The Apéry Numbers As a Stieltjes Moment Sequence

G. A. Edgar

January 20, 2017

The Apéry sequence [2] [10, A005259] is

$$
A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \quad n=0,1,2, \cdots
$$

From the reference (or a CAS ${ }^{1}$ we find that it satisfies the recurrence

$$
\begin{gather*}
(n+1)^{3} A_{n+1}-\left(34 n^{3}+51 n^{2}+27 n+5\right) A_{n}+n^{3} A_{n-1}=0 \tag{1}\\
A_{0}=1, \quad A_{1}=5
\end{gather*}
$$

We will show that the sequence $\left(A_{n}\right)$ is a Stieltjes moment sequence. In fact:

Theorem 1. There is $c>0$ and a positive Lebesgue integrable function φ such that

$$
A_{n}=\int_{0}^{c} x^{n} \varphi(x) d x
$$

for $n=0,1,2, \cdots$.
Definition 2. We say φ is the moment density function for $\left(A_{n}\right)$.

Notes

I have tried to make the argument as short as possible. This means many asides and variations have been removed.

Some of the proofs may be done using a computer algebra system (CAS). I used Maple 2015. These are the sort of thing that-until 1980 or later-would have been done by paper-and-pencil computation. I have added some of the Maple as footnotes.

This result arose from a question asked by Alan Sokal. It was posted on the MathOverflow discussion board [6]. Pietro Majer provided the idea to use the differential equation.

[^0]Notation 3. We will use these values.

$$
\begin{aligned}
\tau & =1+\sqrt{2} \approx 2.4142 \\
c & =\tau^{4}=17+12 \sqrt{2} \approx 33.9705 \\
c_{0} & =\tau^{-4}=\frac{1}{c}=34-c=17-12 \sqrt{2} \approx 0.0294
\end{aligned}
$$

The Differential Equation

We proceed with a discussion of this \sum^{2} third-order holonomic Fuchsian ODE:

$$
\begin{align*}
x^{2}\left(x^{2}-34 x\right. & +1) u^{\prime \prime \prime}(x)+3 x\left(2 x^{2}-51 x+1\right) u^{\prime \prime}(x) \\
& +\left(7 x^{2}-112 x+1\right) u^{\prime}(x)+(x-5) u(x)=0 \tag{DE3}
\end{align*}
$$

We consider x a complex variable, and sometimes consider solutions in the complex plane.

Differential equation (DE3) has four singularities: $\infty, 0, c_{0}, c$. They are all regular singular points. Series solutions exist adjacent to each of them. From the Frobenius "series solution" methoq ${ }^{3}$ [4, Ch. 5] [3, Ch. 3] we may describe these series solutions:

Proposition 4. The general solution of (DE3) near the complex singular point ∞ has the form

$$
A\left(\frac{1}{x}+o\left(x^{-1}\right)\right)+B\left(\frac{\log x}{x}+o\left(x^{-1}\right)\right)+C\left(\frac{(\log x)^{2}}{x}+o\left(x^{-1}\right)\right)
$$

as $x \rightarrow \infty$, for complex constants A, B, C. The general solution of (DE3) near the singular point 0 has the form

$$
A(1+o(1))+B(\log x+o(1))+C\left((\log x)^{2}+o(1)\right)
$$

as $x \rightarrow 0$, for complex constants A, B, C. The general solution of DE3 near the singular point c_{0} has the form

$$
\begin{aligned}
& A\left(1-\frac{240+169 \sqrt{2}}{48}\left(x-c_{0}\right)+O\left(\left|x-c_{0}\right|^{2}\right)\right) \\
& \quad+B\left(\left(x-c_{0}\right)^{1 / 2}+O\left(\left|x-c_{0}\right|^{3 / 2}\right)\right)+C\left(\left(x-c_{0}\right)+O\left(\left|x-c_{0}\right|^{2}\right)\right)
\end{aligned}
$$

as $x \rightarrow c_{0}$, for complex constants A, B, C. The general solution of DE3 near the singular point c has the form

$$
A\left(1-\frac{240-169 \sqrt{2}}{48}(x-c)+O\left(|x-c|^{2}\right)\right)
$$

[^1]$$
+B\left((x-c)^{1 / 2}+O\left(|x-c|^{3 / 2}\right)\right)+C\left((x-c)+O\left(|x-c|^{2}\right)\right)
$$
as $x \rightarrow c$, for complex constants A, B, C.
Corollary 5. If $u(x)$ is any solution of (DE3) on $\left(0, c_{0}\right)$ or on $\left(c_{0}, c\right)$, then $u(x)$ has at worst logarithmic singularities. So $u(x)$ is (absolutely, Legesgue) integrable.

