arXiv:2005.13620v1 [math.NT] 27 May 2020

FURTHER ¢-SERIES IDENTITIES AND CONJECTURES RELATING
FALSE THETA FUNCTIONS AND CHARACTERS

CHRIS JENNINGS-SHAFFER AND ANTUN MILAS

ABSTRACT. In this short note, a companion of [20], we discuss several families of g-series
identities in connection to false and mock theta functions, characters of modules of vertex
algebras, and “sum of tails”.

1. INTRODUCTION AND PREVIOUS WORK

In our previous work [20], motivated by character formulas of vertex algebras and super-
conformal indices in physics, we obtained various identities for false theta functions including
the following elegant identity.

Theorem 1.1. Fork > 1,

Znez Sgn(n)q(k+1)n2+kn B Z qz?i;2 ni”i+1+Z?iII n:
(9)3% (@, (@5, (D7,

where as usual (a), = [} (1 — aq’).

(1.1)

n1,m2,...,N2K 120

We note that these identities have an odd number of summation variables. Interestingly,
with an even number of summation variables we obtained a family of modular identities
conjectured in [14].

Theorem 1.2. Fork > 1,
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In a somewhat different direction, in the same paper, we also examined g-series identities
for false theta functions with half-integral characteristics (here k € N and € € {0,3})

(1.2)
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for some specific rational numbers a. We also considered related identities for certain
“shifted” false theta series [20] Section 3].

This paper aims to extend (L1) and (L.2]) in a few directions. Firstly, we would like to study
related identities for the false theta functions as in (I3]). Secondly, we relax the condition on
the poles in (1)) and (IL2)) and perform a search for identities where the ¢-hypergeometric
side takes the form
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with £ < Zle r; < 2k. Lastly, we consider g¢-series identities coming from the formal inver-
sion ¢ — ¢! of the g-hypergeometric term in (LT)) and (L2)). This procedure is sometimes
used for quantum modular forms to extend a ¢-series defined in the upper half-plane to the
lower half-plane.

Our paper is organized as follows. In Sections 2 and 3 we gather several known facts. In
Section 4 we prove analogs of Theorems [I.1] and for false and classical theta series with
half characteristics (Theorem and Proposition [4)). Section 5 is devoted to “inverted
identities”, under g — ¢!, associated to the g-hypergeometric series in (1)) and (L.2)). We
argue that in both cases we expect modular identities. For the inverted g-series coming from
(L2, this is proven in Proposition 5.1 by reduction to the character formula of a principal

subspace of ASB_I. For (1), we expect (see Conjecture[5.2) that the resulting inverted series
is modular as it is essentially the level one character of the affine vertex algebra L, (Ao).
We show that this is indeed true up to a cubic term (Proposition £.3]). In Section 6, we
study more complicated g-hypergeometric series of the form ([L4) with & = 2 and k& = 3.
Continuing, in Section 7 we consider identities for the series (L)) with r; = 1 for all 4. For
2 <k <8, except k =7, we found several interesting “sums of tails” type identities. Then
in Section 8 we connect the g-series from Section 7 with characters of modules of principal
subspaces and infinite jet schemes. We end with a few remarks for future investigations.

2. QUANTUM DILOGARITHM

2.1. Quantum dilogarithm. As in [20], we will approach several g-series identities using
the quantum dilogarithm ¢(x) := [];5¢(1 —¢'z). Let  and y be non-commutative variables
such that ry = qyx, then

P(y)o(z) = g(x)d(—yz)o(y), (2.1)

which is Faddeev and Kashaev’s pentagon identity for the quantum dilogarithm. This iden-
tity implies that
1 1
= , (2.2)
o(x)o(y)  o(y)o(—yz)o(x)
1 1 1 1

$(@1)d(2)-¢(an) $(@1)  Bl@2) T Hlan
dualities in physics see [13| [14] and references therein.

where is understood to denote i For its relevance in 4d/2d

3. BAILEY’S LEMMA AND OTHER KNOWN g-SERIES IDENTITIES

As in [20], we require Bailey’s lemma and several standard g-series identities, which we
collect in this section. A pair of sequences («,, §,) is called a Bailey pair relative to a if

n

B = 2 ey

@

The k-fold iteration of Bailey’s lemma can be found in its entirety as Theorem 3.4 of [2].
This theorem with k — k—1,a=q, b1 =by=...=bp_1 > 00,1 =Cy = +++ = Cp_9 = (,
cr—1=—w g, N = oo, and n; — my_; states that

my(m1+1) | mo(ma+l) ME_1(mp_1+1)
i)y malret ) g 5 w™ B,
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mi,m2,...,mg_12>0
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(kfl)g(n+1) n

