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The Apéry Numbers As a
Stieltjes Moment Sequence

G. A. Edgar
January 20, 2017

The Apéry sequence [2][10, A005259] is

n 2 2
n n+k
W= ()T wonne

k=0
From the reference (or a CAqH) we find that it satisfies the recurrence
(n+1)3A,1 — (34n3 + 5102 + 27n + 5) A, +n®A, 1 =0, (1)

A():l, A1:5

We will show that the sequence (4,) is a Stieltjes moment sequence. In
fact:

Theorem 1. There is ¢ > 0 and a positive Lebesque integrable function ¢ such
that

c
A, :/ " (x) dz
0
forn=0,1,2,---

Definition 2. We say ¢ is the moment density function for (A,).

Notes

I have tried to make the argument as short as possible. This means many asides
and variations have been removed.

Some of the proofs may be done using a computer algebra system (CAS).
I used Maple 2015. These are the sort of thing that—until 1980 or later—would
have been done by paper-and-pencil computation. I have added some of the
Maple as footnotes.

This result arose from a question asked by Alan Sokal. It was posted on the
MathOverflow discussion board [6]. Pietro Majer provided the idea to use the
differential equation.

1 SumTools [Hypergeometric] [Zeilberger] (binomial (n,k) A2*binomial (n+k,k)A2,n,k,En);



Notation 3. We will use these values.

=142~ 24142

c=1=17+12v2 ~ 33.9705
1
—4

co=171=2=31—¢=17-12V2 ~ 0.0294
C

The Differential Equation
We proceed with a discussion of thisE| third-order holonomic Fuchsian ODE:

2?(2? — 3da + D" () + 32(22? — 51z + 1)u ()
+(72?* — 1122 + 1)/ (2) + (z — 5)u(z) = 0. (DE3)

We consider = a complex variable, and sometimes consider solutions in the
complex plane.

Differential equation has four singularities: o0, 0, cg,c. They are all
regular singular points. Series solutions exist adjacent to each of them. From
the Frobenius “series solution” method?| [4, Ch. 5][3, Ch. 3] we may describe
these series solutions:

Proposition 4. The general solution of (DE3|) near the complex singular point
oo has the form

A (i + o(x_1)> + B (loix + o(x_1)> +C ((log;)z + o(x_1)>

as © — 00, for complex constants A, B,C. The general solution of (DE3)) near
the singular point 0 has the form

A(1+0(1)) + B (logz + o(1)) + C ((log z)* + o(1))

as x — 0, for complex constants A, B,C. The general solution of (DE3|) near
the singular point cy has the form

240 + 169v/2
A(l—lgfw—co)w(x—cm%)

+ B (2 = )"/ + Ol = o)) + C ((z = co) + Ol = o)

as x — ¢, for complex constants A, B,C. The general solution of (DE3)) near
the singular point ¢ has the form

240 — 169v/2
A (1 — T(x —c)+O(|r — C|2)>

2 DE3:=xA2*% (xA2-34*x+1) *diff (u(x) ,x$3) +3*x* (2¥xA2-51*x+1) * (diff (u(x) ,x$2))
+(7#xA2-112%x+1) *diff (u(x) ,x)+(x-5) *u(x) ;
3 dsolve(DE3,u(x),series,x=c);



+B (&= )2+ 0z = f*/)) +C ((w = &) + Olla — )

as x — ¢, for complex constants A, B, C.

Corollary 5. If u(z) is any solution of (DE3|) on (0,c0) or on (co,c), then
u(z) has at worst logarithmic singularities. So u(x) is (absolutely, Legesque)
integrable.

Notation 6. Four particular solutions of will be named for use here:

e Solution us(z) = 1/z + o(z™!) as  — oo, defined in the complex plane cut
on the real axis interval [0, c].

e Solution ug(z) =1+ o(1) as x — 07, defined for 0 < z < cp.

e Solution vg(z) = logx + o(1) as x — 07, defined for 0 < z < ¢q.

e Solution vy(z) = (¢ — 2)Y/2 + O(|z — ¢[3/?) as x — ¢, defined for ¢y < = < c.

Proposition 7. The Maclaurin series for ug(x) is the generating function for
the Apéry sequence:

ug(z) = Z A,z”, || < ¢p.

