The Apéry Numbers As a Stieltjes Moment Sequence

G. A. Edgar

January 20, 2017

The $Ap\acute{e}ry \ sequence \ [2][10, A005259]$ is

$$A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2, \qquad n = 0, 1, 2, \dots.$$

From the reference (or a CAS¹) we find that it satisfies the recurrence

$$(n+1)^3 A_{n+1} - (34n^3 + 51n^2 + 27n + 5)A_n + n^3 A_{n-1} = 0,$$

$$A_0 = 1, A_1 = 5.$$
(1)

We will show that the sequence (A_n) is a **Stieltjes moment sequence**. In fact:

Theorem 1. There is c > 0 and a positive Lebesgue integrable function φ such that

$$A_n = \int_0^c x^n \, \varphi(x) \, dx$$

for $n = 0, 1, 2, \cdots$.

Definition 2. We say φ is the **moment density function** for (A_n) .

Notes

I have tried to make the argument as short as possible. This means many asides and variations have been removed.

Some of the proofs may be done using a computer algebra system (CAS). I used Maple 2015. These are the sort of thing that—until 1980 or later—would have been done by paper-and-pencil computation. I have added some of the Maple as footnotes.

This result arose from a question asked by Alan Sokal. It was posted on the MathOverflow discussion board [6]. Pietro Majer provided the idea to use the differential equation.

 $^{^{1} \\ \}textbf{SumTools[Hypergeometric][Zeilberger](binomial(n,k) $\land 2*$ binomial(n+k,k) $\land 2,n,k,En)$;}$

Notation 3. We will use these values.

$$\tau = 1 + \sqrt{2} \approx 2.4142$$

$$c = \tau^4 = 17 + 12\sqrt{2} \approx 33.9705$$

$$c_0 = \tau^{-4} = \frac{1}{c} = 34 - c = 17 - 12\sqrt{2} \approx 0.0294$$

The Differential Equation

We proceed with a discussion of this² third-order holonomic Fuchsian ODE:

$$x^{2}(x^{2} - 34x + 1)u'''(x) + 3x(2x^{2} - 51x + 1)u''(x) + (7x^{2} - 112x + 1)u'(x) + (x - 5)u(x) = 0.$$
 (DE3)

We consider x a complex variable, and sometimes consider solutions in the complex plane.

Differential equation (DE3) has four singularities: ∞ , 0, c_0 , c. They are all regular singular points. Series solutions exist adjacent to each of them. From the Frobenius "series solution" method³ [4, Ch. 5][3, Ch. 3] we may describe these series solutions:

Proposition 4. The general solution of (DE3) near the complex singular point ∞ has the form

$$A\left(\frac{1}{x} + o(x^{-1})\right) + B\left(\frac{\log x}{x} + o(x^{-1})\right) + C\left(\frac{(\log x)^2}{x} + o(x^{-1})\right)$$

as $x \to \infty$, for complex constants A, B, C. The general solution of (DE3) near the singular point 0 has the form

$$A(1 + o(1)) + B(\log x + o(1)) + C((\log x)^2 + o(1))$$

as $x \to 0$, for complex constants A, B, C. The general solution of (DE3) near the singular point c_0 has the form

$$A\left(1 - \frac{240 + 169\sqrt{2}}{48}(x - c_0) + O(|x - c_0|^2)\right) + B\left((x - c_0)^{1/2} + O(|x - c_0|^{3/2})\right) + C\left((x - c_0) + O(|x - c_0|^2)\right)$$

as $x \to c_0$, for complex constants A, B, C. The general solution of (DE3) near the singular point c has the form

$$A\left(1 - \frac{240 - 169\sqrt{2}}{48}(x - c) + O(|x - c|^2)\right)$$

 $^{^2} DE3:=x \wedge 2*(x \wedge 2-34*x+1)*diff(u(x),x\$3)+3*x*(2*x \wedge 2-51*x+1)*(diff(u(x),x\$2)) \\ +(7*x \wedge 2-112*x+1)*diff(u(x),x)+(x-5)*u(x);$

³ dsolve(DE3,u(x),series,x=c);

+
$$B\left((x-c)^{1/2} + O(|x-c|^{3/2})\right) + C\left((x-c) + O(|x-c|^2)\right)$$

as $x \to c$, for complex constants A, B, C.

Corollary 5. If u(x) is any solution of (DE3) on $(0, c_0)$ or on (c_0, c) , then u(x) has at worst logarithmic singularities. So u(x) is (absolutely, Legesgue) integrable.