- - 1
wqooz wq), Yeng wan’ (3.1)

= ( wa),

where (a,, 8,) is any Bailey pair relative to a = ¢, and w € C. We require a single Bailey
pair relative to a = ¢. Specifically this is the Bailey pair B(3) of Slater [28], which is defined
by

n(3727.+1) 2n+1)

-1" 1-— 1
a3 = (=1)"q ( q 7 BBs .— (3.2)
(1—q) (@)n
The additional g-series identity we require are as follows. We have two identities of Euler
[18, (II.1) and (IL.2)],

" 1
2 o 39

(=1)rz"q” =
> = (2)so- (3.4)
More generally, the ¢g-binomial theorem [18, (II.3)] states that

yo (@b (a2) (3.5)

>0 (q n (Z>oo

We also need two forms of Heine’s transformation [18| (IIL. 1) and (II1.2)], which are

(a,b)n2" bazoo (£, 2)
2 e e 2 (e, (.9)

n>0 Joo n>0
(a,b),2" (2,0), ()"
= °° . 3.7
nzzo (€ a)n Z (b2, @) 39)
Lastly, we use Lemma 1 of [4] written as

= Y (Lt (3.8)

<Cq§7 C—lqg) (q>°° ni€Z

00 na>|n1|

We note that the summation bound ny > |ny| in (8.8) can be replaced by ny > n;.
4. IDENTITIES WITH HALF-CHARACTERISTIC

In this section we extend Theorems [T 1]and from the introduction to half-characteristic.

Proposition 4.1. Suppose k > 1 and w € C. Then
qnm2+n2n3+~~~+nk,1nk+n1+n2+~~~+nk(_w)

(@7, (@)%, - (@7,
o (—witc) [ ) .
o(a) e (ai¢)e(agh)) o(aa)

where the ; are non-commuting variables with (;Cj11 = qCi1G for 1 <57 <k —1.

ni

= CTCl,Cz ~~~~~ C (4'1>
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Proof: The proof is similar to that of Theorems I Tland [2. We expand ¢(—wqz¢y)/d(q2 (1)

with the g-binomial theorem (B.5) and all other products are expanded with Euler’s identity
B3). By doing so we have

¢<—wq%C1) i 1 1
o(ea) \mo(a6)e(agh)) o (46

ni+mi+ng +m2+---+nk +mk

q 2 _w)m . k S .
2 (D (D ( Dz (D (D (Do, (ll@'@—l )Ck

n,mEN]g

-y ¢

n,mEN]g

ni+mi+ngt+mo+--+np+my +naomi+nzmo—+-+ngmy_1 ni—mai ~ng—ms nE—mpg
2 ~W)n, 61 2 Sk

(D (D (Do (D * (Do (D)

The constant term then clearly comes from taking m; = n; and the proposition follows. [

In the lemma below, we give an intermediate identity that is required so that we may
apply Bailey’s lemma.

Lemma 4.2. Suppose k > 2 and w € C. Then

2.

n1,n2,...,nE >0

1
oL X

%0 1y ma, g1 >0 (Q)m1 (Q)Tm—nm (Q)M2—M3 o (q)Mk72—Mk71

qn1n2+n2n3+~~~+nk,1nk+n1+n2+~~~+nk (_w>
(@7, (@), - (@)2,

mi(mq+1) , mo(mg+1) mkfl(mkfl“’l)
(—1)mattmeoig e e 5

ni

w™ (w0 ),

Proof: We begin by reevaluating the constant term in (4.1]) by applying (2.2]) and expanding
the products with (3.5), (8.3]), and ([B.8). For convenience with the indices, we instead use
Co,C1y -y Cg—1. With this all mind, we find that

