
ar
X

iv
:2

00
6.

01
96

1v
2

 [
m

at
h.

C
O

]
 1

7
Ju

n
20

20

Automatic Counting of Restricted Dyck Paths

via (Numeric and Symbolic) Dynamic Programming

Shalosh B. EKHAD and Doron ZEILBERGER

In memory of our hero Richard Guy (1916-2020)

“On some fields it is difficult to tell whether they are sound or phony. Perhaps they are both.

Perhaps the decision depends on the circumstances, and it changes with time Some subjects

start out with impeccable credentials, catastrophe theory for instance, and then turn out to resemble

a three-dollar bill. Others, like dynamic programming, have to overcome a questionable background

before they are reluctantly recognized to be substantial and useful.”

– Gian-Carlo Rota (“Discrete Thoughts”, Birkhäuser, 1992, p. 1)

Preface

In his classic essays “The Strong Law of Small Numbers” [G1][G2], Richard Guy gave numerous

cautionary tales where one can’t ‘jump to conclusions’ from the first few terms of a sequence. But

if you are cautious enough you can find many families of enumeration problems where it is very

safe to deduce the general pattern from the first few cases, obviating the need for either the human

or the computer to think too hard, and by using the ‘Keep It Simple Stupid’ principle (KISS

for short), one can easily derive many deep enumeration theorems by doing exactly what Richard

Guy told us not to do, compute the first few terms of the sequence and deduce the formula for the

general term. We admit that often ‘few’ should be replaced by ‘quite a few’, but it is still much

less painful than trying to figure out the intricate combinatorial structure by ‘conceptual’ means.

The way we generate sufficiently many terms of the studied sequence that enables guessing the

pattern is via numeric dynamic programming. While it is very fast to generate many terms

of the sequence, the guessing part, for larger problems, would eventually become impractical. For

these larger problems, both the human programmer and the machine need to think a bit, and

use symbolic dynamic programming. Note that the human only has to think once, writing a

general program that teaches the computer how to ‘think’ in each specific case of a large class of

enumeration problems.

The Maple packages

This article is accompanied by two Maple packages

• Dyck.txt, that uses Numeric Dynamic programming and number-crunching to generate many

terms of the desired sequence, and then uses the KISS method to guess algebraic equations and

linear recurrences that can be rigorously justified a posteriori.

• DyckClever.txt, that uses Symbolic Dynamic programming and symbol-crunching to directly

1

http://arxiv.org/abs/2006.01961v2

get the desired equations for the generating functions of interest, and by using further symbol-

crunching, derives linear recurrences for the sequences of interest.

Both packages are available, along with input and output files with ample data, from the front of

the present article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dyck.html .

Part I: Using Numeric Dynamic Programming to Enumerate Restricted Dyck Paths

Enumerating Dyck Paths

Recall that a Dyck path of semi-length n is a walk in the plane, from the origin (0, 0) to (2n, 0)

with atomic steps U := (1, 1) and D := (1,−1) that never goes below the x−axis, i.e. that

always stays in y ≥ 0.

For example, the five Dyck paths of semi-length 3 are

UUUDDD , UUDUDD , UUDDUD , UDUUDD , UDUDUD .

The number of Dyck paths of semi-length n is famously the Catalan number, (2n)!
n!(n+1)!

, the most

popular, and important sequence in enumerative combinatorics (with no offense to Fibonacci),

the subject of a whole book by Guru Richard Stanley [St].

When we searched (on June 2, 2020) our favorite website, the OEIS [Sl] for the phrase “Dyck paths”

we got back 1100 hits. Of course we did not have the patience to read all of them, but a random

browsing revealed that they enumerate Dyck paths with various restrictions, and they refered to

the interesting papers [ELY], [PW], and [M]. These were all (admittedly clever) human-generated

efforts. We will soon see how to quickly automatically enumerate ‘infinitely’ many such classes, but

first let’s recall one of the many proofs of the fact that the number of Dyck paths of semi-length n

is indeed the venerable OEIS sequence A108, (2n)!
n!(n+1)! .

Let a(n) be the desired number, i.e. the number of Dyck paths of semi-length n, and consider the

ordinary generating function

f(x) :=

∞
∑

n=0

a(n)xn ,

which is the weight-enumerator of the set of all Dyck paths, with weight(P) := xSemiLength(P).