Notation 6. Four particular solutions of (DE3) will be named for use here:

- Solution $u_{\infty}(x) = 1/x + o(x^{-1})$ as $x \to \infty$, defined in the complex plane cut on the real axis interval [0, c].
- Solution $u_0(x) = 1 + o(1)$ as $x \to 0^+$, defined for $0 < x < c_0$.
- Solution $v_0(x) = \log x + o(1)$ as $x \to 0^+$, defined for $0 < x < c_0$.
- Solution $v_2(x) = (c-x)^{1/2} + O(|x-c|^{3/2})$ as $x \to c^-$, defined for $c_0 < x < c$.

Proposition 7. The Maclaurin series for $u_0(x)$ is the generating function for the Apéry sequence:

$$u_0(x) = \sum_{n=0}^{\infty} A_n x^n, \quad |x| < c_0.$$

Proof. This may be checked by your CAS. The recurrence $(1)^4$ converted to a differential equation⁵ yields (DE3). Of course the radius of convergence extends to the nearest singularity at c_0 .

Corollary 8. $u_0(x) > 0$ for $0 < x < c_0$.

Determining the signs of v_0 and v_2 will be more difficult.

Proposition 9. The Laurent coefficients for $u_{\infty}(z)$ are the Apéry numbers:

$$u_{\infty}(z) = \sum_{n=0}^{\infty} \frac{A_n}{z^{n+1}}, \qquad |z| > c.$$

Proof. Check that if u(x) is a solution of (DE3), then w(z) = u(1/z)/z is also a solution of (DE3). Matching the boundary conditions, we get

$$u_{\infty}(z) = \frac{1}{z}u_0\left(\frac{1}{z}\right).$$

Apply Prop. 7.

Note: In general, for other similar sequences that can be handled in this same way:

- (a) the generating function for the sequence, and
- (b) the moment density function for the sequence satisfy *different* differential equations.

 $^{^{4} \}text{ Rec} := (n+1) \land 3*Q(n+1) - (34*n \land 3+51*n \land 2+27*n+5)*Q(n) + n \land 3*Q(n-1);$

⁵ gfun[rectodiffeq]({Rec,Q(0)=1,Q(1)=5},Q(n),u(x));

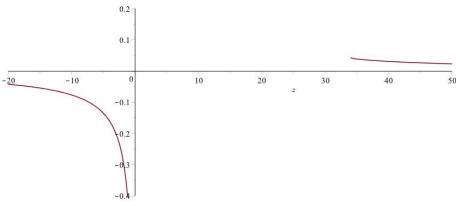


Figure 2: $u_0(x)$ and $v_0(x)$

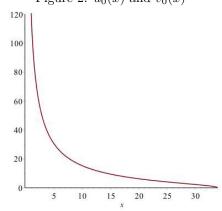


Figure 3: $v_2(x)$

The Function φ

Series solution u_{∞} of (DE3) is meromorphic and single-valued near ∞ . It continues analytically to the complex plane with a cut on the interval [0,c] of the real axis. We will still use the notation u_{∞} for that continuation. Since the Laurent coefficients are all real, we have

$$u_{\infty}(\overline{z}) = \overline{u_{\infty}(z)} \tag{2}$$

near ∞ , and therefore on the whole domain. In particular, $u_{\infty}(z)$ is real for z on the real axis (except the cut, of course). Define upper and lower values on the cut 0 < x < c:

$$u_{\infty}(x+i0) = \lim_{\delta \to 0+} u_{\infty}(x+i\delta), \quad u_{\infty}(x-i0) = \lim_{\delta \to 0+} u_{\infty}(x-i\delta).$$

Then from (2) we have

$$u_{\infty}(x - i0) = \overline{u_{\infty}(x + i0)}, \qquad 0 < x < c. \tag{3}$$

Notation 10.

$$\varphi(x) = \frac{1}{2\pi i} \left(u_{\infty}(x - i0) - u_{\infty}(x + i0) \right).$$

Function u_{∞} in the upper half plane extends analytically to a solution in a neighborhood of $(0, c_0)$, and similarly u_{∞} in the lower half plane. Thus $\varphi(x)$ restricted to $(0, c_0)$ is a solution of (DE3), since it is a linear combination of solutions. In the same way, $\varphi(x)$ restricted to (c_0, c) is a solution of (DE3).