¢(—wq%Co> kol 1 1
o(r6) \imo(aic)o(a6h) ) o(aic)
Co(ara) o (a2 0 (-6 ¢ (a3G) 0 (43¢
1 R S e T
RO mZ @@z @ex (@i (@)
L

k—1

<G TT (GG ¢
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k—1 k—1 k—1 k—1 k—1 2 k 1
m‘(m-+1) Z‘(Z‘Jﬁl) 14
1 —1 12:21 ! ng ! ng ! ng Z:: 2 J 1 ? (—w)
N Z q 1
o 2k—2
()2 o (@ (@es (Do (@i (@D
n,mez
T1,T2€N0756N1871
mj2n;
k—2
ri—ra—{1 nj+Li—Lj11 g+l L
X Co HC}- Ch—1
i=1
The constant term comes from n; = ¢4 — ¢; for 1 < j < k —2, np_y = —{,_1, and

ro = r1 — {1. For the index bounds, we replace my_; > ng_; with mg_1 > |ng_1|. Thus by
Proposition [4.1],
n1”2+n2”3+'"+”k—1nk+n1+”2+"'+”k(_w>
ny

q
2 @)z, (9)z, - (9)2

ni,ne,...,np>0 ni na Nk
k= -1 k=2 2,2
(mj+1) £5(L541) (Cip1—t)2 63_
ij-i-ZZ 297 +ZJ B S = i S
1 (=1)=r =2 g =t (—w),
= [ \2k—2 § :
q q Vi q 0o " " q 0 q q )
( )Oo meZkfl,eeNgfl ( )1( )2 ( )k 1( )T( )7“ 1
r€No,r>01
mg—120k—1
m; >l 1—L;
k=l m (m +1) k=2, (e 1) Ly 1+3)
ij—l—gjlz Z +Z J k1§1
J i=1 =t (_w)r+£1

1 (—1
(g% 2 (Der( Doz (Do (D) (@D vy

r€Np,L, mGNk71

—51m1+2 Li(my_1—my)+Hy—1(Mmp—_o+my_1)+r
X q =2 . (4.2)
Due to convergence issues in certain calculations below, we view the far right-hand side
of (£2) as the z — 1 case of

k—1 k—1 k— —2
(m +1) £ (Z +1) L 1(lp_1+3)

" .:; (=1)=t =g (—2w)rye,
Fa) = 2 CACTETCRE e

r€Ng,£,meNE !

—41m1+2 Li(mj—1—mj)+Ll,_1(mg_o+mg_1)+r

X q =2 . (4.3)
We transform the inner sum on r with Heine’s transformation (3.6) with a = 0, b = —2wq™,
c=z¢""" and z = ¢, as

Z (—ZL’U})H_ZIQT _ (_xw)h Z (_qugl)rqr _ (—SL’UJ)OO Z(_w_l(J)r(_l) T quélr

= (D @Drre (@) (@2t (20)00(@)o0 27

we note that when x = 1, the final series above is not absolutely convergent for all w and
¢;. Thus for |zw| < 1,

kilmy-i-kilﬁj—i-r kz (m aa 22 ZJ(Z 4 et e +9)
= g i= ?

(q)fl (Q)£2 T (q)fkﬂ
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k—
—limi+ 22éj(mjfl_mj)+ék71(mk72+mk71)+élr 1
X q 9=2 z"w (—wq),-
We evaluate the inner sums on each ¢; with ([8.4)) to find that

(—1)51 qél(l-i-r—ml)qm

Z § = (ql+r_m1)oo = (Q)oo s

5120 (q)fl (q)r—m1
£:(e;—1)
— 1) gli Atmy—1—m;) o == .
S (—=1)%%¢ @ (g = L’ for2<i<k_o2
;>0 (), (@)m;_1—m,
(9dma m p—1(lk—1—1)
Z (_1)Zk—1qéj(2+ k—2t kfl)q 2 _ (q2+mk72+mk*1) _ (Q)oo
l_1>0 (q)ék*1 (q)mk,2+mk,1+l
Thus, for |zw| < 1,
kilmj-{-fr 5 77Lj(7)’2bj+1)

G ()= T T arwr(—wlg),
F( ) (SL’Q)OO(Q)];O Z (q)T—ml (q)ml_m2 (q>m2—m3 e (q)mk—B_mk—2 (q)mk—2+mk—1+1

k=1 k=1 Mj(7rLj+1)

> mytr % _
- (—ZL”UJ)OO Z (—1)121 qul 2 .TL’TU)T(—’UJ lq)r

a (@)oo (q)k, (D=1 (Dmy—mz (Dma—ms - (Dm_y—myes

rm1,me,...,mg 120

Y

7,M1,M2,... Mg 120
where the second equality follows from Heine’s transformation [B.7) with a — oo, b = ¢,
c=¢q*"=2 z =1 applied to the inner sum on my_;. By (B3], the sum on r is

