0, 0).

Figure 2: The polytope Newt(s(2,1,1,0)(x)), on the left, is reflexive and the polytope
Newt(s(2,1,0,0)(x)), on the right, is not reflexive.

Definition 2.8. Let x = (x1, . . . , xm) and let λ be a partition with at most m parts. For
any partition µ ⊇ λ with at most m rows, let aλµ be the number of fillings of the skew shape
µ/λ such that the filling increases strictly along each row and each column, and the filling
in the r-th row is from {1, . . . , r − 1}. Let

A(λ) = {µ | aλµ 6= 0}.

The symmetric Grothendieck polynomial indexed by λ is

Gλ(x) =
∑

µ∈A(λ)

(−1)|µ/λ|aλµsµ(x).

Example 2.9. Let λ = (2, 1, 0) ` 3, m = 3, and x = (x1, x2, x3). Then

G(2,1,0)(x) = s(2,1,0)(x)−
(
s(2,2,0)(x) + 2s(2,1,1)(x)

)
+ 2s(2,2,1)(x)− s(2,2,2)(x).

See Figure 3 for an illustration of the Newton polytope of G(2,1,0)(x).

Escobar and Yong [11] have shown that symmetric Grothendieck polynomials Gλ(x) have
SNP.
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3 The Integer Decomposition Property

In this section we will show that the Integer Decomposition Property (IDP) holds for Schur
polynomials and a generalization of the symmetric Grothendieck polynomials.

3.1 The Newton polytope of a Schur polynomial

Using the realization of the Newton polytope Newt(sλ(x)) as the λ-permutohedron Pmλ , we
show that all Newton polytopes of Schur polynomials have IDP. One should note that this
result is already known by the theory of generalized permutohedra and polymatroids (see,
e.g., [23, Corollary 46.2c]). However, we provide our proof as it motivates our methods for
the Newton polytope of symmetric Grothendieck polynomials.

Proposition 3.1. Let λ be a partition with at most m parts and let x = (x1, . . . , xm). Then
the Newton polytope Newt(sλ(x)) = Pmλ has the integer decomposition property.

Proof. The vertices of the t-th dilate tPmλ are the vertices of Pmλ scaled by t, so the vertices
of tPmλ are given by the Sm-orbit of tλ, and tPmλ = Newt(stλ(x)).

Let p be a point in the t-th dilate tPmλ = Newt(stλ(x)). Since stλ(x) has saturated
Newton polytope, then p is the content vector of a semistandard Young tableaux T of shape
tλ. The tableau T decomposes into t semistandard Young tableaux T1, . . . , Tt each of shape
λ such that Ti consists of the j-th columns of T for j ≡ i mod t. Letting vi denote the
content vector of Ti, then p = v1 + · · ·+ vt, so Newt(sλ(x)) has IDP.

Example 3.2. Let m = 3, x = (x1, x2, x3), and λ = (2, 1, 0) ` 3. Each lattice point in
the dilated polytope 3Newt(sλ(x)) = Newt(s3λ(x)) is the content vector of a semistandard
Young tableau T of shape 3λ = (6, 3, 0), and the lattice point can be decomposed into the
sum of three points which are content vectors of semistandard Young tableaux T1, T2, T3 of
shape λ by taking the columns of T mod 3.

1 1 2 2 2 3

2 3 3
= 1 2

2
+ 1 2

3
+ 2 3

3

(2, 4, 3) = (1, 2, 0) + (1, 1, 1) + (0, 1, 2)

3.2 The Newton polytope of a symmetric Grothendieck polyno-
mial

A notable difference between the Newton polytope of Schur polynomials versus symmetric
Grothendieck polynomials is that unlike the case of Schur polynomials, tNewt(Gλ(x)) 6=
Newt(Gtλ(x)). Motivated by our study of the integer decomposition property of the Newton
polytope of symmetric Grothendieck polynomials, we make the following definition.
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Definition 3.3. Let h be a positive integer. Let x = (x1, . . . , xm) and let λ ` n be a
partition with at most m parts. For any partition µ ⊇ λ with at most m rows, let bh,λµ be
the number of fillings of the skew shape µ/λ such that the filling increases strictly along each
row and each column, and the filling in the r-th row is from {1, . . . , h(r − 1)}. Let

A(h, λ) = {µ | bh,λµ 6= 0}.

The inflated symmetric Grothendieck polynomial indexed by λ and h is

Gh,λ(x) =
∑

µ∈A(h,λ)

(−1)|µ/λ|bh,λµsµ(x).

Example 3.4. Let λ = (2, 1, 0) ` 3, m = 3, h = 2, and x = (x1, x2, x3). Then

G2,(2,1,0)(x) = s(2,1,0)(x)− (2s(2,2,0)(x) + 4s(2,1,1)(x)) + 8s(2,2,1)(x)− 11s(2,2,2)(x).

Compare with Example 2.9.

Remark 3.5. Note that G1,λ(x) = Gλ(x) is the usual symmetric Grothendieck polynomial.

Escobar and Yong [11] showed that the symmetric Grothendieck polynomial Gλ(x) has
SNP and described the components of the Newton polytope associated to the homogeneous
components of Gλ(x). We extend the work of Escobar and Yong to Gh,λ(x) and show that
Gh,λ(x) also has SNP.

3.2.1 Inflated symmetric Grothendieck polynomials and SNP

Definition 3.6. For two partitions µ, λ ` n, we say µ dominates λ and write µ D λ, if
µ1 + · · ·+ µi ≥ λ1 + · · ·+ λi for every i ≥ 1.

Definition 3.7. Let h be a positive integer and let λ be a partition with at most m parts.
Let λ(0) = λ and for k ≥ 1, let λ(k) ` |λ| + k be the partition obtained by adding a box to
the rk-th row of λ(k−1), where rk ∈ [m] is the smallest integer such that

λ(k−1)rk
− λrk < h(rk − 1),

and adding a box to the rk-th row of λ(k−1) results in a valid partition. If degGh,λ(x) =
|λ|+N , we say λ(0), . . . , λ(N) is the sequence of dominating partitions for Gh,λ(x).

We justify this terminology with the next result. Lemma 3.8(a) is an extension of the
result [11, Claim A] of Escobar-Yong to the case of inflated symmetric Grothendieck poly-
nomials.

Lemma 3.8. Let degGh,λ(x) = |λ| + N , and let {λ(0), . . . , λ(N)} be the sequence of domi-
nating partitions for Gh,λ(x).

(a) For k = 0, . . . , N , the partition λ(k) dominates all other partitions µ ∈ A(h, λ) such
that µ ` |λ|+ k.
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(b) The partition λ(N) is the unique partition µ ∈ A(h, λ) such that µ ` |λ|+N .

(c) A(h, λ) = {µ | λ ⊆ µ ⊆ λ(N)}.

Proof. Let µ ∈ A(h, λ) such that µ ` |λ| + k. Suppose for contradiction that λ(k) does not

dominate µ, so that there exists a minimum s > 1 such that µ1+ · · ·+µs−1 ≤ λ
(k)
1 + · · ·+λ(k)s−1

but µ1 + · · ·+ µs > λ
(k)
1 + · · ·+ λ

(k)
s . This implies µs > λ

(k)
s .

The partition λ(k) was obtained by adding a box to λ(k−1) in the rk-th row. If s < rk,
then

λ(k−1)s − λs ≤ λ(k)s − λs < µs − λs ≤ h(s− 1),

so a box would have been added to λ(k−1) in the s-th row to obtain λ(k), contradicting the
construction of λ(k). Thus s ≥ rk. But then by the construction of λ(k), for all j ≥ rk,

(λ
(k)
1 + · · ·+ λ

(k)
j )− (λ1 + · · ·+ λj) = k ≥ (µ1 + · · ·+ µj)− (λ1 + · · ·+ λj) ,

which contradicts the existence of s, so part (a) holds.

Parts (b) and (c) follow from the maximality of λ(N).

Proposition 3.9. Let h be a positive integer, and let λ be a partition with at most m parts.
Suppose degGh,λ(x) = |λ|+N , and let λ(0), . . . , λ(N) be the sequence of dominating partitions
for Gh,λ(x). Further, let Hk be the hyperplane in Rm defined by

∑m
i=1 xi = |λ|+ k. Then

Newt(Gh,λ(x)) ∩Hk = Newt(sλ(k)(x)).

Proof. For k ≥ 0, if (p1, . . . , pm) ∈ Hk, then
∑m

i=1 pi = |λ| + k, thus Newt(Gh,λ(x)) ∩Hk is
the convex hull of the content vectors of the partitions µ ∈ A(h, λ) such that µ ` |λ|+ k.

A result of Rado [21, Proposition 2.5] states that

Newt(sα(x)) ⊆ Newt(sβ(x)) if and only if α E β

for any two partitions α, β. By Lemma 3.8(a), since λ(k) dominates all partitions µ ∈
A(h, λ) such that µ ` |λ| + k, then Newt(sµ(x)) ⊆ Newt(sλ(k)(x)), and we conclude that
Hk ∩ Newt(Gh,λ(x)) = Newt(sλ(k)(x)).

Remark 3.10. The intersection of Newt(Gh,λ(x)) with the hyperplane Hk corresponds to
the homogeneous component of Gh,λ(x) of degree |λ|+ k.

Proposition 3.11. The inflated symmetric Grothendieck polynomial Gh,λ(x) has SNP.

Proof. In [11], the proof that G1,λ(x) = Gλ(x) has SNP does not depend on the inflation
parameter h other than in [11, Claim A], which describes the structure of Newt(Gλ(x)) arising
from the homogeneous components of Gλ(x). Using the description of the homogeneous
components of Gh,λ(x) from Proposition 3.9, the rest of the proof in [11] applies to arbitrary
h ∈ Z≥1 and shows that Gh,λ(x) has SNP.

