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Abstract. We introduce a fast algorithm to compute the Ramanujan-Deninger gamma function
and its logarithmic derivative at positive values. Such an algorithm allows us to greatly
extend the numerical investigations about the Euler-Kronecker constants Gq , G+q and Mq =

maxχ,χ0 |L ′/L(1, χ)|, where q is an odd prime, χ runs over the primitive Dirichlet characters
mod q, χ0 is the trivial Dirichlet character mod q and L(s, χ) is the Dirichlet L-function
associated to χ. Using such algorithms we obtained thatG50040955631 = −0.16595399 . . . and
G+50040955631 = 13.89764738 . . . thus getting a new negative value forGq .

Moreover we also computed Gq , G+q and Mq for every odd prime q, 106 < q ≤ 107, thus
extending the results in [17]. As a consequence we obtain that both Gq and G+q are positive
for every odd prime q up to 107 and that 17

20 log log q < Mq <
5
4 log log q for every odd prime

1531 < q ≤ 107. In fact the lower bound holds true for q > 13. The programs used and the
results here described are collected at the following address http://www.math.unipd.it/
~languasc/Scomp-appl.html.

1. Introduction

We introduce a fast algorithm to compute the Ramanujan-Deninger gamma function and its
logarithmic derivative at positive real values. We then use such a new algorithm to efficiently
compute L′/L(1, χ), where χ runs over the non trivial primitive Dirichlet characters mod q, q is
an odd prime and L(s, χ) is the Dirichlet L-function associated to χ. Such a quantity is involved
in several interesting number-theoretic problems like the evaluation of the Euler-Kronecker
constantsGq for the cyclotomic field Q(ζq), ζq being a q-root of unity, the analogous problem
forG+q attached to Q(ζq + ζ

−1
q ), the maximal real subfield of Q(ζq), and the study of the extremal

values of Mq = maxχ,χ0 |L′/L(1, χ)|. We will give a detailed description of such problems in
Section 4.
Following Deninger’s notation in [3], we introduce now the functions we will work on. The

main object is the Ramanujan-Deninger Gamma function Γ1(x) := exp(R(x)), x > 0, where

R(x) := − ∂
2

∂s2 ζ(s, x)|s=0 ,

ζ(s, x) is the Hurwitz zeta function, ζ(s, x) = ∑+∞
n=0(n + x)−s for <(s) > 1 and it is meromor-

phically extended to s ∈ C \ {1}. We recall that ζ(s, 1) is Riemann’s zeta-function ζ(s). Using
eq. (2.3.2) of [3], the R-function can be expressed for every x > 0 by

R(x) = −ζ ′′(0) − S(x), (1)

S(x) := 2γ1x + (log x)2 +
+∞∑
k=1

( (
log(k + x)

)2 − (log k)2 − 2x
log k

k

)
, (2)
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where

γ1 = lim
n→+∞

( n∑
k=1

log k
k
− (log n)2

2

)
, ζ ′′(0) = 1

2

(
−(log 2π)2 − π

2

12
+ γ1 + γ

2
)

(3)

and γ is the Euler-Mascheroni constant. We introduced the S-function because in the applications
we will see in Section 4 below the constant term ζ ′′(0) will play no role and hence we may focus
our attention just on the S-function. We also have S(1) = 0 and R(1) = −ζ ′′(0).
A key point to be able to obtain the following results is that R(x) is the unique solution in
(0,+∞) of the difference equation R(x+1) = R(x)+(log x)2, with initial condition R(1) = −ζ ′′(0),
which is convex in some interval (A,+∞), A > 0, see Theorem 2.3 of Deninger [3]. As a
consequence the S-function too verifies a difference equation:

S(x + 1) = S(x) − (log x)2 for every x > 0. (4)

Another important ingredient to being able to derive our results is the following alternative
definition of S(x), x > 0, which is implicitly contained in eq. (2.12) of Deninger [3]. It is
the analogue for S of Plana’s integral for log Γ, where Γ(s), s ∈ C \ (−N), is Euler’s Gamma
function:

S(x) = 2
∫ +∞

0

(
(x − 1)e−t +

e−xt − e−t

1 − e−t

) γ + log t
t

dt. (5)

We introduce now the first derivative of R(x), namely

ψ1(x) :=
1
2

R′(x) = 1
2
Γ′1
Γ1
(x). (6)

The factor 1/2 in (6) is needed because Deninger, in its definition of R(x), used an extra factor 2
and we need now to remove it to connect ψ1 with the results proved by other authors. We also
recall that generalised ψ-functions of this kind occur in Ramanujan’s second notebook, see [1,
Chapter 8, Entry 22]. Differentiating (2) we have

ψ1(x) = −γ1 −
log x

x
−
+∞∑
k=1

( log(k + x)
k + x

− log k
k

)
for x > 0. We also define

T(x) := γ1 + ψ1(x) (7)
so that T(1) = 0. As before, we introduced the function T(x) because the constant term γ1 in the
definition of ψ1 will play no role in the applications contained in Section 4 below. Moreover,
since S′(x) = 2(γ1 − T(x)), it follows that

T(x) = γ1 −
1
2

S′(x) and T(x + 1) = T(x) + log x
x

for every x > 0. (8)

In our applications, see Section 4 below, we will need to evaluate S or T at some rational points
contained in (0, 1). A possible solution, used in [17], is to use the intnum and sumnum functions
of PARI/GP [21] to numerically evaluate (2), (5) and (7). Here we show how to largely reduce
the cost of this computation by introducing a new algorithm to obtain such quantities. Denoting
as dye the least integer greater than or equal to y ∈ R and defining the m-th harmonic number as

Hm =

m∑
j=1

1
j
, (9)

where m ∈ N, m ≥ 1, our starting point is the following
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Theorem 1. Let x ∈ (0, 2). Then

S(x) = −2γ1(1 − x) + 2
+∞∑
k=2

ζ(k)Hk−1 + ζ
′(k)

k
(1 − x)k, (10)

where γ1 is defined as in (3), Hk is defined as in (9), ζ(·) is the Riemann zeta-function and ζ ′(·)
is its first derivative. Moreover, letting x ∈ (0, 1) ∪ (1, 2), n ∈ N, n ≥ 1 be fixed, and rS(x, n) ∈ N,

rS(x, n) :=
⌈ (n + 2) log 2 + | log(1 − |1 − x |)|

| log |1 − x | |

⌉
− 1, (11)

we have that there exists θ = θ(x) ∈ (−0.6, 0.6) such that

S(x) = −2γ1(1 − x) + 2
rS(x,n)∑

k=2

ζ(k)Hk−1 + ζ
′(k)

k
(1 − x)k + |θ |2−n. (12)

We immediately remark that (10) is the Taylor series centred at 1 of S(x); in particular this
implies that

S′(1) = 2γ1 and S(k)(1) = 2(−1)k(k − 1)!
(
ζ(k)Hk−1 + ζ

′(k)
)
(k ∈ N, k ≥ 2).