Proof. This may be checked by your CAS. The recurrence (L|f* converted to a
differential equation]] yields (DE3). Of course the radius of convergence extends
to the nearest singularity at cg. O

Corollary 8. ug(z) >0 for 0 <z < cp.
Determining the signs of vy and vy will be more difficult.

Proposition 9. The Laurent coefficients for us(z) are the Apéry numbers:

> A7l
uoo(z)zzan, |z| > c.

n=0

Proof. Check that if u(x) is a solution of (DE3)), then w(z) = u(1/z)/z is also
a solution of (DE3|). Matching the boundary conditions, we get

1 1
Uoo(2) = ~Uo <2) .
Apply Prop. [7} U

Note: In general, for other similar sequences that can be handled in this
same way:

(a) the generating function for the sequence, and

(b) the moment density function for the sequence
satisfy different differential equations.

4 Rec:=(n+1) A3%Q(n+1) - (34*nA3+51*nA2+27*n+5) *Q (n) +nA3*Q (n-1) ;
5 gfun[rectodiffeq] ({Rec,Q(0)=1,Q(1)=5},Q(n),u(x));



0.2

01

Figure 1: us ()

X
0 0.005  0.010 0015 0020 0.025
1.4
-4
1.3
-5
56}
11 &
1.0
0 0.005 0010 0015 0020 0.025 -7
X

Figure 2: ug(z) and vg(x)
120

100
30
60
40

20

5 10 15 20 25 30

x

Figure 3: vo(z)



The Function ¢

Series solution u, of is meromorphic and single-valued near co. It con-
tinues analytically to the complex plane with a cut on the interval [0, c] of the
real axis. We will still use the notation u, for that continuation. Since the
Laurent coefficients are all real, we have

Uoo (Z) = Uoo(2) (2)

near oo, and therefore on the whole domain. In particular, u(z) is real for z
on the real axis (except the cut, of course). Define upper and lower values on
thecut 0 <z < ¢

0 = 1 . 0 = 1 s,
Uoo (@ + 10) 5_1>I£1+uoo(ac—|—25), Uoo (2 — 40) 6_1>%1+u00(x i9)

Then from we have
Uso (T — 10) = uoo(x +90), 0<z<e. (3)

Notation 10.

olx) = %(um(x —i0) — too (z + 0)).

Function us, in the upper half plane extends analytically to a solution in a
neighborhood of (0, ¢p), and similarly us, in the lower half plane. Thus ¢(x)
restricted to (0,¢p) is a solution of 7 since it is a linear combination of
solutions. In the same way, ¢(x) restricted to (co,c) is a solution of (DE3).

See Figure [} an enlargement shows the behavior near the singular point

co- We will see that ¢ has square root asymptotics near the right endpoint ¢
(Prop. and logarithmic asymptotics near the left endpoint 0 (Prop. .
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Figure 4: Moment density function ¢(x)

Proposition 11. The Apéry numbers satisfy Ax, = foc 2F o(z)dr, k=0,1,2,---.



Proof. Fix a nonnegative integer k. For § > 0, let I'; be the contour in the
complex plane at distance ¢ from [0, ¢], as in Figure [5} (Two line segments and
two semicircles; traced counterclockwise.) Now wus, has at worst logarithmic
singularities, so we have this limit:

c
li koo d :/ k ) —10) — 0o 10))dx.
Jim, 1“(Szu (2)dz Om(u (z = i0) — too(z +i0)) dx

On the other hand, z*u.,(2) is analytic on and outside the contour I's, except
at oo where it has an isolated singularity with residue Ay. Therefore

7{ Pu(2) dz = 2miAy.
s

Thus -
Ay :/ x—,(uoo(xin) — Uso(z +10)) da. O
0

"\
pwg

a¥il

Figure 5: Contour I's

What remains to be proved: ¢ is nonnegative on (0,c) (Cor. 27). From
we know that ¢(x) is real on (0, ¢).
Heun General Functions

Some of the basic solutions in Notation [6] may be represented in terms of Heun
functions. The Heun functions are described in [7} [8 [9].



Definition 12. Let complex parameters a, q, «, 3,7, §, € be given satisfying a # 0,
a+pB+1l=~v+0+¢e,6#0,andy#0,—1,-2,---. Deﬁneﬂthe Heun general

function
ala, B S,
Hn<q o 5Z)anz’ @
n=0

where the Maclaurin coeflicients satisfy initial conditions

q
Po = 17 P1r=—
ay
and recurrence
Rnpn+1 - (q + Qn)pn + Pypn—1 =0,

with

Ry =a(n+1)(n+7),
Qn=n(n—1+7)(1+4a)+ad+e),
Po=(n—14a)(n—1+75).