We revisit Example 2.9 from the viewpoint of dominating partitions. (Here h = 1.)
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Example 3.12. Let λ = (2, 1, 0) ` 3, m = 3, and x = (x1, x2, x3). Then

G(2,1,0)(x) = s(2,1,0)(x)−
(
s(2,2,0)(x) + 2s(2,1,1)(x)

)
+ 2s(2,2,1)(x)− s(2,2,2)(x).

The sequence of dominating partitions for G(2,1,0)(x) is

λ(0) = λ(1) = λ(2) = λ(3) =

Figure 3: The lattice points of Newt(G(2,1,0)(x)) are color-coded to reflect the structure aris-
ing from the four homogeneous components of G(2,1,0)(x); see Example 3.12. The intersection
of Newt(G(2,1,0)(x)) with the hyperplane x1 +x2 +x3 = 4 is shown on the right. The extreme
points are given by the S3-orbit of the dominating partition λ(1) = (2, 2, 0).

3.2.2 Inflated symmetric Grothendieck polynomials and IDP

We now show that the Newton polytopes of inflated symmetric Grothendieck polynomials
have IDP. As a corollary, symmetric Grothendieck polynomials have IDP.

By Proposition 3.9, we know that Newt(Gh,λ(x)) is the convex hull of the Sm-orbits of
the sequence of dominating partitions λ(0), . . . , λ(N), but the next result shows that it suffices
to take a certain subset of these partitions.

Definition 3.13. Let A ⊆ Zm. A point a ∈ A is an extreme point if a = tb + (1− t)c for
some b, c ∈ A and t ∈ (0, 1) implies b = c = a.

By Minkowski’s Theorem a compact convex set is a convex hull of the set of its extreme
points. Thus, Newt(Gh,λ(x)) is the convex hull of its extreme points.

12



Proposition 3.14. Let h be a positive integer, and let λ be a partition with at most m parts.
Suppose degGh,λ(x) = |λ|+N , and let λ(0), . . . , λ(N) be the sequence of dominating partitions
for Gh,λ(x). Suppose λ(N) = (λ1+a1, . . . , λm+am) for some nonnegative integers a1, . . . , am,
and let bk = a1 + · · ·+ ak for k = 1, . . . ,m. Then

Newt(Gh,λ(x)) = conv
m⋃
k=1

Newt(sλ(bk)(x))

is the convex hull of the Sm-orbits of the partitions λ(b1), . . . , λ(bm). Moreover, λ(b1) = λ(0) = λ
and λ(bm) = λ(N).

Proof. We shall show that for k = 0, . . . , N , λ(k) is an extreme point of Newt(Gh,λ(x)) only
if k ∈ {b1, . . . , bm}.

If p = (p1, . . . , pm) is an extreme point of Newt(Gh,λ(x)), then any permutation of p
is also an extreme point of Newt(Gh,λ(x)), since Newt(Gh,λ(x)) is the convex hull of the
Sm-orbits of λ(0), . . . , λ(N) by Proposition 3.9.

As λ(N) = (λ1 + a1, . . . , λm + am), then the largest number of boxes that can be added

to the r-th row of λ is ar. Thus λr ≤ λ
(k)
r ≤ λr + ar for each k = 0, . . . , N . By construction,

λ(bi) = (λ1 + a1, . . . , λi + ai, λi+1, . . . , λm)

for each i = 1, . . . ,m, so that each part of the partition is either at a maximum or a
mininum. Thus if µ, ν ∈ Newt(Gh,λ(x)) are lattice points such that tµ+(1−t)ν = λ(bi), then
µ = ν = λ(bi) necessarily. So {λ(b1), . . . , λ(bm)} is a set of extreme points of Newt(Gh,λ(x)).

On the other hand, suppose k /∈ {b1, . . . , bm}. Then there exists j such that

λ(k) = (λ1 + a1, . . . , λj−1 + aj−1, λj + c, λj+1, . . . , λm)

with 0 < c < aj. In this case, we have

λ(k−1) = (λ1 + a1, . . . , λj−1 + aj−1, λj + c− 1, λj+1, . . . , λm),

λ(k+1) = (λ1 + a1, . . . , λj−1 + aj−1, λj + c+ 1, λj+1, . . . , λm),

so λ(k) = 1
2
(λ(k−1) + λ(k+1)). Thus λ(k) is an extreme point of Newt(Gh,λ(x)) if and only if

k ∈ {b1, . . . , bm}.
Lastly, a1 = 0 and N = a1 + · · ·+ am, so λ(b1) = λ(0) = λ and λ(bm) = λ(N).

Example 3.15. Let λ = (2, 1, 0) ` 3 and m = 3. Then Newt(Gλ(x)) is the convex hull of
the S3-orbit of

λ(0) = λ(1) = and λ(3) =

In Figure 3, we see that that λ(2) = (2, 2, 1) is not an extreme point of the Newton polytope.

13



Proposition 3.16. Let t be a positive integer. Then

tNewt(Gh,λ(x)) = Newt(Gth,tλ(x)).

Proof. Let P = Newt(Gh,λ(x)) and Q = Newt(Gth,tλ(x)). Also let degGh,λ(x) = |λ| + N
while degGth,tλ(x) = |tλ|+N ′. By Proposition 3.14, the vertices of tP and Q are determined
by the partitions tλ(N) ` t|λ| + tN and (tλ)(N

′) ` t|λ| + N ′, respectively, so it suffices to
show that tλ(N) = (tλ)(N

′). Furthermore by Lemma 3.8(b), (tλ)(N
′) is the unique partition

µ ∈ A(th, tλ) such that bth,tλµ 6= 0 in the definition of the inflated symmetric Grothendieck
polynomial Gth,tλ(x) and |µ| ` t|λ|+N ′, so it suffices to show that tλ(N) ` t|λ|+N ′. Suppose

λ(N) = (λ1 + a1, . . . , λm + am),

(tλ)(N
′) = (tλ1 + a′1, . . . , tλm + a′m).

We shall show via induction that tar = a′r for r = 1, . . . ,m. The base case is r = 1, where
by definition, a′1 = 0 = a1 = ta1. Assume that a′j = taj for all j < r.

If λ has a maximum of ar addable boxes in its r-th row, then at least tar boxes can be
added to the r-th row of tλ, and so tar ≤ a′r for r = 1, . . . ,m.

Suppose tar < a′r ≤ th(r − 1). Then ar < h(r − 1) implies that the (r − 1)-th and r-th
rows of λ(N) have the same length. In other words, λr−1 + ar−1 = λr + ar. But by the
induction hypothesis,

(tλ)
(N ′)
r−1 = tλr−1 + a′r−1 = tλr−1 + tar−1 = tλr + tar < tλr + a′r = (tλ)(N)

r ,

which contradicts the fact that (tλ)(N) is a partition. Therefore, tar = a′r for r = 1, . . . ,m.
Since tλ(N) ` t|λ| + N ′, it follows from Lemma 3.8(b) that tλ(N) = (tλ)(N

′). The result
follows.

Theorem 3.17. Let λ be a partition with at most m parts and let x = (x1, . . . , xm). Then
the Newton polytope Newt(Gh,λ(x)) has the integer decomposition property.

Proof. Let P = Newt(Gh,λ(x)) and Q = Newt(Gth,tλ(x)). By Proposition 3.16, tP = Q.

Let ν = tλ and let p be a lattice point in the t-th dilate tP = Q. The polynomial Gth,tλ(x)
has SNP, and by Proposition 3.14, the point p is a lattice point in Newt(sν(k)) for some k,
so p is the content vector of a semistandard Young tableau T of shape ν(k) ∈ A(th, tλ). The
tableau T decomposes into t semistandard Young tableaux T1, . . . , Tt, where the tableau Ti
of shape θ(i) is obtained by taking the j-th columns of T for j ≡ i mod t. We shall show
that the partitions θ(1), . . . , θ(t) are in A(h, λ). By Lemma 3.8(c), it suffices to show that
λ ⊆ θ(i) ⊆ λ(N), where degGh,λ(x) = |λ|+N .

The tableau Ti is comprised of every t-th column of T , so its shape is

θ(i) = (λ1 + `i,1, . . . , λm + `i,m)

for some nonnegative integers `i,1, . . . , `i,m. Thus θ(i) ⊇ λ.
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Now, ν(k) ∈ A(th, tλ), so Proposition 3.16 gives

0 ≤ ν(k)r − tλr ≤ tar,

for each r = 1, . . . ,m, where λ(N) = (λ1 + a1, . . . , λm + am). Again, since the partition θ(i)
is comprised of every t-th column ν(k), then this implies

0 ≤ θ(i)r − λr ≤ ar

for each r = 1, . . . ,m. Therefore, θ(i) ⊆ λ(N). So by Lemma 3.8(c), θ(i) ∈ A(h, λ).

Finally, let ki = `i,1 + · · · + `i,m. Since θ(i) ` |λ| + ki is a partition in A(h, λ), then
λ(ki)Dθ(i). If vi denotes the content vector of Ti, then vi is a lattice point in Newt(sλ(ki)(x)),
since Newt(sλ(ki)(x)) has IDP. As p = v1 + · · ·+ vt, then Newt(Gh,λ(x)) has IDP.

Corollary 3.18. The Newton polytope Newt(Gλ(x)) has the integer decomposition property.

4 Reflexivity

4.1 Reflexive and Gorenstein Newton polytopes of Schur polyno-
mials

To characterize which Newton polytopes arising from Schur polynomials are reflexive, we first
identify facet-defining hyperplanes which will allow us to classify the reflexive λ-permutohedra.

Let λ be a partition with at most m parts and let x = (x1, . . . , xm). Recall that the
Newton polytope Newt(sλ(x)) is the λ-permutohedron Pmλ , which is the convex hull of the
Sm-orbit of (λ1, . . . , λm) in Rm. This polytope is of dimension m− 1, and is determined by
Rado’s inequalities [21]:

∑
i∈I

xi ≤
|I|∑
i=1

λi for all I ⊆ [m], and
m∑
i=1

xi = |λ|.

