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REPORT ON

ZHÌ-WĚI SŪN’S 1-3-5 CONJECTURE

AND SOME OF ITS REFINEMENTS

ANTÓNIO MACHIAVELO, ROGÉRIO REIS, AND NIKOLAOS TSOPANIDIS

Abstract. We report here on the computational verification of a re-

finement of Zh̀ı-Wěi Sūn’s “1-3-5 conjecture” for all natural numbers up

to 105 103 560 126. This, together with a result of two of the authors,

completes the proof of that conjecture.

1. Introduction

In a paper on refinements of Lagrange’s four squares theorem, Zh̀ı-Wěi

Sūn (孙智伟) made the conjecture that any m ∈ N can be written as a

sum of four squares, x2 + y2 + z2 + t2, with x, y, z, t ∈ N0, in such a way

that x + 3y + 5z is a perfect square. This is Conjecture 4.3(i) in [Sūn17],

and Zh̀ı-Wěi Sūn called it the “1-3-5 conjecture”. Qı̀ng-Hǔ Hóu (侯庆虎)

verified it up to 1010: see https://oeis.org/A271518. We report here on

our computational verification of this conjecture for allm ≤ 105 103 560 126.

This last number arose from the work [MT20], in which it was proved

that the 1-3-5 conjecture is true for all numbers

m >

(

10
4
√
35− 4

√
34

)4

≃ 105103560126.80255537.

Hence, the computation we are here reporting on, together with the main

result of [MT20], completes the proof that the 1-3-5 conjecture holds for all

natural numbers.

Along the way, we have used another conjecture of Sūn, at his own sug-

gestion, Conjecture 4.9(ii) of [Sūn19], the part whose content is as follows.

Conjecture 1 (Zh̀ı-Wěi Sūn). Any positive integer can be written as x2 +

y2 + z2 + t2 with x, y, z, t ∈ N0 such that x+3y+5z is a square, and either

x is three times a square, or y is a square, or z is a square.
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As we will see below, we checked this conjecture for all natural num-

bers up to 105 103 560 126, which implies the 1-3-5 conjecture for the same

range. We have noticed that, actually, for most numbers, one may drop the

possibility that z is a square. Moreover, it now seems that after some point

on, all numbers have a representation as in the statement of Conjecture 1,

but with x ∈ {0, 3} or y ∈ {0, 1}. This is the content of Conjecture 2 below.

2. The Modus Operandi

We will say that a quadruple (x, y, z, t) ∈ N
4
0 is a 1-3-5 representation

of m if x2 + y2 + z2 + t2 = m and x + 3y + 5z is a perfect square. Since

it is clear that if a number m has the 1-3-5 representation (x, y, z, t), then

(4x, 4y, 4z, 4t) is a 1-3-5 representation of 16m, in order to verify the 1-3-5

conjecture, we may disregard multiples of 16.

Early on, during the first computations we made, it was found out that,

apparently, only the following 15 numbers:

31, 43, 111, 151, 168, 200, 248, 263, 319, 456, 479, 871, 1752, 1864, 3544,

and their multiples by powers of 16, do not have a 1-3-5 representation

(x, y, z, t) where either x is three times a square or y a square. We used this,

together with Conjecture 1, to speed up the search.

Furthermore, while testing the program’s speed, and while running it for

values up to 107, and then up 108, it was noted that only 123 numbers have

a special 1-3-5 representation requiring x and y bigger than 4, and that the

last one of these was 779832. This observation motivated the introduction

of a “tolerance” input on the program, make it to exit whenever the list of

numbers to be checked was smaller than a certain size, and returning the

list of those numbers, which can then be checked individually in a faster

way.

To tackle the verification of the 1-3-5 conjecture up to the required num-

ber, 105 103 560 126, a program in the C programming language was written

that takes into account the above remarks, and runs as follows. Firstly, it

allocates the necessary memory for the range one is checking, ignoring the

multiples of 16. Then, it looks for all triplets (x, y, z) such that x+ 3y+ 5z

is a square, and either x is three times a square or y is a square. Each time

such a triplet is found, one removes from the appropriate memory the num-

bers m = x2+y2+ z2+ s, for all squares s with m in the desired range. The

program ends when the list of the remaining numbers has size less than a

prescribed number, which is part of the input.
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Since what is wanted is to check, for every integer below a given bound, if

there is an additive decomposition in four squares, the naive implementation

of such check would have a O(n3) complexity1. But the simple observation

that we can check the existence of the fourth square summand by subtract-

ing the summation of the first three to the integer that is tested, and check

that this result is a square, lowers this complexity to O(n
5

2 ). This is still

a complexity that makes the algorithm intractable for the desired bound.