Notation 6. Four particular solutions of (DE3) will be named for use here:

- Solution $u_{\infty}(x)=1 / x+o\left(x^{-1}\right)$ as $x \rightarrow \infty$, defined in the complex plane cut on the real axis interval $[0, c]$.
- Solution $u_{0}(x)=1+o(1)$ as $x \rightarrow 0^{+}$, defined for $0<x<c_{0}$.
- Solution $v_{0}(x)=\log x+o(1)$ as $x \rightarrow 0^{+}$, defined for $0<x<c_{0}$.
- Solution $v_{2}(x)=(c-x)^{1 / 2}+O\left(|x-c|^{3 / 2}\right)$ as $x \rightarrow c^{-}$, defined for $c_{0}<x<c$.

Proposition 7. The Maclaurin series for $u_{0}(x)$ is the generating function for the Apéry sequence:

$$
u_{0}(x)=\sum_{n=0}^{\infty} A_{n} x^{n}, \quad|x|<c_{0}
$$

Proof. This may be checked by your CAS. The recurrence 1^{4} converted to a differential equation ${ }^{5}$ yields (DE3). Of course the radius of convergence extends to the nearest singularity at c_{0}.

Corollary 8. $u_{0}(x)>0$ for $0<x<c_{0}$.
Determining the signs of v_{0} and v_{2} will be more difficult.
Proposition 9. The Laurent coefficients for $u_{\infty}(z)$ are the Apéry numbers:

$$
u_{\infty}(z)=\sum_{n=0}^{\infty} \frac{A_{n}}{z^{n+1}}, \quad|z|>c
$$

Proof. Check that if $u(x)$ is a solution of (DE3), then $w(z)=u(1 / z) / z$ is also a solution of (DE3). Matching the boundary conditions, we get

$$
u_{\infty}(z)=\frac{1}{z} u_{0}\left(\frac{1}{z}\right) .
$$

Apply Prop. 7.
Note: In general, for other similar sequences that can be handled in this same way:
(a) the generating function for the sequence, and
(b) the moment density function for the sequence satisfy different differential equations.

[^2]

Figure 1: $u_{\infty}(x)$

Figure 2: $u_{0}(x)$ and $v_{0}(x)$

Figure 3: $v_{2}(x)$

The Function φ

Series solution u_{∞} of (DE3) is meromorphic and single-valued near ∞. It continues analytically to the complex plane with a cut on the interval $[0, c]$ of the real axis. We will still use the notation u_{∞} for that continuation. Since the Laurent coefficients are all real, we have

$$
\begin{equation*}
u_{\infty}(\bar{z})=\overline{u_{\infty}(z)} \tag{2}
\end{equation*}
$$

near ∞, and therefore on the whole domain. In particular, $u_{\infty}(z)$ is real for z on the real axis (except the cut, of course). Define upper and lower values on the cut $0<x<c$:

$$
u_{\infty}(x+i 0)=\lim _{\delta \rightarrow 0+} u_{\infty}(x+i \delta), \quad u_{\infty}(x-i 0)=\lim _{\delta \rightarrow 0+} u_{\infty}(x-i \delta)
$$

Then from (2) we have

$$
\begin{equation*}
u_{\infty}(x-i 0)=\overline{u_{\infty}(x+i 0)}, \quad 0<x<c . \tag{3}
\end{equation*}
$$

Notation 10.

$$
\varphi(x)=\frac{1}{2 \pi i}\left(u_{\infty}(x-i 0)-u_{\infty}(x+i 0)\right)
$$

Function u_{∞} in the upper half plane extends analytically to a solution in a neighborhood of $\left(0, c_{0}\right)$, and similarly u_{∞} in the lower half plane. Thus $\varphi(x)$ restricted to $\left(0, c_{0}\right)$ is a solution of (DE3), since it is a linear combination of solutions. In the same way, $\varphi(x)$ restricted to $\left(c_{0}, c\right)$ is a solution of DE3).

See Figure 4 an enlargement shows the behavior near the singular point c_{0}. We will see that φ has square root asymptotics near the right endpoint c (Prop. 25) and logarithmic asymptotics near the left endpoint 0 (Prop. 26).

Figure 4: Moment density function $\varphi(x)$

Proposition 11. The Apéry numbers satisfy $A_{k}=\int_{0}^{c} x^{k} \varphi(x) d x, k=0,1,2, \cdots$.

