
STOLARSKY’S INVARIANCE PRINCIPLE FOR FINITE METRIC SPACES

ALEXANDER BARG

ABSTRACT. Stolarsky’s invariance principle quantifies the deviation of a subset of a metric space from the uni-
form distribution. Classically derived for spherical sets, it has been recently studied in a number of other situations,
revealing a general structure behind various forms of the main identity. In this work we consider the case of finite
metric spaces, relating the quadratic discrepancy of a subset to a certain function of the distribution of distances in
it. Our main results are related to a concrete form of the invariance principle for the Hamming space. We derive
several equivalent versions of the expression for the discrepancy of a code, including expansions of the discrep-
ancy and associated kernels in the Krawtchouk basis. Codes that have the smallest possible quadratic discrepancy
among all subsets of the same cardinality can be naturally viewed as energy minimizing subsets in the space.
Using linear programming, we find several bounds on the minimal discrepancy and give examples of minimizing
configurations. In particular, we show that all binary perfect codes have the smallest possible discrepancy.

1. INTRODUCTION

Let X be a finite metric space with diam(X) = n, where n is a positive integer. Suppose that the distance
d(x, y) takes the values 0, 1, . . . , n and let B(x, t) be a metric ball in X of radius t with center x. We assume
that X is distance-invariant, so the volume of the ball B(x, t) does not depend on the center. For an N -point
subset Z = {z1, . . . , zN} ⊂ X define the quadratic discrepancy of Z as follows:

DL2(Z) =

n∑
t=0

(Dt(Z))2 (1)

where

Dt(Z) :=
(∑
x∈X

( 1

N

N∑
j=1

1B(x,t)(zj)−
1

|X|
|B(x, t)|

)2)1/2
. (2)

The discrepancy measures the quadratic deviation of Z from the uniform distribution in regards to the metric
balls in X. In this paper we relateDL2(Z) to the structure of distances in the subset Z with a special attention
to the Hamming space X = {0, 1}n.

A general problem of estimating quadratic discrepancy in metric spaces has a long history which developed
both from the perspective of approximation theory and geometry of the space [5, 28], with special attention
devoted to subsets of the real sphere Sd. The quadratic discrepancy for a configuration Z ⊂ Sd is defined as

DL2(Z) =

∫ 1

−1

∫
Sd

( 1

N

N∑
i=1

1C(x,t)(zi)− σ(C(x, t))
)2
dσ(x)dt (3)

where C(x, t) := {y ∈ Sd|(x, y) ≥ t} is a spherical cap with center at x ∈ Sd and dσ(x) is the normalized
surface measure. Several recent works studied discrepancy of finite point sets on Sd and related homoge-
neous spaces, e.g., the real and complex projective spaces [7, 15, 34, 32]. These studies revolve around a
unifying topic that originates in Stolarsky’s works [35, 36] and is related to the following remarkable identity,
nowadays called Stolarsky’s invariance principle: for a finite subset Z ⊂ Sd

DL2(Z) = Cd(〈‖x− y‖〉Sd − 〈‖x− y‖〉Z), (4)
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where 〈·〉 refers to the average value of the argument over the subscript set, and Cd is a universal constant that
depends only on the dimension d. This relation enables one, among other things, to establish universal bounds
on discrepancy for various classes of configurations [7, 31, 32], and affords a number of generalizations.
Among them, invariance for DL2(Z) defined with respect to the geodesic distance on Sd, or with respect to
other subsets of Sd, or for a continuous analog of the discrepancy [7]. The invariance principle also connects
DL2(Z) to a classical problem of Fejes Tóth of maximizing the sum of distances over finite sets of a given
cardinality [9]. The cited papers also offer insightful general discussions of, as well as many more references
for, the invariance principle; of them we mention [7, 32] as our main motivation.

In this paper we study a discrete version of the invariance principle, modeling our definition of quadratic
discrepancy (1) on the classic definition (3). We begin with general finite metric spaces, deriving a version
of the relation (4). It turns out that the quadratic discrepancy of a subset Z of a finite metric space X is
conveniently expressed via a function on X× X defined as

λ(x, y) =
1

2

∑
u∈X
|d(x, u)− d(y, u)|. (5)

A general form of the Stolarsky invariance principle, proved in Sec. 2, asserts that DL2(Z) equals the differ-
ence between the average value of λ over the entire space and its average over Z. This result is implicit in
earlier works such as [15, 7, 32], and we comment on their results in the main text of the paper.

Our main results are related to the case of the Hamming space X = {0, 1}n. In Sec. 3 we give several
equivalent, but different-looking expressions for λ, showing that λ(x, y) is expressed in terms of the central
binomial coefficient

(
w
w/2

)
(after accounting for integrality constraints), where w = d(x, y). This result

enables us to connect the discrepancy of a binary code with the structure of distances in it, and to find exact
expressions or bounds for discrepancy of several classes of binary codes.

Analyzing discrepancy of finite sets in metric spaces is often facilitated by considering expansions of
DL2 and associated kernels into series of spherical functions. Such expansions were studied for the sphere
Sd and related projective spaces in [6, 32, 34], where the spherical functions are given by certain Jacobi
polynomials. The authors of the cited works used estimates of the coefficients in the expansions to derive
bounds on discrepancy of finite point configurations. Paper [32] also showed that optimal spherical designs
have asymptotically the smallest possible discrepancy among sets of their cardinality. Related ideas on a
connection between spherical designs and asymptotically uniformly distributed spherical sets were addressed
in [16]. In order to derive estimates of discrepancy for binary codes of a given cardinality, in Sec. 4 we derive
Fourier-Krawtchouk expansions of the kernel λ(·) and the discrepancy DL2(Z).

The discrepancy kernel forms an example of a potential function on X, and thus, minimizing the value
DL2(Z) over codes Z of a given size can be addressed via the linear programming approach to energy
minimization. This line of research started with the work [39] and has enjoyed considerable attention in
recent years. Most works on energy-minimizing configurations address the setting of finite point sets on
the sphere in Rd and related homogeneous spaces; see a comprehensive recent book [10] for an extensive
overview as well as numerous references. Universal bounds on energy of spherical codes [19, 11, 14] can be
obtained for the class of completely monototic potentials such as the Euclidean distance.

Turning to the Hamming space, linear programming bounds on energy of codes were studied in recent
papers [12, 20] as well as in earlier works [2, 3]. At the same time, universal bounds of [12, 13] are not
applicable to the problem of discrepancy because the potential λ(·, ·) fails to be completely monotonic. In
particular, this implies that the universally optimal codes listed in [20] are not necessarily LP-optimal for the
discrepancy problem. We use linear programming together with the Krawtchouk expansion of the function
λ(d(x, y)) to derive several lower bounds on DL2(N). We also prove that the Hamming codes and other
perfect codes have the smallest possible discrepancy among all codes of their cardinality.

By combining random choice and linear programming estimates, we prove the following bounds on the
minimum discrepancy of binary codes of length n and size N . Define the extremal discrepancy as

DL2(n,N) := min
Z⊂{0,1}n,|Z|=N

DL2(Z), (6)
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then we show that
c

1√
n

2n

N
≤ DL2(n,N) ≤ C

√
n

2n

N
,

where c, C are some constants that depend only on n; see Theorem 5.5 below.

2. STOLARSKY’S INVARIANCE FOR A METRIC SPACE

The quadratic discrepancy of Z ⊂ X can be expressed as the difference between the average values of λ
over the entire space X and the subset Z as follows.

Theorem 2.1 (STOLARSKY’S INVARIANCE PRINCIPLE). LetZ = {z1, . . . , zN} be a subset of a finite metric
space X. Then

DL2(Z) =
1

2

( 1

|X|2
∑
x,y∈X

∑
u∈X

|d(x, u)− d(y, u)| − 1

N2

N∑
i,j=1

∑
u∈X

|d(zi, u)− d(zj , u)|
)
. (7)

Proof. Starting with (2), we compute

Dt(Z)2 =
∑
x∈X

[( 1

N

N∑
j=1

1B(x,t)(zj)
)2
− 2

N

N∑
j=1

1B(x,t)(zj)
|B(x, t)|
|X|

+
|B(x, t)|2

|X|2
]

=
1

N2

∑
x∈X

( N∑
j=1

1B(x,t)(zj)
)2
− 2

N

N∑
j=1

∑
x∈X

1B(zj ,t)(x)
|B(x, t)|
|X|

+
|B(x, t)|2

|X|

=
1

N2

(∑
x∈X

N∑
i,j=1

1B(x,t)(zi)1B(x,t)(zj)
)
− |B(x, t)|2

|X|

=
1

N2

N∑
i,j=1

|B(zi, t) ∩B(zj , t)| −
|B(u, t)|2

|X|
, (8)

where on the last line u is any fixed point in X.