Note that whether one of Rado’s inequalities is facet-defining depends only on |I| and λ,
and not on the set I itself.

Theorem 4.1. The facets of Pmλ are determined by the following inequalities.

(a) For all i = 1, . . . ,m, xi ≤ λ1, unless λ2 = λ3 = · · · = λm.

(b) For 2 ≤ |I| ≤ m− 2, ∑
i∈I

xi ≤
|I|∑
i=1

λi,

unless λ1 = λ2 = · · · = λ|I| or λ|I|+1 = λ|I|+2 = · · · = λm.
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(c) For |I| = m− 1, ∑
i∈I

xi ≤
m−1∑
i=1

λi,

unless λ1 = λ2 = · · · = λm−1.

Proof. The set of permutations (x1, . . . , xm) of (λ1, . . . , λm) that satisfy
∑

i∈I xi ≤
∑|I|

i=1 λi
with equality is the set of products of the permutations of (λ1, λ2, . . . , λ|I|) and the permu-
tations of (λ|I|+1, λ|I|+2, · · · , λm). The convex hull of the permutations of (λ1, λ2, . . . , λ|I|)
has dimension 0 if λ1 = λ2 = · · · = λ|I|, and otherwise it has dimension |I| − 1. Sim-
ilarly, the convex hull of the permutations of (λ|I|+1, λ|I|+2, · · · , λm) has dimension 0 if
λ|I|+1 = λ|I|+2 = · · · = λm, and otherwise it has dimension m − |I| − 1. So the convex
hull of the products has dimension m − 2 exactly when |I| = 1 and not all the λi are
equal for i ≥ 2, or when |I| = m − 1 and not all the λi are equal for i ≤ m − 1, or when
2 ≤ |I| ≤ m − 2 and not all the λi are equal for i ≤ |I| and not all the λi are equal for
i ≥ |I|+ 1.

Now that we know the facet-defining hyperplanes of Newt(sλ(x)) = Pmλ , we will charac-
terize which Schur polynomials give rise to reflexive Newton polytopes. Recall that a lattice
polytope is reflexive if it contains a unique lattice point p in its interior and for any facet
{x ∈ Rm | 〈a,x〉 = b} with primitive normal a, we have lattice distance |〈a,p〉 − b | = 1.

First we consider the following special case when m < |λ|.

Proposition 4.2. Let m ≥ 2, and λ = (m, . . . ,m, 0) ` m(m−1). Then the Newton polytope
Newt(sλ(x)) = Pmλ is reflexive.

Proof. The λ-permutohedron Pmλ is the convex hull of the Sm-orbit of (m, . . . ,m, 0) in Rm.
The polytope lies in the hyperplane

∑m
i=1 xi = (m − 1)m, and by Theorem 4.1 the facets

are determined by the inequalities xi ≤ m for i = 1, . . . ,m. Thus, the lattice point (m −
1, . . . ,m − 1) in the interior of Pmλ is unique, and it is lattice distance 1 from the facets.
Therefore, Pmλ is reflexive.

We next consider the case m = |λ|.

Proposition 4.3. Let m ≥ 2. The Newton polytope Newt(sλ(x)) = Pmλ is reflexive when
λ ` m is one of the following partitions:

(a) λ = (m, 0, . . . , 0),

(b) λ = (2, . . . , 2, 0, . . . , 0) when m is even,

(c) λ = (2, . . . , 2, 1, 0, . . . , 0) when m is odd,

(d) λ = (2, 1, . . . , 1, 0).

Proof. We shall show in each case that (1, . . . , 1) is the unique interior lattice point in Pmλ
and it is lattice distance one from every facet of the Newton polytope.
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(a) The polytope Pmλ is the convex hull of the Xm-orbit of (m, 0, . . . , 0) in Rm. By Theo-
rem 4.1, the facet-defining inequalities of Pmλ are just those for |I| = m− 1, and these
can be written as ∑

i 6=j

xi ≤ m

for each j = 1, . . . ,m. From this, we see that the point (1, . . . , 1) is the unique
lattice point in the interior of Pmλ , and it is lattice distance one from all facet-defining
hyperplanes.

Notice that Pmλ lies in the hyperplane
∑m

i=1 xi = m, so the inequality
∑

i 6=j xi ≤ m is
equivalent to xj ≥ 0. Although these two inequalities represent different half-spaces
in Rm, their intersection with the hyperplane

∑m
i=1 xi = m is the same. The point

(1, . . . , 1) is lattice distance one from both of the hyperplanes of Rm that bound these
two half-spaces, and is lattice distance one from their intersection, considered as a
hyperplane (of dimensionm−2) in the (m−1)-dimensional space given by

∑m
i=1 xi = m.

(b) Suppose m ≥ 4 is even. The polytope Pmλ is the convex hull of the Sm-orbit of
(2, . . . , 2, 0, . . . , 0) in Rm. By Theorem 4.1, the facet-defining inequalities of Pmλ are
xi ≤ 2 for each i = 1, . . . ,m, and

∑
i 6=j xi ≤ m, for each j = 1, . . . ,m. Thus the point

(1, . . . , 1) is the unique lattice point in the interior of Pmλ , and it is lattice distance one
from all facet-defining hyperplanes.

(c) Suppose m ≥ 3 is odd. This case is essentially the same as the previous. The facet-
defining inequalities of Pmλ are xi ≤ 2 and xi ≥ 0 for i = 1, . . . ,m. Thus the point
(1, . . . , 1) is the unique lattice point in the interior of Pmλ , and it is lattice distance one
from all facet-defining hyperplanes.

(d) The polytope Pmλ is the convex hull of the Sm-orbit of (2, 1, . . . , 1, 0) in Rm. By
Theorem 4.1, the facet-defining inequalities of Pmλ are

xi1 + · · ·+ xis ≤ s+ 1

for all nonempty I = {i1, . . . , is} ⊆ [m] with |I| ≤ m − 1. Thus the point (1, . . . , 1)
is the unique lattice point in the interior of Pmλ , and is lattice distance 1 from all
facet-defining hyperplanes.

Therefore we conclude in each case that Pmλ is reflexive.

We next prove that Propositions 4.2 and 4.3 give a complete list of reflexive permutohedra.
To do this, we analyze the unique interior point of the reflexive polytope up to translation.
Let P◦ denote the interior of a polytope P .

Lemma 4.4. Let m ≥ 2 and let λ ` n be a partition with at most m parts. If |(Pmλ )◦∩Zm| =
1, then m|n.

Proof. If a lattice point is contained in the interior of Pmλ then so is its entire Sm-orbit. Thus,
the only candidate for a single interior point is ( n

m
, . . . , n

m
) which is only a lattice point when

m|n.
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Lemma 4.5. Let m ≥ 2 and let λ ` n be a partition with m parts. Let λ′ = (λ1 −
λm, . . . , λm−1 − λm, 0) ` n−mλm. Then Pmλ′ is a translation of Pmλ .

Proof. The vertex description of λ-permutohedra implies that Pmλ′ is precisely the polytope
Pmλ translated linearly by the vector (λm, . . . , λm).

In this case, we say that λ reduces by translation to λ′.

Theorem 4.6. Let m ≥ 2 and let λ = (λ1, . . . , λm) ` n be a partition with at most m parts.
The Newton polytope Newt(sλ(x)) = Pmλ is reflexive if and only if λ reduces by translation
to λ′ of the following form:

λ′ =



(m, 0, . . . , 0) ` m,
(2, 1, . . . , 1, 0) ` m,
(2, . . . , 2, 0, . . . , 0) ` m, when m is even,

(2, . . . , 2, 1, 0, . . . , 0) ` m, when m is odd,

(m, . . . ,m, 0) ` m(m− 1).

Proof. Propositions 4.2 and 4.3, and Lemmas 4.4 and 4.5 show that if λ reduces to one of
these forms, then Pmλ is reflexive. We now prove the converse.

Suppose Pmλ is reflexive. By Lemma 4.4 we may assume that m|n and Pmλ has the unique
interior lattice point ( n

m
, . . . , n

m
). By Lemma 4.5, if `(λ) = m, we may replace λ by its

translation by (−λm, . . . ,−λm). Thus we assume that λm = 0.

We examine the cases λ2 = 0 and λ2 > 0. If λ2 = 0, then λ = (n, 0, . . . , 0) ` n. By
Theorem 4.1(c),

∑m−1
i=1 xi ≤ n is a facet-defining hyperplane of Pmλ . Its unique interior lattice

point is lattice distance one from this hyperplane, so n−(m−1) n
m

= 1 implies n = m, giving
the first case on the list of possible λ′.

Now assume λ2 > 0. We claim that λ1 = n
m

+ 1. First, since λ ` n and λm = 0, then
λ1 ≥ n

m
+ 1. Suppose λ1 = n

m
+ j for some positive integer j. By Theorem 4.1(a), for each

i ∈ [m], Pmλ has the facet-defining hyperplane

xi ≤
n

m
+ j.

The interior lattice point ( n
m
, . . . , n

m
) is lattice distance j from each of these facets. Pmλ is

reflexive implies j = 1, so λ1 ≤ n
m

+ 1. We conclude that λ1 = n
m

+ 1.

We next examine the subcases λm−1 = n
m

+ 1 and λm−1 ≤ n
m

. If λm−1 = n
m

+ 1, then
λi = n

m
+ 1 for all i = 1, . . . ,m− 1, so n =

∑m
i=1 λi = (m− 1)( n

m
+ 1) implies n = m(m− 1)

and λi = m(m−1)
m

+ 1 = m for i = 1, . . . ,m− 1. This is the last case on the list of possible λ′.