(_1)Txrwr(_w_lq)r (1) gy (g (_1)rxrwr(_w_lqml+l)r
; (Q)r—rm a ( 1) ( q)ml ; (Q)r
(=Dm™a™w™ (—w™'q)m, (7)o

(2q)m (—2w)oo

and so
k=1 k=1 (1)
>omy >
1 —1)i=2 j=1 mi,, M1 __,,—1 m
F(l’) _ - Z ( ) q rw ( w q) L
(q)oo mi,ma,..mp_1>0 (Iq>m1 (q>m1—m2 (q>m2—m3 e (q)mk—2_mk—1
This form of F(x) is well defined for exactly the same values of z as (£3]) and so we find the
lemma follows by setting x = 1. U

Our extension of Theorems [T and [[.2] to the series in (L3]) is given here.
Theorem 4.3. Suppose k > 2. Then

>

n1,ng,...,ng>0

q”1n2+n2n3+“'+nk—1”k+”1+”2+"'+”k (_1)
(@)%, (@7, (2)7,

- (@ﬁ)ff <Z +(=1)f Z) (1) rng e,

n>0 n<0

ni
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>

ni,n2,...,ng >0

qn1n2+n2”3+“'+”k—1”k+”1+”2+"'+”k (_q% )
(@3, (D)3, - (03,

Gl (5 s )
q)oo

n>0 n<0

Proof: We see that the series in the right-hand side of the identity in Lemma perfectly
matches the statement of Bailey’s lemma (B.I]) with the Bailey pair in (3:2]). By combining
these statements we have that

>

n1,m2,...,nk >0

ni

q”1n2+n2n3+“'+nk—1”k+”1+”2+"'+”k (_w)
(@7, (@7, (9)2,

(k+2)n2+kn
) PO G VB et JPOD
(@5t = (—wq)n S

When w = 1, the right-hand side of (4] simplifies to

1

(_q)oo n (k+2)n2+kn n
(QTH (_1)(k+1) g z (1 . q2 +1)
© n>0

B (@)?ff <Z+<—1>k2> (~1) e 0mg S (4 5)

n>0 n<0
as claimed. When w = q%, the right-hand side of (£4) instead simplifies as

(—q%)oo n (EE2)n+(kt1)n n+
O S SR
0 n>0

1
- <Z+(—1)k2) e
q)

n>0 n<0
0

There is a similar identity that comes from taking w = —q%. We state this identity in the
proposition below, but omit the proof as it is essentially the same as the other two cases.

Proposition 4.4. Suppose k > 2. Then

>

n1,ng,...,ng>0

grinatnenat gt R tna ety (qé)
(@7, (@7, - (@),

ni

(NI

- Eg)gﬁ <Z +(=1)* Z) (_1)knq<k+2>rﬂ+('€+l>n.

o0 n>0 n<0

5. IDENTITIES FOR CHARACTERS

In this section we study g-series identities coming from the formal inversion ¢ — ¢! in the
g-hypergeometric term in (I and (L2)). As in [20] we make use of quantum dilogarithms
to prove the following result. The same result was discussed in [13].



8 CHRIS JENNINGS-SHAFFER AND ANTUN MILAS
Proposition 5.1. Let

chy(r)= Y

n1,n2,..,N2k—1

qz% 1 n2 Z%l —
>0 (Q)ru (Q)n2 e (Q)ngk,l

denote the character of the principal subspaces of the level one vertex operator algebra W (Ag)
of type AS) | [12,[16]. Then

> —chy (7).

n17n27'”7n2k20 (q>’2l1 (q>’% T (q)?’Lgk B (q>00

qu 1 Z—ZZ 1 ”nz+1 1

Moreover, after multiplication by q* for some a € Q, this a modular form.

Proof: This follows by verifying that

>

2 2 ... (g)2
n1,...,nE>0 (q)”l (q)n2 (q)nk

qn%—l—n%—l—"~+TL%—”1“2—”2n3_'“_nk*1”k

k
= CT¢ ¢,..00 2(47 Cl <H¢ q2¢;)é(qz <3_—11)> ¢(Q%Cl;l)
j=2
1 k 1 1
= CT¢ o,.00 P(q2C1)P(g2 Cl H¢ —qGi¢;- j— 1 (q§<j)¢(q§<j_l)
j=2

1
=(—qu

n1,..,Mg—1>0

n1+n2+~"+nk71—n1n2—n2n3_"'_nkf2nk71

)

(Q)m (Q)m e (q)nkfl

where the ¢; are non-commuting variables with (;(iv1 = ¢ 1¢i1G.