Since we could not find a canonical ordering for the possible summands that

would allow to efficiently prune the search tree, the solution relied in the

classic space/time tradeoff. Thus, we represented the whole integer search

space as a bitmap, and with a O(n
3

2 ) search could sweep this space and

verify the conjecture. As a matter of fact, and because, as already men-

tioned, we can exhaust the whole search space with just a few instances of

the variable of the outer cycle, in practice the algorithm finishes in a O(n)

time.

The problem with this approach is that, because the size of the search

space is quite considerable, the memory space necessary to store the bitmap

representing the referred set was larger than the one available in our laptops.

Thus, the program does not try to cover the whole space of considered

integers in just one run, but splits this space in various slices, that are

searched independently. This has the advantage of a “parallelism for poor

people”, running the program on different slices in different laptops, but

has the drawback that the program for the higher slices, by the nature of

the additive decomposition, needs the same time to conclude as the same

program would need to run on an unsplitted space of integers. With laptops

of 16GB of RAM, we splitted the search space in 11 slices: the i-th slice

covering the range [ i × 1010, (i + 1) × 1010 ], for 0 ≤ i ≤ 9, and the 11-th

slice covering the remaing numbers up to 105 103 560 126. In the process,

the range previously checked by Qı̀ng-Hǔ Hóu was rechecked.

The code of the C program we used is given in Appendix A. The input

consists of three numbers: the range over which one is checking; the “tol-

erance”, which is the size of the list of the numbers that were not checked

yet; and, finally, the interval one is checking.

1All complexity considerations made here suppose that the cost of arithmetic opera-

tions for integers in the range considered has complexity O(1).
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3. The results

The different slices were distributed by several machines, and each slice

took between 2 to 3.5 days (depending on the machine, and on the extra use

that its owner was making of it). While working on slice 1, it was noticed

that only four numbers required the outter “for” cycle to go beyond 1, and

checking these four numbers was taking a huge amount of time. Thus, the

program was interruped, and restarted with a tolerance of 10, and here is

the output:

135Siever version 1.3

Sieving 135 for 105103560126, with tolerance 10,

in the interval [10000000000,20000000000]

0 9375000000

1 1562500004

4 4

Done!! Lasting numbers: 4

10234584952,11035927288,11051651704,14485001848

This output means that there are 9 375 000 000 numbers to be checked

(recall that one is ignoring the multiples of 16), that after the first run of the

outter cycle (which looks for 1-3-5 representations (x, y, z, t) where x = 3k2

or y = k2, with k = 0, 1, . . .), there remained only 1 562 500 004 numbers,

and that after the second run (k = 1) only 4 numbers are left. The program

then stops, and outputs those numbers.

These four 11-digits-long positive integers were then checked using the

PARI/GP functions presented in appendix B, which uses an algorithm to

write a prime congruent to one modulo 4 as a sum of two squares that

is described by John Brillhart in [Bri72]. Using those functions, one very

quickly gets, for example (it is a random algorithm), the following 1-3-5

representations:

(8524, 9502, 33094, 94744) for 10234584952,

(13438, 32472, 12774, 98172) for 11035927288,

(84720, 34818, 28982, 42684) for 11051651704,

(32742, 93858, 36824, 56988) for 14485001848.
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As a further example, we give here the output of the last slice:

135Siever version 1.3

Sieving 135 for 105103560126, with tolerance 10,

in the interval [100000000000,105103560126]

0 4784587619

1 797431269

4 0

Done!! Lasting numbers: 0

132334.83 user 0.20 system 36:45:2 6elapsed 100%CPU

(0avgtext+0avgdata 623532maxresident)k

0inputs+8outputs (0major+155918minor)pagefaults 0swaps

4. A new conjecture

As a consequence of the computational results displayed above, we now

make the following conjecture.