Now assume λm−1 ≤ n
m

. Since λ1 = n
m

+ 1, then by Theorem 4.1(c), for any I ⊆ [m] with
|I| = m− 1, Pmλ has the facet-defining hyperplane∑

i∈I

xi ≤ n.
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The interior lattice point ( n
m
, . . . , n

m
) is lattice distance n

m
from these facets, so Pmλ reflexive

implies n = m, and Pmλ has the unique interior lattice point (1, . . . , 1).

Continuing, we have λ ` m = n with λ1 = n
m

+ 1 = 2, λ2 > 0, λm−1 ≤ 1 and λm = 0,
so λ is of the form (2k, 1m−2k, 0k) for some k ≥ 1. Assuming that m − 2k ≥ 2, then
by Theorem 4.1(b), for any subset I ⊆ [m] with |I| = k + 1, Pmλ has the facet-defining
hyperplane ∑

i∈I

xi ≤ 2k + 1.

The interior lattice point (1, . . . , 1) is lattice distance k from this facet, so Pmλ is reflexive
implies k = 1, giving the second case on the list of possible λ′.

Lastly, if m− 2k = 0 or 1, this gives the remaining cases on the list of possible λ′. Thus
this completes the proof that Pmλ is reflexive implies that λ reduces to one of the λ′ on the
list.

The result of Theorem 4.6 allow us to give a characterization of the Gorenstein property
as a corollary.

Corollary 4.7. Let λ be a partition with at most m parts. The Newton polytope Newt(sλ(x)) =
Pmλ is Gorenstein if and only if Pmλ is reflexive or λ reduces by translation to λ′ of the fol-
lowing form:

λ′ =


(k, 0, . . . , 0), where k|m,
(1m/2, 0m/2), if m is even,

(k, . . . , k, 0), where k|m.

Proof. If Pmλ is Gorenstein, there exists a ∈ Z≥1 so that aPmλ = Pmaλ is reflexive. If a = 1,
then Pmλ is reflexive. Assume Pmaλ is reflexive for some a ≥ 2. Then (aλ)′ = aλ′ is one of the
cases in Theorem 4.6.

Suppose aλ′ ` m. If aλ′ = (m, 0, . . . , 0), then λ′ = (m
a
, 0, . . . , 0), so λ′1 divides m. If

aλ′ = (2, . . . , 2, 0, . . . , 0) where m is even, then λ′ = ( 2
a
, . . . , 2

a
, 0, . . . , 0). As a ≥ 2, then

λ′1 = 2
a

= 1.

If aλ′ = (2, . . . , 2, 1, 0), then λ′ = ( 2
a
, . . . , 2

a
, 1
a
, 0, . . . , 0). This is not possible as a ≥ 2.

Similarly, aλ′ 6= (2, 1, . . . , 1, 0, . . . , 0).

Lastly, suppose aλ′ = (m, . . . ,m, 0) ` m(m−1). Then λ′ = (m
a
, . . . , m

a
, 0), so λ′1, . . . , λ

′
m−1

all divide m.

As an immediate consequence of Corollary 4.7, we recover a result on the Gorenstein
property for hypersimplices originally given by De Negri–Hibi [9, Theorem 2.4].

Corollary 4.8. Let ∆k,n be a hypersimplex. Then ∆k,n is Gorenstein if and only if n = 2k,
k = 1, or k = n− 1.
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4.2 Reflexive Newton polytopes of inflated symmetric Grothendieck
polynomials

We begin by determining the set of facet-defining hyperplanes of the Newton polytope of an
inflated symmetric Grothendieck polynomial. From this, we deduce which Newton polytopes
are reflexive.

Definition 4.9. Let f be a linear functional and let H = {x ∈ Rm | f(x) = a} be an affine
hyperplane in Rm. Define the closed half-spaces

H+ = {x ∈ Rm | f(x) ≥ a},
H− = {x ∈ Rm | f(x) ≤ a}.

For any set S ⊆ Rm, we say H isolates S if S is contained in H+ or H−.

Given an m-dimensional polytope P , if H is an affine hyperplane which isolates P and
dim(P ∩H) = m− 1, then H is a facet-defining hyperplane of P .

For the remainder of this section, we assume that λ is a partition with at most m parts
and that it is reduced by translation, so λ = (λ1, . . . , λm−1, 0). Also let degGh,λ(x) = |λ|+N ,
so the sequence of dominating partitions is λ(0), . . . , λ(N).

We pinpoint some facet-defining inequalities of Newt(Gh,λ(x)) to show that if it is reflex-
ive, then there is a very limited region where its unique interior lattice point may lie.

Lemma 4.10. The inequality x1+ · · ·+xm ≥ |λ| is a facet-defining inequality of the polytope
Newt(Gh,λ(x)). Furthermore, if the Sm-orbit of λ(N) is non-trivial, then x1 + · · · + xm ≤
|λ|+N is also a facet-defining inequality of Newt(Gh,λ(x)).

Proof. Recall that the Newton polytope Newt(sλ(k)(x)) lies in the hyperplane x1+ · · ·+xm =
|λ(k)| = |λ|+ k, and from Proposition 3.9 we know that

Newt(Gh,λ(x)) = conv

(
N∐
k=0

Newt(sλ(k)(x))

)
,

so the hyperplane H|λ| defined by x1 + · · · + xm = |λ| isolates Newt(Gh,λ(x)). Also,
Newt(Gh,λ(x))∩H|λ| = Newt(sλ(x)), which has dimension m− 1 because we assume that λ
is reduced by translation and thus does not have a trivial Sm-orbit. Thus x1 + · · ·+xm = |λ|
is a facet-defining hyperplane of Newt(Gh,λ(x)).

Similarly, if the Sm-orbit of λ(N) ∈ Rm is non-trivial, then Newt(Gh,λ(x)) ∩ H|λ|+N =
Newt(sλ(N)(x)) is (m − 1)-dimensional. Since Newt(sλ(N)(x)) lies in the hyperplane x1 +
· · · + xm = |λ| + N , then it is a facet-defining hyperplane of Newt(Gh,λ(x)). The result
follows as Newt(Gh,λ(x)) lies in H|λ|+ and H|λ(N)|−.

Corollary 4.11. If Newt(Gh,λ(x)) is reflexive, then its unique interior lattice point must lie
on Newt(sλ(1)(x)).
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Proof. Let u = (u, . . . , u) be the unique interior lattice point of the reflexive polytope. It
must lie on Newt(sλ(k)(x)) for some k = 1, . . . , N − 1, so mu = |λ| + k. Furthermore, by
Lemma 4.10, x1 + · · ·+xm = |λ| is a facet-defining hyperplane of Newt(Gh,λ(x)) and because
the polytope is reflexive, u is lattice distance one from this hyperplane, therefore we can
conclude that k = 1.

Recall from Proposition 3.14 that Newt(Gh,λ(x)) is the convex hull of the union of
Newt(sλ(bk)(x)) for k = 1, . . . ,m, where if λ(N) = (λ1+a1, . . . , λm+am) then bk = a1+· · ·+ak.
We next show how the remaining facet-defining inequalities of Newt(Gh,λ(x)) arise from the
facet-defining inequalities of the polytopes Newt(sλ(bk)(x)).

Let F = F (I) be a facet of Newt(sλ(bk)(x)) defined by the inequality

∑
i∈I

xi ≤
|I|∑
i=1

λ
(bk)
i for some proper nonempty I ⊂ [m].

(Recall from Theorem 4.1 that all facet-defining inequalities of Newt(sλ(bk)(x)) are of this
form.) Since Newt(sλ(bk)(x)) lies in the affine hyperplane x1 + · · · + xm = |λ(bk)|, then F is
of the form

F = H(F )1 ∩ Newt(sλ(bk)(x)) = H(F )0 ∩ Newt(sλ(bk)(x)),

where L =
∑|I|

i=1 λ
(bk)
i and the affine hyperplanes are given by

H(F )1 =
{

x ∈ Rm |
∑

i∈I xi =
∑|I|

i=1 λ
(bk)
i = L

}
,

H(F )0 =
{

x ∈ Rm |
∑

i/∈I xi =
∑m

i=|I|+1 λ
(bk)
i = |λ(bk)| − L

}
.

We will determine which of these hyperplanes isolate Newt(Gh,λ(x)).

Lemma 4.12. Let I be a proper nonempty subset of [m], let F = F (I) be a facet of

Newt(sλ(bk)(x)) defined by
∑

i∈I xi ≤
∑|I|

i=1 λ
(bk)
i = L for some k = 1, . . . ,m, and let

H(F )1, H(F )0 be the hyperplanes associated to F . Then H(F )1 isolates Newt(Gh,λ(x)) if
|I| ≤ k, and H(F )0 isolates Newt(Gh,λ(x)) if |I| ≥ k.

Proof. As each Newt(sλ(b`)(x)) is the convex hull of the Sm-orbit of λ(b`), it suffices to show
that the Sm-orbits of λ(b`) for ` = 1, . . . ,m all lie on one side of the proposed Newt(Gh,λ(x))-
isolating hyperplane.

Let π ∈ Sm, so that π(λ(b`)) = (λ
(b`)

π−1(1), . . . , λ
(b`)

π−1(m)). Then

∑
i∈I

π(λ(b`))i =
∑

j∈π−1(I)

λ
(b`)
j ≤

|I|∑
i=1

λ
(b`)
i ,

by Rado’s inequalities.

As the partiton λ(bk) is obtained by adding the maximum allowable number (a`) of boxes
to the `-th row of λ for ` = 1, . . . k, then for i ≤ k,

λ
(b`)
i ≤ λ

(bk)
i , for ` ≤ k,

λ
(b`)
i = λ

(bk)
i , for ` ≥ k.
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And for i > k,

λ
(b`)
i = λ

(bk)
i , for ` ≤ k,

λ
(b`)
i ≥ λ

(bk)
i , for ` ≥ k.