Using Theorem 1 and (1), for x ∈ (0, 2) we trivially have

R(x) = −ζ ′′(0) + 2(1 − x)γ1 − 2
+∞∑
k=2

ζ(k)Hk−1 + ζ
′(k)

k
(1 − x)k

and its corresponding truncated version. We remark that (10) is1 equation (2.14) of Dilcher [5]
but we will prove Theorem 1 in a different way, i.e., starting from (5), which in fact reveals that
such an argument can be used for any function having an integral representation of Plana’s type
like the one in (5).

Recalling (4), the fact that Theorem 1 holds for every x ∈ (0, 2)means that every value of S(x),
x ∈ (0, 1), can be computed in two different ways.2 Moreover it is clear that rS(x, n) becomes
larger as |1 − x | increases. Hence, recalling that in our applications of Section 4 we are mainly
interested in x ∈ (0, 1), if x ∈ (1/2, 1) we will directly compute S(x) using Theorem 1 while for
x ∈ (0, 1/2) we will shift the problem using (4) and use Theorem 1 in (1, 3/2). In the following
we will refer to this procedure as the shifting trick. Such an argument leads to the following two
corollaries.

Corollary 1. Let x ∈ (0, 1/2). We have that

S(x) = (log x)2 + 2γ1x + 2
+∞∑
k=2
(−1)k ζ(k)Hk−1 + ζ

′(k)
k

xk . (13)

Letting further n ∈ N, n ≥ 1 be fixed and r′S(x, n) ∈ N,

r′S(x, n) := rS(1 + x, n) =
⌈ (n + 2) log 2 + | log(1 − x)|

| log x |

⌉
− 1,

1Pay attention to the fact that the Deninger S(x)-function defined in (1)-(2) is equal to −2 log(Γ1(x)) as defined
in Proposition 1 of Dilcher [5].

2We remark that the size of the convergence interval of the series in the right hand side of (10) can be doubled
by isolating the Taylor series at 1 of (log x)2 and using the estimates on |ζ(n) − 1| of Lemma 3 below. We do not
insert such an idea here, since the computation of such an extra-factor (log x)2 leads, in our practical application, to
a longer total running time.
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where rS(u, n) is defined in Theorem 1, we have that there exists η = η(x) ∈ (−0.6, 0.6) such that

S(x) = (log x)2 + 2γ1x + 2
r ′
S
(x,n)∑

k=2
(−1)k ζ(k)Hk−1 + ζ

′(k)
k

xk + |η |2−n. (14)

Recalling Remark (2.6) of Deninger [3, page 176], (1) and (3) we also obtain

S
(1
2

)
= −R

(1
2

)
− ζ ′′(0) = 1

2
(log π)2 + π

2

24
− γ1 + γ

2

2
. (15)

Remark 1. As a matter of curiosity, since we are aware of the fact that much faster algorithms
exist to compute γ1, see Johansson-Blagouchine [13], we remark that evaluating twice S(1/2)
using Theorem 1 (the first time directly and the second as S(3/2) + (log 2)2), we have, by
subtracting such formulae, that the summands having even indices vanish; thus we obtain

γ1 = −
1
2
(log 2)2 +

n/2+1∑̀
=1

ζ(2` + 1)H2` + ζ
′(2` + 1)

(2` + 1)4`
+ 0.6 · 2−n.

Such a result, similar to equation (3.10) of Dilcher [5], allows us to fast compute γ1 with a
precision of n bits using about n/2 summands. For example, using PARI/GP, we got γ1 with a
precision of 1 000 decimal digits within 1 minute and 34 seconds of computation time on a Dell
OptiPlex-3050 machine (equipped with an Intel i5-7500 processor, 3.40GHz, 16 GB of RAM
and running Ubuntu 18.04.2).

Combining (12), (14) and (15), we obtain a very fast way of computing S(x) for every x > 0.
We will see more about this in Section 5 but we also summarise the situation in the following

Corollary 2. We use the notation introduced in Theorem 1 and Corollary 1. Moreover, for
every x > 0, we denote as bxc the integral part of x and as {x} = x − bxc the fractional part of
x. Hence we obtain:

i) S(1) = S(2) = 0 and S(m) = −∑m−1
k=2 (log k)2 for every m ∈ N, m ≥ 3;

ii) for x > 1, x < N, we compute S(x) as S(x) = S({x}) −∑bxc−1
k=0 (log({x} + k))2;

iii) S(1/2) = (log π)2/2 + π2/24 − (γ1 + γ
2)/2;

iv) for x ∈ (0, 1/2), we compute S(x) as in (14);
v) for x ∈ (1/2, 1), we compute S(x) as in (12).

The proof of Corollary 2 follows just collecting the information coming from Theorem 1,
Corollary 1, equations (15) and (4).
Even if in our application we will always work with x ∈ (0, 1), we recall that, for x large, it

might be useful to implement the Stirling-like formula proved in Theorem 2.11 of Deninger [3]
which gives an asymptotic expression for R(x) and, a fortiori, for S(x).