Conjecture 2. Any m ∈ N, that is not a multiple of 16, with the exception

of 31, 43, 111, 151, 168, 200, 248, 263, 319, 456, 479, 871, 1752, 1864,

3544, can be represented as a sum of four squares, x2 + y2 + z2 + t2, with

x, y, z, t ∈ N0 such that x+ 3y + 5z is a square, and either x is three times

a square, or y is a square. Moreover, for m > 14 485 001 848, one has a

representation with x ∈ {0, 3} or y ∈ {0, 1}, and (disregarding multiples of

16) exactly 5
6
of the numbers have a representation with x = 0 or y = 0,

while the remainder 1
6
have a representation with x = 3 or y = 1.

Appendix A. The C program

1 #inc l ude <s td i o . h>

2 #inc l ude <s t d l i b . h>

3 #inc l ude <math . h>

4

5 #de f i n e VERSION ”1.4”

6

7 #de f i n e MAX 10000000L

8 #de f i n e LIM 0
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9 #de f i n e MAXS 10000L

10 #de f i n e MINS 0L

11 #de f i n e FULLSET (B64)0 x f f f e f f f e f f f e f f f e

12

13 typede f uns igned long B64 ;

14 typede f uns igned long Long ;

15

16 typede f s t r u c t {

17 B64 ∗map ;

18 Long min , max , nelements ;

19 } BitMap ;

20

21 BitMap map, squar es ;

22 B64 ∗masks ;

23 Long max = MAX, mins=MINS, maxs=MAX;

24

25 B64∗ bui ldMasks ( void ){

26 B64 ∗masks , ∗pt , va l=(B64 ) 1 ;

27 i n t i ;

28

29 masks = (B64∗) mal loc (64∗ s i z e o f (B64 ) ) ;

30 pt = masks ;

31 f o r ( i =0; i <64; i++){

32 ∗( pt++) = va l ;

33 va l = va l << 1 ;

34 }

35 r eturn masks ;

36 }

37

38 void newBMapFull(BitMap ∗bmap , Long min , Long max){

39 B64 ∗pt ;

40 Long nbytes , i , s i z e ;

41

42 s i z e = max − min + 1 ;

43 nbytes = ( s i z e /( s i z e o f (B64 )∗8 ) ) +1;

44 bmap−>map = (B64 ∗) mal loc ( s i z e o f (B64)∗ nbytes ) ;

45 bmap−>max = max ;

46 bmap−>min = min ;

47 bmap−>nelements = max−(max/16) − (min−(min / 1 6 ) ) ;

48 pt = bmap−>map ;

49 f o r ( i =0; i<nbytes ; i++) (∗ pt++) = FULLSET;

50 }

51

52 i n t memberP(BitMap ∗bmap , Long n){

53 B64 byte , f oo ;

54 Long rnumber ;

55
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56 i f (n > bmap−>max | | n < bmap−>min) r eturn 0 ;

57 rnumber = n − bmap−>min ;

58 byte = rnumber /64 ;

59 f oo = rnumber − byte ∗ 64 ;

60 i f (∗ ( masks+foo ) & ∗(bmap−>map+byte ) ) r e turn 1 ;

61 r eturn 0 ;

62 }

63

64 void removeM(BitMap ∗bmap , Long n){

65 Long byte , foo , rnumber ;

66

67 i f (n > bmap−>max | | n < bmap−>min) r eturn ;

68 rnumber = n − bmap−>min ;

69 byte = rnumber /64 ;

70 f oo = rnumber − byte ∗ 64 ;

71 i f (∗ ( masks+foo ) & ∗(bmap−>map+byte )){

72 (bmap−>nelements )−−;

73 ∗(bmap−>map + byte ) = ∗(bmap−>map+byte ) & ˜∗(masks+foo ) ;

74 }

75 }

76

77 void addM(BitMap ∗bmap , Long n){

78 B64 byte , f oo ;

79 Long rnumber ;

80

81 i f (n > bmap−>max | | n < bmap−>min) r eturn ;

82 rnumber = n − bmap−>min ;

83 byte = rnumber / ( 6 4 ) ;

84 f oo = rnumber − byte ∗ 64 ;

85 i f ( ! ( ∗ ( masks+foo ) & ∗(bmap−>map+byte ) ) ){

86 (bmap−>nelements )++;

87 ∗(bmap−>map + byte ) = ∗(bmap−>map+byte ) | ∗(masks+foo ) ;

88 }

89 }

90

91 void printM (BitMap ∗bmap){

92 Long i , s i z e ;

93 i n t j ;

94

95 s i z e = bmap−>max − bmap−>min +1;