If |I| ≤ k, then H(F )1 isolates Newt(sλ(b`)(x)) for all ` = 0, . . . , N since

∑
i∈I

π(λ(b`))i ≤
|I|∑
i=1

λ
(b`)
i ≤

|I|∑
i=1

λ
(bk)
i = L.

In other words, Newt(Gh,λ(x)) ⊆ (H(F )1)−. Similarly, if |I| ≥ k, then H(F )0 isolates
Newt(sλ(b`)(x)) for all ` = 0, . . . , N since

∑
i/∈I

π(λ(b`))i =
∑

j /∈π−1(I)

λ
(b`)
j ≥

m∑
i=|I|+1

λ
(b`)
i ≥

m∑
i=|I|+1

λ
(bk)
i = |λ(bk)| − L,

and Newt(Gh,λ(x)) ⊆ (H(F )0)+. The result now follows.

We will see that nearly all of the Newt(Gh,λ(x))-isolating hyperplanes of Lemma 4.12 are
facet-defining. We first identify some that are not.

Lemma 4.13. For j = 1, . . . ,m, the affine hyperplanes

Jj =
{

x ∈ Rm |
∑

i 6=j xi = |λ| − λ1
}

are not facet-defining hyperplanes of Newt(Gh,λ(x)).

Proof. By Lemma 4.12, the hyperplanes Jj isolate Newt(Gh,λ(x)). However, since
∑m

i=2 λ
(`)
i >∑m

i=2 λi for all λ(`) 6= λ, then

Jj ∩ Newt(Gh,λ(x)) = conv
{

(λ1, λσ(2), . . . , λσ(m)) | σ ∈ S{2,...,m}
}
⊆ Newt(sλ(x)),

so dim(Jj ∩ Newt(Gh,λ(x))) < m − 1 for j = 1, . . . ,m, and Jj is not a facet-defining
hyperplane of Newt(Gh,λ(x)).

We can further narrow down the set of Newt(Gh,λ(x))-isolating hyperplanes of Lemma 4.12
that are facet-defining.

Lemma 4.14. The facet-defining hyperplanes of Newt(sλ(bm)(x)) that isolate Newt(Gh,λ(x))
are a subset of the facet-defining hyperplanes of Newt(sλ(bm−1)(x)) that isolate Newt(Gh,λ(x)).

Proof. Recall that λ(bm) = λ(N) and it is distinct from λ(bm−1) since we assumed that λm = 0.
The only difference between the partitions λ(bm−1) and λ(bm) is in their m-th row, so no
additional Newt(Gh,λ(x))-isolating hyperplane that arises from a facet of Newt(sλ(bm)(x)) is
introduced.
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Theorem 4.15. Let I be a proper nonempty subset of [m] and let F = F (I) be a facet of

Newt(sλ(bk)(x)) defined by
∑

i∈I xi ≤
∑|I|

i=1 λ
(bk)
i = L for some k = 1, . . . ,m. Suppose H(F )

is a hyperplane associated to F which isolates Newt(Gh,λ(x)) and is not of the form Jj.
Then H(F ) is a facet-defining hyperplane of Newt(Gh,λ(x)).

Proof. First, suppose H(F ) is of the form H(F )1 so that by Lemma 4.12, Newt(Gh,λ(x)) lies
in the half-space

(H(F )1)− =
{

x ∈ Rm |
∑

i∈I xi ≤
∑|I|

i=1 λ
(bk)
i = L

}
,

with |I| ≤ k. Furthermore by Lemma 4.14, it suffices to assume k = 1, . . . ,m − 1. So if
π ∈ Sm is a permutation such that π−1(I) = {1, . . . , |I|}, then

∑
i∈I

π(λ(bk+1))i =
∑

j∈π−1(I)

λ
(bk+1)
j =

|I|∑
i=1

λ
(bk+1)
i =

|I|∑
i=1

λ
(bk)
i = L,

noting that the partition λ(bk+1) exists since k ≤ m− 1. Thus π(λ(bk+1)) is a point that lies
on H(F )1 ∩ Newt(Gh,λ(x)), but not on Newt(sλ(bk)(x)).

Second, suppose H(F ) is of the form H(F )0 so that by Lemma 4.12, Newt(Gh,λ(x)) lies
in the half-space

(H(F )0)+ =
{

x ∈ Rm |
∑

i/∈I xi ≥
∑m

i=|I|+1 λ
(bk)
i = |λ(bk)| − L

}
,

with |I| ≥ k. Furthermore by Lemma 4.14, it suffices to assume k = 2, . . . ,m. So if π ∈ Sm
is a permutation such that π−1(I) = {1, . . . , |I|}, then

∑
i/∈I

π(λ(bk−1))i =
∑

j /∈π−1(I)

λ
(bk−1)
j =

m∑
i=|I|+1

λ
(bk−1)
i =

m∑
i=|I|+1

λ
(bk)
i = |λ(bk)| − L,

noting that the partition λ(bk−1) exists since k ≥ 2. Thus π(λ(bk−1)) is a point that lies on
H(F )0 ∩ Newt(Gh,λ(x)), but not on Newt(sλ(bk)(x)).

In both of these cases, note that dim(H(F ) ∩ Newt(sλ(bk)(x))) = m − 2 because it is a
facet of Newt(sλ(bk)(x)). Also, Newt(sλ(bk)(x)) lies on the hyperplane x1 + · · ·+ xm = |λ(bk)|
while p = π(λ(bk±1)) is a point on H(F ) that lies on x1 + · · ·+ xm = |λ(bk±1)|. Thus

m− 1 ≥ dim(H(F ) ∩ Newt(Gh,λ(x))) ≥ dim conv ((H(F ) ∩ Newt(sλ(bk)(x))) ∪ p) > m− 2.

Therefore, dim(H(F )∩Newt(Gh,λ(x))) = m− 1 and H(F ) is a facet-defining hyperplane of
Newt(Gh,λ(x)).

Corollary 4.16. If Newt(Gh,λ(x)) is reflexive, then so is Newt(sλ(1)(x)).

Proof. If Newt(Gh,λ(x)) is reflexive, then by Corollary 4.11 its unique interior lattice point
u lies on Newt(sλ(1)(x)), so u is also the unique interior lattice point of Newt(sλ(1)(x)).
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Suppose H is an affine hyperplane in Rm such that H is a facet-defining hyperplane of
Newt(sλ(1)(x)). The partitions λ(0) and λ(1) differ by exactly one box, and if this occurs in
the r-th row, then λ(0) ⊂ λ(1) ⊆ λ(br) for some r ≥ 2. By the arguments in Theorem 4.15,
if Newt(sλ(1)(x)) ⊆ H−, then H is a facet-defining hyperplane of Newt(sλ(br)(x)), and if
Newt(sλ(1)(x)) ⊆ H+, then H is a facet-defining hyperplane of Newt(sλ(0)(x)). Moreover,
Theorem 4.15 states that in either case, H is a facet-defining hyperplane of Newt(Gh,λ(x)),
and since it is reflexive, then u is lattice distance one from H. Thus it follows that
Newt(sλ(1)(x)) is reflexive.

Corollary 4.17. If Newt(Gh,λ(x)) is reflexive and u = (u, . . . , u) is its unique interior
lattice point, then λ1 = u+ 1.

Proof. By Theorem 4.15, xi = λ1 is a facet-defining hyperplane of Newt(Gh,λ(x)) for i =
1, . . . ,m. If Newt(Gh,λ(x)) is reflexive, then u is lattice distance one from these hyperplanes,

so in particular, |λ1 − u| = 1. Note that u and λ(1) form a primitive pair, so u < λ
(1)
1 = λ1

implies λ1 = u+ 1.

Example 4.18. Let λ = (2, 1, 0) and h = 1. Recall from Example 3.15 that

λ(b1) = λ(b2) = and λ(b3) =

The facet-defining inequalities from Theorem 4.1 for the Newton polytopes Newt(sλ(bk)(x))
are (the S3 permutations of) the following:

H(F )1 H(F )0
λ(b1) x1 ≤ 2 or x2 + x3 ≥ 1

x1 + x2 ≤ 3 or x3 ≥ 0

λ(b2) x1 ≤ 2 or x2 + x3 ≥ 2

λ(b3) ∅ ∅

Lemma 4.12 states that xi = 2, xi + xj = 1, and xi = 0 are the hyperplanes which iso-
late Newt(G1,λ(x)). Theorem 4.15 states that only xi ≤ 2 and xi ≥ 0 are facet-defining
inequalities of Newt(G1,λ(x)); the hyperplanes xi + xj = 1 isolate Newt(G1,λ(x)), but are
not facet-defining.

It remains to prove that the facet-defining inequalities of Newt(Gh,λ(x)) are precisely the
ones appearing in Lemma 4.10 and Theorem 4.15.

Theorem 4.19. The facets of Newt(Gh,λ(x)) are determined by the following inequalities.

(a)
m∑
i=1

xi ≥ |λ|.

(b)
m∑
i=1

xi ≤ |λ|+N , if the Sm-orbit of λ(N) is nontrivial.

24



(c)
∑
i∈I

xi ≤
|I|∑
i=1

λ
(bk)
i , if I is a nonempty proper subset of [m], |I| ≤ k, and the inequality

is a facet-defining inequality of Newt(sλ(bk)(x)).

(d)
∑
i/∈I

xi ≥
m∑

i=|I|+1

λ
(bk)
i , if I is a nonempty proper subset of [m], |I| ≥ k, and the inequality

is a facet-defining inequality of Newt(sλ(bk)(x)).