Our second theorem is about the function T defined in (7). As for S(x), the starting point is
the following

Theorem 2. Let x ∈ (0, 2). Using the notation introduced in Theorem 1, we have

T(x) =
+∞∑
k=2

(
ζ(k)Hk−1 + ζ

′(k)
)
(1 − x)k−1. (16)
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Moreover, letting x ∈ (0, 1) ∪ (1, 2), n ∈ N, n ≥ 1 be fixed, and rT (x, n) ∈ N,

rT (x, n) :=
⌈
min

r

{
r ≥ 1 +

(n + 2) log 2 − log | log |1 − x | | + log log r
| log |1 − x | |

}⌉
, (17)

we have that there exists θ = θ(x) ∈ (−1, 1) such that

T(x) =
rT (x,n)∑

k=2

(
ζ(k)Hk−1 + ζ

′(k)
)
(1 − x)k−1 + |θ |2−n. (18)

We immediately remark that (16) is the Taylor series centred at 1 of T(x); in particular this
implies that

T (k)(1) = (−1)k k!
(
ζ(k + 1)Hk + ζ

′(k + 1)
)
(k ∈ N, k ≥ 1).

Using Theorem 2 and (7), for x ∈ (0, 2) we trivially have

ψ1(x) = −γ1 +

+∞∑
k=2

(
ζ(k)Hk−1 + ζ

′(k)
)
(1 − x)k−1

and the corresponding truncated version.
Formula (16) is essentially the one in Entry 21(ii) on page 280 of [1] and it follows by

differentiation from (10) of Theorem 1. The series in Theorem 2 clearly has a worst convergence
speed than the one in Theorem 1 and this justifies the different bound on rT (x, n) we have in
(17) comparing with the one for rS(x, n) in (11). Recalling (8), the fact that Theorem 2 holds
for every x ∈ (0, 2) means that every value of T(x), x ∈ (0, 1), can be computed in two different
ways and that the shifting trick can be used in this case too.3 Hence, if x ∈ (1/2, 1) we will
directly compute T(x) using Theorem 2 while for x ∈ (0, 1/2) we will use (8) and Theorem 2 in
(1, 3/2). This way we obtain the following two corollaries.

Corollary 3. Let x ∈ (0, 1/2). We have that

T(x) = − log x
x
+

+∞∑
k=2
(−1)k−1 (ζ(k)Hk−1 + ζ

′(k)
)
xk−1. (19)

Letting further n ∈ N, n ≥ 1 be fixed and r′T (x, n) ∈ N,

r′T (x, n) := rT (1 + x, n) =
⌈
min

r

{
r ≥ 1 +

(n + 2) log 2 − log | log x | + log log r
| log x |

}⌉
,

where rT (u, n) is defined in Theorem 2, we have that there exists η = η(x) ∈ (−1, 1) such that

T(x) = − log x
x
+

r ′T (x,n)∑
k=2
(−1)k−1 (ζ(k)Hk−1 + ζ

′(k)
)
xk−1 + |η |2−n. (20)

Recalling equation (7.14) of Dilcher [4] we also obtain

T
(1
2

)
= γ1 + ψ1

(1
2

)
= (log 2)2 + 2γ log 2. (21)

3We remark that the size of the convergence interval can be doubled by isolating the Taylor series at 1 of
2(log x)/x and using the estimates on |ζ(n) − 1| of Lemma 3 below. We do not insert such an idea here, since the
computation of such an extra-factor 2(log x)/x leads, in our practical application, to a longer total running time.
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Remark 2. In this case too we remark that evaluating twice T(1/2) using Theorem 2 (the first
time directly and the second as T(3/2) + 2 log 2), we have, by summing such formulae, that the
summands having even indices vanish; thus we obtain

γ = −1
2

log 2 +
1
2
+

1
2 log 2

n/2+4∑̀
=1

ζ(2` + 1)H2` + ζ
′(2` + 1)

4`
+ 2−n+1.

Such a result allows us to fast compute γ with a precision of n bits using about n/2 steps. For
example, using PARI/GP, we got γ with a precision of 1 000 decimal digits within 1 minute and
6 seconds of computation time on the Dell Optiplex machine previously mentioned. In this case
too there exist much faster algorithms to perform such a computation, see again [13].

Combining (18), (20) and (21), we obtain a very fast way of computing T(x) for every x > 0.
We will see more about this in Section 5 but we also summarise the situation in the following

Corollary 4. We use the notation introduced in Theorem 2 and Corollaries 2-3. We have:
i) T(1) = T(2) = 0 and T(m) = ∑m−1

k=2 (log k)/k for every m ∈ N, m ≥ 3;
ii) if x > 1, x < N, we compute T(x) as T(x) = T({x}) +∑bxc−1

k=0 (log({x} + k))/({x} + k);
iii) T(1/2) = (log 2)2 + 2γ log 2;
iv) if x ∈ (0, 1/2), we compute T(x) as in (20);
v) if x ∈ (1/2, 1), we compute T(x) as in (18).

The proof of Corollary 4 follows just collecting the information coming from Theorem 2,
Corollary 3, equations (21) and (8).
We finally remark that the shifting trick applies to any function which can be defined as the

solution of a difference equation, like S and T , and that it can be expressed via a power series
whose convergence interval is twice as large than the step of the difference equation. Another
classical example of such a phenomenon4 is the pair of functions given by log Γ and ψ = Γ′/Γ,
for which the analogues of the formulae (10) and (16) were first proved by Euler, see, e.g.,
Section 3 of the beautiful survey of Lagarias [15]. But this also holds for further generalisations
of Euler’s Gamma function like the ones studied by Dilcher in [5]; in fact S and T are the first
and easier cases of such generalisations.
Here we are mainly interested in S and T because of the number-theoretic applications

concerning the logarithmic derivative at 1 of Dirichlet L-functions, see Section 4. There we will
examine how to compute such quantities in a fast way and the number-theoretic consequences
we can infer from such data.

The paper is organised as follows: in Sections 2-3 we will respectively prove Theorems 1-2.
In Section 4 we will describe the problems in which the use of S(x) and T(x) is relevant. In
Section 5 we will discuss the computational costs and some of the implementation features of
the formulae in Theorems 1-2 with respect to the applications too. Finally, Section 6 is dedicated
to show some figures about the applications described in Section 4.

Acknowledgements. The calculations here described in Section 5 were performed using the
University of Padova Strategic Research Infrastructure Grant 2017: “CAPRI: Calcolo ad Alte
Prestazioni per la Ricerca e l’Innovazione”, http://capri.dei.unipd.it.

2. Proof of Theorem 1

We start with the following lemmas that might have some independent interest too.