To find an expression for DL2(Z) in (1), we need to sum (8) on t. Let us compute average intersection of
the metric balls with centers at x and y:

n∑
t=0

|B(x, t) ∩B(y, t)| =
n∑
t=0

∑
z∈X

1B(x,t)(z)1B(y,t)(z) =
∑
z∈X

n∑
t=0

1B(x,t)(z)1B(y,t)(z)

=
∑
z∈X

n∑
t=max(d(z,x),d(z,y))

1 =
∑
z∈X

(n+ 1−max(d(z, x), d(z, y)))

= |X|(n+ 1)−
∑
z∈X

max(d(z, x), d(z, y))

= |X|(n+ 1)−
∑
z∈X

1

2
(d(z, x) + d(z, y) + |d(z, x)− d(z, y)|)

= |X|(n+ 1)−
∑
z∈X

d(z, u)− 1

2

∑
z∈X

|d(z, x)− d(z, y)|. (9)

Now let us address the second term in (8):
n∑
t=0

|B(u, t)|2 =

n∑
t=0

∑
u∈X

1B(x,t)(u)
∑
y∈X

1B(u,t)(y)
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=

n∑
t=0

∑
y

∑
u

1B(x,t)(u)1B(y,t)(u) =
∑
y

n∑
t=0

|B(x, t) ∩B(y, t)|

=
1

|X|
∑
x,y∈X

n∑
t=0

|B(x, t) ∩B(y, t)| (10)

=
1

|X|
∑
x,y∈X

[
|X|(n+ 1)−

∑
z∈X

d(z, u)− 1

2

∑
u∈X

|d(u, x)− d(u, y)|
]
, (11)

where on the last line we used (9). Substituting (9) and (11) into (8) and rearranging, we obtain (7). �

Similar proofs of Stolarsky’s principle for the case of the sphere Sd(R) were given earlier in [15, 8, 7], see
also [10, Sec.6.8]. In particular, the authors of [7] used essentially the same geometric ideas, and we adopted
them here for a finite metric space. Paper [32] considered the case of a general distance-transitive metric
space X equipped with the metric of symmetric difference. In the case of finite X this metric is defined as
follows:

θ(x, y) :=
1

2

n∑
t=0

|B(x, t)4B(y, t)| =
n∑
t=0

|B(x, t)| −
∑
t

|B(x, t) ∩B(y, t)|,

and this definition generalizes to an arbitrary metric measure space X in an obvious way. To see that θ is
indeed a metric, note that

θ(x, y) =
1

2

∑
t

∑
u∈X

|1B(x,t)(u)− 1B(y,t)(u)|,

which is the L1 distance between the indicator functions of the metric balls. As observed in [32, Eq.(1.33)],
the quadratic discrepancy of a finite zet Z ⊂ X equals the difference between the average value of θ over the
entire space and its average value over Z. The author of [32] called this relation the L1 invariance principle
as opposed to the more subtle L2 principle given by (4).

The form of the invariance principle considered above is related to the kernel λ : X × X → R defined in
(5). Using it, we can rewrite the invariance principle (7) concisely as follows:

DL2(Z) =
1

22n

∑
x,y∈X

λ(x, y)− 1

N2

N∑
i,j=1

λ(zi, zj)

= 〈λ〉X − 〈λ〉Z , (12)

where the quantities on the last line represent the average values of λ. Another equivalent form of (12) is
obtained once we define the kernel

µ(x, y) =

n∑
t=0

µt(x, y),

where
µt(x, y) := |B(x, t) ∩B(y, t)| =

∑
z∈X

1B(x,t)(z)1B(y,t)(z). (13)

On account of (8), (10), and (1) we can rewrite the expression for the quadratic discrepancy of the subset Z
as follows:

DL2(Z) = 〈µ〉Z − 〈µ〉X. (14)

Both (12) and (14) have their advantages for the calculations in the Hamming space which form our
main results. Namely, (7) is directly related to the distances in the graph while (13) is a convolution square
of a function, which facilitates the Fourier transform approach to discrepancy. Additionally, although less
importantly, while both kernels µ and λ are radial (depend only on the distance d(x, y)), the former is also
positive definite, which facilitates calculations of the linear-programming bounds on discrepancy.
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3. STOLARSKY’S INVARIANCE FOR THE HAMMING SPACE

Let X = {0, 1}n and for any pair of vectors x, y ∈ X let d(x, y) denote the Hamming distance between
them. As above, we let B(x, t) denote the ball of radius t, 0 ≤ t ≤ n with center at x ∈ X and note that the
volume |B(x, t)| =

∑t
i=0

(
n
t

)
does not depend on x. We also note the following relations for future use: for

any x ∈ X

n∑
t=0

|B(x, t)| =
n∑
t=0

t∑
i=0

(
n

i

)
=

n∑
i=0

(i+ 1)

(
n

i

)
= (n+ 2)2n−1 (15)

n∑
t=0

|B(x, t)|2 = 22n−1(n+ 2)− n

2

(
2n

n

)
. (16)

The first of these equalities is obvious and the second was proved in [23].
In this section we derive an explicit form of the Stolarsky principle (7) for the Hamming space. As before,

let Z be an N -element subset of X, which we call a binary code. In the next lemma we find an explicit
expression of the kernel λ(x, y) defined in (5). It depends on d(x, y) and n, but we suppress n from the
notation throughout.

Lemma 3.1. Let x, y ∈ X be two points such that d(x, y) = w. Then

λ(x, y) = λ(w) := 2n−ww

(
w − 1

dw2 e − 1

)
, w = 1, . . . , n. (17)

Writing this in another form, we have

λ(2i− 1) = λ(2i) = 2n−2ii

(
2i

i

)
, 1 ≤ i ≤ bn/2c (18)

λ(2i+ 1)

2i+ 1
=
λ(2i)

2i
, i ≥ 1, (19)

and thus λ(i) is a monotone nondecreasing function of i for all i ≥ 1.

Remark: From (19) and λ(1) = 2n−1 we also obtain the following expression: for i ≥ 0

λ(2i+ 1) =
(2i+ 1)!!

(2i)!!
2n−1,

and thus the generating function of the numbers λ(2i+ 1) is

2−n+1
∑∞

i=0
λ(2i+ 1)xi = (1− x)−3/2;

see also sequence A001803 in OEIS [29].

Proof. Without loss of generality let x = 0. Let u ∈ X be a point and let j = |u ∩ y| be the intersection (the
number of common ones) of u and y. Let i = |u∩ yc| = |u| − j be the remaining number of ones in u. Then∑

u∈X

|d(u, x)− d(u, y)| =
∑
u∈X

|(i+ j)− (w − j)− i| =
∑
u∈X

|2j − w|,

where we have suppressed the dependence of i and j on u.
Let w be odd, then ∑

u∈X

|2j − w| =
∑

u:j≥dw/2e

(2j − w) +
∑

u:j≤bw/2c

(w − 2j).

http://oeis.org/A001803
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The two terms on the right are equal to each other, and thus

λ(w) =
∑
u∈X

j≥dw/2e

(2j − w) =

n−w∑
i=0

w∑
j=dw/2e

(2j − w)

(
n− w
i

)(
w

j

)

= 2n−w
[
2

w∑
j=dw/2e

j

(
w

j

)
− w

w∑
j=dw/2e

(
w

j

)]

= 2n−w
[
2w

w∑
j=dw/2e

(
w − 1

j − 1

)
− w

w∑
j=dw/2e

(
w

j

)]
= 2n−w

[
2w
(

2w−2 +
1

2

(
w − 1

(w − 1)/2

))
− w2w−1

]
= 2n−ww

(
w − 1

(w − 1)/2

)
= 2n−ww

(
w − 1

dw2 e − 1

)
. (20)

This proves (17) for w odd. The case of w even is very similar, with only minor changes:

1

2

∑
u∈X

|d(u, x)− d(u, y)| = 1

2

[ ∑
u∈X

j≥w
2 +1

(2j − w) +
∑
u∈X

j≥w
2 −1

(w − 2j)
]

= 2n−w−1
[ w∑
j=w

2 +1

(
w

j

)
(2j − w) +

w
2 −1∑
j=0

(
w

j

)
(w − 2j)

]

= 2n−w
[ w∑
j=w

2 +1

j

(
w

j

)
−

w
2 −1∑
j=0

j

(
w

j

)]

= 2n−ww
[ w∑
j=w

2 +1

(
w − 1

j − 1

)
−

w
2 −1∑
j=0

(
w − 1

j − 1

)]
= 2n−ww

[
2w−2 −

(
2w−2 −

(
w − 1
w
2 − 1

))]
= 2n−ww

(
w − 1

dw2 e − 1

)
,

i.e., the same as (20).
To prove (18), note that λ(2i) = 2n−2i(2i)

(
2i−1
i−1
)

and

λ(2i− 1) = 2n−2i+1(2i− 1)

(
2i− 2

i− 1

)
= 2n−2i(2i)

(
2i− 1

i− 1

)
= 2n−2ii

(
2i

i

)
,

as claimed. Finally, (19) is computed directly from (18). �

Recalling (12), we next aim to compute the average value 〈λ〉X = 2−2n
∑
x,y∈X λ(d(x, y)). For a fixed

x there are
(
n
w

)
vectors y such that d(x, y) = w, which we can use together with the expression for λ (17).