Proof. Suppose H is a facet-defining hyperplane of Newt(Gh,λ(x)). Then there exists a k

such that H ∩ Newt(s
(bk)
λ ) 6= ∅ and H isolates Newt(s

(bk)
λ ). Thus H ∩ Newt(s

(bk)
λ ) is a face

of Newt(s
(bk)
λ ) and by Rado’s inequalities, H is defined by

∑
i∈I xi = a for some a > 0 and

I ⊂ [m]. Recall

H+ =
{
x ∈ Rm |

∑
i∈I xi ≥ a

}
,

H− =
{
x ∈ Rm |

∑
i∈I xi ≤ a

}
.

Suppose H is a facet-defining hyperplane of Newt(Gh,λ(x)) so that, in particular,

m− 1 = dim(H ∩ Newt(Gh,λ(x))) ≥ dim(H ∩ Newt(sλ(bk)(x)))

for k = 1, . . . ,m.

Suppose dim(H ∩ Newt(sλ(bk)(x))) = m − 1 for some bk. If Newt(Gh,λ(x)) ⊆ H+, then
b1 = 0 and H ∩ Newt(sλ(0)(x)) = Newt(sλ(0)(x)), since dim Newt(sλ(0)(x)) = m − 1. This
case corresponds to the facet-defining inequality

∑m
i=1 xi ≥ |λ|.

Otherwise, if Newt(Gh,λ(x)) ⊆ H−, then bm = N andH∩Newt(sλ(N)(x)) = Newt(sλ(N)(x)).
If the Sm-orbit of λ(N) is nontrivial, then dim Newt(sλ(N)(x)) = m−1. This case corresponds
to the facet-defining inequality

∑m
i=1 xi ≤ |λ|+N .

Now suppose dim(H ∩Newt(sλ(b`)(x))) < m− 1 for all ` = 1, . . . ,m . It remains to show
that there exists 1 ≤ k ≤ m such that dim(H ∩ Newt(sλ(bk)(x))) = m− 2.

Since the symmetric group Sm acts on Newt(Gh,λ(x)) (and hence its facet-defining hyper-
planes) then without loss of generality, it suffices to assume that H is defined by an equation
of the form

∑r
i=1 xi = d for some r ≤ m.

First assume that Newt(Gh,λ(x)) ⊆ H−. Since H is facet-defining, then it contains at
least one vertex of Newt(Gh,λ(x)), say λ(bk), where we choose k to be the smallest index for
which this is true. By the same argument as in the proof of Lemma 4.14, we may assume
that k ≤ m− 1. This implies d =

∑r
i=1 λ

(bk)
i . Since λ

(bk)
i ≤ λ

(b`)
i for all i and all ` ≥ k, then

d =
r∑
i=1

λ
(bk)
i ≤

r∑
i=1

λ
(b`)
i ≤ d,

where the second inequality is due to Newt(Gh,λ(x)) ⊆ H−. So the vertices λ(b`) also lie in
H for all ` ≥ k.
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From this observation, we see that the vertices of Newt(Gh,λ(x)) which lie in H con-

sists of concatenating an Sr-permutation of (λ
(bk)
1 , . . . , λ

(bk)
r ) with an Sm−r-permutation of

(λ
(b`)
r+1, . . . , λ

(b`)
m ) for any ` ≥ k. The convex hull of the permutations of (λ

(b`)
r+1, . . . , λ

(b`)
m ) for

` = k, . . . ,m has dimension m − r as k < m and λ
(bk)
m = 0 6= λ

(bm)
m . Let s be the dimension

of the convex hull of the permutations of (λ
(bk)
1 , . . . , λ

(bk)
r ), so that

dim(H ∩ Newt(Gh,λ(x))) = s+m− r.

But H is a facet-defining hyperplane of Newt(Gh,λ(x)), so s+m−r = m−1 implies s = r−1.

Now, the dimension of H ∩ Newt(sλ(bk)(x)) is the sum of s and the dimension of the

convex hull of the permutations of (λ
(bk)
r+1, . . . , λ

(bk)
m ), which is m− r − 1 as k < m. Thus

dim(H ∩ Newt(sλ(bk)(x))) = (r − 1) + (m− r − 1) = m− 2.

Thus H is a facet-defining hyperplane of Newt(sλ(bk)(x)).

A similar argument works in the case Newt(Gh,λ(x)) ⊆ H+. Therefore the result follows.

We are now ready to classify the Newton polytopes of inflated symmetric Grothendieck
polynomials that are reflexive. First, we examine the simple case when m = 2.

Proposition 4.20. Let m = 2, and assume that λ = (λ1, 0). The only Newton polytopes
of inflated symmetric Grothendieck polynomials that are reflexive are Newt(Gh,(3,0)(x)) for
h ≥ 2.

Proof. If Newt(Gh,λ(x)) is reflexive, then by Corollary 4.11 its unique interior lattice point
u = (u, u) lies in Newt(sλ(1)(x)) so 2u = |λ| + 1. Since λ is assumed to be reduced by
translation, then λ = (2u− 1, 0). By Corollary 4.17 we know λ1 = u+ 1, so 2u− 1 = u+ 1
implies u = 2 and λ = (3, 0). When h = 1, λ(N) = λ(1) = (3, 1) and Newt(G1,λ(x)) has no
interior lattice points.

When h = 2, Newt(G2,λ(x)) = conv{(3, 0), (3, 2), (2, 3), (0, 3)} with the unique interior
lattice point (2, 2) so it is reflexive.

Finally when h ≥ 3, Newt(G2,λ(x)) = conv{(3, 0), (3, 3), (0, 3)} with the unique interior
lattice point (2, 2) so it is also reflexive.

Proposition 4.21. Let m ≥ 3 and assume that λ is reduced by translation so that λ =
(λ1, . . . , λm−1, 0). If Newt(Gh,λ(x)) is reflexive, then λ is of one of the following forms:

λ =


(m+ 1, . . . ,m+ 1, 0) ` m2 − 1,

(2, . . . , 2, 1, 0, . . . , 0) ` m− 1, if m is even,

(2, . . . , 2, 0, . . . , 0) ` m− 1, if m is odd.

Proof. By Corollary 4.16, if Newt(Gh,λ(x)) is reflexive then Newt(sλ(1)(x)) is reflexive, so we
know from Theorem 4.6 that the partition λ(1) is a translate of one of

(m, 0, . . . , 0), (2, 1m−2, 0), (2`, 0`), (2`, 1, 0`) ` m, or (m, . . . ,m, 0) ` m(m− 1).
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First suppose λ(1) is a translate of (m, 0, . . . , 0) so that it is of the form (m+ c, c, . . . , c)
for some nonnegative integer c. Then λ = (m+ c, c, . . . , c, c−1) or (m+ c−1, c . . . , c). Since
λ is assumed to be reduced by translation, then c = 1 and λ = (m + 1, 1, . . . , 1, 0) or c = 0
and λ = (m− 1, 0, . . . , 0). In the first case, this implies that the box that was added to λ to
obtain λ(1) is in the m-th row (where m ≥ 3), but by definition it should have been in the
second row so this case is not possible. In the second case, this implies that the box that
was added to λ to obtain λ(1) is in the first row but this is also not possible by definition.

Next, suppose m ≥ 4 and λ(1) is a translate of (2, 1m−2, 0) so that it is of the form
(2 + c, (1 + c)m−2, c) for some nonnegative integer c. Then λ = (2 + c, (1 + c)m−2, c − 1),
(2 + c, (1 + c)m−3, c, c), or ((1 + c)m−1, c). Since λ is assumed to be reduced by translation,
then c = 1 in the first case and c = 0 in the second and third cases. All three of these cases
are not possible for reasons analogous to the previous case. When m = 3, the only possible
case is when λ(1) = (2, 1, 0) and λ = (2, 0, 0). This case is also covered in one of the cases
below.

Now, suppose λ(1) is a translate of (2`, 0`) ` m = 2` or (2`, 1, 0`) ` m = 2`+1 so that it is
of the form ((2+ c)`, c`) or ((2+ c)`, 1+ c, c`). When m is even, then λ = ((2+ c)`, c`−1, c−1)
or ((2 + c)`−1, 1 + c, c`). Since λ is assumed to be reduced by translation, then c = 1 and
λ = (3`, 1`−1, 0) in the first case, or c = 0 and λ = (2`−1, 1, 0`) ` m − 1 in the second. In
the first case, this implies that the box that was added to λ to obtain λ(1) is in the m-th
row (where m ≥ 4), when it should have been added in the (m

2
+ 1)-th row, so this case

may be eliminated. When m is odd, then λ = ((2 + c)`, 1 + c, c`−1, c − 1), ((2 + c)`, c`+1)
or ((2 + c)`−1, (1 + c)2, c`). Since λ is assumed to be reduced by translation, then c = 1 in
the first case and c = 0 in the second and third cases. By arguments similar to those in the
previous cases, the only possible case is the second, when λ = (2`, 0`+1) ` m− 1.

Finally, suppose λ(1) is a translate of (m, . . . ,m, 0), so that it is of the form (m+c, . . . ,m+
c, c) for some nonnegative integer c. Then λ = (m+c, . . . ,m+c, c−1) or (m+c, . . . ,m+c−
1, c). Since λ is assumed to be reduced by translation, then c = 1 and λ = (m+1, . . . ,m+1, 0)
in the first case, or c = 0 and λ = (m, . . . ,m,m− 1, 0) in the second. To rule out this latter
possibility, note that if Newt(Gh,λ(x)) is reflexive, then by Corollary 4.11 its unique interior
lattice point is u = (u, . . . , u) ` mu = |λ| + 1 = m2 −m, so u = m − 1. By Theorem 4.19,
xi ≥ 0 is a facet-defining inequality of Newt(Gh,λ(x)), and u is lattice distance m − 1 ≥ 2
from each of these hyperplanes, so Newt(Gh,λ(x)) cannot be reflexive.

The result now follows.