Proof. Fix a nonnegative integer k. For $\delta>0$, let Γ_{δ} be the contour in the complex plane at distance δ from $[0, c]$, as in Figure 5. (Two line segments and two semicircles; traced counterclockwise.) Now u_{∞} has at worst logarithmic singularities, so we have this limit:

$$
\lim _{\delta \rightarrow 0+} \oint_{\Gamma_{\delta}} z^{k} u_{\infty}(z) d z=\int_{0}^{c} x^{k}\left(u_{\infty}(x-i 0)-u_{\infty}(x+i 0)\right) d x
$$

On the other hand, $z^{k} u_{\infty}(z)$ is analytic on and outside the contour Γ_{δ}, except at ∞ where it has an isolated singularity with residue A_{k}. Therefore

$$
\oint_{\Gamma_{\delta}} z^{k} u_{\infty}(z) d z=2 \pi i A_{k}
$$

Thus

$$
A_{k}=\int_{0}^{c} \frac{x^{k}}{2 \pi i}\left(u_{\infty}(x-i 0)-u_{\infty}(x+i 0)\right) d x
$$

Figure 5: Contour Γ_{δ}

What remains to be proved: φ is nonnegative on $(0, c)$ (Cor. 27). From (3) we know that $\varphi(x)$ is real on $(0, c)$.

Heun General Functions

Some of the basic solutions in Notation 6 may be represented in terms of Heun functions. The Heun functions are described in [7, 8, (9).

Definition 12. Let complex parameters $a, q, \alpha, \beta, \gamma, \delta, \varepsilon$ be given satisfying $a \neq 0$, $\alpha+\beta+1=\gamma+\delta+\varepsilon, \delta \neq 0$, and $\gamma \neq 0,-1,-2, \cdots$. Defins ${ }^{6}$ the Heun general function

$$
\operatorname{Hn}\left(\left.\begin{array}{c|cc|}
a & \alpha, & \beta \tag{4}\\
q & \gamma ; & \delta
\end{array} \right\rvert\, z\right)=\sum_{n=0}^{\infty} p_{n} z^{n}
$$

where the Maclaurin coefficients satisfy initial conditions

$$
p_{0}=1, \quad p_{1}=\frac{q}{a \gamma}
$$

and recurrence

$$
R_{n} p_{n+1}-\left(q+Q_{n}\right) p_{n}+P_{n} p_{n-1}=0
$$

with

$$
\begin{aligned}
R_{n} & =a(n+1)(n+\gamma), \\
Q_{n} & =n((n-1+\gamma)(1+a)+a \delta+\varepsilon), \\
P_{n} & =(n-1+\alpha)(n-1+\beta) .
\end{aligned}
$$

This function satisfies the Heun general differential equation

$$
w^{\prime \prime}(z)+\left(\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\varepsilon}{z-a}\right) w^{\prime}(z)+\frac{\alpha \beta z-q}{z(z-1)(z-a)} w(z)=0
$$

(Consult the references, or use your CAS to go from the recurrence to the differential equation.) This DE has singularities at $\infty, 0,1, a$; all regular singular points. Convergence of the series extends to the nearest singularity, so the radius of convergence in (4) is $\min \{1,|a|\}$.

Proposition 13. Within the radius of convergence:

$$
\begin{aligned}
& u_{0}(x)=\operatorname{Hn}\left(\left.\begin{array}{r|rr|}
a_{2} & 1 / 2, & 1 / 2 \\
q_{4} & 1 ; & 1 / 2
\end{array} \right\rvert\, c x\right)^{2} \\
& v_{2}(x)=\frac{\left(x-c_{0}\right)(c-x)^{1 / 2}}{c-c_{0}} \operatorname{Hn}\left(\begin{array}{l|ll|l}
a_{1} & 3 / 2, & 3 / 2 & 1-c_{0} x \\
q_{1} & 3 / 2 ; & 1 & 1
\end{array}\right) . \\
& \cdot \operatorname{Hn}\left(\begin{array}{r|rr|r}
a_{1} & 1, & 1 & 1-c_{0} x \\
q_{2} & 1 / 2 ; & 1
\end{array}\right) \\
& u_{\infty}(z)=\frac{1}{z} \operatorname{Hn}\left(\begin{array}{r|rr|r}
a_{2} & 1 / 2, & 1 / 2 & \frac{c}{q_{2}} \\
q_{4} & 1 ; & 1 / 2 & \frac{z}{z}
\end{array}\right)^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1}=1-c_{0}^{2}=-576+408 \sqrt{2} \approx 0.9991 \\
& a_{2}=c^{2}=577+408 \sqrt{2} \approx 1153.9991
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& q_{1}=-\frac{1317}{4}+234 \sqrt{2} \approx 1.676 \\
& q_{2}=\tau^{-1}\left(1+c_{0}\right)=-42+30 \sqrt{2} \approx 0.4264 \\
& q_{4}=\frac{5 c}{2}=\frac{85}{2}+30 \sqrt{2} \approx 84.93
\end{aligned}
$$
\]

Proof. In each case verify that it satisfies the differential equation ${ }^{7}$ and boundary properties $\underbrace{8}$ that specify the solution.