See Figure 4; an enlargement shows the behavior near the singular point c_0 . We will see that φ has square root asymptotics near the right endpoint c (Prop. 25) and logarithmic asymptotics near the left endpoint 0 (Prop. 26).

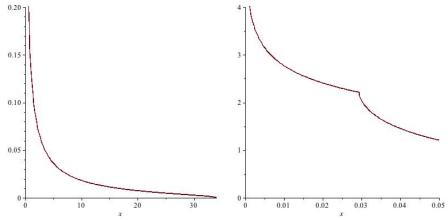


Figure 4: Moment density function $\varphi(x)$

Proposition 11. The Apéry numbers satisfy $A_k = \int_0^c x^k \varphi(x) dx$, $k = 0, 1, 2, \cdots$.

Proof. Fix a nonnegative integer k. For $\delta > 0$, let Γ_{δ} be the contour in the complex plane at distance δ from [0,c], as in Figure 5. (Two line segments and two semicircles; traced counterclockwise.) Now u_{∞} has at worst logarithmic singularities, so we have this limit:

$$\lim_{\delta \to 0+} \oint_{\Gamma_\delta} z^k u_\infty(z) \, dz = \int_0^c x^k \big(u_\infty(x-i0) - u_\infty(x+i0) \big) dx.$$

On the other hand, $z^k u_{\infty}(z)$ is analytic on and outside the contour Γ_{δ} , except at ∞ where it has an isolated singularity with residue A_k . Therefore

$$\oint_{\Gamma_{\delta}} z^k u_{\infty}(z) \, dz = 2\pi i A_k.$$

Thus

$$A_k = \int_0^c \frac{x^k}{2\pi i} \left(u_\infty(x - i0) - u_\infty(x + i0) \right) dx. \qquad \Box$$

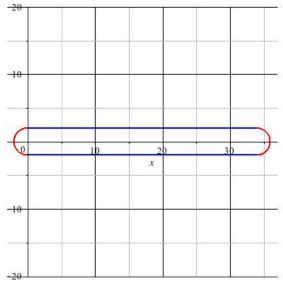


Figure 5: Contour Γ_{δ}

What remains to be proved: φ is nonnegative on (0,c) (Cor. 27). From (3) we know that $\varphi(x)$ is real on (0,c).

Heun General Functions

Some of the basic solutions in Notation 6 may be represented in terms of Heun functions. The Heun functions are described in [7, 8, 9].

Definition 12. Let complex parameters $a, q, \alpha, \beta, \gamma, \delta, \varepsilon$ be given satisfying $a \neq 0$, $\alpha + \beta + 1 = \gamma + \delta + \varepsilon$, $\delta \neq 0$, and $\gamma \neq 0, -1, -2, \cdots$. Define⁶ the **Heun general** function

$$\operatorname{Hn}\left(\begin{array}{c|c} a & \alpha & \beta \\ q & \gamma & \delta \end{array} \middle| z\right) = \sum_{n=0}^{\infty} p_n z^n, \tag{4}$$

where the Maclaurin coefficients satisfy initial conditions

$$p_0 = 1, \qquad p_1 = \frac{q}{a\gamma},$$

and recurrence

$$R_n p_{n+1} - (q + Q_n) p_n + P_n p_{n-1} = 0,$$

with

$$R_n = a(n+1)(n+\gamma),$$

$$Q_n = n((n-1+\gamma)(1+a) + a\delta + \varepsilon),$$

$$P_n = (n-1+\alpha)(n-1+\beta).$$

This function satisfies the Heun general differential equation

$$w''(z) + \left(\frac{\gamma}{z} + \frac{\delta}{z - 1} + \frac{\varepsilon}{z - a}\right)w'(z) + \frac{\alpha\beta z - q}{z(z - 1)(z - a)}w(z) = 0.$$

(Consult the references, or use your CAS to go from the recurrence to the differential equation.) This DE has singularities at ∞ , 0, 1, a; all regular singular points. Convergence of the series extends to the nearest singularity, so the radius of convergence in (4) is min{1, |a|}.