4We used it in [19] to numerically study Littlewood’s bounds on |L(1, χ)|.

http://capri.dei.unipd.it
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Lemma 1. Let x > 0 be fixed, T(x) be defined as in (7) and γ1 as in (3). Moreover let γ be the
Euler-Mascheroni constant. Then we have

T(x) = γ1 −
∫ +∞

0

(
e−t − te−xt

1 − e−t

) γ + log t
t

dt (22)

and ∫ +∞

0

(
e−t − te−t

1 − e−t

) γ + log t
t

dt = γ1. (23)

Proof. Using (5) and (8), a differentiation immediately gives (22). The second part follows from
the first using T(1) = 0. �

Lemma 2. Let x > 0 be fixed, S(x) be defined as in (2), T(x) be defined as in (7) and γ1 as in
(3). Let moreover γ be the Euler-Mascheroni constant. Then we have

T(x) =
∫ +∞

0

(
e(1−x)t − 1

) γ + log t
et − 1

dt (24)

and

S(x) = −2(1 − x)γ1 + 2
∫ +∞

0

(
e(1−x)t − 1 − (1 − x)t

) γ + log t
t(et − 1) dt. (25)

Proof. Inserting (23) into (22) and performing a trivial computation on absolutely convergent
integrals gives (24). Moreover, an algebraic manipulation on equation (5) immediately give

S(x) = 2
∫ +∞

0
(x − 1)

(
e−t − te−t

1 − e−t

) γ + log t
t

dt

+ 2
∫ +∞

0

( (x − 1)te−t + e−xt − e−t

1 − e−t

) γ + log t
t

dt

which is allowed since both integrals absolutely converge. Recalling Lemma 1 we see that the
first integral is equal to 2(x − 1)γ1. Another algebraic manipulation on the second integral proves
(25). We also remark that (24) can also be obtained by differentiation from (25) and (8). �

We will also need the following elementary estimates.

Lemma 3. Let γ be the Euler-Mascheroni constant, ψ(s) = Γ′/Γ(s) be the digamma function
and let x > 0. Then

log x − 1
x
< ψ(x) < log x.

Moreover, for every k ∈ N, k ≥ 3, we have ψ(k) + γ = Hk−1,

1 < ζ(k) < 1 +
1

2k−1 and − 3 log 2 + 2
2k < ζ ′(k) < − log 2

2k .

Proof. The first inequality follows from Theorem 5 of Gordon [8]. The second part follows from
(9) and the fact that ψ(1) = −γ and ψ(x + 1) = ψ(x)+ 1/x; hence ψ(k)+ γ = ∑k−1

j=1 1/ j for every
k ∈ N, k ≥ 2. The third part of the lemma immediately follows by partial summation from the
definition of ζ(s) and ζ ′(s), s ∈ R, s > 1. �

The proof of Theorem 1 now starts from (25) of Lemma 2. Let x ∈ (0, 2) and, for every t ∈ R,
define f (x, t) := e(1−x)t − 1 − (1 − x)t. Hence (25) becomes

S(x) = −2(1 − x)γ1 + 2
∫ +∞

0
f (x, t)γ + log t

t(et − 1) dt. (26)
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Writing the Taylor expansion at 0 of f (x, ·), we can easily get that f (x, t) = ∑+∞
k=2 tk(1 − x)k/k!

which holds for every t ∈ R and x ∈ (0, 2). Hence∫ +∞

0
f (x, t)γ + log t

t(et − 1) dt =
+∞∑
k=2

(1 − x)k
k!

∫ +∞

0

tk−1(γ + log t)
et − 1

dt (27)

in which we exchanged the series and the integral signs exploiting their absolute convergence.
Let now s ∈ C,<(s) > 1. Recalling the classical formula∫ +∞

0

ts−1

et − 1
dt = Γ(s)ζ(s), (28)

differentiating over s we immediately get∫ +∞

0

ts−1 log t
et − 1

dt = Γ′(s)ζ(s) + Γ(s)ζ ′(s). (29)

Recalling that ψ(s) = Γ′/Γ(s), Lemma 3 and Γ(k) = (k − 1)!, by inserting (28)-(29) into (27)
we obtain ∫ +∞

0
f (x, t)γ + log t

t(et − 1) dt =
+∞∑
k=2

ζ(k)Hk−1 + ζ
′(k)

k
(1 − x)k . (30)

Hence (10) immediately follows by inserting (30) into (26). This proves the first part of Theorem
1. We now prove the second part of Theorem 1. From now on we denote

L(k) := ζ(k)Hk−1 + ζ
′(k). (31)

Moreover letting r ∈ N, r ≥ 2, we define

ΣS(r, x) :=
r∑

k=2

L(k)
k
(1 − x)k

and ES(r, x) :=
∑+∞

k=r+1(L(k)/k)(1 − x)k . Hence from (10) we get

S(x) = −2(1 − x)γ1 + 2ΣS(r, x) + 2ES(r, x). (32)

Let now n ≥ 1 be fixed. For every fixed x ∈ (0, 2), x , 1, we will find r = rS(x, n) ∈ N such that
|ES(r, x)| < 0.3 · 2−n. Using Lemma 3 we obtain, for k ≥ r + 1 ≥ 3, that

|L(k)|
k

<
ζ(k)Hk−1 + |ζ ′(k)|

k
<
(1 + 2−r)(log(r + 1) + γ) + 22−r

r + 1
< 1.04

and hence, using the well-known formula about the sum of a geometric progression, we can write

|ES(r, x)| < 1.04
+∞∑

k=r+1
|1 − x |k = 1.04

|1 − x |r+1

1 − |1 − x | . (33)

We now look for r = rS(x, n) ∈ N such that |1−x |r+1

1−|1−x | ≤ 2−n−2. An easy computation reveals that

r + 1 ≥ (n + 2) log 2 + | log(1 − |1 − x |)|
| log |1 − x | | (34)

suffices. The second part of Theorem 1 then follows from (32)-(34).
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3. Proof of Theorem 2

We already remarked that (16) follows via (8) from (10) but a direct proof can also be obtained
starting from (24) and arguing as in the proof of Theorem 1. We now prove the second part of
Theorem 2. Letting r ∈ N, r ≥ 2, and recalling (31), we define

ΣT (r, x) :=
r∑

k=2
L(k)(1 − x)k−1

and ET (r, x) :=
∑+∞

k=r+1 L(k)(1 − x)k−1. Hence from (16) we get

T(x) = ΣT (r, x) + ET (r, x). (35)