All Coefficients Positive

In some cases we can determine that all Maclaurin coefficients of a Heun general function

$$
\operatorname{Hn}\left(\begin{array}{c|cc|c}
a & \alpha, & \beta & z \\
q & \gamma ; & \delta & z
\end{array}\right)
$$

are positive. When that is true, then in particular this function will be positive and increasing and convex on $(0, R)$ where $R=\min \{1,|a|\}$ is the radius of convergence.

Lemma 14. All Maclaurin coefficients are positive in

$$
\operatorname{Hn}\left(\begin{array}{l|ll|l}
a_{1} & 3 / 2, & 3 / 2 & z \\
q_{1} & 3 / 2 ; & 1 & z
\end{array}\right)
$$

where $a_{1}=-576+408 \sqrt{2}$ and $q_{1}=-\frac{1317}{4}+234 \sqrt{2}$.
Proof. Let p_{n} be the Maclaurin coefficients. Then

$$
R_{n} p_{n+1}-\left(q_{1}+Q_{n}\right) p_{n}+P_{n} p_{n-1}=0
$$

with

$$
\begin{aligned}
R_{n} & =a_{1}(n+1)\left(n+\frac{3}{2}\right) \\
Q_{n} & =n\left(\left(n+\frac{1}{2}\right)\left(1+a_{1}\right)+a_{1}+\frac{3}{2}\right) \\
P_{n} & =\left(n+\frac{1}{2}\right)^{2} .
\end{aligned}
$$

Write $r_{n}=p_{n} / p_{n-1}$ and rearrange:

$$
r_{n+1}=\frac{q_{1}+Q_{n}}{R_{n}}-\frac{P_{n}}{R_{n}} \frac{1}{r_{n}}
$$

Recall that $\left|a_{1}\right|<1$; we expect $r_{n} \rightarrow 1 / a_{1}$. We claim: if

$$
n \geq 45 \quad \text { and } \quad 1-\frac{1}{10 n}<r_{n}<\frac{1}{a_{1}}
$$

[^4]then also
$$
1-\frac{1}{10(n+1)}<r_{n+1}<\frac{1}{a_{1}}
$$

Once the claim is proved, all that remains is checking that p_{0}, \cdots, p_{45} are positive, and

$$
1-\frac{1}{450}<r_{45}<\frac{1}{a_{1}}
$$

By induction we conclude that $r_{n}>0$ for all $n \geq 45$. So p_{n} with $n>45$ is a product of positive numbers

$$
p_{45} r_{46} r_{47} r_{48} \cdots r_{n}
$$

so $p_{n}>0$.
Proof of the claim. Since

$$
r \mapsto \frac{q_{1}+Q_{n}}{R_{n}}-\frac{P_{n}}{R_{n}} \frac{1}{r}
$$

is an increasing function, we need only check

$$
1-\frac{1}{10(n+1)}<\frac{q_{1}+Q_{n}}{R_{n}}-\frac{P_{n}}{R_{n}} a_{1}<\frac{1}{a_{1}}
$$

and

$$
1-\frac{1}{10(n+1)}<\frac{q_{1}+Q_{n}}{R_{n}}-\frac{P_{n}}{R_{n}} \frac{1}{1-\frac{1}{10 n}}<\frac{1}{a_{1}}
$$

where $n \geq 45$. Your CAS can be used for this.
A warning for the computations. If you do this using 20-digit arithmeticas I did at first-you may erroneously conclude that it is false. You may see negative coefficients. With exact arithmetic, we find that r_{45} involves integers with more than 100 digits. To compare $\sqrt{2}$ to a rational number with 100-digit numerator and denominator, there are two methods: we can square those 100digit numbers, or we can use a decimal value of $\sqrt{2}$ accurate to more than 100 places. Of course a modern CAS can do either.

Lemma 15. All Maclaurin coefficients are positive in

$$
\operatorname{Hn}\left(\begin{array}{r|rr|r}
a_{1} & 1, & 1 & z \\
q_{2} & 1 / 2 ; & 1 & z
\end{array}\right)
$$

where $a_{1}=-576+408 \sqrt{2}$ and $q_{2}=-42+30 \sqrt{2}$.
Proof. The proof is similar to Lemma 14. Let p_{n} be the coefficients, and $r_{n}=$ p_{n} / p_{n-1}. Then

$$
r_{n+1}=\frac{q_{2}+Q_{n}}{R_{n}}-\frac{P_{n}}{R_{n}} \frac{1}{r_{n}},
$$

with

$$
\begin{aligned}
R_{n} & =a_{1}(n+1)\left(n+\frac{1}{2}\right) \\
Q_{n} & =n\left(\left(n-\frac{1}{2}\right)\left(1+a_{1}\right)+a_{1}+\frac{3}{2}\right) \\
P_{n} & =n^{2}
\end{aligned}
$$