Proposition 13. Within the radius of convergence:

$$u_0(x) = \operatorname{Hn} \left(\begin{array}{c|c} a_2 & 1/2 & 1/2 \\ q_4 & 1 & 1/2 \end{array} \middle| cx \right)^2$$

$$v_2(x) = \frac{(x - c_0)(c - x)^{1/2}}{c - c_0} \operatorname{Hn} \left(\begin{array}{c|c} a_1 & 3/2 & 3/2 \\ q_1 & 3/2 & 1 \end{array} \middle| 1 - c_0 x \right) \cdot$$

$$\cdot \operatorname{Hn} \left(\begin{array}{c|c} a_1 & 1 & 1 \\ q_2 & 1/2 & 1 \end{array} \middle| 1 - c_0 x \right)$$

$$u_{\infty}(z) = \frac{1}{z} \operatorname{Hn} \left(\begin{array}{c|c} a_2 & 1/2 & 1/2 \\ q_4 & 1 & 1/2 \end{array} \middle| \frac{c}{z} \right)^2,$$

where

$$a_1 = 1 - c_0^2 = -576 + 408\sqrt{2} \approx 0.9991$$

 $a_2 = c^2 = 577 + 408\sqrt{2} \approx 1153.9991$

⁶ HeunG(a,q,alpha,beta,gamma,delta,z)

$$q_1 = -\frac{1317}{4} + 234\sqrt{2} \approx 1.676$$

$$q_2 = \tau^{-1}(1+c_0) = -42 + 30\sqrt{2} \approx 0.4264$$

$$q_4 = \frac{5c}{2} = \frac{85}{2} + 30\sqrt{2} \approx 84.93$$

Proof. In each case verify that it satisfies the differential equation⁷ and boundary properties⁸ that specify the solution. \Box

All Coefficients Positive

In some cases we can determine that all Maclaurin coefficients of a Heun general function

$$\operatorname{Hn}\left(\begin{array}{c|c} a & \alpha & \beta \\ q & \gamma & \delta \end{array} \middle| z\right)$$

are positive. When that is true, then in particular this function will be positive and increasing and convex on (0, R) where $R = \min\{1, |a|\}$ is the radius of convergence.

Lemma 14. All Maclaurin coefficients are positive in

$$\operatorname{Hn}\left(\begin{array}{c|c} a_1 & 3/2 & 3/2 \\ q_1 & 3/2 & 1 \end{array} \middle| z\right),$$

where
$$a_1 = -576 + 408\sqrt{2}$$
 and $q_1 = -\frac{1317}{4} + 234\sqrt{2}$.

Proof. Let p_n be the Maclaurin coefficients. Then

$$R_n p_{n+1} - (q_1 + Q_n) p_n + P_n p_{n-1} = 0,$$

with

$$R_n = a_1(n+1)(n+\frac{3}{2})$$

$$Q_n = n\left((n+\frac{1}{2})(1+a_1) + a_1 + \frac{3}{2}\right)$$

$$P_n = (n+\frac{1}{2})^2.$$

Write $r_n = p_n/p_{n-1}$ and rearrange:

$$r_{n+1} = \frac{q_1 + Q_n}{R_n} - \frac{P_n}{R_n} \frac{1}{r_n}.$$

Recall that $|a_1| < 1$; we expect $r_n \to 1/a_1$. We claim: if

$$n \ge 45$$
 and $1 - \frac{1}{10n} < r_n < \frac{1}{a_1}$,

⁷ subs(u(x)=v2,DE3): simplify(%);

⁸ MultiSeries[series](v2,x=c,2);

then also

$$1 - \frac{1}{10(n+1)} < r_{n+1} < \frac{1}{a_1}.$$

Once the claim is proved, all that remains is checking that p_0, \dots, p_{45} are positive, and

$$1 - \frac{1}{450} < r_{45} < \frac{1}{a_1}.$$

By induction we conclude that $r_n > 0$ for all $n \ge 45$. So p_n with n > 45 is a product of positive numbers

$$p_{45} r_{46} r_{47} r_{48} \cdots r_n$$

so $p_n > 0$.

Proof of the claim. Since

$$r \mapsto \frac{q_1 + Q_n}{R_n} - \frac{P_n}{R_n} \, \frac{1}{r}$$

is an increasing function, we need only check

$$1 - \frac{1}{10(n+1)} < \frac{q_1 + Q_n}{R_n} - \frac{P_n}{R_n} \ a_1 < \frac{1}{a_1}$$

and

$$1 - \frac{1}{10(n+1)} < \frac{q_1 + Q_n}{R_n} - \frac{P_n}{R_n} \frac{1}{1 - \frac{1}{10n}} < \frac{1}{a_1}$$

where $n \geq 45$. Your CAS can be used for this.