Let now n ≥ 1 be fixed. For every fixed x ∈ (0, 2), x , 1, we will find r = rT (x, n) ∈ N such that
|ET (r, x)| < 2−n. Using Lemma 3 we have, for k ≥ r + 1 ≥ 4, that

|ET (r, x)| < 2
|1 − x |

+∞∑
k=r+1

|1 − x |k log k . (36)

Assuming that r ≥ 1/x, we have that |1− x |k log k is a decreasing sequence for k ≥ r + 1; hence
a partial integration argument gives that

|ET (r, x)| < 2
|1 − x |

∫ +∞

r
|1 − x |u log u du < 2

|1 − x |r−1

| log |1 − x | |

(
log r +

1
r | log |1 − x | |

)
< 4

|1 − x |r−1

| log |1 − x | | log r, (37)

in which we also assumed that r | log |1 − x | | ≥ 1. We now look for r = rT (x, n) ∈ N such that
|1−x |r−1

| log |1−x | | log r ≤ 2−n−2. An easy computation reveals that

r − 1 ≥ (n + 2) log 2 − log | log |1 − x | | + log log r
| log |1 − x | | (38)

suffices. The second part of Theorem 2 then follows from (35)-(38) .

4. Applications

We briefly describe here some number-theoretic applications in which the use of S and T is
relevant; we will heavily refer to [17] in which a more detailed presentation is given.

4.1. Computation of L′/L(1, χ). The main application in which is important to know the
values of S(a/q) is to evaluate the logarithmic derivative at 1 of the Dirichlet L-functions.
Following the line of Section 3 of [17] we have, for χ odd, that

L′

L
(1, χ) = γ + log(2π) + 1

B1, χ

q−1∑
a=1

χ(a) log
(
Γ
(a
q
) )

(39)

and, for χ even, χ , χ0, that

L′

L
(1, χ) = γ + log(2π) − 1

2

∑q−1
a=1 χ(a) S(a/q)∑q−1

a=1 χ(a) log
(
Γ(a/q)

) , (40)
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where B1, χ := (∑q−1
a=1 aχ(a))/q is the first χ-Bernoulli number, L(s, χ) denote the Dirichlet

L-functions, χ run over the non-trivial Dirichlet characters mod q and χ0 is the trivial Dirichlet
character mod q. Using the values of T(a/q) we can alternatively write, for every χ , χ0, that

L′

L
(1, χ) = − log q −

∑q−1
a=1 χ(a) T(a/q)∑q−1
a=1 χ(a) ψ(a/q)

. (41)

The summations over a can be efficiently performed using the Fast Fourier Transform method,
see, e.g., Section 4 of [17], and for this approach the use (39)-(40) leads to a faster algorithm
than the one which uses (41) because in the former case a decimation in frequency strategy
can be applied. This essentially means that just the (q − 1)/2 values of S(a/q) + S(1 − a/q)
are needed to perform the summation over a in (40); combining this with the use of suitable
reflection formulae for S(x) lead to gain a factor 4 in the computational cost of generating the
S-values with respect to the cost of generating the T-values, see also subsection 5.3.

It is a well-known fact that the size of the logarithmic derivative at 1 of the Dirichlet L-functions
is connected with the horizontal distribution of non-trivial zeros of L(s, χ). In particular it is
interesting to study their extremal values under the assumption of the Generalised Riemann
Hypothesis.

4.2. Extremal values of L′/L(1, χ). For every odd prime q we define

Modd
q := max

χ odd

���L′
L
(1, χ)

��� , Meven
q := max

χ,χ0
χ even

���L′
L
(1, χ)

��� , Mq = max
χ,χ0

���L′
L
(1, χ)

��� .
Hence we can compute Mq = max(Modd

q , Meven
q ) using (39)-(40). Numerical values for Mq

were obtained in [17] for every odd prime q ≤ 106. Such data are in agreement with the estimate
proved by Ihara-Murty-Shimura [12] (please remark that our Mq is denoted as Qm there) since
they proved that Mq ≤ (2 + o (1)) log log q as q tends to infinity, under the assumption of the
Generalised Riemann Hypothesis. On the other hand, Lamzouri, in a personal communication
with the first author, remarked that, by adapting the techniques in his paper [16], one can show
that if q is a large prime then Mq ≥ (1 + o (1)) log log q.
We will extend here the study of Mq to the larger interval q ≤ 107; we can do so because of

the much faster algorithm to compute S(a/q) presented here.

4.3. The Euler-Kronecker constants for prime cyclotomic fields. Let q be an odd prime, ζq
be a primitive q-root of unity, ζQ(ζq)(s) be the Dedekind zeta-function of Q(ζq). It is a well
known fact that ζQ(ζq)(s) has a simple pole at s = 1; writing the expansion of ζQ(ζq)(s) near s = 1
as

ζQ(ζq)(s) =
c−1

s − 1
+ c0 + O(s − 1) ,

the Euler-Kronecker constant of Q(ζq) is defined as

lim
s→1

( ζQ(ζq)(s)
c1

− 1
s − 1

)
=

c0
c−1

.

In this cyclotomic case we have that the Dedekind zeta-function can be written as ζQ(ζq)(s) =
ζ(s)∏χ,χ0 L(s, χ), where ζ(s) is the Riemann zeta-function. By logarithmic differentiation, we
immediately get that the Euler-Kronecker constant for the prime cyclotomic field Q(ζq) is

Gq := γ +
∑
χ,χ0

L′

L
(1, χ).
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Sometimes the quantityGq is denoted as γq but this conflicts with notations used in literature.
Another interesting quantity related toGq is the Euler-Kronecker constantG+q for Q(ζq + ζ

−1
q ),

the maximal real subfield of Q(ζq). According to eq. (10) of Moree [20] it is defined as

G
+
q := γ +

∑
χ,χ0
χ even

L′

L
(1, χ).