Somewhat surprisingly, the resulting sum has a closed-form expression. Namely, for any n ≥ 1 we have:

2−n
∑
x,y∈X

λ(d(x, y)) =

n∑
w=0

(
n

w

)
λ(w) =

n∑
w=1

2n−ww

(
n

w

)(
w − 1

dw2 e − 1

)
=
n

2

(
2n

n

)
. (21)



STOLARSKY’S INVARIANCE PRINCIPLE FOR FINITE METRIC SPACES 7

To prove this, let us write (11) for the Hamming space:
n∑
t=0

( t∑
i=0

(
n

i

))2
= 22n−1(n+ 2)− 2−n

∑
x,y∈X

λ(x, y).

Now from (16) and (17) we find that (21) is true for all n.

Remarks:
1. An identity related to (21) is the following:

∑n
w=1(−1)w+1

(
n
w

)
λ(w) =

(
2(n−1)
n−1

)
.

2. The numbers on either side of (21) as a function of n form sequence A002457 in OEIS.

Rephrasing (21), we obtain the following proposition.

Proposition 3.2. The average value of the kernel λ(x, y) over the entire space X equals

Λn :=
n

2n+1

(
2n

n

)
. (22)

Thus, the average value Λn ≈ n
2n+1 22n/

√
πn =

√
n/π2n−1, and it increases roughly by a factor of 2 as

the dimension n increases by one.
Using (21), we obtain a simplified form of the invariance principle (12) for the Hamming space. Namely,

DL2(Z) = Λn −
1

N2

N∑
i,j=1

λ(d(zi, zj)). (23)

Let
Aw :=

1

N
|{(z1, z2) ∈ Z2|d(z1, z2) = w}|

be the number of ordered pairs of elements in Z at distance w. The set of numbers A(Z) = {A0 =
1, A1, . . . , An} is called the distance distribution of the code Z. Using this concept, we can write the ex-
pression for discrepancy in final form.

Theorem 3.3 (STOLARSKY’S INVARIANCE FOR THE HAMMING SPACE). Let Z ⊂ {0, 1}n be a subset of
size N with distance distribution A(Z). Then

DL2(Z) = Λn −
1

N

n∑
w=1

Awλ(w) (24)

Estimating the central binomial coefficient, we can approximate λ(w) ≈ C2n
√
w for some constant

C < 1, and thus

DL2(Z) ≈ Λn − C
2n

N

n∑
w=1

Aw
√
w.

A topic that we discuss in more detail below is finding codes Z that have the smallest possible discrepancy
among all codes of their cardinality. An obvious observation from (24) is that among all subsets {x, y} of size
2 the smallest discrepancy is attained when d(x, y) = n. Indeed, we have DL2(Z) ≥ Λn − (1/2)λ(d(x, y)),
and the claim follows since λ(i) is monotone increasing as a function of i (19).

Using (14), we can express DL2(Z) in an equivalent form. Namely, from (9) the average value of the
kernel µ over X equals

〈µ〉X = 2n−1(n+ 2)− Λn,

and thus

DL2(Z) =
1

N

n∑
w=1

Awµ(w) + Λn − 2n−1(n+ 2).

http://oeis.org/A002457
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RANDOM CODES. To get a feeling of the possible values ofDL2(Z), let us compute the expected discrepancy
over the set of random codes of size N chosen in X with uniform distribution. Let X be a random vector
such that P (X = x) = 2−n for every x ∈ X and let Z = {z1, . . . , zN} be a subset formed of N independent
copies of X. Equivalently, one can choose each zi by uniformly and independently selecting the values of
each of the n coordinates.

For a given w, 1 ≤ w ≤ n and zi ∈ Z the probability Pr(d(zi, zj) = w) =
(
n
w

)
2−n, and thus the expected

number of pairs

E|{(zi, zj) : d(zi, zj) = w}| = N E[Aw(Z)] = N(N − 1)

(
n

w

)
2−n. (25)

Now using (21), we obtain that

E[〈λ〉Z] =
N − 1

N

n

2n+1

(
2n

n

)
.

Together with (24) we conclude as follows.

Proposition 3.4. The expected discrepancy of a random code of size N in {0, 1}n equals

E[DL2(Z)] =
n

N2n+1

(
2n

n

)
=

√
n

π

2n−1

N
(1− αnn−1), (26)

where αn < 1 is a constant.

To obtain the approximation in (26) we used standard inequalities for the central binomial coefficient (see
(46) below).

It is also easy to estimate the moments of DL2(Z). For instance

Var(Aw(Z)) = N(N − 1)
((n

w

)
2−n −

(
n

w

)2

2−2n
)
≤ EAw(Z).

Therefore, using (21), (25) and independence or pairwise distances, we obtain

Var(DL2(Z)) =
1

N2

n∑
w=1

λ(w)Var(Aw(Z)) ≤ N − 1

N

n

2n+1

(
2n

n

)
− E[DL2(Z)]

Similar results can be obtained if we limit ourselves to random linear subspaces of X of a given dimension
k, 1 ≤ k ≤ n. In this case, N = 2k and

EAw =
2k − 1

2n − 1

(
n

w

)
,

which is essentially the same as (25).
Concluding, we have shown that the expected discrepancy is inverse proportional to the relative size of the

random subset Z in X irrespective of whether Z is a linear subspace or a fully random subset of X.
For the spherical case, expected discrepancy of a random configuration of size N was computed in [8],

which showed that it is proportional to the quotient of the average distance on the sphere and N . In our case,
E[〈λ〉Z] = Λn/N, the quotient of the average value of λ(x, y) and N .

EXTENDING A CODE. Let Z ⊂ X be a code. For every vector z = (z1, . . . , zn) ∈ Z find zn+1 = ⊕ni=1zi
and adjoin this coordinate to z, forming a vector z′ = (z|zn+1). The set of vectors {z′|z ∈ Z} forms an
extended code Zex of length n+ 1. The discrepancy DL2(Zex) can be easily found from DL2(Z).

Proposition 3.5. Let Z be a linear code of length n = 2p− 1 and size N, then

DL2(Zex) = 2DL2(Z) +
1

2n+1

(
2n

n

)
. (27)
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Proof. Let A(Z) = {1, A1, . . . , An} be the distance distribution of Z, then the distance distribution of the
extended code is {1, A′i, i = 1, . . . , 2p}, where A′2j−1 = 0, A′2j = A2j−1 + A2j , j = 1, . . . , p − 1, and
A′2p = A2p−1. From (24) and (18)

DL2(Z) =
n

2n+1

(
2n

n

)
− 1

N

p+1∑
i=1

(A2i−1 +A2i)λ(2i),

where we formally put A2p = 0. When the code is extended, the length increases by one, and the value of
λ(w) doubles. We obtain

DL2(Zex) =
n+ 1

2n+2

(
2n+ 2

n+ 1

)
− 1

N

p+1∑
j=1

2A′2jλ(2j)

=
2n+ 1

n
Λn −

2

N

p+1∑
i=1

(A2i−1 +A2i)λ(2i) (28)

= 2DL2(Z) +
1

n
Λn. (29)

Upon substituting (22),we obtain (27). �

3.1. Krawtchouk polynomials. Krawtchouk polynomials form a family of discrete orthogonal polynomials
on {0, 1, . . . , n} with respect to the weight

(
n
i

)
2−n. A Krawtchouk polynomial of degree k is defined as

K
(n)
k (x) =

(
n

k

)
2F1(−k,−x;−n; 2)

[24, p.183], [26, p.237]. We note that our definition differs from the standard one by a factor
(
n
k

)
, which gives

K
(n)
k (0) =

(
n
k

)
(the standard normalization gives the value 1 at x = 0). In this section we list properties of

the Krawtchouk polynomials used below in our derivations.
The explicit expression for the polynomial of degree k = 0, 1, . . . , n is as follows:

K
(n)
k (x) =

k∑
i=0

(−1)i
(
x

i

)(
n− x
k − i

)
. (30)

The orthogonality relations have the form

〈K(n)
i ,K

(n)
j 〉 :=

n∑
l=0

(
n

l

)
K

(n)
i (l)K

(n)
j (l) = 2n

(
n

i

)
δij (31)

and thus ‖K(n)
k ‖2 =

(
n
k

)
.

From (30) it is easily seen that

K
(n)
k (x) = (−1)kK

(n)
k (n− x) (32)

The generating function of the numbers K(n)
k (x) for integer x has the form

n∑
k=0

K
(n)
k (x)zk = (1 + z)n−x(1− z)x. (33)

Simple rearranging of the binomial coefficients in (30) yields the following symmetry relation:(
n

i

)
K

(n)
k (i) =

(
n

k

)
K

(n)
i (k). (34)
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Rewriting (31) with the help of (34), we obtain the expansion of the function δi(w) := 1(w = i), i =
0, 1, . . . , n into the basis (Kk):

δi(w) = 2−n
n∑
k=0

K
(n)
i (k)K

(n)
k (w), w = 0, 1, . . . , n. (35)

The Krawtchouk polynomials satisfy the following Rodrigues-type formula(
n

x

)
K

(n)
k (x) =

(
n

k

)
∇k
[(n− k

x

)]
, (36)

where∇f(x) := f(x)− f(x− 1) is the finite difference operator, [26], Eq.(9.11.10).
The following relation was proved in [21], Thm. 3.1.3:

n∑
k=0

(K
(n)
k (i))2 =

(
2n− 2i

n− i

)(
2i

i

)
/

(
n

i

)
. (37)

The next lemma is a particular case of a general result in the theory of spherical harmonics. We give a
short proof for completeness.