We claim: If

$$
n \geq 18 \quad \text { and } \quad 1-\frac{1}{4 n}<r_{n}<\frac{1}{a_{1}}
$$

then also

$$
1-\frac{1}{4(n+1)}<r_{n+1}<\frac{1}{a_{1}}
$$

The remainder of the proof is similar to Lemma 14.
Proposition 16. $v_{2}(x)>0$ for $c_{0}<x<c$.
Proof. By Lemma 14, all Maclaurin coefficients of

$$
\operatorname{Hn}\left(\begin{array}{c|ll|l}
a_{1} & 3 / 2, & 3 / 2 & z \\
q_{1} & 3 / 2 ; & 1 & z
\end{array}\right)
$$

are positive. It has radius of convergence $a_{1}=1-c_{0}^{2}$, so

$$
\operatorname{Hn}\left(\begin{array}{l|ll|l}
a_{1} & 3 / 2, & 3 / 2 & 1-c_{0} x \\
q_{1} & 3 / 2 ; & 1 & 1
\end{array}\right)>0
$$

for all x with $c_{0}<x<c$. By Lemma 15, all Maclaurin coefficients of

$$
\operatorname{Hn}\left(\begin{array}{r|rr|}
a_{1} & 1, & 1 \\
q_{2} & 1 / 2 ; & 1
\end{array}\right)
$$

are positive. Again,

$$
\operatorname{Hn}\left(\left.\begin{array}{r|rr|}
a_{1} & 1, & 1 \\
q_{2} & 1 / 2 ; & 1
\end{array} \right\rvert\,-c_{0} x\right)>0
$$

for all x with $c_{0}<x<c$. Also

$$
\frac{\left(x-c_{0}\right)(c-x)^{1 / 2}}{c-c_{0}}
$$

is positive on $\left(c_{0}, c\right)$. The product of three positive factors is $v_{2}(x)$ on $\left(c_{0}, c\right)$, so $v_{2}(x)>0$.

Hypergeometric Function

Some Heun functions can be expressed in terms of hypergeometric ${ }_{2} F_{1}$ functions [1. Chap. 2-3]. Here, we will use only one of them ${ }^{9}$
Definition 17. ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)=\sum_{n=0}^{\infty} \frac{(3 n)!}{(n!)^{3}} \frac{z^{n}}{27^{n}}$
Lemma 18. (a) ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)$ has radius of convergence 1 . (b) For $0<z<1$, we have ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)>1$. (c) As $\delta \rightarrow 0^{+}$,

$$
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-\delta\right)=-\frac{\sqrt{3}}{2 \pi} \log \delta+\frac{3 \sqrt{3} \log 3}{2 \pi}+o(1) .
$$

Proof. (a) Ratio test.
(b) All Maclaurin coefficients are positive, and the constant term is 1.
(c) Due to Gauss (or perhaps Goursat?), see [5, Thm. 2.1.3] [11],

$$
\begin{aligned}
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; 1-\delta\right) & =\frac{\Gamma(1)}{\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)}\left[\log \frac{1}{\delta}-2 \gamma-\psi\left(\frac{1}{3}\right)-\psi\left(\frac{2}{3}\right)\right]+o(1) \\
& =-\frac{\sqrt{3}}{2 \pi} \log \delta+\frac{3 \sqrt{3} \log 3}{2 \pi}+o(1)
\end{aligned}
$$

Here γ is Euler's constant and ψ is the digamma function. Use [1, Thm. 1.2.7] to evaluate the digamma of a rational number.

Lemma 19. Let the degree 1 Taylor polynomial for ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)$ at $z_{0}=$ $1 /\left(2^{3 / 2} \tau\right)$ be ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)=S_{0}+S_{1} \cdot\left(z-z_{0}\right)+o\left(\left|z-z_{0}\right|\right)$ as $z \rightarrow z_{0}$. Then

$$
S_{0} \cdot\left(3 S_{1}+\sqrt{2} S_{0}\right)=\frac{3^{3 / 2} 2^{1 / 2}}{\pi}
$$

Proof. Reference to be supplied?
To complete the proof of Theorem 1, we do not need the exact value in Lemma 19 , but only that it is positive; which is clear from the fact that all Maclaurin coefficients of ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right)$ are positive and z_{0} is positive.
Notation 20.

$$
\begin{aligned}
\mu(x) & =\frac{\left(3-3 x-\sqrt{x^{2}-34 x+1}\right)^{1 / 2}}{\sqrt{2}(x+1)} \\
\mu_{2}(x) & =\frac{\left(3-3 x+\sqrt{x^{2}-34 x+1}\right)^{1 / 2}}{\sqrt{2}(x+1)} \\
\lambda(x) & =\frac{x^{3}+30 x^{2}-24 x+1-\left(x^{2}-7 x+1\right) \sqrt{x^{2}-34 x+1}}{2(x+1)^{3}}
\end{aligned}
$$

[^5]$$
\lambda_{2}(x)=\frac{x^{3}+30 x^{2}-24 x+1+\left(x^{2}-7 x+1\right) \sqrt{x^{2}-34 x+1}}{2(x+1)^{3}}
$$
(See Figures 6 and 7.)