An extensive study about the properties of Gq and G+q was recently started by Ihara [10, 11]
and carried over from many others; we just recall here the papers by Ford-Luca-Moree [6] and
Languasco [17] because they both have some computational results onGq andG+q .
For both Gq and G+q it is interesting to find their negative values since Ihara conjectured

that both these quantities should be positive. Such a conjecture for Gq was disproved by
Ford-Luca-Moree [6] (other two occurrences of Gq < 0 were detected in [17]). No negative
values ofG+q are known so far. We will extend here the search for negative values ofGq andG+q
to the larger bound q ≤ 107; in this way we also prove that there are no negative values for both
Gq andG+q for every odd prime q up to 107. We also evaluate such quantities for some very large
q. We can do so because of the much faster algorithm to compute S(a/q) presented here.

5. Implementation

We discuss here some implementation features of the formulae in Corollaries 2 and 4. Since
for x > 1 we can reduce the problem of evaluating S(x), or T(x), to a sum of a finite number of
log-values plus S({x}), or T({x}), in this Section we assume that x ∈ (0, 1).

5.1. Number of summands. We already remarked in the Introduction that, from the estimates
on rS(x, n) and rT (x, n) in Theorems 1-2, the number of needed terms we have to consider to
have a n-bits digit precision result becomes arbitrarily large as x → 0+. To avoid this problem
we can in practice use the formulae in Corollaries 2 and 4. In both corollaries it is clear that
the worst cases for rS(x, n) and r′S(x, n) (and, respectively, for rT (x, n) and r′T (x, n)) are obtained
when x approaches 1/2. Hence we can get any value of S(x), x ∈ (0, 1), with a precision of n
binary digits, with at most n + 2 summands (assuming that the needed log and L(k) values can
be obtained with the same precision). Analogously we can get any value of T(x), x ∈ (0, 1), with
a precision of n binary digits, with at most n + 4 + log log(n + 4) summands (assuming that the
needed log and L(k) values can be obtained with the same precision).

5.2. Precomputed coefficients. In (12) and (18) we have a power series whose coefficients
involve the values L(k), k ∈ N, k ≥ 2 (see (31) for the definition of L(k)). Hence in both cases
such values can be precomputed, stored and reused for any x ∈ (0, 1). Moreover, the estimates
in Lemma 3 imply that |ζ(k) − 1| < 10−200 for k ≥ 160 and |ζ ′(k)| < 10−200 for k ≥ 420.
Hence, after about 420 terms just the contribution of Hk−1 matters in (12) and (18). So, after
few hundreds terms, the problem of obtaining L(k) reduces to being able to evaluate Hk−1. We
also remark that the computation of the needed first hundreds values of ζ(k) and ζ ′(k) can be
performed, for instance, using PARI/GP.

Another nice aspect we have in (12) and (18) is that the powers (1 − x)k can be computed by
recurrence, starting from (1 − x)2 and 1 − x, respectively. The same clearly holds for equations
(14) and (20) too.

All these remarks also reveal that the tasks of evaluating S(x) and T(x) are essentially as
difficult as evaluating (log x)2 and (log x)/x, when x is close to 0.
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5.3. Reflection formulae for S(x). As mentioned in Section 4.1 and extensively explained in
Section 4 of [17], the use of the FFT algorithm is important to efficiently computeGq,G+q and
Mq. In particular, using S(x), a decimation in frequency strategy can be implemented and hence
it is important to have the following reflection formulae for S.
We directly express such formulae using Theorem 1 and Corollary 1, or Corollary 2, even if

similar ones which use (2) and (5) are also available (such formulae were in fact used in [17],
see Section 4.2 there).

Proposition 1. Let x ∈ (0, 1), x , 1/2, n ∈ N, n ≥ 2, r1(x, n) = d (n+2) log 2+| log(1−x)|
| log x | − 1e/2 and

r2(x, n) = d (n+2) log 2+| log x |
| log(1−x)| − 1e/2. Using (31) and the notations of Theorem 1 and Corollary 2,

we have that there exists θ = θ(x) such that

S(x) + S(1 − x) = (log x)2 + 2
r1∑̀
=1

L(2`)
`

x2` + |θ |2−n,
(
0 < x <

1
2
)
, (42)

and

S(x) + S(1 − x) = (log(1 − x))2 + 2
r2∑̀
=1

L(2`)
`
(1 − x)2` + |θ |2−n,

(1
2
< x < 1

)
. (43)

Proof. Assume that 0 < x < 1/2; in this case we compute S(x) with (13) and S(1 − x) with (10).
Since the series absolutely converge, their sum is the series having as summands the sum of
their coefficients. Arguing as in (33), remarking that r1(x, n) = rS(1 − x, n)/2 = r′S(x, n)/2 and
recalling (31), we immediately have that (42) holds since the odd summands vanish. Assume
that 1/2 < x < 1; in this case we compute S(x) with (10) and S(1 − x) with (13). Arguing
as for x ∈ (0, 1/2), remarking that r2(x, n) = rS(x, n)/2 = r′S(1 − x, n)/2 and recalling (31), we
immediately have that (43) holds since the odd summands vanish. This completes the proof. �
The corresponding series for (42)-(43) are

S(x) + S(1 − x) = (log x)2 + 2
+∞∑̀
=1

L(2`)
`

x2` (
0 < x <

1
2
)
, (44)

S(x) + S(1 − x) = (log(1 − x))2 + 2
+∞∑̀
=1

L(2`)
`
(1 − x)2`

(1
2
< x < 1

)
. (45)

We remark that in Proposition 1 we have r2(x, n) = r1(1 − x, n) for x ∈ (0, 1) and hence the
right hand side of (43) can be obtained from the the right hand side of (42) just replacing
any occurrence of x with 1 − x and viceversa. Analogous formulae, involving just the odd
summands, can also be obtained for S(x) − S(1 − x) but we omit them since they have no use in
the applications here considered.