It is readily seen that any Dyck path P is either empty or can be written uniquely (i.e. unam-

biguously) as P = U P1 DP2, where P1 and P2 are shorter Dyck paths, and vica versa, for any

Dyck paths P1, P2, U P1 DP2 is a Dyck path on its own right. Let P be the totality of all Dyck

paths, then we have the grammar

P = {EmptyPath} ∪ U P DP .

2

Applying the weight functional we get

f(x) = 1 + xf(x)2 .

To deduce that a(n) = (2n)!/(n!(n + 1)!), you can, inter alia

• (i) Solve the quadratic and use Newton’s binomial theorem .

• (ii) Differentiate both sides getting a differential equation for f(x) that translates to a first-order

recurrence for a(n).

• (iii) Use Lagrange Inversion (see [Z1] for a brief and lucid exposition).

How it All Started: Vladimir Retakh’s Question

Volodia Retakh asked whether there is a proof of the fact that the number of Dyck paths of semi-

length n such that the height of all peaks is either 1 or even is given by the also famous Motzkin

numbers (OEIS sequence A1006), whose generating function satisfies

f(x) = 1 + xf(x) + x2f(x)2 .

We first tried to find a ‘conceptual’ proof generalizing the above proof, and indeed we found one,

by adapting the above classical proof enumerating all Dyck paths.

Let P1 be the set of Dyck paths whose peak-heights are never in {3, 5, 7, . . .}, and let f1 = f1(x)

be its weight enumerator.

Let P1 be any member of P1 then, it is either empty, or we can write

P1 = U P2 DP ′
1 ,

where P ′
1 ∈ P1 but P2 has the property that none of its peak-heights is in {2, 4, 6, . . .}. Let P2 be

the set of such Dyck paths.

Hence, we can write the ‘grammar’

P1 = {EmptyPath} ∪ U P2 DP1 .

Let f2 = f2(x) be the weight-enumerator of P2.

Taking weights above, we have the equation

f1 = 1 + xf2f1 .

Alas, now we have to put-up with P2 and f2. Let P2 be any member of P2. Then either it is empty,

or it can be written as

U P3 DP ′
2 ,

3

where P ′
2 ∈ P2 but P3 is a Dyck path whose peak-heights are never in {1, 3, 5, 7, . . .}.

Let P3 be the set of such Dyck paths. We have the grammar

P2 = {EmptyPath} ∪ U P3 DP2 .

Let f3 = f3(x) be the weight-enumerator of P3.

Taking weights we have another equation

f2 = 1 + xf3f2 .

It looks like we are doomed to have infinite regress, but let’s try one more time.

Let P3 be any member of P3. It is either empty, or we can write

P3 = U P4 DP ′
3

where P ′
3 ∈ P3 and P4 is a non-empty path avoiding peak-heights in {2, 4, 6, 8, . . .}. But this looks

familiar, so the set of P4-paths is really P2\{EmptyPath}, and we have the grammar

P3 = {EmptyPath} ∪ U (P2\{EmptyPath})D P3 .

Taking weight, we get

f3 = 1 + x(f2 − 1)f3 .

We have a system of three algebraic equations

{f1 = 1 + xf2f1 , f2 = 1 + xf3f2 , f3 = 1 + x(f2 − 1)f3 } ,

in the unknowns

{f1, f2, f3} .

Eliminating f2, f3 yields the following algebraic equation for our object of desire f1,

f1(x) = 1 + xf1(x) + x2f1(x)
2 ,

proving Volodia Retakh’s claim.

In Part II we will see how to teach the computer to do these reasonings, but if neither human nor

machine feel like thinking too hard, for many problems one can use the KISS method.

The KISS way

Now that we know that such an argument exists, and that the desired generating function f(x),

satisfies an algebraic equation of the form P (x, f(x)) = 0 for some bivariate polynomial P (x, y),

why not keep it simple, and rather than wrecking our brains (both those of humans and those

of machines), let’s collect sufficiently many terms of the desired sequence, and then use Maple’s

command gfun[listtoalgeq] (or our own home-made version) to guess the desired polynomial

equation P (x, f(x)) = 0.