For the modularity, we first use an identity from [29, Theorem 2.1]. This allows us to
write chy (7) as a modular Wronskian of certain theta functions [I1] (as usual, we have to
multiply by ¢%), which is known to be modular with respect to some congruence subgroup
[23].

O

For the ¢g-hypergeometric series appearing in Theorem [L.I] we expect a family of modular
identities. We first define Fy(q) by letting

Z qZ?iJfl n?=3"2F niniga 1 Fulo) (5.1)
= q). .
(@)2,(9)2, -~ (q)2 (q)2E1™ "

n1,12,...,N2k 410 niit/ne M2k+1

We believe the following to be true.
Conjecture 5.2. For k > 1, we have

Fi.(q) = ch[Lepear) (Ao))(g),

which is the character of the (suitably normalized) level one affine vertex algebra Ly (Ao)
of type C’,gl).

Now we provide evidence in support of Conjecture (5.2)).
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Proposition 5.3. For k > 1, we have
Fi(q) =14 (2k + 1)kq + %k(i& + 5k +4K*)¢* + O(¢%).
Proof: We first let

2k+1 2 2k
qzizl i T 2ui=1 it

2 S0 (D (@7 (D)7,

MNseeny n2k+1

=1+ dpq + arg* + O(g*).

The linear term is clear, it simply counts the number of positive roots in the root system
of type Aggy1. Put differently, it counts the number of positive integral solutions of

2k+1

Z n? — anlﬂ = 1. (5.2)

These solutions are exactly of the form (N1, ey n2k+1) =(0,..,0,1,...,1,0,..,0), and it is easily
seen that the number of them is dj, = (2k 4+ 1)(k + 1).
We claim that a;, = (1 + k)(1 + 2k)(6 + 3k + 2k?). For this, we first note that the

contribution from the quadratic term comes from two sources, specifically from the terms

o 1___5])2 and o 1___‘5])2 . As such we have to analyze non-negative integral solutions

N2k+1 N2k+1

of (5.2) and of

2k+1

Z n? — anlﬂ = 2. (5.3)

Clearly the solutions of (5.2) contrlbute a total of D e jcicanir 2(6—J) = 2(k+1)(1+2k)(3+
2k) to the quadratic coefficient. For the second equation, no solution has n; > 3, and so
we may assume 0 < n; < 2. Next we consider two types of solutions: (a) solutions with all
n; < 1, and (b) solutions with at least one n; = 2. In case (a), we see that in each such
solution there must be exactly two substrings of 1s:

o,..,0,1,...,1,0,...,0,1,...,1,0,...,0). (5.4)
For (b), each solution takes form:

0,.,0,1,..1,2,..,2,1,...., 1,0, .., 0).
In both cases the initial or terminal subsequence of Os can be empty. For either (a) and

((2k+41)+1)

(b), it is easy to see combinatorially that we have precisely solutions. Therefore,

altogether there are

4

solutions. Next we note G )%H =1+ (2k +1)g+ (2 + 5k + 2k*)¢* + O(¢®) and we write

2(% M 2) + g(k + 1)(1 4 2k)(3 + 2k) = %(1 + k) (1 4 2k)(6 + 3k + 2k?)

22k+1 n2_zl L NNl

2 (q)2 (@) (q)?

n1,n2,...,N2k41>0 niiEsm 2k+1
Expanding F(q) = 1+ aq + bg*> + O(¢?®) and and solving for a and b gives a = (2k + 1)k and
b= 1(3k + 5k* + 4k*) as claimed. O

Since this is in agreement with the known properties of ch[Leyar)(Ao)](7) (see [27]), our
conjecture is valid O(g?).

= (14 (2k+ g+ (24 5k + 2% ¢* + - - - ) Fr(q).
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6. IDENTITIES FOR NAHM-TYPE SUMS WITH HIGHER ORDER POLES