Figure 6: μ (bottom) and μ_{2} (top)

Lemma 21. For $0<x<c_{0}$, we have $\mu(x)>1$, $\mu_{2}(x)>1,0<\lambda(x)<1$, and $0<\lambda_{2}(x)<1$.

Proof. Elementary inequalities.
Lemma 22. As $x \rightarrow 0^{+}$,

$$
\begin{aligned}
\mu(x)_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right) & =1+\frac{5}{2} x+O\left(x^{2}\right), \\
\mu_{2}(x){ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda_{2}(x)\right) & =\frac{-\sqrt{3}}{\pi \sqrt{2}} \log x+o(1) .
\end{aligned}
$$

The second one indeed has constant term zero.
Proof. Compute (as $z \rightarrow 0$ and $x \rightarrow 0$):

$$
\begin{aligned}
\mu(x) & =1+\frac{5}{2} x+O\left(x^{2}\right) \\
\lambda(x) & =27 x^{2}+O\left(x^{3}\right) \\
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; z\right) & =1+\frac{2}{9} z+O\left(z^{2}\right) \\
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right) & =1+6 x^{2}+O\left(x^{3}\right)
\end{aligned}
$$

Figure 7: λ (bottom) and λ_{2} (top)

$$
\mu(x){ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right)=1+\frac{5}{2} x+O\left(x^{2}\right)
$$

For the second one, we apply Lemma 18 (c). As $x \rightarrow 0$:

$$
\begin{aligned}
\mu_{2}(x) & =\sqrt{2}-\frac{7}{\sqrt{2}} x+O\left(x^{2}\right) \\
\lambda_{2}(x) & =1-27 x+O\left(x^{2}\right) \\
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda_{2}(x)\right) & =-\frac{\sqrt{3}}{2 \pi} \log (27 x)+\frac{3 \sqrt{3} \log 3}{2 \pi}+o(1) \\
& =-\frac{\sqrt{3}}{2 \pi}(\log 27+\log x)+\frac{3 \sqrt{3} \log 3}{2 \pi}+o(1) \\
& =-\frac{\sqrt{3}}{2 \pi} \log x+o(1) \\
\mu_{2}(x)_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda_{2}(x)\right) & =-\frac{\sqrt{3}}{\sqrt{2} \pi} \log x+o(1)
\end{aligned}
$$

Proposition 23.

$$
\begin{aligned}
& u_{0}(x)=\mu(x)^{2}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right)^{2} \\
& v_{0}(x)=-\frac{2 \pi}{\sqrt{3}(x+1)}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right){ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda_{2}(x)\right), \\
& u_{\infty}(z)=\frac{1}{z} \mu\left(\frac{1}{z}\right)^{2}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda\left(\frac{1}{z}\right)\right)^{2} .
\end{aligned}
$$

Proof. Note: $\mu(x) \mu_{2}(x)=\sqrt{2} /(x+1)$. Verify that these expressions satisfy (DE3) as usual. Then verify the asymptotics using Lemma 22 .

How were these formulas found? The first one is from Mark van Hoeij 10 A005259]; I do not know how he found it. But then it is natural to try the other square root, since that will still satisfy the same differential equation.

Proposition 24. $v_{0}(x)<0$ for $0<x<c_{0}$.
Proof. For $0<x<c_{0}$: By Lemma 21, $0<\lambda(x)<1$, so by Lemma 18(b), ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda(x)\right)>0$. Similarly, ${ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda_{2}(x)\right)>0$.

The Two Endpoints

Proposition 25. On interval $\left(c_{0}, c\right)$ we have exactly $\varphi(x)=v_{2}(x) /\left(2^{5 / 4} \tau^{4} \pi^{2}\right)$.
Proof. We examine the solution $u_{\infty}(x)$ of (DE3) on the interval $(c,+\infty)$. As $\delta \rightarrow 0^{+}$, the Frobenius series solution shows that

$$
\begin{equation*}
u_{\infty}(c+\delta)=A+B \sqrt{\delta}+C \delta+O\left(\delta^{3 / 2}\right) \tag{5}
\end{equation*}
$$

for some real constants A, B, C; we will have to evaluate the constant B below. Following (5) around the point c by a half-turn in either direction, we get

$$
\begin{aligned}
u_{\infty}(c-\delta-i 0) & =A+B(-i) \sqrt{\delta}-C \delta+O\left(\delta^{3 / 2}\right) \\
u_{\infty}(c-\delta+i 0) & =A+B i \sqrt{\delta}-C \delta+O\left(\delta^{3 / 2}\right) \\
\varphi(c-\delta) & =\frac{1}{2 \pi i}\left(u_{\infty}(c-\delta-i 0)-u_{\infty}(c-\delta+i 0)\right) \\
& =\frac{0 A-2 B i \sqrt{\delta}+0 C \delta}{2 \pi i}+O\left(\delta^{3 / 2}\right) \\
& =\frac{-B}{\pi} \sqrt{\delta}+O\left(\delta^{3 / 2}\right)
\end{aligned}
$$