96 f o r ( i =0; i <= (bmap−>max)/64 ; i++){

97 i f (∗ (bmap−>map+i )){

98 f o r ( j =0; j <64; j++){

99 i f ( i ∗64+ j+(bmap−>min) > bmap−>max){

100 p r i n t f (”\n ” ) ;

101 r eturn ;

102 }
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103 i f (∗ ( bmap−>map+i ) & ∗(masks+j ) ) p r i n t f (”% lu ” , i ∗64+ j+bmap−>min ) ;

104 }

105 }

106 }

107 }

108

109 void saveM(BitMap ∗bmap , i n t ord ){

110 FILE ∗ f i l e ;

111 char fname [ 1 0 0 ] ;

112 Long i ;

113 i n t j ;

114

115 s p r i n t f ( fname , ”c135−%d . csv ” , ord ) ;

116 f i l e = fopen ( fname , ”w” ) ;

117 f o r ( i =0; i<= (bmap−>max)/64 ; i++){

118 i f (∗ (bmap−>map+i )){

119 f o r ( j =0; j <64; j++){

120 i f ( i ∗64+ j > bmap−>max){

121 p r i n t f (”\n ” ) ;

122 r eturn ;

123 }

124 i f (∗ ( bmap−>map+i ) & ∗(masks+j ) ) f p r i n t f ( f i l e ,”% lu , ” , i ∗64+ j+bmap−>min ) ;

125 }

126 }

127 }

128 f c l o s e ( f i l e ) ;

129 }

130

131 i n t squarep (Long n){

132 Long i ;

133 i = ( i n t ) ( s q r t (n )+0 . 5 ) ;

134 r eturn i ∗ i == n ;

135 }

136

137 void dealWTriple (BitMap∗ map, Long i , Long j , Long k ){

138 Long foo , n=0, n2=0;

139 i f ( squarep ( i +3∗ j+5∗k )){

140 foo = i ∗ i+j ∗ j+k∗k ;

141 whi le (1){

142 i f ( f oo + n2 > max) break ;

143 removeM(map, f oo+n2 ) ;

144 n2 += 2∗( n++)+1;

145 }

146 }

147 }

148

149 i n t main ( i n t argc , const char ∗ argv [ ] ) {
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150 Long i 2=0, i =0, j , k , i 4 =0, l im=LIM ;

151 p r i n t f (”135 S i ev e r v e r s i on %s\n” ,VERSION) ;

152

153 masks = buildMasks ( ) ;

154 i f ( argc == 4 ){

155 l im = ato l ( argv [ 3 ] ) ;

156 mins =ato l ( argv [ 1 ] ) ;

157 maxs = ato l ( argv [ 2 ] ) ;

158 max = maxs ;

159 p r i n t f (” S i ev ing 135 , with to l e r ance %lu , in the i n t e r v a l [%lu ,% lu ] ” , l im , mins , maxs ) ;

160 } e l s e {

161 p r i n t f (” Usage c135 l im min max\n ” ) ;

162 e x i t (−1);

163 }

164 newBMapFull(&map, mins , maxs ) ;

165 whi le ( i 4 <= max){

166 p r i n t f (”% lu \ t%lu \n” , i2 ,map . nelements ) ;

167 i f (map . nelements <= lim ){

168 p r i n t f (”\n ” ) ;

169 p r i n t f (”Done ! ! Last ing numbers : %lu \n” ,map . nelements ) ;

170 printM(&map ) ;

171 p r i n t f (”\n ” ) ;

172 e x i t ( 0 ) ;

173 }

174 f o r ( j =0; j ∗ j<= maxs−i 4 ; j++){

175 f o r ( k=j ; k∗k<= (maxs−i4−j ∗ j ) ; k++){

176 i f ( k∗k+j ∗ j+i 2 ∗ i 2 > maxs ) break ;

177 dealWTriple(&map, 3∗ i2 , j , k ) ;

178 dealWTriple(&map, 3∗ i2 , k , j ) ;

179 dealWTriple(&map, j , i2 , k ) ;

180 dealWTriple(&map, k , i2 , j ) ;

181 }

182 }

183 i 4 += 2∗ i 2 +1;

184 i 2 += 2∗( i ++)+1;

185 }

186 p r i n t f (”\n ” ) ;

187 printM(&map ) ;

188 p r i n t f (”\n Done ! Last ing numbers : %lu \n” ,map . nelements ) ;

189 r eturn 0 ;