4

Numerical Dynamic Programming to the rescue

Suppose that we don’t know anything, and want to compute the number of Dyck paths of semi-

length n, i.e. the number of all walks using the fundamental steps U = (1, 1) and D = (1,−1),

that start at (0, 0), end at (2n, 0) and never visit y < 0. A natural approach is to consider the

more general quantity d(m,k), the number of walks from (0, 0) to (m,k) staying weakly above the

x-axis and ending at a down step. If the length of that downward run is r, then the previous

peak was at (m− r, k + r), and we need to introduce the auxiliary function u(m,k) the number of

such paths that end at (m,k) and end at an up step.

We have

d(m,k) =

m
∑

r=1

u(m− r, k + r) .

Analogously,

u(m,k) =
m
∑

r=1

d(m− r, k − r) .

Of course we have the obvious initial condition d(0, 0) = 1, and the boundary conditions

d(m,k) = 0 and u(m,k) = 0 if k > m.

Here is the short Maple code that does it

u:=proc(m,k) local r: option remember: if m=0 then 0: else add(d(m-r,k-r),r=1..k):

fi: end:

d:=proc(m,k) local r: option remember:

if m=0 then if k=0 then RETURN(1): else RETURN(0): fi: fi: add(u(m-r,k+r),r=1..m):

end:

To get the desired sequence enumerating all Dyck paths of semi-length n for n from 1 to N , in

other words {d(2n, 0)}Nn=0 for any desired N , we type

seq(d(2*n,0),n=0..N); .

Now, recall that we had to work much harder, logically and conceptually, to find the algebraic

equation for the Dyck paths considered by Volodia Retakh. To get the analogous sequence we only

need to change the program by one line. Let’s call the analogous quantities u1(m,k) and d1(m,k).

u1:=proc(m,k) local r: option remember: if (k>1 and k mod 2=1) then RETURN(0): fi:

if m=0 then 0: else add(d1(m-r,k-r),r=1..k): fi: end:

d1:=proc(m,k) local r: option remember: if m=0 then if k=0 then RETURN(1): else

RETURN(0): fi: fi: add(u1(m-r,k+r),r=1..m): end:

In other words, just declaring that u1(m,k) = 0 if the elevation k is an odd integer larger than 1.

5

Typing

seq(d1(2*n,0),n=0..N);

will let us get, very fast, the first N +1 terms, that would enable us to guess the algebraic equation

satisfied by the generating function, that we can justify a posteriori, since we know that it exists,

saving us the mental agony of doing it logically, by figuring out the intricate ‘grammar’.

The general case

Since it is so easy to tweak the numerical dynamic programming procedure, why not be as general

as can be? Let A, B, C, D be arbitrary sets of positive integers, either finite sets, or infinite sets

(like in Retakh’s case) that are arithmetical progressions (or unions thereof). We are interested in

counting Dyck paths that obey the following restrictions

• No peak can be of a height that belongs to A.

• No valley can be of a height that belongs to B.

• No upward run can be of a length that belongs to C.

• No downward run can be of a length that belongs to D.

Then we declare that u(m,k) = 0 if k ∈ A and d(m,k) = 0 if k ∈ B and otherwise

d(m,k) =
∑

1≤r≤m

r 6∈C

u(m− r, k + r) .

Analogously,

u(m,k) =
∑

1≤r≤m

r 6∈D

d(m− r, k − r) .

Then we get, very fast, sufficiently many terms to guess an algebraic equation, by finding {d(2n, 0)}Nn=0,

for a sufficiently large N .

Guessing linear recurrences

It is well-known (see [KP], Theorem 6.1) that if f(x) is an algebraic formal power series (like in

our case), then it satisfies a linear differential equation with polynomial coefficients, i.e. it is D-

finite, and hence its sequence of coefficients, {a(n)}∞n=0, satisfies a linear recurrence equation with

polynomial coefficients, i.e. is P -recursive. While there are easy algorithms for finding these, they

do not always give the minimal recurrence, and once again, let’s keep it simple! Just guess such

a recurrence using undetermined coefficients, and we are guaranteed by the background ‘general

nonsense’ that everything is rigorously proved, and we don’t have to worry about Richard Guy’s

Strong Law of Small Numbers.