Therefore $\varphi(x)=(-B / \pi) v_{2}(x)$ on $\left(c_{0}, c\right)$.
On interval $(c,+\infty)$, we have

$$
u_{\infty}(x)=\frac{1}{x} \mu\left(\frac{1}{x}\right)_{2}^{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda\left(\frac{1}{x}\right)\right)^{2}
$$

Argument $\lambda(1 / x)$ stays inside the unit disk, so no analytic continuation is required. Now $\lambda\left(c_{0}\right)=\lambda_{2}\left(c_{0}\right)=1 /\left(2^{3 / 2} \tau\right)$, called z_{0} in Lemma 19 Let S_{0}, S_{1} also be as in Lemma 19. As $\delta \rightarrow 0^{+}$,

$$
\begin{aligned}
\frac{1}{c+\delta} & =\frac{1}{\tau^{4}}+O(\delta) \\
\mu\left(\frac{1}{c+\delta}\right) & =\frac{\tau}{2^{1 / 4} 3^{1 / 2}}-\frac{1}{4 \cdot 3 \cdot \tau} \sqrt{\delta}+O(\delta)
\end{aligned}
$$

$$
\begin{aligned}
\lambda\left(\frac{1}{c+\delta}\right) & =\frac{1}{2^{3 / 2} \tau}-\frac{\sqrt{3}}{2^{9 / 4} \tau^{2}} \sqrt{\delta}+O(\delta) \\
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda\left(\frac{1}{c+\delta}\right)\right) & =S_{0}-\frac{\sqrt{3}}{2^{9 / 4} \tau^{2}} S_{1} \sqrt{\delta}+O(\delta) \\
u_{\infty}(c+\delta) & =\frac{S_{0}^{2}}{3 \sqrt{2} \tau^{2}}-\frac{S_{0}\left(3 S_{1}+\sqrt{2} S_{0}\right)}{2^{7 / 4} 3^{3 / 2} \tau^{4}} \sqrt{\delta}+O(\delta) \\
& =\frac{S_{0}^{2}}{3 \sqrt{2} \tau^{2}}-\frac{1}{2^{5 / 4} \tau^{4} \pi} \sqrt{\delta}+O(\delta)
\end{aligned}
$$

So we get $B=-1 /\left(2^{5 / 4} \tau^{4} \pi\right)$.
Proposition 26. On interval $\left(0, c_{0}\right)$ we have exactly $\varphi(x)=-6 v_{0}(x) / \pi^{2}$.
Proof. We examine the solution $u_{\infty}(x)$ of (DE3) on the interval $(-\infty, 0)$. As $\delta \rightarrow 0^{+}$, the Frobenius series solution shows that

$$
\begin{equation*}
u_{\infty}(-\delta)=A+B \log \delta+C(\log \delta)^{2}+o(1) \tag{6}
\end{equation*}
$$

for some real constants A, B, C; we will have to evaluate the constants B and C below. Following (6) around the point 0 by a half-turn in either direction, we get

$$
\begin{aligned}
u_{\infty}(\delta-i 0) & =A+B(\log \delta+i \pi)+C(\log \delta+i \pi)^{2}+o(1) \\
u_{\infty}(\delta+i 0) & =A+B(\log \delta-i \pi)+C(\log \delta-i \pi)^{2}+o(1) \\
\varphi(\delta) & =\frac{1}{2 \pi i}\left(u_{\infty}(\delta-i 0)-u_{\infty}(\delta+i 0)\right) \\
& =\frac{2 B i \pi+4 C i \pi \log \delta}{2 \pi i}+o(1) \\
& =B+2 C \log \delta+o(1)
\end{aligned}
$$

Therefore $\varphi(x)=B u_{0}(x)+2 C v_{0}(x)$ on $\left(0, c_{0}\right)$.
On interval $(-\infty, 0)$, we have

$$
u_{\infty}(x)=\frac{1}{x} \mu\left(\frac{1}{x}\right)^{2}{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda\left(\frac{1}{x}\right)\right)^{2}
$$