Lemma 3.6. Let x, y ⊂ X be such that d(x, y) = w. Then the convolution K(n)
k ∗ K(n)

m defines a radial
kernel on X according to the following identity:∑

z∈X

K
(n)
k (d(x, z))K(n)

m (d(z, y)) = 2nK
(n)
k (w)δk,m. (38)

Proof. Let u1, u2 ∈ X. As is easily seen, Kk(d(u1, u2)) =
∑
v∈X:|v|=k(−1)(v,u1+u2), where (v, u) =∑n

i=1 viui, the sum is evaluated mod 2, and where |·| denotes the Hamming weight. Thus,∑
z∈X

K
(n)
k (d(x, z))K(n)

m (d(z, y)) =
∑
z∈X

∑
|u|=k

(−1)(u,x+z)
∑
|v|=m

(−1)(v,z+y)

=
∑
|u|=k

∑
|v|=m

(−1)(u,x)+(v,y)
∑
z∈X

(−1)(u+v,z)

= 2n
∑
|u|=k

(−1)(u,x+y) = 2nK
(n)
k (d(x, y)). �

3.2. Dual view of discrepancy. To a code Z ⊂ X one associates a pair of distance distribution vectors,
A(Z) defined above, and a dual distribution A⊥(Z) = (A⊥0 , . . . , A

⊥
n ). The vectors A(Z) and A⊥(Z) are

connected by the following MacWilliams identities:

A⊥w =
1

N

n∑
i=0

K(n)
w (i)Ai, w = 0, 1, . . . , n (39)

Ai =
N

2n

n∑
w=0

K
(n)
i (w)A⊥w , i = 0, 1, . . . , n. (40)

In the context of spherical sets, i.e., subsets of Sd(R), the quantities analogous to A⊥w are called moments of
the code [14], [10, p. 200]. In the particular case that Z ∈ X is a linear k-dimensional subspace, the dual
code of Z is defined as Z⊥ = {x ∈ X | (x, z) = 0 for all z ∈ Z} where (·, ·) is the inner product modulo 2.
Then the dual distance distribution of Z equals the distance distribution of Z⊥, i.e., A⊥(Z) = A(Z⊥) [27,
Eq.(5.13)].
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Expressing the discrepancy of the code Z via the dual distance distribution may simplify the computation
because it is often the case that either Z or Z⊥ has only a small number of distances. Substituting (40) into
(24), we obtain the relation

DL2(Z) = Λn −
1

2n

n∑
i=0

A⊥i

n∑
w=0

K(n)
w (i)λ(w) (41)

= − 1

2n

n∑
i=1

A⊥i

n∑
w=0

K(n)
w (i)λ(w), (42)

where (42) follows from (21), (22), and the fact that A⊥0 = 1. Expression (42) may be preferable over (24),
(41) because these formulas involve subtraction of two large numbers, while (42) gives an explicit form of
their difference. Note that relations (41) and (42) are valid for linear as well as unrestricted subsets Z.

The sum on w in (42) can be written in a different form. Namely, a calculation involving the generating
function (33) shows that the following identities

n∑
w=0

K(n)
w (i)2n−ww

(
w − 1

dw2 e − 1

)
= (−1)i

n−1∑
w=0

K(n−1)
w (2i− 2)

(
n− 1

w

)
(43)

hold true for all n ≥ 1, 1 ≤ i ≤ 1
2 (n+ 1).

Remarks: 1. Since λ(2j − 1) = λ(2j), we can combine the consecutive Krawtchouk numbers in (42)
using a standard relation K(n)

2j−1(i) + K
(n)
2j (i) = K

(n+1)
2j (i), however, this does not seem to lead to further

simplifications.
2. As a side observation, we note another possible interpretation of the numbers on the left (or on the right)

in (43). Denote them by ai(n), n = 1, 2, . . . . Apparently, the coefficients of the power series expansion

(1− 4x)(2i−3)/2 = 1 +
∑
n≥1

cnx
n

are given by cn = (−1)iai(n+1) for all n ≥ i. Observe that the sequence (ai(n), n ≥ 1) for different values
of i is related to sequences A002420-A002424 in OEIS [29].

Relations (42), (43) sometimes enable one to compute the discrepancy of the code Z in closed form. For
instance, let n = 2m − 1 and suppose that Z is the Hamming code. Its size is N = 2n−m and A⊥i = 2m − 1
if i = 2m−1 = (n+ 1)/2 and A⊥i = 0 for all other positive i ([27], §1.9). We obtain the following statement.

Theorem 3.7. The quadratic discrepancy of the Hamming code Z = Hm of length n = 2m − 1,m ≥ 2
equals

DL2(Hm) =
n

2n

(
n− 1
n−1
2

)
. (44)

For large n the discrepancy DL2(Hm) =
√
n/4π(1− o(1)).

Proof. The right-hand side of (42) contains a single nonzero term for i = 2m−1 = (n + 1)/2. Substituting
(43) in (42), we obtain

DL2(Hm) = − n

2n

n∑
w=0

K(n)
w ((n+ 1)/2)λ(w)

= − n

2n

n−1∑
w=0

K(n−1)
w (n− 1)

(
n− 1

w

)
.

http://oeis.org/A002420
http://oeis.org/A002424
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From (30) we observe that K(n)
k (n) = (−1)k

(
n
k

)
, so we obtain

DL2(Hm) = − n

2n

n−1∑
w=0

(−1)w
(
n− 1

w

)2

,

which turns into (44) upon engaging the identity
∑p
i=0(−1)i

(
p
i

)2
= (−1)p/2

(
p
p/2

)
valid for even p, and

noticing that (−1)(n−1)/2 = −1. �

Another proof of this theorem is given below after we develop a Fourier transform view of discrepancy.
Note that for the parameters of the Hamming code we find |X|/N ≈ n, and thus,DL2(Hm) ≈ 1

nE[DL2(N)],
where E[DL2(N)] is the expected discrepancy given in (26).

For the dual code H⊥m (the Hadamard, or simplex code) the discrepancy is found immediately from (24)
and the distance distribution given before the theorem. We obtain

DL2(H⊥m) = Λn −
n

N
λ((n+ 1)/2). (45)

Let us give some numerical examples.

DISCREPANCY OF THE HAMMING CODES AND THEIR DUALS

HAMMING CODES Hm , n = 2m − 1, N = 2n−m

m 4 5 6 7 8 9 10
DL2(Z) 1.571 2.239 3.179 4.50471 6.377 9.027 12.763
EDL2(N) 17.336 50.058 143.016 406.518 1152.64 3264.14 9238.04

HADAMARD CODES H⊥m , n = 2m − 1, N = 2m

2−nDL2(Z) 0.058 0.042 0.030 0.021 0.015 0.011 0.008
2−nEDL2(N) 0.068 0.049 0.035 0.025 0.018 0.012 0.009

The Hamming codes form dense, regular packings of the space, and their discrepancy is much smaller than
the average over all subsets of the same size. In Sec. 5 we show that they in fact minimize the discrepancy
among all codes of the same cardinality. In contrast, the code H⊥m has only one nonzero distance, and its
discrepancy approaches the average as n increases (since the numbers are large, we scale them by 2−n).

To give one more example, the discrepancy of the Golay code of length n = 23, N = 4096 equals 390.75
while EDL2(N) = 2755.68, and again it is a minimizer of discrepancy among all codes of the same size.

Many more examples can be generated since the distance distributions of many codes are known explicitly
[27] (and some of them are conveniently listed online in OEIS [29]).

3.3. Discrepancy and the sum of distances. The original form of the Stolarsky principle (4) connects
DL2(Z) for spherical sets with the sum of distances in Z. For the Hamming space, this is not exactly
true, but is in fact true approximately. To begin, we note that the average distance in X equals

〈d〉X = 2−2n
∑
x,y∈X

d(x, y) =
n

2
.

Next, observe that the average distance in Z equals

〈d〉Z =
1

N2

N∑
i,j=1

d(zi, zj) =
1

N

n∑
w=1

wAw.

The generating functions of the numbers (Aw) and (A⊥w) are related by the MacWilliams equation
n∑

w=0

Aiy
i =

N

2n

n∑
w=0

A⊥w(1 + y)n−i(1− y)i,
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implied by (40) and (33). Differentiating on i and setting y = 1 we obtain

〈d〉Z =
n

2
− A⊥1

2
.

Thus, 〈d〉Z ≤ n
2 with equality if and only if A⊥1 = 0.