6

The Maple package Dyck.txt

Everything here is implemented in the Maple package Dyck.txt available from the front of this

article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/dyck.html .

There you would also find long web-books with many deep enumeration theorems. Let us present

just one random example.

Typing

Theorem({1},{},{2},{1},60,P,x,n,a,20,1000);

gives

Sample Theorem: Let a(n) be the number of Dyck paths of semi-length n obeying the following

restrictions. The height of a peak can not belong to {1}, no upward-run can have a length belonging

to {2}, and no downward-run can have a length that belongs to {1}, then the generating function

f(x) :=

∞
∑

n=0

a(n)xn ,

satisfies the algebraic equation

1 +
(

−x2 − x− 1
)

f (x) +
(

x4 + x3 + x2 + x
)

f (x)
2
= 0 ,

and the sequence a(n) satisfies the following linear recurrence

a (n) =
(n− 2) a (n− 1)

n+ 1
+ 2

(n− 2) a (n− 2)

n+ 1
+

(4n − 11) a (n− 3)

n+ 1

+
(8n − 25) a (n− 4)

n+ 1
+ 6

(n− 4) a (n− 5)

n+ 1
+

(5n− 22) a (n− 6)

n+ 1
+ 3

(n− 5) a (n− 7)

n+ 1
,

subject to the initial conditions a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 2, a(5) = 3, a(6) = 7, a(7) = 1.

Part II: Symbolic Dynamic Programming

We will now briefly describe the clever way, implemented in the Maple package DyckClever.txt.

Note that the “thinking” and “research” is done by the computer all by itself, using symbolic

dynamic programming, to generate a system of algebraic equations, and then it solves that

system. What happens is that in order to study the generating function for the original set, we are

forced to consider other sets, that in turn, necessitate yet more sets. Sooner or later, if all goes

well, there would be no more new ‘uninvited guests’, and the computer would have a finite system

of algebraic equations with as many equations as unknowns. Using the Buchberger algorithm

under the hood, it solves that system, giving us much more than we asked for, not just the desired

7

generating function, but lots of other ones that we had to introduce, and that we may not care

about.

Avoiding Peak-Heights and Valley Heights with Finite Sets to Avoid

Suppose that we have two arbitrary finite sets of non-negative integers A and B, and we are

interested in fA,B(x), the ordinary generating function enumerating Dyck paths such that

• None of the peak-heights is in A .

• None of the valley-heights is in B .

Assume, for now, that 0 6∈ A and 0 6∈ B, and define

A1 = {a− 1 : a ∈ A} ,

B1 = {b− 1 : b ∈ B} .

Recall that every Dyck P is either empty or else can be written as

UP1DP2 ,

where P1 and P2 are Dyck paths on their own right. If P is counted by fA,B(x) then P1 is counted

by fA1,B1
(x), but P2 is counted again by fA,B(x). This leads to the quadratic equation

fA,B(x) = 1 + xfA1,B1
(x)fA,B(x) .

Alas now we have to set-up an equation for fA1,B1
(x) and keep going. Sooner or later we will get

an fA′,B′(x) where either A′ or B′ contain 0 (or both). It is readily seen that if 0 ∈ A , then writing

A1 := A\{0}, we get the equation

fA,B(x) = fA1,B(x)− 1 .

If 0 6∈ A but 0 ∈ B then define

A1 = {a− 1 : a ∈ A} ,

as above and

B1 = {b− 1 : b ∈ B}\{−1} ,

and the corresponding equation is

fA,B(x) = 1 + xfA1,B1
(x) .

8

Sooner or later there would be no more new ‘states’ [A,B] and we would have a finite set of

quadratic equations with as many equations as unknowns. Solving the resulting system we would

get, inter-alia, our original object of desire, fA,B(x).

This is implemented in procedure fAB(A,B,x,P) in the Maple package DyckClever.txt available

from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/DyckClever.txt .