The use of Proposition 1 in our application is four times faster than using (18) and (19) for the
following reasons:
• exploiting the decimation in frequency strategy we just need to evaluate (42)-(43) at x = a/q,
for every a = 1, . . . , (q−1)/2, while (18) and (19) need to be evaluated for every a = 1, . . . , q−1.
This improves the computational cost of a factor 2;
• the cancellation of the odd terms we have in (42)-(43) leads to another gain of a factor 2 in
the computational cost with respect to (18) and (19) since we just need to use half of the
summands (the ones with even indices);
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• in (42)-(43) the values of the Riemann ζ-function at even integers are required and for
them we can use the well-known exact formulae involving the Bernoulli numbers Bk :
ζ(2`) = (−1)`+1 B2`(2π)2`

2(2`)! , for every ` ∈ N, ` ≥ 1, where the Bernoulli numbers Bk are defined
using the following series expansion: t

et−1 =
∑+∞

k=0 Bk
tk
k! , |t | < 2π, see, e.g., Cohen’s book [2,

chapter 9].
As we said before, the use of Proposition 1, if possible, is particularly efficient. To compare
the practical running times of using (42)-(43) with previous implementations, which used the
series/integral definitions of S(x), see (2) and (5), we compared the two PARI/GP scripts used
to obtain S(a/q) + S(1 − a/q) for every a = 1, . . . , (q − 1)/2 when q = 305741, 6766811,
212634221. The gain in speed is huge, and it seems to improve as q becomes larger: we observed
that the use of (42)-(43) leads to a computation time for S(a/q)+ S(1− a/q) (with a precision of
128 bits) for every a = 1, . . . , (q − 1)/2 which is respectively about 405, 829, 1206 times faster
for the three primes mentioned before.

Further practical experiments confirmed such a computational time gain; we will see more on
this in the next subsections.

5.4. Computational costs for the problems of Section 4. The applications described in Section
4 require to evaluate (12) over x = a/q, a = 1, . . . , q − 1. Using the estimates in subsection 5.1
we have rS(x, n), r′S(x, n) ≤ n + 2 for every x ∈ (1/2, 1) and, respectively, x ∈ (0, 1/2). Hence the
total cost of evaluating (12) over x = a/q, for every a = 1, . . . , q − 1, is O(qn) floating point
products, with a precision of n binary digits, and O(q) evaluation of the logarithm function at
rational points less than 1/2. Since the remaining part of the computations in our applications
are three Fourier Transforms of length ≤ q − 1, see [17, Table 1], having a cost of O(q log q)
floating point products each, this proves that the total computational cost of our applications is
O(q(n + log q)) floating point products, with a precision of n binary digits. In practice, since in
such applications we can use a decimation in frequency strategy, Proposition 1 let us directly
evaluate S(a/q) + S(1 − a/q) for every a = 1, . . . , (q − 1)/2 thus reducing of a factor at least 4
the cost of such a step. A similar asymptotic estimate O(q(n + log q)) holds also using (18) in
the applications but in this case we cannot use the decimation in frequency strategy, see again
[17]; hence in practice such an algorithm has a total cost which is about four times larger than
the one which uses the S-function. Anyway, we will need such a T-function implementation to
double check particularly important results, for example the ones about the negativity of the
Euler-Kronecker constantGq.

5.5. Actual implementation of the S andT formulae. Using the C programming language, we
implemented the formulae of Proposition 1 since they are the ones needed for the applications of
Section 4. The summation is performed combining the “pairwise summation” [9] algorithm with
Kahan’s [14] method (the minimal block for the pairwise summation algorithm is summed using
Kahan’s method) to have a good compromise between precision, computational cost and execution
speed. To write here a practical computation time, we remark that for q = 50 040 955 631 such
an implementation computed S(a/q)+ S(1− a/q) for every a = 1, . . . , (q− 1)/2 with a precision
of 128 bits in about nine hours using a single computing core of an HP machine equipped
with 4 x Eight-Core Intel(R) Xeon(R) CPU E5-4640 0 @ 2.40GHz, and 256GB of RAM. For
comparison, in this case the expected running time of the implementation used in [17] would be
about 3475 days on the same machine mentioned before (about 9350 times slower).
Clearly this huge improvement let us evaluate the quantities described in Section 4 for some

really large prime numbers and also to extend their knowledge for every odd prime up to 107.
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Moreover, to be able to double check the results obtained with the S-function, we analogously
implemented the formulae of Corollary 4.

5.6. FFT implementation and computational results. To implement the FFT method we
used the FFTW [7] package which is also able to handle very large cases via its guru64 interface.
Moreover, to be able to store the large arrays of data we produce to initialise the input sequences
involved in the FFT and their outputs, we used the mmap UNIX system call to map such arrays on
the hard disk instead of storing them on theRAMduring the execution of the C-programs. Thuswe
were able to enlarge the range of possible computations we can perform far beyond the size of the
available RAMmemory. But that was not enough to handle a large case we would like to evaluate:
q = 50 040 955 631 = 2 · 5 · 5 004 095 563 + 1. We have chosen this prime number because its
evaluation using the function v(q), defined in the next paragraph, see (47), is “large” enough to
let us think that it might be a good canditate to haveGq < 0 (v(50040955631) = 1.2194 . . . );
please see the next paragraph for more about v(q) and its link with the negativity of Gq.
Moreover, analysing the prime factor structure of the known examples for whichGq is negative,
namely q = 964477901, 9109334831, 9854964401, see [6] and [17], we see that such primes
q have all a “large” prime in the factorisation of q − 1: 964 477 901 = 2 · 5 · 9 644 779 + 1,
9 109 334 831 = 2 · 5 · 910 933 483 + 1, 9 854 964 401 = 24 · 52 · 197 · 125 063 + 1. These two
motivations are hence a strong suggestion about the negativity ofG50040955631, even if they are
not sufficient to be certain of this.

The presence of a “large” prime factor in the factorisation of q−1 leads in fact to another problem
in using the so-called plan-generation step of the FFTW package. The plan-generation
step of FFTW is a procedure in which FFTW self-decides how to combine several FFT algorithms
to obtain their best combination to solve the particular instance of the problem the user is interested
in. This procedure also depends on the prime factorisation of the length of the transform N: in
our case N = q − 1, or N = (q − 1)/2. When N has at least one “large” prime factor, as in our
case, the plan-generation step might be very demanding in term of memory usage (RAM). To
overcome this, we have then to insert the use of mmap in the body of the FFTW code to be able to
divert the memory usage of the plan-generation step from the RAM to the hard disk. Clearly
this increases the actual computation time but, at the same time, let us handle much larger cases,
since, essentially, it is much easier, and cheaper, to retrieve large hard disks than a large quantity
of RAM.