A warning for the computations. If you do this using 20-digit arithmetic—as I did at first—you may erroneously conclude that it is false. You may see negative coefficients. With exact arithmetic, we find that r_{45} involves integers with more than 100 digits. To compare $\sqrt{2}$ to a rational number with 100-digit numerator and denominator, there are two methods: we can square those 100-digit numbers, or we can use a decimal value of $\sqrt{2}$ accurate to more than 100 places. Of course a modern CAS can do either.

Lemma 15. All Maclaurin coefficients are positive in

$$\operatorname{Hn}\left(\begin{array}{c|c} a_1 & 1, & 1 \\ q_2 & 1/2 & 1 \end{array} \middle| z\right),$$

where $a_1 = -576 + 408\sqrt{2}$ and $q_2 = -42 + 30\sqrt{2}$.

Proof. The proof is similar to Lemma 14. Let p_n be the coefficients, and $r_n = p_n/p_{n-1}$. Then

$$r_{n+1} = \frac{q_2 + Q_n}{R_n} - \frac{P_n}{R_n} \frac{1}{r_n},$$

with

$$R_n = a_1(n+1)(n+\frac{1}{2}),$$

$$Q_n = n\left((n-\frac{1}{2})(1+a_1) + a_1 + \frac{3}{2}\right),$$

$$P_n = n^2.$$

We claim: If

$$n \ge 18$$
 and $1 - \frac{1}{4n} < r_n < \frac{1}{a_1}$,

then also

$$1 - \frac{1}{4(n+1)} < r_{n+1} < \frac{1}{a_1}.$$

The remainder of the proof is similar to Lemma 14.

Proposition 16. $v_2(x) > 0 \text{ for } c_0 < x < c.$

Proof. By Lemma 14, all Maclaurin coefficients of

$$\operatorname{Hn}\left(\begin{array}{c|c} a_1 & 3/2 & 3/2 \\ q_1 & 3/2 & 1 \end{array} \middle| z\right)$$

are positive. It has radius of convergence $a_1 = 1 - c_0^2$, so

$$\operatorname{Hn} \left(\begin{array}{c|c} a_1 & 3/2, & 3/2 \\ q_1 & 3/2, & 1 \end{array} \middle| 1 - c_0 x \right) > 0$$

for all x with $c_0 < x < c$. By Lemma 15, all Maclaurin coefficients of

$$\operatorname{Hn}\left(\begin{array}{c|c} a_1 & 1, & 1 \\ q_2 & 1/2 & 1 \end{array} \middle| z\right)$$

are positive. Again,

$$\operatorname{Hn}\left(\begin{array}{c|c} a_1 & 1, & 1 \\ q_2 & 1/2 \ ; & 1 \end{array} \middle| 1 - c_0 x\right) > 0$$

for all x with $c_0 < x < c$. Also

$$\frac{(x-c_0)(c-x)^{1/2}}{c-c_0}$$

is positive on (c_0, c) . The product of three positive factors is $v_2(x)$ on (c_0, c) , so $v_2(x) > 0$.

Hypergeometric Function

Some Heun functions can be expressed in terms of hypergeometric ${}_{2}F_{1}$ functions [1, Chap. 2–3]. Here, we will use only one of them.⁹

Definition 17.
$$_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; z\right) = \sum_{n=0}^{\infty} \frac{(3n)!}{(n!)^3} \frac{z^n}{27^n}$$

Lemma 18. (a) ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;z\right)$ has radius of convergence 1. (b) For 0 < z < 1, we have ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;z\right) > 1$. (c) $As \ \delta \to 0^+$,

$$_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; 1 - \delta\right) = -\frac{\sqrt{3}}{2\pi}\log\delta + \frac{3\sqrt{3}\log3}{2\pi} + o(1).$$

Proof. (a) Ratio test.

- (b) All Maclaurin coefficients are positive, and the constant term is 1.
- (c) Due to Gauss (or perhaps Goursat?), see [5, Thm. 2.1.3][11],

$${}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; 1 - \delta\right) = \frac{\Gamma(1)}{\Gamma(\frac{1}{3})\Gamma(\frac{2}{3})} \left[\log\frac{1}{\delta} - 2\gamma - \psi\left(\frac{1}{3}\right) - \psi\left(\frac{2}{3}\right)\right] + o(1)$$
$$= -\frac{\sqrt{3}}{2\pi}\log\delta + \frac{3\sqrt{3}\log3}{2\pi} + o(1).$$

Here γ is Euler's constant and ψ is the digamma function. Use [1, Thm. 1.2.7] to evaluate the digamma of a rational number.