190 }

Appendix B. The PARI/GP functions

1 /∗ Representat i on o f a quaternion as a 4 x 4 matrix ∗/

2
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3 quat (a , b , c , d)=[a , b , c , d;−b , a,−d , c ;−c , d , a ,−b;−d,−c , b , a ] ;

4

5 /∗ The Hurwitz un i t s ∗/

6

7 unid=[quat (1 , 0 , 0 , 0 ) , quat ( −1 ,0 ,0 ,0) , quat (0 , 1 , 0 , 0 ) , quat (0 ,−1 ,0 ,0) ,

8 quat (0 , 0 , 1 , 0 ) , quat (0 ,0 ,−1 ,0) , quat (0 , 0 , 0 , 1 ) , quat (0 ,0 ,0 ,−1) ,

9 quat (1/2 , 1/2 , 1/2 , 1/2) , quat (−1/2 ,−1/2 ,−1/2 ,−1/2) ,

10 quat (1/2 ,1/2 ,1/2 ,−1/2) , quat (−1/2 ,−1/2 ,−1/2 ,1/2) ,

11 quat (1/2 ,1/2 ,−1/2 ,1/2) , quat (−1/2 ,−1/2 ,1/2 ,−1/2) ,

12 quat (1/2 ,−1/2 ,1/2 ,1/2) , quat (−1/2 ,1/2 ,−1/2 ,−1/2) ,

13 quat (1/2 ,1/2 ,−1/2 ,−1/2) , quat (−1/2 ,−1/2 ,1/2 ,1/2) ,

14 quat (1/2 ,−1/2 ,1/2 ,−1/2) , quat (−1/2 ,1/2 ,−1/2 ,1/2) ,

15 quat (1/2 ,−1/2 ,−1/2 ,1/2) , quat (−1/2 ,1/2 ,1/2 ,−1/2) ,

16 quat (1/2 ,−1/2 ,−1/2 ,−1/2) , quat ( −1/2 , 1/2 , 1/2 , 1/2) ] ;

17

18 /∗ Fast modular exponent i a t i on ∗/

19

20 expmod( a , e ,m)={

21 l o c a l (x , y , s , d ) ;

22 x=a ; y=1; s=e ;

23 whi le ( s , d=s%2;

24 s=(s−d )/2 ; i f (d , y=(y∗x)%m) ; x=(x∗x)%m) ;

25 r eturn ( y ) ;

26 }

27

28 /∗ Imodp computes the s o l u t i o n o f xˆ2 = −1 (mod p) with 0<x<p/2 , f o r p=1

29 (mod 4) ∗/

30

31 Imodp (p)={

32 l o c a l ( g , x ) ;

33 i f (p%4<>1, r e turn (” not a va l i d prime ! ” ) ) ;

34 whi le (1 , g=random(p ) ;

35 i f ( expmod(g , ( p−1)/2 ,p)==p−1,x=expmod(g , ( p−1)/4 ,p ) ;

36 i f ( x>p/2 , x=p−x ) ; r e turn (x ) ) ) ;

37 }

38

39 /∗ Eucl id algor i thm to compute gcd (a , b) but stopping at the f i r s t

40 remainder that i s < s q r t ( a ) ∗/

41

42 EuclSp ( a , b)={

43 l o c a l ( r , x , z ) ;

44 r=a%b ;

45 i f ( r==1,r e turn ( [ b , 1 ] ) ) ;

46 x=b ;

47 whi le ( r>s q r t ( a ) , z=x%r ; x=r ; r=z ) ;

48 r eturn ( [ r , x%r ] ) ;

49 }
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50

51 /∗ Writes p == 1 (mod 4) as a sum of two squares , us ing the algor i thm

52 descr ibed in [ 1 ] ∗/

53

54 PrimeSS (p)=EuclSp (p , Imodp (p ) ) ;

55

56 /∗ A method to decompose an odd number as a sum of o f e i t h e r f our

57 i n t e g e r squares , or h a l f i n t e g e r squares , i n a random way ∗/

58

59 sum4sqF ( a)={

60 l o c a l (b , c , sq , x , y , z , tt , uu , vv , ct , s ) ;

61 i f ( a==1,r eturn ( quat ( 1 , 0 , 0 , 0 ) ) ) ;

62 whi le (1 ,

63 b=random(2∗ s q r t i n t ( a)−1)+1; i f (b%2==0,b=b−1);