We next determine the values of h for which the partitions λ in Proposition 4.21 give rise
to reflexive Newton polytopes of inflated symmetric Grothendieck polynomials.

Proposition 4.22. Let λ = (m + 1, . . . ,m + 1, 0) ` m2 − 1. Then the Newton polytope
Newt(Gh,λ(x)) is reflexive when h = 1 and m = 3, or h ≥ 2 and m ≥ 3.

Proof. We first deduce where an interior lattice point can occur in Newt(Gh,λ(x)). The
sequence of dominating partitions for Gh,λ(x) is

λ(k) = (m+ 1, . . . ,m+ 1, k)
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for k = 0, . . . , N = min(h(m − 1),m + 1). If the partition µ = (µ1, . . . , µm) is an interior
lattice point of Newt(Gh,λ(x)), then it lies in Newt(sλ(r)(x)) for some r = 1, . . . , N − 1, and
so µ ` |λ|+ r = m2 − 1 + r. Moreover, µ is an interior lattice point only if

∑̀
i=1

µi <
∑̀
i=1

λ
(k)
i = `(m+ 1)

for every ` = 1, . . . ,m − 1 and k = 1, . . . , N − 1. In particular when ` = 1, this implies
m ≥ µ1 ≥ · · · ≥ µm, so it follows that

∑`
i=1 µi ≤ `m for ` = 1, . . . ,m. Therefore,

m2 − 1 + r = |λ|+ r =
m∑
i=1

µi ≤ m2,

and we conclude that r = 1 necessarily. This means µ ` m2 so the only possible µ is
µ = (m, . . . ,m), whose Sm-orbit is trivial. Therefore when λ = (m + 1, . . . ,m + 1, 0), the
polytope Newt(Gh,λ(x)) has the unique interior lattice point u = (m, . . . ,m).

If the Sm-orbit of λ(N) is not trivial, then by Lemma 4.10, x1 + · · · + xm = |λ| + N =
m2 − 1 + N is a facet-defining hyperplane of Newt(Gh,λ(x)). Thus for Newt(Gh,λ(x)) to be
reflexive, we require N = 2, as the interior lattice point u = (m, . . . ,m) must be lattice
distance one from this hyperplane.

In other words, N = min(h(m − 1),m + 1) = 2. Since we assumed m ≥ 3, then h = 1
and m = 3 is the only possibility. In this case, λ = (4, 4, 0) and by Theorem 4.19 the
facet-defining hyperplanes of this Newton polytope are

xi = 4 for i = 1, 2, 3, x1 + x2 + x3 = 8, and x1 + x2 + x3 = 10.

The unique interior lattice point u = (3, 3, 3) is lattice distance one from each of these
facet-defining hyperplanes, so Newt(G1,(4,4,0)(x)) is reflexive.

Otherwise, if the Sm-orbit of λ(N) is trivial, then we must have λ(N) = (m+1, . . . ,m+1).
This implies h(m− 1) ≥ m+ 1, or equivalently, h ≥ 1 + 2

m−1 . As m ≥ 3, then h ≥ 2.

In this case, we have λ(b1) = · · · = λ(bm−1) = (m + 1, . . . ,m + 1, 0) and λ(bm) = (m +
1, . . . ,m+ 1). By Theorem 4.19, the facet-defining hyperplanes of Newt(Gh,λ(x)) are

x1 + · · ·+ xm = m2 − 1, and xi = m+ 1 for i = 1, . . . ,m,

and we see that this Newton polytope is an m-simplex. The unique interior lattice point
u = (m, . . . ,m) is lattice distance one from each of these hyperplanes so Newt(Gh,λ(x)) is
reflexive.

Proposition 4.23. Let m ≥ 3 and let

λ =

{
(2`, 0`+1) ` m− 1, if m = 2`+ 1 is odd,

(2`−1, 1, 0`) ` m− 1, if m = 2` is even.

Then Newt(Gh,λ(x)) is reflexive for h ≥ 1.
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Proof. We first deduce where an interior lattice point can occur in Newt(Gh,λ(x)). For all
h ≥ 1 and m ≥ 3, if λ(0), . . . , λ(N) is the sequence of dominating partitions for Gh,λ(x), then

N = m+1. In particular, λ
(k)
1 = 2 for all k = 0, . . . , N . If the partition µ = (µ1, . . . , µm) is an

interior lattice point of Newt(Gh,λ(x)) that lies in Newt(sλ(r)(x)) for some r = 1, . . . , N − 1,

then µ ` |λ|+ r = m− 1 + r. As µ is an interior lattice point, it must satisfy µ1 < λ
(k)
1 = 2,

so we have 1 ≥ µ1 ≥ · · · ≥ µm and

m− 1 + r = |λ|+ r = µ1 + · · ·+ µm ≤ m.

This implies r = 1, and the only possible µ is µ = (1, . . . , 1) ` m, whose Sm-orbit is

trivial. The point µ = (1, . . . , 1) satisfies
∑`

i=1 µi <
∑`

i=1 λ
(k)
i for all k = 1, . . . , N − 1, thus

Newt(Gh,λ(x)) has the unique interior lattice point u = (1, . . . , 1).

First consider the case m = 3, h = 1, and λ = (2, 0, 0). The dominating sequence of
partitions is (2, 0, 0), (2, 1, 0) and (2, 1, 1). The facet-defining hyperplanes of Newt(Gh,λ(x))
are

xi = 0, 2 for i = 1, 2, 3, xi + xj = 3 for i 6= j ∈ [3], and x1 + x2 + x3 = 2, 4.

Evidently, u is lattice distance one from every facet-defining hyperplane of the Newton
polytope, so Newt(Gh,λ(x)) is reflexive.

Next consider the cases m = 3 and h ≥ 2, or m ≥ 4 and h ≥ 1. In all cases, we have
N = m + 1, with λ(N) = (2m), and the Newton polytope is the same for all h in the given
range. The vertices of Newt(Gh,λ(x)) are the Sm-orbits of λ(0), λ(2), . . . , λ(N) if m is odd, and
are the Sm-orbits of λ(0), λ(1), λ(3), . . . , λ(N) if m is even.

By Theorem 4.19, the facet-defining hyperplanes of Newt(Gh,λ(x)) are

xi = 0, 2 for i = 1, . . . ,m, and x1 + · · ·+ xm = m− 1,

and we see that Newt(Gh,λ(x)) is the truncation of the m-cube [0, 2]m by the hyperplane
x1 + · · · + xm = m − 1. The unique interior lattice point u = (1, . . . , 1) is lattice distance
one from each of these hyperplanes, and we conclude that Newt(Gh,λ(x)) is reflexive.

Theorem 4.24. The Newton polytope Newt(Gh,λ(x)) is reflexive if and only if h and λ =
(λ1, . . . , λm) are one of the following cases:

h ≥ 1, λ = (2, . . . , 2, 0, . . . , 0) ` m− 1 for odd m ≥ 3,
h ≥ 1, λ = (2, . . . , 2, 1, 0, . . . , 0) ` m− 1 for even m ≥ 4,
h ≥ 2, λ = (m+ 1, . . . ,m+ 1, 0) ` m2 − 1 for m ≥ 2,
h = 1, λ = (4, 4, 0).

Proof. The result follows from combining Propositions 4.20, 4.22 and 4.23.

Tables of h∗-vectors for reflexive polytopes in the family Newt(Gh,λ(x)) can be found in
the Appendix.
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5 h∗-polynomials

Thus far we have shown that the Newton polytopes arising from Schur polynomials have
the integer decomposition property (Proposition 3.1). In addition, we have classified the
polytopes that are reflexive (Theorem 4.6) and Gorenstein (Corollary 4.7). Following the
motivation of Conjecture 1.1, we study the h∗-polynomials of these polytopes.

In this section, we provide closed-form expressions for the h∗-polynomials of the four
families of reflexive Newton polytopes of Schur polynomials from Theorem 4.6. We also
prove that all of these h∗-polynomials are unimodal. Figure 4 depicts examples of reflexive
and nonreflexive Newt(sλ(x)) with their corresponding h∗-vectors. The h∗-vectors of reflexive
Newt(sλ(x)) for several partitions are provided in Table 3 in the Appendix.

Figure 4: The reflexive polytope Newt(s(2,2,0,0)(x)) has h∗-vector (1, 15, 15, 1) and is shown
on the left. The polytope Newt(s(3,1,0,0)(x)), which has h∗-vector (1, 27, 31, 1), is shown on
the right and is not reflexive.

Proposition 5.1. Let λ = (n). The h∗-polynomial of the Newton polytope Newt(sλ(x)) = Pnλ
is of degree n− 1, and has coefficients

h∗j =

j∑
i=0

(−1)i
(
n

i

)(
(j − i+ 1)n− 1

n− 1

)
.

Proof. Let P = Pnλ . We first calculate the Ehrhart polynomial ehrP(k). The polytope P
has vertices nei for 1 ≤ i ≤ n and the polytope kP has vertices knei for 1 ≤ i ≤ n, where
ei is the ith standard basis vector. The lattice points in kP are all the points (v1, v2, . . . , vn)
with all vi nonnegative integers and

∑
i vi = kn. These are in natural bijection with all weak

compositions of kn into n parts. The number of these is well known, so we get

ehrP(k) =

(
kn+ n− 1

n− 1

)
.
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Thus the Ehrhart series of P is

∞∑
k=0

ehrP(k)xk =
∞∑
k=0

(
kn+ n− 1

n− 1

)
xk.

To get the h∗-polynomial, we multiply the Ehrhart series by (1− x)n.

(1− x)n
∞∑
k=0

ehrP(k)xk =

(
n∑
i=0

(−1)i
(
n

i

)
xi

)(
∞∑
k=0

(
kn+ n− 1

n− 1

)
xk

)

=
n−1∑
j=0

(
j∑
i=0

(−1)i
(
n

i

)(
(j − i)n+ n− 1

n− 1

))
xj.