Our interest is identities for ¢-hypergeometric multi-sums of the form

F(riy,ro, ... rg) i= T — ,
anzo (@ri (@rz =+~ (@)

where each ; > 1 and r{ + 79 + -+ + 7, < 2k. While these sums are too general for us

to form a single coherent conjecture, we do see a large number of identities for small k. In

particular, all of the following are either known or easy to prove:

qm-‘rnz-‘r~~~-i-n;c-i-n1nz-i-nzn:s—l----—l-n;gfm;c

n1,n2,...,

Proposition 6.1. We have,

1 1 S, sgn(n)grtn
F(1,1) = ———, F(1,2) = , F(1,3) = &=net ,
(1= 9)(¢) (2)2 (2)2,
4 5.5 -1 . -1 (n+3)/2
F(2,2) _ (qvq 7qs y 4 >’ F(la 1’ 1) _ q (1 gqu Q) )’ F(]_, 1’2) _ ZnZO( )3(]
(@)2, (2)2 (@)2,
1 1
F(1,2,1)= ——— F(1,2,2) = , F(1,3,1) = —,
L2l=a—ppr F29=gr FU3b=rg
> czsgn(n)g?n (¢,4%, 4% ¢°) S ez sen(n)g
F(1,2,3) = &2 L F(1,3,2) =212 0 p(1,4,1) = &2 ,
(1.2.3) @ (L.8.2) =" FlLal) @
n(n+1) 2
14+2 —1\*g— 2z 3n“+2n
P = 22 g gy Znca s
(1—q)(a)% (9)%
Proof: By (3), the following two identities hold,
1 1
Fl,1)= —— F(1,2) = —
D= T 0= L.2)=10

The identity for F'(2,2) is simply the k = 1 case of Theorem [[.2l For F'(1,3), we begin with
(3.3)) and find that

— 1 _ n(n+1) son(n n(2n+1
F(1’3)_(q) Z(q)z_ 32 - 3Zg

n>0 X n>0 oo neZ

where the second equality follows from (B.6) with a =b =0 and ¢ =z = q.
Additional usage of (3.3)) then yields

P11 1 CF12) 1
o2 ) = = T FoL22) =5 =

CF(L2) 1 CFY) 1 N e
O3 ="50 = o F(1,2:3) = 57 = g e

_ F(2a2) _ (qaq4aq5§q5)oo _ F(gal) _ 1 son(n 2n2+n
PO =5 =" gn, Pl =57 =g 2 selwg™™

The identity for F(2,2,2) is Theorem [T with & = 2. For F(1,1,1), we begin with two
applications of (3.3) and then apply (BI]) with a = b=z = ¢ and ¢ = 0, which is

L S = T - (G-
FL LY = o5 > (@)n Z Z ((Q)oo 1)'

>0 00 n>0 °° n>1
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For F(1,1,2), we begin with ([33]) and end with (3.6)),

n2+n3+nan3

q 1 q"
F(1,1,2) Z ER— (q)oo ; ()2(1 — gn+1)

OO na2,mn3>0

n(n+3)

1
T (11— 9@ Z (q @)n

The identity for F(2,1,2) is slightly more involved in that it requires two applications of
Heine’s transformation. In particular, starting with (3.3)),

gmtns 1 (Q)n+mqn+m
F(2,1,2) = _ @ntmq™™™
QLY= D, . @ 2, @R

n1,m3>0
_ 1 Z qn Z (O, qn—l—l)mqm @ 1 Z (q—n)mqn—l—m—l—mn
(Do 25 (Dn o5t ()7 ) — (9)7
1 Z (_1)mqn+ 77L(772L+1) 1 Z (—1)mq"+ 77L(772L+3)
I S
(m 1 Z +m n(n+1) +nm+m(m+3)
= (-1
4
(Q)OO n,m>0
However,
n(n+1) m(m+3)
(1—q) Z (=1)mtmg e T
m>0
n+m+1 n(n 1)+nm+m(m+1) Z n+m+1 n(n=1) 4 4 mlmtL)
-y (e - o ;
n>1 n>0
m>0 m>1
_ Z TL—I—I n(n 1) _ Z m+1 m(m+1) _ 1 + 2 Z n(n;rl)7
n>1 m>1 n>1
so that

1 n(n+1)
1) = e (2.

n>1

O

Note that F(1,1,3), F(1,1,4), and F(2,1,3) are missing in the identities above.

Many of the identities for F'(ry,ry,r3) follow from identities for F'(rq,r2). This is because
B3) gives that F(1,79,...,7%) = ﬁF(m — 1,73, ...,7), and trivially F(ry,rg,...,1rg) =
F(r,...,ro,r1). Thus each identity for F(1,rs,...,r;) yields an identity for F(1,7o +
1,73,...,7%). In the following proposition, we record one particularly simple form of this
iteration.
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Proposition 6.2. For k > 2,

>

ni,n2,...,ng >0

qm+nz+---+nk+n1n2+n2n3+~~+nk71nk 1
(@ (D22, (@2, (@Dn, (T =)@V

7. RELATIONS WITH SUM OF TAILS IDENTITIES

”Sum of tails” identities are

Continuing from the previous section, we focus on the case n; = ny = -+ = n; = 1, where
4 < k < 8. Here we see certain Lambert series, quantum modular forms, and quasi-modular
forms can appear. We have identities for £ = 4, 5, and 6, and conjectures for £k = 7 and 8.