This function satisfies the Heun general differential equation

" Y d € ’ afz —q
- _ =0.
w'(z) + (z + po— + Za)w(z)+ -1 —a) w(z)
(Consult the references, or use your CAS to go from the recurrence to the
differential equation.) This DE has singularities at oo, 0, 1, a; all regular singular
points. Convergence of the series extends to the nearest singularity, so the radius
of convergence in ([4]) is min{1, |a|}.

Proposition 13. Within the radius of convergence:

uo(x)ZHn< Zi 1/?: }gcaj)Q

) = = alle )"/ H( o |32, 32 1_cox).
-Hn(Z; 1/%: 11—003:)

=2 (2 V2 1R))

where

a1 =1— 3 = —576 + 408v2 ~ 0.9991
as = ¢ = 577 + 408v/2 ~ 1153.9991

6 HeunG(a,q,alpha,beta, gamma,delta,z)



1317
@=-— +234v2 ~ 1.676
¢ = 7-—1(1 +co) = —42 + 30V2 ~ 0.4264

q4:%:%+30\/§z84.93

Proof. In each case verify that it satisfies the differential equatimﬂ and bound-
ary propertieﬁ that specify the solution. O

All Coefficients Positive

In some cases we can determine that all Maclaurin coefficients of a Heun general
function
Ho ¢ s z
qlv; 0

are positive. When that is true, then in particular this function will be positive
and increasing and convex on (0,R) where R = min{l,|a|} is the radius of
convergence.

Lemma 14. All Maclaurin coefficients are positive in
Hn( ai | 3/2, 3/2 Z)
q1

3/2; 1
where a; = —576 + 408+/2 and Q= —%‘17 +2344/2.

Proof. Let p, be the Maclaurin coefficients. Then

Rypny1 — ((h + Qn)pn + Pupn—1 =0,
with
R,=ai(n+1)(n+ %)
Qn=n(n+3)(1+a)+a+3)
P, =(n+1)2
Write 1, = p,,/pn—1 and rearrange:

q1+Qn_Pn 1

T .
i R, R,
Recall that |a1| < 1; we expect r,, — 1/a;. We claim: if

1 1
n > 45 and 11— <r, < —,
10n a

7 subs (u(x)=v2,DE3): simplify(%);
8 MultiSeries[series] (v2,x=c,2);



then also )

1— — ~
10(n +1)

Once the claim is proved, all that remains is checking that pg,- -+ , p45 are pos-
itive, and

1
<Tpt1 < —.
ay

1 1 < < !
——<r —.
450 P T g

By induction we conclude that r, > 0 for all n > 45. So p,, with n > 45 is a
product of positive numbers

D45 T46T47748 * = * T'n,

so p, > 0.
Proof of the claim. Since

)_>q1+Qn_

P, 1
r n o2
R, R, r

is an increasing function, we need only check

1— < - —la < —
10(n + 1) R, R, S 4
and
1-— - — — < —
10(n+1) R, Ry 1-1; @
where n > 45. Your CAS can be used for this. O

A warning for the computations. If you do this using 20-digit arithmetic—
as I did at first—you may erroneously conclude that it is false. You may see
negative coefficients. With exact arithmetic, we find that ry5 involves integers
with more than 100 digits. To compare v/2 to a rational number with 100-digit
numerator and denominator, there are two methods: we can square those 100-
digit numbers, or we can use a decimal value of v/2 accurate to more than 100
places. Of course a modern CAS can do either.

Lemma 15. All Maclaurin coefficients are positive in

Hn < “ z) ,
a2

where a1 = —576 + 408v/2 and g = —42 + 304/2.

1, 1
1/2; 1

Proof. The proof is similar to Lemma Let p,, be the coefficients, and r,, =

Dn/Pn—1. Then
q2 + Qn Pn 1

Tn+1 =
R, R, Tn7



with

R, =ai(n+1)(n+3),
Qn = n((n — %)(1 +a1)+ar + %),

P, =n2.

We claim: If

1 1

n>18 and 1l-——<r, < —,

4n al

then also 1
1<, < —.
4(77, + 1) has a1

The remainder of the proof is similar to Lemma O

Proposition 16. vy(z) > 0 for ¢g < x < c.