Lemma 19. Let the degree 1 Taylor polynomial for ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;z\right)$ at $z_0=1/(2^{3/2}\tau)$ be ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;z\right)=S_0+S_1\cdot(z-z_0)+o(|z-z_0|)$ as $z\to z_0$. Then

$$S_0 \cdot (3S_1 + \sqrt{2}S_0) = \frac{3^{3/2}2^{1/2}}{\pi}.$$

Proof. Reference to be supplied?

To complete the proof of Theorem 1, we do not need the exact value in Lemma 19, but only that it is positive; which is clear from the fact that all Maclaurin coefficients of ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;z\right)$ are positive and z_0 is positive.

Notation 20

$$\mu(x) = \frac{\left(3 - 3x - \sqrt{x^2 - 34x + 1}\right)^{1/2}}{\sqrt{2}(x+1)}$$

$$\mu_2(x) = \frac{\left(3 - 3x + \sqrt{x^2 - 34x + 1}\right)^{1/2}}{\sqrt{2}(x+1)}$$

$$\lambda(x) = \frac{x^3 + 30x^2 - 24x + 1 - (x^2 - 7x + 1)\sqrt{x^2 - 34x + 1}}{2(x+1)^3}$$

⁹hypergeom([1/3,2/3],[1],z)

$$\lambda_2(x) = \frac{x^3 + 30x^2 - 24x + 1 + (x^2 - 7x + 1)\sqrt{x^2 - 34x + 1}}{2(x+1)^3}$$

(See Figures 6 and 7.)

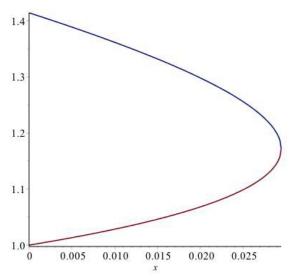


Figure 6: μ (bottom) and μ_2 (top)

Lemma 21. For $0 < x < c_0$, we have $\mu(x) > 1$, $\mu_2(x) > 1$, $0 < \lambda(x) < 1$, and $0 < \lambda_2(x) < 1$.

Proof. Elementary inequalities.

Lemma 22. $As \ x \to 0^+,$

$$\mu(x) \,_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda(x)\right) = 1 + \frac{5}{2}x + O(x^{2}),$$

$$\mu_{2}(x) \,_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda_{2}(x)\right) = \frac{-\sqrt{3}}{\pi\sqrt{2}} \log x + o(1).$$

The second one indeed has constant term zero.

Proof. Compute (as $z \to 0$ and $x \to 0$):

$$\mu(x) = 1 + \frac{5}{2}x + O(x^2)$$

$$\lambda(x) = 27x^2 + O(x^3)$$

$${}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; z\right) = 1 + \frac{2}{9}z + O(z^2)$$

$${}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda(x)\right) = 1 + 6x^2 + O(x^3)$$

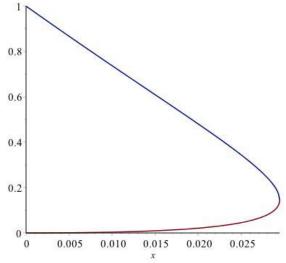


Figure 7: λ (bottom) and λ_2 (top)

$$\mu(x) {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda(x)\right) = 1 + \frac{5}{2}x + O(x^{2})$$

For the second one, we apply Lemma 18(c). As $x \to 0$:

$$\mu_2(x) = \sqrt{2} - \frac{7}{\sqrt{2}}x + O(x^2)$$

$$\lambda_2(x) = 1 - 27x + O(x^2)$$

$${}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda_2(x)\right) = -\frac{\sqrt{3}}{2\pi}\log(27x) + \frac{3\sqrt{3}\log 3}{2\pi} + o(1)$$

$$= -\frac{\sqrt{3}}{2\pi}(\log 27 + \log x) + \frac{3\sqrt{3}\log 3}{2\pi} + o(1)$$

$$= -\frac{\sqrt{3}}{2\pi}\log x + o(1)$$

$$\mu_2(x){}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda_2(x)\right) = -\frac{\sqrt{3}}{\sqrt{2}\pi}\log x + o(1)$$

Proposition 23.

$$u_0(x) = \mu(x)^2 {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda(x)\right)^2,$$

$$v_0(x) = -\frac{2\pi}{\sqrt{3}(x+1)} {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda(x)\right) {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda_2(x)\right),$$

$$u_\infty(z) = \frac{1}{z}\mu\left(\frac{1}{z}\right)^2 {}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda\left(\frac{1}{z}\right)\right)^2.$$

Proof. Note: $\mu(x)\mu_2(x) = \sqrt{2}/(x+1)$. Verify that these expressions satisfy (DE3) as usual. Then verify the asymptotics using Lemma 22.