7.1. k =4. Using (33), it is easy to show that

qm +n2+n3+ng+ninz+nanz+nang

q"
qn2+n3+n2n3 —
11 g ma >0 (@1 (@s (@) (@) s )oo Z Z

ng,n3>0 oo n>1

To see the connection with the identities for £ > 5 and sums of tails identities, we note that
we can also write

Z = _Z((q;oo_(ql)n):q _1+Z< )n)'

n>1 n>0 n>1

7.2. k=>5. Again by (3.3), we have

Z qn1+n2+n3+n4+n5+n1n2+n2n3+n3m+n4ns 1 qn
= o O @D D@Dy (D% 5 (@1 — g1

We note that the series has a straight-forward combinatorial interpretation. In particular,

n

n+1

q o n)a"
L= - 2

n>0 n>0

where ¢(n) is the sum of the numbers of times that the largest part appears in each partition
of n, which is reminiscent of Andrews celebrated smallest parts partition function [6]. The
function t(n) was studied for its asymptotic properties in [19)]

It turns out this series has a much more interesting representation,

22 1_qn+1 - 2an+nm_ 22( Tm))

n>0 oo n>1 oo m>0
m>0
—1
. . 2 nfl q
Y (@@ =y S @) L
oom>0 O n>1 OO n>1

where the final equation follows by Theorem 2 of [30] and the discussion leading up to it.
We note that upon ignoring the factor of 31 , this final series was an essential component in

Zagier’s study [30] of a “strange identity” for Kontsevich’s function and Zagier’s construction
of prototypical examples of quantum modular forms [31].
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7.3. k= 6. In this case, we find that

qnl +ng+nz+ns+ns+ne+ninz+nanz+ngns+nans+nsne 1 n-+m-+nm

Z :(q)2 Z ]

11 ,m2,13, 14,105,160 (Q)m (Q)m (Q)na (Q)m;(Q)ns (Q)ne 0 p.m>0 (Q)n-i-l(Q)nH-l.

We mention in passing that the double sum appears to have a partition theoretic interpeta-
tion and matches entry A179862 of OEIS. More interesting is how this series reduces. Again

by (B3]), we have

n-+m-+nm nm

1 q gt q gt 1 I
@n%() (@1 (@Dmsr (D)2 ,%1 (@n(@)m (@)% nzzl (@)n ((Q”)oo 1)

_ g L1 q" _ " o (1 1
‘@@%((q)w ot ) <q>§o§1—qn+<q>a;(<q>m )

- & 21 R (reel i 2 (@ @)

2q¢" q" ¢ | q!
_ - + :
(@)% ; L= (9% (9%

where the final equality follows directly from Theorem 2 of [7] with a = 0 and b = c.

7.4. k =7. Here we have a conjectural identity:

>

n1,n2,n3,n4,n5,n6,n7>0

- (Z(—sm D17+ 3 <3m+2><—1>mq?’”@*”) .

-0k \ & =

The infinite series on the right-hand side is a quantum modular form. We also give another
conjectural identity in the form of sum of tails

2.

n1,n2,n3,n4,n5,n6,17>0

qm +ng+nz+nqs+ns+ne+nr+ninz+nanz+nzns+nans+nsne+nenz

(D ( Dz (D s (D s (D5 (@) 6 (@)

qm +no+ns+ng+ns+ngtnrtninz+nang+ngng+nans+nsnet+nenz

(@)1 (@D (D g (@) na (D5 (@) g (D

q! q"
- W <_1 + Z 1—q (@)oo + Z((Q)n —(@)oo) + (Q)OO> .

o n>1 n>0

7.5. k = 8. Lastly we offer the following conjectural identity,

>

ni,n2,m3,n4,n5,n6,17,18>0

qm +n2+nz+nstns+netnr+ng+ning+nang+ngnstnans+nsne+negnr+nrng

(D1 (D2 (D s (@ na (D s (D (D (@) s

-5 <<ﬁ‘1) 2 171an)'

We leave it as an open question to determine the behavior for general k.
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8. PRINCIPAL SUBSPACES AND INFINITE JET SCHEMES

In this part we require some familiarity with vertex algebras (especially lattice vertex
algebras) and principal subspaces as developed in [16], 17, 12, 24].