The central binomial coefficient can be bounded as follows:

c√
nπ
≤
(
2n
n

)
22n

≤ 1√
nπ

, (46)

where c = cn is a constant that is greater than 0.9 for all n ≥ 2 and tends to 1 as n increases. Substituting
these estimates in (24), we obtain

Proposition 3.8. For any code Z ⊂ X

2n√
πn

(
c
n

2
−
(n〈d〉Z

2

)1/2)
≤ DL2(Z) ≤ 2n√

πn

(n
2
− c

2
〈d〉Z

)
(47)

DL2(Z) ≤ c′ 2n√
πn

n

2
, (48)

where (48) holds if A⊥1 = 0, and c′ approaches 1/2 as n increases.

Proof. From (46) we obtain

c2n√
πn

n

2
≤ Λn ≤

2n√
πn

n

2
,

c2n√
πn

i ≤ λ(2i) ≤ 2n√
π

√
i.

For the upper bound in (47) we compute

DL2(Z) ≤ 2n√
πn

n

2
− c

N
√
πn

n/2∑
i=1

(A2i−12n−1(2i− 1) +A2i2
n−1(2i))

(assuming n is even), and this yields (47). The case of odd n is similar. The lower bound is obtained from
(24) once we compute (again assuming that n is even)

1

N

n∑
w=1

Awλ(w) ≤ 2n√
π

n/2∑
i=1

(A2i−1

N
+
A2i

N

)√
i ≤ 2n√

2π
〈d〉1/2Z ,

where the last step uses Jensen’s inequality. �

The bounds in this proposition apply to any code of a given length, without accounting for the structure of
the code. The lower bound in (47) trivializes if 〈d〉Z = n

2 , but provides useful estimates in other cases.
Let d(N) := minZ:|Z|=N 〈d〉Z be the smallest possible average distance over codes of a given size. The

problem of bounding d(N) was raised in [1] and was the subject of a number of follow-up papers. Under the
assumption N ≤ 2n−1 a bound d(N) ≥ n

2 −
2n−2

N was proved in [22]. Substituting it in (47), we can state
the following result.

Proposition 3.9. For any Z ⊂ X, |Z| = N ≤ 2n−1

DL2(Z) ≤ 2n√
πn

(
c′
n

2
+
c2n−3

N

)
.

Other lower bounds on d(N) are given in [22] and subsequent works, with the best known results appearing
in the recent paper [38].
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An example of configurations that minimize the average distance is given by subcubes in X of codimen-
sions 1 and 2. Let Z = Cn−m := {0, 1}n−m × {0}m be a subcube of X. The distance distribution of Z is
Aw =

(
n−m
w

)
, 1 ≤ w ≤ n−m and Aw = 0, n−m < w ≤ n. The discrepancy of Z equals

DL2(Cn−m) = Λn −
1

2n−m

n−m∑
w=1

(
n−m
w

)
λ(w).

For m = 1 this can be evaluated in closed form, for instance by computer [30], and we obtain
n−1∑
w=1

(
n− 1

w

)
λ(w) = (n− 1)

(
2n− 2

n− 1

)
(Apéry numbers, A005430) and

DL2(Cn−1) =
n

2n+1

(
2n

n

)
− n− 1

2n−1

(
2n− 2

n− 1

)
.

The question whether subcubes are also discrepancy minimizers is likely resolved in the negative, see the
discussion in Section 5 below.

4. A FOURIER TRANSFORM VIEW OF DISCREPANCY

In this section we derive a representation of the discrepancy DL2(Z) in the transform domain. In view of
(12) this amounts to representing the kernel λ(x, y) (17) as a linear combination of the Krawtchouk polyno-
mials. A direct approach is to compute the inner product of the expression (17) with K(n)

k for all k, but this
looks difficult. At the same time, from (9) it suffices to find the expansion of µt(x, y) = |B(x, t) ∩ B(y, t)|
(cf. (13)) and then “integrate” on t. Let φt = 1{0,1,...,t} be the indicator function of the set {0, 1, . . . , t}, then
µt = φt ∗ φt is a convolution of φ with itself; in more detail,

µt(x, y) =
∑
z∈X

φt(d(x, z))φt(d(z, y)). (49)

Lemma 4.1. Let x, y ∈ X be such that d(x, y) = w. The Krawtchouk expansion of the kernel µt(x, y), t =
0, . . . , n has the following form:

µt(x, y) = 2−n
n∑
k=0

ck(t)2K
(n)
k (w), (50)

where

c0(t) =

t∑
i=0

(
n

i

)
(51)

ck(t) =

{
K

(n−1)
t (k − 1), t = 1, . . . , n− 1

0 t = n
, k = 1, . . . , n. (52)

Proof. Let φt(l) be the function defined before the lemma, and let

φt(l) = 2−n
n∑
k=0

ck(t)K
(n)
k (l), l = 0, 1, . . . , n

be its Krawtchouk expansion, where ck = 〈φt,K(n)
k 〉/

(
n
k

)
. Since K(n)

0 ≡ 1, we obtain

c0(t) =

t∑
i=0

(
n

i

)
.

http://oeis.org/A005430
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Further, for k = 1, . . . , n; t ≤ n− 1 we compute

ck(t) =
1(
n
k

) t∑
i=0

(
n

i

)
K

(n)
k (i) =

1(
n
k

) n
k

(
n− 1

t

)
K

(n−1)
k−1 (t), (53)

=
1(
n−1
k−1
)(n− 1

t

)
K

(n−1)
k−1 (t),

= K
(n−1)
t (k − 1),

where the expression for the sum in (53) follows by (36) and the transition to the last line uses (34). Finally,
for t = n from (32) we obtain

ck(n) =
1(
n
k

) n∑
i=0

(−1)i
(
n

i

)
= 0.

Now from (49) we obtain

µt(x, y) =
∑
z∈X

φt(d(x, z))φt(d(z, y))

= 2−2n
∑
z∈X

n∑
k=0

ck(t)K
(n)
k (d(x, z))

n∑
m=0

cm(t)K(n)
m (d(z, y))

= 2−2n
n∑
k=0

n∑
m=0

ck(t)cm(t)
∑
z∈X

K
(n)
k (d(x, z))K(n)

m (d(z, y)),

which together with (38) yields (50). �

Calculations of the Fourier expansion of the intersection of metric balls form a recurrent topic in papers
devoted to uniformly distributed sets; see [17, Eq.(10)] for the spherical case, [32, Eq.(4.52)] for general
two-point homogeneous spaces, and [37, Appendix A] for Rn. Additionally, in the spherical case, a function
analogous to µ(x, y) was studied in [15] in the context of Hilbert space reproducing kernels. Casting our
results in their language, we note that µ(x, y) is a reproducing kernel for the space of real functions f on X

representable in the form

f(x) =

n∑
t=0

∑
u∈X

g(u, t)1B(u,t)(x) (54)

with respect to the inner product (f1, f2) =
∑
t

∑
u g1(u, t)g2(u, t), viz.,

(µ(·, y), f) = f(y).

Lemma 4.1 immediately implies a Krawtchouk expansion for the kernel λ(x, y).

Corollary 4.2. Let x, y ∈ X be such that d(x, y) = w. We have

λ(x, y) = λ(w) =

n∑
k=0

λ̂kK
(n)
k (w) (55)

λ̂0 = Λn, λ̂k = −2−n
(

2n− 2k

n− k

)(
2k − 2

k − 1

)
/

(
n− 1

k − 1

)
, k = 1, 2, . . . , n, (56)

and thus the kernel (−λ(x, y)) is positive definite up to an additive constant.

Proof. Starting with (9) and using (50), we find that

λ(x, y) = 2n−1(n+ 2)−
n∑
t=0

µt(x, y)
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= 2n−1(n+ 2)− 2−n
n∑
t=0

( t∑
i=0

(
n

i

))2
− 2−n

n∑
k=1

n−1∑
t=0

ck(t)2K
(n)
k (w).

On account of (16), (21), (22), the constant term λ̂0 = Λn, and

λ̂k = −2−n
n∑
t=0

ck(t)2, k = 1, . . . , n.

Since ck(n) = 0, we obtain λ̂k = −2−n
∑n−1
t=0 K

(n−1)
t (k − 1)2, and by (37) this yields (56).

�

5 10 15 20
w

0.5

1.0

1.5

λ (w)

1 2 3 4 5 6
w

0.2

0.4

0.6

0.8

1.0

1.2

λ (w)

FIG.1: The plots show λ(w) for n = 20 (left figure) and n = 6 (right figure). In the right plot we also show the polynomial (55) that
is equal to λ(w) at integer values of w. The plots are scaled by 2−n.

Remarks: 1. The constant coefficient of the Fourier expansion is the expectation of the function with
respect to the underlying measure, and this is indeed the case in (55); cf. (22).

2. The fact that λ is an invariant negative definite kernel implies, independently of (12), that 〈λ〉X ≥ 〈λ〉Z
for any Z ⊂ X. This is the well-known “inequality about the mean” [25].

3. Taking w = 0 in Eq. (55) we can rewrite the expansion for λ in the following form:

λ(w) =

n∑
k=1

λ̂k(K
(n)
k (w)−K(n)

k (0)).

It is easy to check that the coefficients λ̂k are symmetric with respect to the middle, and their absolute
values decrease for k < n/2 and increase for k > n/2.