How were these formulas found? The first one is from Mark van Hoeij [10, A005259]; I do not know how he found it. But then it is natural to try the other square root, since that will still satisfy the same differential equation.

Proposition 24. $v_0(x) < 0 \text{ for } 0 < x < c_0.$

Proof. For $0 < x < c_0$: By Lemma 21, $0 < \lambda(x) < 1$, so by Lemma 18(b), ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;\lambda(x)\right) > 0$. Similarly, ${}_2F_1\left(\frac{1}{3},\frac{2}{3};1;\lambda_2(x)\right) > 0$.

The Two Endpoints

Proposition 25. On interval (c_0, c) we have exactly $\varphi(x) = v_2(x)/(2^{5/4}\tau^4\pi^2)$.

Proof. We examine the solution $u_{\infty}(x)$ of (DE3) on the interval $(c, +\infty)$. As $\delta \to 0^+$, the Frobenius series solution shows that

$$u_{\infty}(c+\delta) = A + B\sqrt{\delta} + C\delta + O(\delta^{3/2}) \tag{5}$$

for some real constants A, B, C; we will have to evaluate the constant B below. Following (5) around the point c by a half-turn in either direction, we get

$$u_{\infty}(c - \delta - i0) = A + B(-i)\sqrt{\delta} - C\delta + O(\delta^{3/2})$$

$$u_{\infty}(c - \delta + i0) = A + Bi\sqrt{\delta} - C\delta + O(\delta^{3/2})$$

$$\varphi(c - \delta) = \frac{1}{2\pi i} \left(u_{\infty}(c - \delta - i0) - u_{\infty}(c - \delta + i0) \right)$$

$$= \frac{0A - 2Bi\sqrt{\delta} + 0C\delta}{2\pi i} + O(\delta^{3/2})$$

$$= \frac{-B}{\pi} \sqrt{\delta} + O(\delta^{3/2}).$$

Therefore $\varphi(x) = (-B/\pi)v_2(x)$ on (c_0, c) .

On interval $(c, +\infty)$, we have

$$u_{\infty}(x) = \frac{1}{x} \mu \left(\frac{1}{x}\right)^2 {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda \left(\frac{1}{x}\right)\right)^2.$$

Argument $\lambda(1/x)$ stays inside the unit disk, so no analytic continuation is required. Now $\lambda(c_0) = \lambda_2(c_0) = 1/(2^{3/2}\tau)$, called z_0 in Lemma 19. Let S_0, S_1 also be as in Lemma 19. As $\delta \to 0^+$,

$$\frac{1}{c+\delta} = \frac{1}{\tau^4} + O(\delta)$$

$$\mu\left(\frac{1}{c+\delta}\right) = \frac{\tau}{2^{1/4}3^{1/2}} - \frac{1}{4\cdot 3\cdot \tau}\sqrt{\delta} + O(\delta)$$

$$\lambda \left(\frac{1}{c+\delta}\right) = \frac{1}{2^{3/2}\tau} - \frac{\sqrt{3}}{2^{9/4}\tau^2} \sqrt{\delta} + O(\delta)$$

$${}_2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda\left(\frac{1}{c+\delta}\right)\right) = S_0 - \frac{\sqrt{3}}{2^{9/4}\tau^2} S_1 \sqrt{\delta} + O(\delta)$$

$$u_{\infty}(c+\delta) = \frac{S_0^2}{3\sqrt{2}\tau^2} - \frac{S_0(3S_1 + \sqrt{2}S_0)}{2^{7/4}3^{3/2}\tau^4} \sqrt{\delta} + O(\delta)$$

$$= \frac{S_0^2}{3\sqrt{2}\tau^2} - \frac{1}{2^{5/4}\tau^4\pi} \sqrt{\delta} + O(\delta).$$

So we get $B = -1/(2^{5/4}\tau^4\pi)$.