We first form a lattice vertex algebra Vi on the integral lattice L = Zp; + --- + Z0y,
such that (5;, Bix1) = 1, for i = 1,...,k — 1, and zero otherwise. This is a non-degenerate
even lattice for k even. For k odd it is degenerate with 1-dimensional radical subspace. For
simplicity of exposition we shall ignore this degeneracy and consider only k even here. We
consider the principal subspace [24]

W = <651, ...,66k> c Vg

generated by e”. Using tools of vertex algebras one can show that W, admits a nice mono-
mial basis. For instance, for k = 2, we get

v =Bo(=37) - BB (=) - B,

where j,ii) > 1 and ji(z) > ny. Defining deg(v) := Y ! 1], )+ Yoz 1jZ the character of Wy,
can be computed directly from this basis as

ni+1)no ni

q' q

which is precisely F'(1,1). More generally, results from [24], 26] give:

ni,n2>0

Proposition 8.1. We have F(1,...,1) = ch[W.](q).
——

k—times
This formula can be interpreted in the language of infinite jet schemes. Consider an affine
scheme X and the m-th jet scheme J,,X of X. This system has a projective limit in the
category of schemes J, X := lim J,X called the arc space of the infinite jet scheme of X.
—

Consider now (here k > 2)
R = Clay, oy 2il (@122, . 7 122)

and let X = Spec R. Then the coordinate ring J,R = C[JX] has a commutative vertex
algebra structure (see [§, 25] for instance). For general vertex algebras we have a surjective
morphism from C[J.X] to gr(V') but for several examples of “nilpotent” vertex algebras, as
well as some rational vertex algebras, this map is an isomorphism [21] (see also [25] 9] [15]).
For instance, using the presentation of W, and the definition of J, R it is easy to see using
presentation results from [24] 26] 21] that

WL = JoR

as graded commutative vertex algebras. Therefore the Hilbert series of the arc space of X
satisfies

HS,(JuX) = ch[W](q).

Our results in Section 7 provide a completely new combinatorial aspect of these infinite jet
schemes.
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9. FINAL COMMENTS

In this section we present a few problems which need to be further addressed. First, there
is a need for better understanding of the identities in Section 7. We still do not understand
the nature of the g-series appearing on the “product” side. Although for £ = 3 and k = 8
they are essentially modular, for £ = 5 and k = 7 they behave as quantum modular forms,
and for k = 2, 4, and 6 they are neither modular nor quantum (or false). Further connections
with the sum of tails remains unclear to us.

We would also like to gain a better understanding of the combinatorics behind Conjecture

as there is already rich combinatorics governing monomial bases of basic cM-modules
[21].

9.1. Further ¢-series identities. In another direction, we can slightly modify the quadratic
form in F'(ry, ..., ) by adding the term ngn; so that the summation is over the “circle”. This
way we can produce additional interesting identities. For instance, for ry =---=r, =1 and
k = 3, we get an identity for a Ramanujan’s fifth order mock theta function

qn1+n2+n3+n1n2+nzn3+n3m 1

N q
Z (D (Dny (@)ng N (@)oo Z (qn+1)n+1‘

n

n1,n2,n3>0 n>0
This follows directly from Euler’s identity and Zomozo gty (q()f;S:Lm = (qngi))nn " [5, Theorem

3.3]. For k = 5, we conjecture an elegant (quasi)-modular identity analogous to the k = 8
case in Section 7,

>

n1,n2,n3,n4,n52>0

qm +n2+nz+nst+ns+ninet+nanz+ngngt+nans+nsny

—1 n
q Z nq
- 2 _ an’

(D1 (D2 (D) s (@) g (s

Since both expressions on the right-hand side are mock it would be interesting to see whether

this persists in

9.2. Identities with higher order poles. For ry =--- =1, =2 and k > 3, we expect
Zn>0(_1)nkq§n(n+l) Z qz?;ll i1+ + 5 g

(9)5 i so @a(@n, - (@7,

again alternating between false identities for k odd, and modular identities for k even (ob-

serve, anoq%"("ﬂ) = %Znezqén(nﬂ)). Presumably, this can be proven by slight adjust-
ments along the lines of [20, Theorem 5.5].
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