Proof. By Lemma[14] all Maclaurin coefficients of
Hn( ar | 3/2, 3/2 Z)
q1

3/2; 1
are positive. It has radius of convergence a; = 1 — ¢, so
3/2, 3/2

aq -
Hn(q1 3/2: 1 1 cox>>0

for all  with ¢y < z < ¢. By Lemma [I5] all Maclaurin coefficients of

ai 1 s 1
Hn( g | 1/2; 1 Z)
are positive. Again,
ay 1 s 1 .
Hn<q2 12 11 cox>>0

for all z with ¢g < x < ¢. Also

(x —co)(c—x)/?

C—Cp

is positive on (cg, ¢). The product of three positive factors is ve(x) on (¢, ¢), so
V2 (IE) > 0. O

10



Hypergeometric Function

Some Heun functions can be expressed in terms of hypergeometric o F3 functions
[1, Chap. 2-3]. Here, we will use only one of themﬂ

. 12 > (3n)! 2™
Definition 17. oF} <3, 3’ 1,Z> = Z CIE 37m

n=0

Lemma 18. (a) 2F (3,
we have oF} (%, %; 1;2)

12 !
oF) ( =T 5) 'L D 1 L B
2m 2m

has radius of convergence 1. (b) For0 < z < 1,

—_
W
O ~—

Proof. (a) Ratio test.
(b) All Maclaurin coefficients are positive, and the constant term is 1.
(c) Due to Gauss (or perhaps Goursat?), see [5, Thm. 2.1.3][I1],

r 1 1
o Fy (;,§;1;15) I‘(;))(I{)(g)[log52vw(3)¢(§)] +0(1)

V3
——log
2m

]

3v3log3
27

Here v is Euler’s constant and v is the digamma function. Use [I, Thm. 1.2.7]
to evaluate the digamma of a rational number. O

Lemma 19. Let the degree 1 Taylor polynomial for oF; (%, %;l;z) at zg =
1/(23/27) be o Fy (3,%:1;2) = So + S1- (2 — 20) + o(|z — 20]) as z — zp. Then
33/291/2

So - (351 + \@SQ) = —

Proof. Reference to be supplied? O

To complete the proof of Theorem 1, we do not need the exact value in
Lemma but only that it is positive; which is clear from the fact that all
Maclaurin coefficients of o F} (1 2.1; z) are positive and zg is positive.

373
Notation 20.

(3-30—va?—3ax+1)""

p(x) =

V2 (z+1)
@ (3-3c+va?—3tw+1)"”
xTr) =
He V2 (z+1)
234+ 3022 — 24z + 1 — (22 = Tx + 1)V22 — 34z + 1
Az) = 3
2(x +1)

9hypergeom([1/3,2/31,[1],2)

11



23+ 302% — 24z + 1+ (22 — Tz + 1)vV22 — 34z + 1

Aa() = 20z + 1)

(See Figures [6] and [7] )
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Figure 6: p (bottom) and ps (top)
Lemma 21. For 0 < z < ¢, we have pu(x) > 1, po(z) > 1, 0 < AMx) < 1, and
0< )\2($) < 1.
Proof. Elementary inequalities. O

Lemma 22. Asz — 07,

/JQ(.Z‘) 2F1 (1, g 1)\2(1‘)) = ;g IOgCL‘ +0(1).

The second one indeed has constant term zero.

Proof. Compute (as z — 0 and = — 0):
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L2 ] 2
w(z) oFy <3, 3,1,)\(x)> =1+ 2x—|—0(m )

For the second one, we apply Lemma [18(c). As  — 0:

pa(w) = V2= =2+ 0(a*)

Ao(z) =1 =27z + O(x?)

1 2 I
o F < 1 /\2(33)) = —g log(27z) + % +o(1)

373’
= fg—j(log 27 + logz) + 3@# +o(1)
= —\;—Elog:ﬂ—l—o(l)
wa ()2 Fy (;, ;; 1;A2($)> = _\/\/;w logz + o(1) O

Proposition 23.

@) = w5 (5. 21w
(e) = =z of (3,500 ) o (. 51000,

1 /1)\? 12 1\)?
Uoo(z)zﬂ<z> 2 F1 <3’3;1;)\<z>> .