Lemma 4.3. We have

λ̂i = λ̂n−i+1, i = 1, . . . , n/2; n even

λ̂n+1
2 −i

= λ̂n+1
2 +i; i = 1, . . . ,

n− 1

2
; n odd

max
1≤k≤n

λ̂k =

{
λ̂n

2
= λ̂n

2 +1 = −2−n n
2n−2

(
n
n/2

)
, n even

λ̂n+1
2

= −2−n
(n−1

n−1
2

)
, n odd.

Proof. The statements about the symmetry are checked directly using (56). To prove the claim about maxk λ̂k,
we compute

λ̂k

λ̂k−1
=

2k − 3

2n− 2k − 1
.
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For n odd this quantity is less than one for k ≤ (n + 1)/2 and greater than one for k ≥ (n + 3)/2. Thus
the sequence (|λ̂k|)k is monotone decreasing till k = (n + 1)/2 and monotone increasing after that, with a
unique minimum at (n+ 1)/2. Similarly, for n we observe that λ̂n/2 = λ̂n

2 +1 and both attain the maximum
value. Finally, the expressions for this value follow directly from (56) for both odd and even n. �

We are now in a position to compute a transform-domain representation of the discrepancy of the set
Z ⊂ X. The following theorem, which gives an explicit form of the formula for discrepancy found earlier in
(42), is immediate.

Theorem 4.4. Let Z ⊂ X be a code of size N with dual distance distribution (A⊥k , k = 0, . . . , n) (40). Then

DL2(Z) = 2−n
n∑
k=1

(
2n−2k
n−k

)(
2k−2
k−1

)(
n−1
k−1
) A⊥k (57)

For instance, for the Hamming code the dual distance distribution contains only one nonzero coefficient,
A⊥(n+1)/2 = n. From (57) we obtain

DL2(Hm) = −nλ̂n+1
2
. (58)

which matches the expression for DL2(Hm) derived earlier in (44).
As noted in Remark 1 before Lemma 4.3, Fourier expansion of the quadratic discrepancy (57) does not

include the constant term; see also [32] for the case of the Euclidean sphere.

5. DISCREPANCY AS A POTENTIAL FUNCTION ON X

In this section we study configurations in {0, 1}n that minimize discrepancy among all codes of the same
cardinality. Trivial examples are given byZ = {0, 1}n andZ = {x},where x is any point in the space, which
have discrepancy 0 (for the entire space this follows from the definition and for singletons this is implied by
(42)).

Let Z ⊂ X be a code and let f(x, y) = f(d(x, y)) be a function on X × X that depends on the distance
between the arguments. The potential energy of Z with respect to f is defined as

Ef (Z) =
1

N

N∑
i,j=1
i6=j

f(d(zi, zj)). (59)

To relate discrepancy of the code to this definition, define a potential function f : {1, . . . , n} → R by setting

f(x, y) = f(d(x, y)) = Λn − λ(d(x, y)). (60)

By Corollary 4.2, the function f is positive definite, i.e., it is contained in the nonnegative cone of the
Krawtchouk basis. The discrepancy of the code Z equals

DL2(Z) =
1

N
(Λn + Ef (Z)).

Thus, DL2(Z) is proportional to the potential energy of the code with respect to f (up to an additive term
which can be removed by adjusting the definition of f ).

Universal bounds on the discrepancy of a code of size N can be obtained using linear programming. For
the ease of writing, we consider an LP problem for the maximum value of 〈λ〉Z rather than the minimum of
Ef . By Stolarsky’s invariance, Theorem 3.3, the value of the linear program

max
{ n∑
k=1

Akλ(k)
∣∣∣ n∑
k=1

AkK
(n)
i (k) ≥ −

(
n

i

)
, i = 1, . . . , n;

n∑
k=1

Ak = N − 1, Ak ≥ 0
}

(61)
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gives a lower bound to DL2(Z), and so does any feasible solution of the dual LP problem. The dual problem
has the following form:

min
{ n∑
i=0

(
n

i

)
hi − h0N

∣∣∣ n∑
i=0

hiK
(n)
i (k) ≤ −λ(k), k = 1, . . . , n;hi ≥ 0, i = 1, . . . , n

}
(62)

where we used the fact that K(n)
k (0) =

(
n
k

)
. This approach is rooted in the works of Delsarte, and the first

paper to apply it to the problem of estimating energy of point sets was [39] which addressed the case of
spherical codes. For finite spaces an analogous bound on the energy of the code was derived in [3] which
showed the following proposition (we state it for the case of f = λ).

Proposition 5.1. Let Z ⊂ {0, 1}n be a code of size N and let Eλ(Z) := 1
N

∑
i,j λ(d(zi, zj)) be the energy

associated with the potential function λ(i). Let h(i) =
∑n
k=0 hkK

(n)
k (i) be a polynomial on {0, 1, . . . , n}

such that (a), hk ≥ 0 for all k ≥ 1 such that A⊥k > 0 and (b), h(i) ≤ −λ(i) for all i ≥ 1 such that Ai > 0.
Then

Eλ(Z) ≤ h(0)−Nh0 (63)
with equality if and only if all the inequalities in the assumptions (a),(b) are satisfied with equality.

Clearly, the bound (63) is a rephrasing of the dual problem (62), and the conditions for equality are just the
corresponding complementary slackness conditions. Let DL2(n,N) be the minimum discrepancy (6), then

DL2(n,N) = Λn −
1

N
Eλ(n,N), (64)

where
Eλ(n,N) = max

Z⊂{0,1}n,|Z|=N
Eλ(Z).

A polynomial that satisfies the constraints of the problem (62), gives a universal boundDL2(Z) ≥ DL2(n,N)
for all codes of cardinality N irrespective of their distance distribution (this is because these constraints are
more stringent than in Proposition 5.1).

Finding feasible vectors for the problem (62) in some cases is aided by our knowledge of the Krawtchouk
coefficients of the energy function given in (56), see for instance the proof of (67) below. This information
can be used for constructing h(x) as long as we satisfy the inequalities h(i) ≤ f(i), although controlling
these conditions is generally not immediate. We also note that, from (19), the function λ(2i) is “concave,”
i.e., ∆2(λ(2i)) < 0 for all i ≥ 1, where ∆2 is the second finite difference.

In the next theorem we give some simple bounds on Eλ(N) which will be used in examples below.

Theorem 5.2. For any N ≥ 1

Eλ(n,N) ≤ (N − 1)λ(n). (65)

For n = 2t− 1, t ≥ 2

Eλ(n,N) ≤

λ(t)(N − 1/2) t even

λ(t)
n+1 (Nn− (n− 1)/2) t odd.

(66)

For any N ≥ 1

Eλ(n,N) ≤

{
NΛn + (2n −N)λ̂n+1

2
n odd

NΛn + (2n −N)λ̂n
2

n even.
(67)

Proof. We have argued earlier, after Theorem 3.3, that (65) holds for N = 2. To prove it for any N , take
the constant polynomial h(x) = −λ(n). The monotonicity condition (19) implies that h(i) ≤ −λ(i) for all
i = 1, . . . , n, and the claim follows from (63).
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To show (66), choose h(x) = h0 + h1(K
(n)
1 (x) +K

(n)
n (x)), where h1 = λ(t)

4t and

h0 = −λ(t), t even; h0 = −λ(t)
(

1− 1

2t

)
, t odd.

To argue that h(i) ≤ −λ(i) for all i = 1, . . . , nwe note that h(i) = λ(i) for i about n/2 (for t−1 ≤ i ≤ t+2
if t is even and t− 2 ≤ i ≤ t+ 1 if it is odd). The other conditions are confirmed by using the “convexity” of
−λ(i), relation (19) and K(n)

1 (x) = n − 2x,K
(n)
n (l) = (−1)l, l = 0, 1, . . . , n; we omit the details. Finally,

(66) is obtained by substituting h0 and h(0) = h0 + h1(n+ 1) into (63) and simplifying.
Now let us prove (67). For this, we take a polynomial of the following form:

h(w) = −λ(w) +mn2nδ0(w) = −
n∑
k=0

λ̂kKk(w) +mn

n∑
k=0

Kk(w), w = 0, . . . , n,

where mn := max1≤k≤n λ̂k and the expansion of δ0(w) is given in (35). By construction we have that the
coefficients hk = mn − λ̂k ≥ 0, k = 1, . . . , n and h(w) = −λ(w), w = 1, . . . , n. Further,

h(0) = 2nmn, h0 = mn − λ̂0 = mn − Λn,

and thus
Eλ(n,N) ≤ h(0)−Nh0 = 2nmn −N(mn − Λn) = NΛn + (2n −N)mn.

Now (67) follows upon substituting mn from Lemma 4.3. �

Using (64), we obtain the following bounds on discrepancy.

Corollary 5.3. For any N ≥ 1

DL2(n,N) ≥ Λn −
N − 1

N
λ(n). (68)

For n = 2t− 1, N ≥ 1

DL2(n,N) ≥

Λn − 2N−1
2N λ(t) t even

Λn − Nn−(n−1)/2
N(n+1) λ(t) t odd.