64 c=4∗a−bˆ2 ;

65 sq=f l o o r ( ( s q r t i n t ( c )+1)/2);

66 j=random( sq−1)+1;

67 z=(c−(2∗ j −1)ˆ2)/2;

68 i f ( i spr ime ( z ) , v=PrimeSS ( z ) ; x=v [ 1 ] ; y=v [ 2 ] ;

69 uu=x+y ; vv=x−y ; t t=2∗ j −1;

70 s=matsolve ( [1 ,1 ,1 ,1 ;1 ,1 ,−1 ,−1;1 ,−1 ,1 ,−1;1 ,−1 ,−1 ,1 ] , [b ; uu ; vv ; t t ] ) ;

71 r eturn ( quat ( s [ 1 , 1 ] , s [ 2 , 1 ] , s [ 3 , 1 ] , s [ 4 , 1 ] ) )

72 ) ) ;

73 }

74

75 /∗ Expanding the sum4sqF func t i on to a l l natura l numbers with r e s u l t s

76 only in the i n t e g e r s ∗/

77

78 v2 (n)={

79 l o c a l ( oddp ) ;

80 e=0;oddp=n ;

81 whi le ( oddp%2==0,oddp=oddp /2 ; e=e+1);

82 r eturn ( e ) ;

83 } ;

84

85 sum4sqFal l ( a)={

86 l o c a l ( r , e ) ;

87 e=v2 ( a ) ;

88 i f ( e==0,r=sum4sqF ( a ) , a=a/2ˆ e ; r=(quat (1 , 1 , 0 , 0 )ˆ e )∗ sum4sqF ( a ) ) ;

89 whi le ( f l o o r ( r [1 ,1])<> r [ 1 , 1 ] ,

90 r=r ∗unid [ random( l ength ( unid ) )+1 ] ;

91 ) ;

92 r eturn ( r ) ;

93 }

94

95 /∗ Al l p o s s i b l e permutations o f the numbers 0 , 1 , 3 , 5 as 4D−vec to r s ∗/

96
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97 perm=Li s t ( [ [ 0 , 1 , 3 , 5 ] , [ 0 , 1 , 5 , 3 ] , [ 0 , 3 , 1 , 5 ] , [ 0 , 3 , 5 , 1 ] ,

98 [ 0 , 5 , 1 , 3 ] , [ 0 , 5 , 3 , 1 ] , [ 1 , 0 , 3 , 5 ] , [ 1 , 0 , 5 , 3 ] , [ 1 , 3 , 0 , 5 ] ,

99 [ 1 , 3 , 5 , 0 ] , [ 1 , 5 , 0 , 3 ] , [ 1 , 5 , 3 , 0 ] , [ 3 , 0 , 1 , 5 ] , [ 3 , 0 , 5 , 1 ] ,

100 [ 3 , 1 , 0 , 5 ] , [ 3 , 1 , 5 , 0 ] , [ 3 , 5 , 0 , 1 ] , [ 3 , 5 , 1 , 0 ] , [ 5 , 0 , 1 , 3 ] ,

101 [ 5 , 0 , 3 , 1 ] , [ 5 , 1 , 0 , 3 ] , [ 5 , 1 , 3 , 0 ] , [ 5 , 3 , 0 , 1 ] , [ 5 , 3 , 1 , 0 ] ] ) ;

102

103 /∗ rep135 g i v e s a s o l u t i o n o f the system 1−3−5, r e turn ing the

104 L i p s ch i t z i n t e g e r whose norm i s the imput number , and the permutation

105 o f 0135 with whom i t s inner product i s a square ∗/

106

107 rep135 ( a)={

108 l o c a l ( s , t , f , c ) ;

109 i f ( i s s qua r e ( a ) , r e turn ( [ [ s q r t i n t ( a ) , 0 , 0 , 0 ] , [ 1 , 3 , 5 , 0 ] ] ) ) ;

110 whi le (1 , s=sum4sqFal l ( a ) ;

111 t=[abs ( s [ 1 , 1 ] ) , abs ( s [ 1 , 2 ] ) , abs ( s [ 1 , 3 ] ) , abs ( s [ 1 , 4 ] ) ] ;

112 f o r ( i =1, l ength (perm ) , f=perm [ i ]∗ t ˜ ;

113 i f ( i s s qua r e ( f ) , r e turn ( [ t , perm [ i ] ] ) ) ) ) ;

114 }
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