In this way we obtained a program that needed at most 128GB of RAM at runtime and we used
it to perform the computation for the case of q = 50 040 955 631 on the University of Padova
Strategic Research Infrastructure “CAPRI” (Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz,
with 256 cores and equipped with 6TB of RAM). The total hard disk usage was about 3.2TB,
the time needed for one computing core to generate the S-values with a precision of 128 bits
was about six hours and 6 minutes, the plan-generation step required about four hours and 5
minutes and the actual FFT transforms about 2 days and half (for S). The total computation time
was about two weeks; we recall that such computation times are affected, as above remarked,
from the fact that we were using a slower memory device (the hard disk is used instead of RAM).
We got thatG50040955631 = −0.16595399 . . . andG+50040955631 = 13.89764738 . . . thus getting
another occurrence of a negative Euler-Kronecker constant.

The computation ofGq,G
+
q and Mq for every odd prime q up to 107 was performed on CAPRI

using at most 60 computing nodes and it required about 48 hours of time (the global execution
time, obtained by summing the declared computing time on each node, was of 101 days and 6
hours).
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In this range we obtained that there are no negative values for bothGq andG+q and that
17
20

log log q < Mq <
5
4

log log q (46)

for every odd prime 1531 < q ≤ 107. Moreover the lower bound in (46) holds true for q > 13.
The programs used and the results here described are collected at the following address

http://www.math.unipd.it/~languasc/Scomp-appl.html.

6. Figures

We give here some comments about Figures 1-5 and discuss the role of the v(q)-function.
Referring to Section 4.5 of [17], we recall the definition of B, the “greedy sequence of prime

offsets”, http://oeis.org/A135311. We define B using induction, by b(1) = 0 ∈ B and
b(n) ∈ B if it is the smallest integer exceeding b(n − 1) such that for every prime r the set
{b(i) mod r : 1 ≤ i ≤ n} has at most r − 1 elements. Let now

m(A) :=
s∑

i=1

1
ai
,

where A is an admissible set, i.e., A= {a1, . . . , as}, ai ∈ N, ai ≥ 1, such that does not exist a
prime p such that p | n ∏s

i=1(ain+ 1) for every n ≥ 1. Thanks to Theorem 2 of Moree [20], if the
prime k-tuples conjecture holds and if A is an admissible set, thenGq < (2−m(A)+ o (1)) log q
for � x/(log x)−|A|−1 primes q ≤ x. Moreover, by Theorem 6 of Moree [20], assuming
both the Elliott-Halberstam and the prime k-tuples conjectures, if A is an admissible set then
Gq = (1 − m(A) + o (1)) log q for � x/(log x)−|A|−1 primes q ≤ x. We recall that the greedy
sequence of prime offsetsBhas the property that any finite subsequence is an admissible set. With
a PARI/GP script we computed the first 2089 elements of B since for C := {b(2), . . . , b(2089)}
we get m(C) > 2.

So, if we are looking for negative values ofGq, it seems to be a good criterion to evaluateGq
for a prime number q such that bq + 1 is prime for many elements b ∈ C (clearly it is better to
start with the smaller available b’s). To be able to measure this fact, we define

v(q) :=
∑

2≤i≤2089; b(i)∈C
b(i)q+1 is prime

1
b(i) (47)

and we use such a function to classifyGq andG+q in the following way. In the scatter plots of
Figures 1-2 we classified the normalised values ofGq andG+q according to v(q). Orange points
are the more frequent ones (72.88% of the total number) and satisfy v(q) ≤ 0.25; green points
satisfy 0.25 < v(q) ≤ 0.5 (18.29%); blue points satisfy 0.5 < v(q) ≤ 0.75 (5.98%); black points
satisfy 0.75 < v(q) ≤ 1 (2.77%); red points satisfy v(q) > 1 (0.08%). The behaviour ofGq is
the expected one since the red strip essentially corresponds with its minimal values, while the
minima ofG+q seem to be less related to v(q); we plan to investigate this phenomenon in the next
future.

In Figures 3-5 we present the scatter plots on Mq and M′q := Mq/log log q. All the plots were
obtained using GNUPLOT, v.5.2, patchlevel 8.

http://www.math.unipd.it/~languasc/Scomp-appl.html
http://oeis.org/A135311


16 ALESSANDRO LANGUASCO AND LUCA RIGHI

Gq/log q with v(q) ≤ 0.25 Gq/log q with 0.25 < v(q) ≤ 0.5

Gq/log q with 0.5 < v(q) ≤ 0.75 Gq/log q with 0.75 < v(q) ≤ 1

Gq/log q with v(q) > 1 Gq/log q

Figure 1. The values ofGq/log q, q prime, 3 ≤ q ≤ 107, classified using v(q). The
minimal value is 0.060532 . . . and it is attained at q = 4178771; the maximal value is
1.626934 . . . and it is attained at q = 19.
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G+q/log q with v(q) ≤ 0.25 G+q/log q with 0.25 < v(q) ≤ 0.5

G+q/log q with 0.5 < v(q) ≤ 0.75 G+q/log q with 0.75 < v(q) ≤ 1

G+q/log q with v(q) > 1 G+q/log q

Figure 2. The values ofG+q/log q, q prime, 3 ≤ q ≤ 107, classified using v(q). The
minimal value is 0.436031 . . . and it is attained at q = 5483977; the maximal value is
1.426263 . . . and it is attained at q = 2053.
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Mq , 3 ≤ q ≤ 2000

Figure 3. The values of Mq, q prime, 2000 < q ≤ 107. The minimal value is
0.3682816 . . . and it is attained at q = 3. The lines represent the functions c · log log q,
with c = 17/20 and c = 5/4.

Mq , 2000 < q ≤ 107

Figure 4. The values of Mq, q prime, 2000 < q ≤ 107. The maximal value is
3.2466918 . . . and it is attained at q = 8430391. The lines represent the functions
c · log log q, with c = 17/20 and c = 5/4.
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Mq/log log q

Figure 5. The values of M ′q := Mq/log log q, q prime, 3 ≤ q ≤ 107. The minimal
value is 0.7392305 . . . and it is attained at q = 13; the maximal value is 3.9158971 . . .
and it is attained at q = 3 (not represented in the plot); the maximal value for every
q > 13 is 1.204704 . . . and it is attained at q = 1645093. The lines represent the constant
functions c = 17/20 and c = 5/4.
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