So for 0 ≤ j ≤ n− 1,

h∗j =

j∑
i=0

(−1)i
(
n

i

)(
(j − i+ 1)n− 1

n− 1

)
.

Remark 5.2. The coefficients in Proposition 5.1 are precisiely those given by OEIS Sequence
A108267 [24].

Proposition 5.3. Let λ = (2, 1, . . . , 1) ` n and Pnλ be the corresponding Newton polytope.
Its h∗ coefficients are given by the following formula.

h∗j =

(
n− 1

j

)2

Proof. Let Q be the translation of Pnλ so that the origin is its unique interior latttice point.
Then Q is the convex hull of all vectors ei − ej for all i, j ∈ [n]. Thus Q is precisely the

polytope PAn−1 as stated in [2, Theorem 2]. This theorem shows that h∗j =
(
n−1
j

)2
.

Proposition 5.4. Let λ = (2, . . . , 2) ` n (n even) or λ = (2, . . . , 2, 1) ` n (n odd) and Pnλ
be the corresponding Newton polytope. The h∗ coefficients are given by the following formula.

h∗j =

j∑
k=0

(−1)j−k
(

n

j − k

)
an,k, where

an,k =
n∑
i=0

(−1)i
(
n

i

)(
nk + n− 1− i(2k + 1)

n− 1

)
.

31



Proof. We proceed in the same way as Proposition 5.1. Let n be even and λ = (2, . . . , 2) ` n.
Define P = Pnλ . We first calculate the Ehrhart polynomial ehrP(k). The vertices of P are
2
∑

i∈I ei for all I ⊆ [n] such that |I| = n/2. Thus kP has vertices 2k
∑

i∈I ei for these same
I. Therefore the lattice points in kP are the points (v1, . . . , vn) such that 0 ≤ vi ≤ 2k and∑

i vi = kn. There are in natural bijection with the weak compositions of kn into n parts
such that each part has size less than or equal to 2k. This number is counted by an,k above.
Therefore ehrP(k) = an,k.

Thus the Ehrhart series of P is

∞∑
k=0

ehrP(k)xk =
∞∑
k=0

an,kx
k.

To get the h∗-polynomial, we multiply the Ehrhart series by (1− x)n:

(1− x)n
∞∑
k=0

ehrP(k)xk =

(
n∑
i=0

(−1)i
(
n

i

)
xi

)(
∞∑
k=0

an,kx
k

)

So for 0 ≤ j ≤ n− 1, the coefficient of xj in the above series is

h∗j =

j∑
k=0

(−1)j−k
(

n

j − k

)
an,k.

Now suppose that n is odd and λ = (2, . . . , 2, 1) ` n. Again define P = Pnλ . The
vertices of P are ej + 2

∑
i∈I ei for all j /∈ I ⊆ [n] with |I| = bn/2c. Thus kP has vertices

k(ej + 2
∑

i∈I ei) for these same I and j. Therefore the lattice points in kP are the points
(v1, . . . , vn) such that 0 ≤ vi ≤ 2k and

∑
i vi = kn. Thus the h∗-polynomial calculation in

the even case works precisely the same in the odd case.

Now that we have determined the h∗-polynomials for these reflexive polytopes, we verify
that Conjecture 1.1 holds in the case of Newton polytopes of Schur polynomials. That is,
we show that the cofficients of the h∗-polynomials of the polytopes listed in Theorem 4.6 are
unimodal.

Proposition 5.5. All Newton polytopes arising from Schur polynomials that are reflexive
have h∗-polynomials with unimodal coefficients.

Proof. We note that if P is reflexive and P has a regular unimodular triangulation, then
the h∗-polynomial of P has unimodal coefficients by Theorem 2.2. Thus, we can prove this
result by showing that these polytopes have regular unimodular triangulations.

If P is the polytope from Proposition 5.1, then P is a dilate of a unimodular simplex. By
[13, Theorem 4.8], the dilate of any polytope with a regular unimodular triangulation has a
regular unimodular triangulation.

If P is the polytope from Proposition 5.3, we observe that the coefficients are log-concave
by a routine calculation since binomial coefficients are log-concave.
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If P is the polytope from Proposition 5.4 when n is even, then P is a dilate of a hyper-
simplex, which is known to have a unimodular triangulation by [16].

If P is the polytope from Proposition 5.4 when n is odd, we note that the facets for this
polytope are listed in Proposition 4.3(c). We can translate P so that the origin is the unique
interior point of P . The facet-defining matrix for this translate of P is easily seen to be
unimodular, so by [13, Theorem 2.4], P has a regular unimodular triangulation. Thus the
conjecture holds for this family of polytopes.

Remark 5.6. One could also consider the question of h∗-unimodality for Gorenstein Pmλ , but
these results follow rather quickly. Several of the Gorenstein examples are hypersimplices
(Corollary 4.8) which are known to have combinatorial formulas [15] and are known to
have regular unimodular triangulations [16]. The remaining examples of Gorenstein Pmλ are
dilated standard simplices and arguments will follow in a similar vein to the case of λ = (n).

6 Conclusion

In this paper we study the Newton polytopes of Schur polynomials and show that they
all have the integer decomposition property. We determine which Schur polynomials have
reflexive Newton polytopes, and for which the Newton polytope is Gorenstein. For the
reflexive Newton polytopes of Schur polynomials, we give the h∗-polynomials, and show that
they are unimodal.

We also introduce a generalization of symmetric Grothendieck polynomials, called inflated
symmetric Grothendieck polynomials. We show that all these polynomials have saturated
Newton polytope and their Newton polytopes have the integer decomposition property. We
characterize the partitions whose inflated symmetric Grothendieck polynomials have reflexive
Newton polytopes and provide a table of their h∗-vectors.

The study of polynomials with saturated Newton polytope both introduces additional
lattice polytopes of combinatorial interest and provides a new tool for approaching problems
in Ehrhart theory. It may be fruitful to consider questions of the integer decomposition
and reflexive polytopes for the Newton polytopes of other families of polynomials which are
known to have SNP, such as chromatic symmetric polynomials and Schubert polynomials.
Additionally, it is worth noting that the Newton polytopes of many polynomials of interest in
algebraic combinatorics appear not only to have SNP, but also to have nice Ehrhart theoretic
properties such as IDP and h∗-unimodality, either by our theorems or computationally.
Perhaps it would be of interest to investigate if these Newton polytopes have other sought
after properties, such as Ehrhart positivity.
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A Tables of h∗-vectors for reflexive polytopes

We present some tables of h∗-vectors for reflexive Newton polytopes arising from inflated
symmetric Grothendieck polynomials Gh,λ(x) and Schur polynomials sλ(x).

m h h∗-vector
3 ≥ 2 1, 31, 31, 1
4 ≥ 2 1, 121, 381, 121, 1
5 ≥ 2 1, 456, 3431, 3431, 456, 1
6 ≥ 2 1, 1709, 26769, 60691, 26769, 1709, 1
7 ≥ 2 1, 6427, 193705, 848443, 848443, 193705, 6427, 1
8 ≥ 2 1, 24301, 1343521, 10350421, 19610233, 10350421, 1343521, 24301, 1

Table 1: h∗-vectors of some reflexive Newton polytopes arising from Gh,λ for λ = ((m +
1)m−1, 0). For m ≥ 3 and h ≥ 2, h(m − 1) ≥ 2(m − 1) ≥ (m + 1). Thus, G2,λ = Gh,λ

for all h ≥ 2. We should note that these polytopes are equivalent to the λ-permutatohedra
for λ = (n). Hence, these are the same coefficients given by Proposition 5.1 and by OEIS
A108267 [24]

m h h∗-vector
3 1 1, 12, 12, 1
3 ≥ 2 1, 19, 19, 1
4 ≥ 1 1, 61, 183, 61, 1
5 ≥ 1 1, 186, 1301, 1301, 186, 1
6 ≥ 1 1, 554, 7974, 17756, 7974, 554, 1
7 ≥ 1 1, 1639, 44997, 191955, 191955, 44997, 1639, 1
8 ≥ 1 1, 4841, 241861, 1805773, 3393515, 1805773, 241861, 4841, 1
9 ≥ 1 1, 14308, 1261900, 15539722, 49625029, 49625029, 15539722, 1261900, 14308, 1

Table 2: h∗-vectors of some reflexive Newton polytopes arising from Gh,λ for λ = (2`, 0`+1)
or (2`−1, 1, 0`). Since λ1 = 2 in these cases, then for m = 3 and all h ≥ 2, and for m ≥ 4 and
all h ≥ 1, the Newton polytope Newt(Gh,λ) stabilizes and is the truncation of the m-cube
[0, 2]m by the hyperplane x1 + · · ·+ xm = m− 1.
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λ n h∗-vector
(21) 3 1, 4, 1
(3) 3 1, 7, 1

(211) 4 1, 9, 9, 1
(22) 4 1, 15, 15, 1
(4) 4 1, 31, 31, 1

(2111) 5 1, 16, 36, 16, 1
(221) 5 1, 46, 136, 46, 1
(5) 5 1, 121, 381, 121, 1

(21111) 6 1, 25, 100, 100, 25,1
(222) 6 1, 135, 920, 920, 135, 1
(6) 6 1, 456, 3431, 3431, 456, 1

(211111) 7 1, 36, 225, 400, 225, 36, 1
(2221) 7 1, 386, 5405, 11964, 5405, 386, 1

(2111111) 8 1, 49, 441, 1225, 1225, 441, 49, 1
(2222) 8 1, 1099, 29337, 124187, 124187, 29337, 1099, 1
(22221) 9 1, 3130, 152110, 1126258, 2112016, 1126258, 152110, 3130, 1

Table 3: h∗-vectors of some reflexive Newton polytopes arising from Schur polynomials sλ.
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