Argument $\lambda(1 / x)$ stays inside the unit disk, so this is an easy analytic continuation of u_{∞}. As $\delta \rightarrow 0^{+}$,

$$
\begin{aligned}
\frac{1}{-\delta} & =\frac{-1}{\delta}+O(1) \\
\mu\left(\frac{1}{-\delta}\right)^{2} & =\delta+O\left(\delta^{2}\right) \\
\lambda\left(\frac{1}{-\delta}\right) & =1-27 \delta^{2}+O\left(\delta^{3}\right)
\end{aligned}
$$

So by Lemma 18 (c),

$$
\begin{aligned}
{ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; 1 ; \lambda\left(\frac{1}{-\delta}\right)\right) & =\frac{-\sqrt{3}}{2 \pi} 2 \log \delta+o(1) \\
u_{\infty}(-\delta) & =\frac{-3}{\pi^{2}}(\log \delta)^{2}+o(1)
\end{aligned}
$$

Thus we get $B=0$ and $C=-3 / \pi^{2}$.
Corollary 27. The moment density φ may be written

$$
\varphi(x)= \begin{cases}\frac{-6}{\pi^{2}} v_{0}(x), & 0<x<c_{0} \\ \frac{1}{2^{5 / 4} \tau^{4} \pi^{2}} v_{2}(x), & c_{0} \leq x \leq c\end{cases}
$$

It is positive on $\left(0, c_{0}\right) \cup\left(c_{0}, c\right)$.
Proof. For $0<x<c_{0}$, by Prop. $24 v_{0}(x)<0$. For $c_{0}<x<c$, by Prop. 16 $v_{2}(x)>0$.

References

[1] G. Andrews, R. Askey, R. Roy, Special Functions. (Cambridge University Press, 1999)
[2] R. Apéry, "Irrationalité de $\zeta(2)$ et $\zeta(3)$ " Astérisque 61 (1979) 11-13.
[3] G. Birkhoff, G.-C. Rota, Ordinary Differential Equations, Second Edition. (Blaisdell, 1969)
[4] W. E. Boyce \& R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, Fifth Edition. (Wiley, 1992)
[5] Y. L. Luke, The Special Functions and Their Approximations, vol. I. (Academic Press, 1969)
[6] P. Majer, "Is the sequence of Apéry numbers a Stieltjes moment sequence?" MathOverflow, http://mathoverflow.net/a/179805/454
[7] A. Ronveaux (Editor), Heun's Differential Equations (Oxford University Press, 1995)
[8] B. D. Sleeman \& V. B. Kuznetsov, Digital Library of Mathematical Functions. Chapter 31, Heun Functions. http://dlmf.nist.gov/31
[9] R. Vidunas \& G. Filipuk, "Parametric transformations between the Heun and Gauss hypergeometric functions." Funkcialaj Ekvacioj, 56 (2013) 271321. arXiv:0910. 3087
[10] The On-Line Encyclopedia of Integer Sequences, http://oeis.org
[11] The Wolfram Functions Site, http://functions.wolfram.com/ HypergeometricFunctions/Hypergeometric2F1/06/01/04/01/02/

[^0]: ${ }^{1}$ SumTools [Hypergeometric] [Zeilberger] (binomial ($\left.\left.n, k\right) \wedge 2 * \operatorname{binomial}(n+k, k) \wedge 2, n, k, E n\right)$;

[^1]: ${ }^{2}$ DE3: $=x \wedge 2 *(x \wedge 2-34 * x+1) * \operatorname{diff}(u(x), x \$ 3)+3 * x *(2 * x \wedge 2-51 * x+1) *(\operatorname{diff}(u(x), x \$ 2))$ $+(7 * x \wedge 2-112 * x+1) * \operatorname{diff}(u(x), x)+(x-5) * u(x)$;

 3 dsolve(DE3, $u(x)$, series, $x=c$) ;

[^2]: ${ }^{4} \operatorname{Rec}:=(n+1) \wedge 3 * Q(n+1)-(34 * n \wedge 3+51 * n \wedge 2+27 * n+5) * Q(n)+n \wedge 3 * Q(n-1)$;
 ${ }^{5}$ gfun[rectodiffeq] ($\left.\{\operatorname{Rec}, \mathrm{Q}(0)=1, \mathrm{Q}(1)=5\}, \mathrm{Q}(\mathrm{n}), \mathrm{u}(\mathrm{x})\right)$;

[^3]: ${ }^{6} \operatorname{HeunG}(a, q, a l p h a$, beta, gamma, delta, z)

[^4]: ${ }^{7}$ subs (u(x)=v2,DE3): simplify (\%) ;
 ${ }^{8}$ MultiSeries[series] (v2, $\mathrm{x}=\mathrm{c}, 2$) ;

[^5]: ${ }^{9}$ hypergeom([1/3,2/3], [1] ,z)