(69)

For any N ≥ 1

DL2(n,N) ≥

−( 2n

N − 1)λ̂n
2
, n even

−( 2n

N − 1)λ̂n+1
2
, n odd.

(70)

We point out that bounds (65) and (67) can be also obtained directly from (24) and (57), respectively,
using the fact that λ(w) is monotone nondecreasing as a function of w and that the middle coefficient λ̂n

2
(or

λ̂n+1
2

) is the largest among the Krawtchouk coefficients of λ(w). The bound (69) does not seem to have an
immediate direct proof.

We continue with some examples of discrepancy-minimizing configurations. The examples also show that
neither of the bounds (69) and (70) is uniformly better than the other one.

1. The repetition code Z = (0n, 1n). From (24) we have DL2(Z) = Λn − 1
2λ(n), and An = 1 and

Ak = 0 for k = 1, . . . , n − 1. This matches the bound (68) with equality. Clearly the only case when the
bound (68) can be attained is N = 2.

2a. The Hamming codeZ = Hm,m ≥ 2.We have n = 2m−1, N = 2n−m. Substituting these parameters
into (70), we find

DL2(n,N) = Λn −
1

N
Eλ(N) ≥ −nλ̂n+1

2

which exactly matches the value DL2(Hm) given in (44), (58). This confirms optimality of the Hamming
code.
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2b. The shortened Hamming code Z = Hs
m,m ≥ 2. Shortening means taking a half of the codewords

in Hm that contain zero in some fixed coordinate and removing this coordinate. This results in a code
of length n = 2m − 2 and cardinality N = 2n−m. The dual code Z⊥ has distance distribution A⊥n/2 =
n+2
2 , A⊥(n/2)+1 = n

2 , and A⊥k = 0 for all other k ≥ 1. Substituting into (57) and using Lemma 4.3, we
conclude that DL2(Z) meets the case of n even in (67). This shows that the shortened Hamming code is a
discrepancy minimizer.

Experimentally, also the twice shortened Hamming code is LP-optimal (is a discrepancy minimizer), al-
though it does not meet the bounds in Corollary 5.3.

3. The following codes were found to be discrepancy minimizers by computer:
(i) the Golay code with n = 23, N = 4096,

(ii) the shortened Golay code,
(iii) the twice shortened Golay code,
(iv) the quadratic residue code with n = 17, N = 512 (A028381) ,
(v) the 2-error-correcting BCH codes with n = 31, N = 221 and n = 127, N = 2113 and their shortened

codes.
It is likely that the results in (v) extend to all BCH codes of length n = 2m−1, N = 2n−2m form odd. In this
case, the dual distance distribution has three nonzero coefficients A⊥w for w = 2m−1 ± 2(m−1)/2, w = 2m−1

[27], and one needs to design a polynomial that equals λ(w) for these values of w.

Recall that the repetition codes for odd n, codes formed of a single vector, the Hamming codes, and the
binary Golay code of length 23 exhaust the list of all perfect codes in {0, 1}n [27, Sec. 6.10]. This enables us
to make the following observation.

Theorem 5.4. Perfect codes in {0, 1}n are discrepancy-minimizing configurations.

If the code is a discrepancy minimizer, its dual is not necessarily a minimizer or even LP-optimal for the
discrepancy problem. Indeed, while the Hamming codes are optimal, this is not true for their duals, i.e., the
Hadamard codes. For instance, the dual code H⊥3 of length n = 7 has distance distribution A4 = 7 and
Ak = 0 for all other k ≥ 1. For the class of Hadamard codes we have n = 2m − 1, N = 2m,m ≥ 2. Using
the case of even t in (66), we obtain the bound

Eλ(n,N) ≤ λ
(n+ 1

2

)
(n+ 1/2)

and the codeZ spanned over F2 by 1110000, 0011100, 0000111 meets it with equality. It has a strictly smaller
value of discrepancy than H⊥3 (123/32 vs. 315/32), and its distance distribution vector (0, 0, 3, 2, 1, 1, 0) is
optimal for the LP problem. Similar examples can be constructed for larger m.

Some of the usual suspects such as the extended Golay code of length n = 24, the Nordstrom-Robinson
code of length n = 16 and other codes in the family of Kerdock codes, Reed-Muller codes of small length,
or the subcubes Cn−m are not LP optimal. We did not attempt to examine the question whether the distance
distributions produced by the linear program (61) for the parameters of these examples correspond to actual
codes (a priori this is not guaranteed, and some authors resort to the term quasicode to account for this).

We conclude this section by collecting the bounds on DL2(n,N) obtained in this paper. The following
theorem proves the inequalities mentioned in the Introduction.

Theorem 5.5. For large n and N = o(2n) we have the asymptotic bounds

c
1√
n

2n

N
≤ DL2(n,N) ≤ C

√
n

2n

N
(71)

for some constants c, C. The discrepancy DL2(n,N) is bounded away from zero unless 2n√
n

= o(N). If
N = 2rn, 0 < r < 1, then

(logN)−1/2Nα . DL2(n,N) . (logN)1/2Nα,

http://oeis.org/A028381
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where α = 1
r − 1.

Proof. The upper bound follows from Proposition 3.4 upon using (46). In the same way, the lower bound in
(71) follows from (70) and Lemma 4.3. �

6. EXTENSIONS AND OPEN QUESTIONS

6.1. Generalized Stolarsky’s identities. We begin with a simple generalization of Theorem 2.1, obtained
when the definition of DL2(Z) in (1) is extended to a weighted sum. Define

DL2

G (Z) =

n∑
t=0

gt(Dt(Z))2,

where G = (g0, g1, . . . , gn) is a real vector and Dt(Z) is given in (2). The corresponding weighted version
of the invariance principle is given in the next theorem.

Theorem 6.1. Let Z ⊂ X be a subset of size N and let gi ≥ 0, i = 0, 1, . . . , n and γ(t) :=
∑n
i=t gt. Then

DL2

G (Z) = 〈λG〉Z − 〈λG〉X, (72)

where for x, y ∈ X

λG(x, y) :=
1

2

∑
z∈X

|γ(d(x, z))− γ(d(y, z))|.

Proof. The proof is close to the proof of Theorem 2.1. Similarly to (8) we obtain

N∑
t=0

Dt(Z)2 =
1

N2

N∑
i,j=1

n∑
t=0

gt|B(zi, t) ∩B(zj , t)| −
1

|X|

n∑
t=0

gt|B(u, t)|2. (73)

Since gi ≥ 0 for all i, the function γ(t) is monotone nonincreasing, and the calculation in (9) takes the
following form:

n∑
t=0

gt|B(x, t) ∩B(y, t)| =
n∑
t=0

gt
∑
z∈X

1B(x,t)(z)1B(y,t)(z) =
∑
z∈X

n∑
t=0

gt1B(x,t)(z)1B(y,t)(z)

=
∑
z∈X

n∑
t=max(d(z,x),d(z,y))

gt =
∑
z∈X

(n+ 1−min(γ(d(z, x)), γ(d(z, y)))

= |X|(n+ 1)−
∑
z∈X

min(γ(d(z, x)), γ(d(z, y)))

= |X|(n+ 1)−
∑
z∈X

1

2
{γ(d(z, x)) + γ(d(z, y))− |γ(d(z, x))− γ(d(z, y)|}

= |X|(n+ 1)−
∑
z∈X

γ(d(z, u)) +
1

2

∑
z∈X

|γ(d(z, x))− γ(d(z, y))|, (74)

where u is any fixed point in X. Similarly, Eq. (10) takes the form
n∑
t=0

gt|B(u, t)|2 =
1

|X|
∑
x,y∈X

{
|X|(n+ 1)−

∑
z∈X

γ(d(z, u)) +
1

2

∑
u∈X

|γ(d(u, x))− γ(d(u, y))|
}
. (75)

Using (75) and (74) in (73) finishes the proof. �
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For connected spaces such as Sd, weighed versions of the invariance principle were earlier considered in
[15, 34, 32]. Relation (72) applies to any finite metric space. In the case of the Hamming space X = {0, 1}n,
we can write (72) in a more specific form relying on the results of the previous sections. Rewriting (74) we
obtain

λG(x, y) =

n∑
t=0

gtµt(x, y) +
∑
z∈X

γ(d(z, u))− 2n(n+ 1),

where µt is given in (13). Now Theorem 4.1 implies the following.

Proposition 6.2. The Krawtchouk expansion of the kernel λG(x, y) has the form

λG(w) =
∑n

k=0
λ̂G,kK

(n)
k (w),

where w = d(x, y), λ̂G,0 = 〈λG〉X and

λ̂G,k = 2−n
∑n−1

t=0
(K

(n−1)
t (k − 1))2gt, k ≥ 1.

The weighted version of Stolarsky’s invariance principle for the Hamming space can be written in the
following form.

Theorem 6.3 (WEIGHTED STOLARSKY’S INVARIANCE). Let Z ⊂ X = {0, 1}n be a code with distance
distribution A(Z) and dual distance distribution A⊥(Z). Then

DL2

G (Z) =
1

N

n∑
w=1

AwλG(w)− 〈λG〉X

=
1

2n

n∑
k=1

A⊥k

n−1∑
t=0

gt(K
(n−1)
t (k − 1))2.