Proposition 26. On interval $(0, c_0)$ we have exactly $\varphi(x) = -6v_0(x)/\pi^2$.

Proof. We examine the solution $u_{\infty}(x)$ of (DE3) on the interval $(-\infty,0)$. As $\delta \to 0^+$, the Frobenius series solution shows that

$$u_{\infty}(-\delta) = A + B\log\delta + C(\log\delta)^2 + o(1) \tag{6}$$

for some real constants A, B, C; we will have to evaluate the constants B and C below. Following (6) around the point 0 by a half-turn in either direction, we get

$$u_{\infty}(\delta - i0) = A + B(\log \delta + i\pi) + C(\log \delta + i\pi)^2 + o(1)$$

$$u_{\infty}(\delta + i0) = A + B(\log \delta - i\pi) + C(\log \delta - i\pi)^2 + o(1)$$

$$\varphi(\delta) = \frac{1}{2\pi i} \left(u_{\infty}(\delta - i0) - u_{\infty}(\delta + i0) \right)$$

$$= \frac{2Bi\pi + 4Ci\pi \log \delta}{2\pi i} + o(1)$$

$$= B + 2C \log \delta + o(1)$$

Therefore $\varphi(x) = Bu_0(x) + 2Cv_0(x)$ on $(0, c_0)$. On interval $(-\infty, 0)$, we have

$$u_{\infty}(x) = \frac{1}{x} \mu \left(\frac{1}{x}\right)^2 {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda \left(\frac{1}{x}\right)\right)^2.$$

Argument $\lambda(1/x)$ stays inside the unit disk, so this is an easy analytic continuation of u_{∞} . As $\delta \to 0^+$,

$$\frac{1}{-\delta} = \frac{-1}{\delta} + O(1)$$
$$\mu\left(\frac{1}{-\delta}\right)^2 = \delta + O(\delta^2)$$
$$\lambda\left(\frac{1}{-\delta}\right) = 1 - 27\delta^2 + O(\delta^3)$$

So by Lemma 18(c),

$${}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \lambda\left(\frac{1}{-\delta}\right)\right) = \frac{-\sqrt{3}}{2\pi} 2\log\delta + o(1)$$
$$u_{\infty}(-\delta) = \frac{-3}{\pi^{2}}(\log\delta)^{2} + o(1).$$

Thus we get B=0 and $C=-3/\pi^2$.

Corollary 27. The moment density φ may be written

$$\varphi(x) = \begin{cases} \frac{-6}{\pi^2} v_0(x), & 0 < x < c_0, \\ \frac{1}{2^{5/4} \tau^4 \pi^2} v_2(x), & c_0 \le x \le c. \end{cases}$$

It is positive on $(0, c_0) \cup (c_0, c)$.

Proof. For $0 < x < c_0$, by Prop. 24 $v_0(x) < 0$. For $c_0 < x < c$, by Prop. 16 $v_2(x) > 0$.

References

- G. Andrews, R. Askey, R. Roy, Special Functions. (Cambridge University Press, 1999)
- [2] R. Apéry, "Irrationalité de $\zeta(2)$ et $\zeta(3)$ " Astérisque **61** (1979) 11–13.
- [3] G. Birkhoff, G.-C. Rota, *Ordinary Differential Equations*, Second Edition. (Blaisdell, 1969)
- [4] W. E. Boyce & R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, Fifth Edition. (Wiley, 1992)
- [5] Y. L. Luke, The Special Functions and Their Approximations, vol. I. (Academic Press, 1969)
- [6] P. Majer, "Is the sequence of Apéry numbers a Stieltjes moment sequence?" MathOverflow, http://mathoverflow.net/a/179805/454
- [7] A. Ronveaux (Editor), Heun's Differential Equations (Oxford University Press, 1995)
- [8] B. D. Sleeman & V. B. Kuznetsov, Digital Library of Mathematical Functions. Chapter 31, Heun Functions. http://dlmf.nist.gov/31
- [9] R. Vidunas & G. Filipuk, "Parametric transformations between the Heun and Gauss hypergeometric functions." Funkcialaj Ekvacioj, **56** (2013) 271–321. arXiv:0910.3087

- [10] The On-Line Encyclopedia of Integer Sequences, http://oeis.org
- [11] The Wolfram Functions Site, http://functions.wolfram.com/ HypergeometricFunctions/Hypergeometric2F1/06/01/04/01/02/