13



Proof. Note: pu(x)pz(z) = v/2/(x + 1). Verify that these expressions satisfy
(DE3) as usual. Then verify the asymptotics using Lemma O

How were these formulas found? The first one is from Mark van Hoeij [10]
A005259]; T do not know how he found it. But then it is natural to try the other
square root, since that will still satisfy the same differential equation.

Proposition 24. vy(z) <0 for 0 <z < ¢y.

Proof. For 0 < x < ¢o: By Lcmma 0 < A(z) < 1, so by Lemma [I§[b),
O

2F1 (3, 2;1;M(2)) > 0. Similarly, 2F (5, 3;1;X2(2)) > 0.

The Two Endpoints
Proposition 25. On interval (co,c) we have exactly o(x) = vo(x)/(25/47472).

Proof. We examine the solution us(z) of (DE3) on the interval (c,+o00). As
§ — 07, the Frobenius series solution shows that

Uso(c+8) = A+ BVS + C6 + 0(6%?) (5)

for some real constants A, B, C'; we will have to evaluate the constant B below.
Following around the point ¢ by a half-turn in either direction, we get

Uoo (¢ — & —i0) = A+ B(—i)Vs — C6 + O(6%/?)
Uso (€ — 0 +i0) = A+ Biv/s — C5 + O(6%/?)
plc—19) = %(uo@(c— 6 —10) — uso(c — 0 +10))

0A — 2BiV6 + 006
= . +
271

0(53/2)
= ;—B\/ﬁ 0(8%/?).

Therefore p(x) = (—B/m)va(x) on (¢, ¢).
On interval (¢, +00), we have

2 2
1 1 12 1
) = - — Fil=-, =1L\ — .
Argument A(1/z) stays inside the unit disk, so no analytic continuation is re-

quired. Now A(co) = Aa(co) = 1/(2%/%7), called zp in Lemma Let Sp, S1
also be as in Lemma [19] As ¢ — 0F,

1 1
c+5_ﬁ+0(5)

1 T 1
“<c+6> T ol/4312 4-3-7\/5+O(5)

14



)\< ! )— ! V3 Vi +0(5)

c+9 23/27  29/472

oF) (1 2 (;)) = S0 — ﬁsﬁ/h 0(5)

373 +9 29/472
_ S5 Su(3S1+v28)
um@+6y_3¢%2— iz Vi +0(6)
S 1
= — J+ 0(9).
3v/2r2 25/4747T\[+ ©)

So we get B = —1/(2%/47%7). O
Proposition 26. On interval (0,cy) we have exactly p(x) = —6vg(x)/72.

Proof. We examine the solution u(z) of (DE3|) on the interval (—oo,0). As
§ — 07T, the Frobenius series solution shows that

Uoo(—0) = A+ Blogé + C(log d)* + o(1) (6)

for some real constants A, B, C; we will have to evaluate the constants B and
C below. Following @ around the point 0 by a half-turn in either direction, we
get

Uso (86 — i0) = A+ B(log § + im) + C(log § + im)* + o(1)

Uoo (0 4+ 90) = A+ B(log§ — im) 4+ C(logé — im)? + o(1)

1 . .
p(d) = %(uoo(cS —40) — Uso (0 + ’LO))
2Bi 4Cimlogd
_ m+ .z7r og +o(1)

2me
=B +2Clogd + o(1)

Therefore p(z) = Bug(z) + 2Cvo(x) on (0, cp).
On interval (—o0,0), we have

2 2
1 1 12 1
=—pul—=) 2FA |z, LA — .
oo () 2t (x) 2 <3’37 ’ <$)>
Argument A(1/z) stays inside the unit disk, so this is an easy analytic continu-

ation of us.. As § — 0T,

1 -1
- 1

i (15)2 — 54 0(8?)

A <15> =1-275> + O(6%)

15



So by Lemma [1§{c),

12 1 -3
oF (3,3,1,)\ (—5)) =3 2logéd + o(1)

Uso(—0) = ;—S(log §) +o(1).

Thus we get B =0 and C = —3/72. O

Corollary 27. The moment density ¢ may be written

—6
ﬁvo(x), 0<z<cg,
p(z) =
1

W’UQ(I'), COS%SC.

It is positive on (0,co) U (co, €).

Proof. For 0 < & < ¢g, by Prop. [24] vo(z) < 0. For ¢y < = < ¢, by Prop.

va(x) > 0. O
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