Further generalization, discussed in [7, 15], suggests to replace the indicator function of the metric ball in
(2) with an arbitrary radial function f(d(x, y)) : {0, . . . , n} → R. In other words, rather than starting with
the deviation from the uniform distribution for spheres in X, we build the notion of discrepancy starting with
a function on X. For a subset Z ∈ X define

DL2

f (Z) =
∑
x∈X

( 1

N

N∑
j=1

f(d(x, zi))−
1

|X|
∑
u∈X

f(d(x, u))
)2
.

Upon squaring on the right-hand side, this function gives rise to a radial kernel

F (x, y) =
∑
z∈X

f(d(x, z))f(d(z, y)),

cf. (49), and the corresponding version of the invariance principle expresses D as a difference between the
average of F over X and the average over Z. This approach can start with either f or F , where each of the
options has its own benefits. On the one hand, the function F corresponds to a potential on X (as in (60)) and
is related to the geometric nature of the problem. At the same time, it is not always easy to find f given F ,
although it is f that is required to define the discrepancy. On the other hand, starting with f , we can express
F as a convolution, which implies that F is a positive-definite radial kernel on X. This enables one to study
the problem of discrepancy minimization by linear programming as discussed in the previous section in a
special case.
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6.2. Metric association schemes. Suppose that the finite set X supports the structure of a commutative
association scheme with d classes R1, . . . , Rd whereby the distance d(x, y) is replaced by the value j such
that (x, y) ∈ Rj . It is easy to extend the definition of discrepancy and prove a corresponding version of
the invariance principle to this setting. We briefly discuss one special case which enables one to simplify the
invariance principle (7). Namely, suppose that the association scheme on X×X is metric, i.e., the pair (X, R1)
where R1 =: {(x, y) ∈ X2|d(x, y) = 1} forms a distance-regular graph [18]. Let Rj := {(x, y)|d(x, y) =
j}, j = 1, . . . , n be the set of pairs that have distance j in the graph, where n is the diameter of the graph and
let R0 := {(x, x)|x ∈ X}. The defining property of the association scheme is as follows: the number

pij(x, y) = |{u ∈ X|d(x, u) = i, d(y, u) = j}| (76)

depends only on the distance d(x, y). If d(x, y) = k, then this number is denoted by pkij and is called the in-
tersection number of the scheme. In particular, the numbers ni := p0ii = |{u ∈ X|d(u, x) = i}|, which do not
depend on x, are called the valencies of the scheme. For a metric association scheme A(X, R0, R1, . . . , Rm)
the numbers pkij 6= 0 only if |i− j| ≤ k ≤ i+ j, which guarantees that the triangle inequalities are satisfied.
A large number of metric association schemes are known in the literature [18].

For metric schemes, the general Stolarsky identity (7) admits certain simplifications.

Theorem 6.4. Let Z ⊂ X, |Z| = N be a code in a metric association scheme X of diameter n, and let
Ak = 1

N |{(z1, z2) ∈ Z2 | (z1, z2) ∈ Rk}|, k = 1, . . . , n. Then

DL2(Z) =
1

|X|

n∑
i,j=0

i+j∑
k=|i−j|

nkp
k
ij |i− j| −

1

N

n∑
k=1

Ak
∑
i,j

|i−j|≤k≤i+j

pkij |i− j|. (77)

Proof. The proof amounts to a direct calculation:∑
x,y∈X

∑
u∈X

|d(x, u)− d(y, u)| =
∑
x∈X

n∑
k=0

∑
y:(x,y)∈Rk

∑
i,j

|i−j|≤k≤i+j

∑
u∈X

(u,x)∈Ri,(u,y)∈Rj

|i− j|

=
∑
x∈X

n∑
k=0

∑
y:(x,y)∈Rk

n∑
i,j=1

pkij |i− j|

=
∑
x∈X

n∑
i,j=0

i+j∑
k=|i−j|

nkp
k
ij |i− j|.

The sums on i, j, k on the last line do not depend on x, which proves the equality

1

|X|2
∑
x,y∈X

∑
u∈X

|d(x, u)− d(y, u)| = 1

|X|

n∑
i,j=0

i+j∑
k=|i−j|

nkp
k
ij |i− j|.

Suppose that d(x, y) = k. As a part of the above calculation we have shown that∑
u∈X

|d(x, u)− d(y, u)| =
∑
i,j

|i−j|≤k≤i+j

pkij |i− j|.

Using these results in (7) finishes the proof. �

By definition, the kernel µt considered above in (13), can be expressed via the intersection numbers as fol-
lows: µt(x, y) =

∑t
i,j=0 p

w
ij ,wherew = d(x, y). This expression as well as (77) apply to all metric schemes;

however, they do not always lead to a simplified evaluation of DL2(Z). For instance, in the calculations for
the Hamming space we found it more convenient to argue from the first principles.
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6.3. Other related problems. Among natural extensions of the problems considered in this paper we men-
tion working out the details of the invariance principle in the nonbinary Hamming space and in the Johnson
space (the set of all binary n-vectors of a fixed Hamming weight). While the former likely is similar to the
binary case, the latter may reveal interesting combinatorial connections. As another problem of interest we
mention studying Lp discrepancies for finite spaces, as has been recently done for the spherical case in [33].
Bounds for Lp discrepancies in the Hamming space were obtained in a follow-up work [4].

While we found some examples of discrepancy-minimizing configurations in the Hamming space, we did
not attempt to exhaust or classify codes that minimize quadratic discrepancy. This question in general does
not look easy, and we do not have intuitively appealing conjectures regarding the minimizers. A related
problem is to further study relations between codes that have the smallest sum of distances and codes with
the smallest discrepancy in the Hamming space.

It is also possible to replace metric balls in the space with other geometric shapes in the definition of
discrepancy, establishing a corresponding version of invariance. For the spherical case this leads to interesting
results when spherical caps of all radii are replaced by the hemispheres or spherical wedges [6, 7, 31]. Bounds
on discrepancy for hemispheres in the Hamming space were recently derived in [4], while the question of
identifying other shapes of interest is still open.

Studies of the invariance principle in the spherical case also involve interesting analytic problems which
are to an extent absent in the finite case. For instance, absolute bounds on discrepancy arise by assuming that
the set Z forms a spherical design of strength t, meaning that the first tmoments of Z are zero. Estimating the
tail of the Fourier expansion of discrepancy then enables one to bound DL2(Z) for designs, and these bounds
asymptotically agree with the classical lower bounds for certain classes of designs; see [7, 16, 32] for details.
Finally, it is possible to replace finite point sets with general distributions on the sphere [7]. In the Hamming
space configurations that form t-designs do not necessarily have small discrepancy, and asymptotic bounds
necessarily involve increasing the dimension n (unlike the case of Sd where d is fixed while the size of the
set N increases). A question of interest for the Hamming space is to quantify gap to the uniform distribution
for different classes of codes. In particular, many code families come with known bounds on the minimum or
maximum distance, and this information could be useful for computing bounds on their discrepancy. Earlier
results of this kind for energy minimization were recently obtained in [13].

ACKNOWLEDGMENTS. I am grateful to Maxim Skriganov for detailed comments on the first version of
this paper, and to Peter Boyvalenkov and Patrick Solé for useful discussions. Computations were aided by
the Mathematica package fastZeil which is a part of the RISCErgoSum bundle written by the group of
Prof. Peter Paule from University of Linz, Austria [30].

This research was partially supported by NSF grants CCF1618603 and CCF1814487.

REFERENCES

[1] R. Ahlswede and G. O. H. Katona, “Contributions to the geometry of Hamming spaces,” Discrete Mathematics, vol. 17, no. 1, pp.
1–22, 1977.

[2] A. Ashikhmin and A. Barg, “Binomial moments of the distance distribution: Bounds and applications,” IEEE Trans. Inf. Theory,
vol. 45, no. 2, pp. 438–452, 1999.

[3] A. Ashikhmin, A. Barg, and S. Litsyn, “Estimates of the distance distribution of codes and designs,” IEEE Trans. Inf. Theory,
vol. 47, no. 3, pp. 1050–1061, 2001.

[4] A. Barg and M. Skriganov, “Bounds for discrepancies in the Hamming space,” preprint, arXiv:2007.09721, July 2020.
[5] J. Beck and W. W. L. Chen, Irregularities of Distribution. Cambridge, UK: Cambridge University Press, 1987.
[6] D. Bilyk and F. Dai, “Geodesic distance Riesz energy on the sphere,” Transactions of the AMS, vol. 372, no. 5, pp. 3141–3166,

2019.
[7] D. Bilyk, F. Dai, and R. Matzke, “The Stolarsky principle and energy optimization on the sphere,” Constr. Approx., vol. 48, pp.

31–60, 2018.
[8] D. Bilyk and M. Lacey, “One-bit sensing, discrepancy and Stolarsky’s principle,” Sbornik: Mathematics, vol. 208, no. 6, pp.

744–763, 2017, translation from the Russian, Mat. Sbornik, vol. 208, no. 6, pp.4–25.
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