Just to take a random example, in order to get the quadratic equation satisfied by P =
∑∞

n=0 a(n)x
n,

where a(n) is the number of Dyck paths with no peak-heights in the set {2, 5} and no valley-heights

in the set {1, 4}, type

fAB({2,5},{1,4},x,P);

getting, in a fraction of a second,

(

4x6 − 13x5 + 24x4 − 27x3 + 19x2 − 7x+ 1
)

P 2

+
(

4x5 − 15x4 + 26x3 − 26x2 + 12x− 2
)

P + x4 − 4x3 + 8x2 − 5x+ 1 = 0 .

The closely related procedure fABcat(A,B,x,C) expresses P in terms of the Catalan generating

function C := (1−
√
1− 4x)/(2x). Typing

fABcat({ 2,5 } , { 1,4 },x,C);

would give
−Cx2 + x2 − 2x+ 1

(x3 − x2)C − 2x3 + 3x2 − 3x+ 1
.

Avoiding Peak-Heights and Valley Heights with infinite Sets to Avoid

The original motivating problem, asked by Volodia Retakh (see above) asked for the number of

Dyck paths whose peak-heights is either 1 or even, in other words the set of Dyck paths none of

whose peak-heights is in the range of the arithmetical progression 2r + 3 for r ≥ 0. The above

procedure fAB(A,B, x, P) can be easily modified to procedure

fABr(A,B,r,x,P) ,

where A and B are sets of arithmetical progressions written in the form ar + b for a and b non-

negative integers and r is a symbol ranging over the non-negative integers. For example, to get

Retakh’s result type

fABr({2*r+3 },{},r,x,P); ,

getting

x2P 2 + Px− P + 1 = 0 .

9

For the equation satisfied by the generating function of the sequence enumerating Dyck paths where

neither peak-heights nor valley-height is a member of the arithmetical progression 5r + 1 type

fABr({ 5*r+1 } , { 5*r+1 } ,r,x,P);

getting
(

x3 + x2 − x
)

P 2 +
(

x3 − 2x2 − x+ 1
)

P + 2x− 1 = 0 .

Avoiding Ascending Run-Lengths and Descending Run-Lengths with Finite Sets to

Avoid

An irreducible Dyck path of semi-length n is one who never touches the x-axis except, of course,

at the beginning (0, 0) and the end, when it is at (2n, 0).

Let C and D be arbitrary finite sets of positive integers. We are interested in finding the algebraic

equation satisfied by the generating function of the enumerating sequence of Dyck paths that never

have an ascending run-length in C and never have a descending run-length in D. Let’s call

it hC,D(x).

Alas, in order to get the symbolic dynamic programming (recursive) procedure rolling, we are forced

to consider more general classes.

Given sets of positive integers C,C1,D,D1, let hC,C1,D,D1
(x) be the weight-enumerators with

weight(P) := xSemiLength(P) of all Dyck paths P such that

• The length of a starting upward-run is not in C1 .

• All other upward run-lengths are not in C.

• The length of an ending downward-run is not in D1.

• All other downward run-lengths are not in D.

Let HC,C1,D,D1
(x) be the analogous quantity enumerating irreducible Dyck paths with these

restrictions.

We have the following equation

hC,C1,D,D1
(x) = 1 + HC,C1,D,D1

(x) + HC,C1,D,D(x)hC,C,D,D(x)HC,C,D,D1
(x) .

This follows from the fact that every such Dyck path is either the empty path (weight 1), or is

irreducible, or else can be viewed as concatenation of three paths, such that the first is weight-

counted by HC,C1,D,D(x), the second (possibly empty) path counted by hC,C,D,D(x) and the third

path by HC,C,D,D1
(x).

We must now find an equation for HC,C1,D,D1
.

10

If 1 6∈ C1 and 1 6∈ D1 then, let

C2 := {c− 1 : c ∈ C1} ,

D2 := {d− 1 : d ∈ D1} ,

Obviously, we have

HC,C1,D,D1
(x) = xhC,C2,D,D2

(x) .

If 1 ∈ C1 and 1 6∈ D1 then

HC,C1,D,D1
(x) = HC,C1\{1},D,D1

(x)− x ,

since the set of Dyck paths counted by HC,C1\{1},D,D1
(x) and HC,C1,D,D1

(x) are almost the same,

the only exception is UD that belongs to the former, but not to the latter, and whose weight is 1.

Similarly, if 1 6∈ C1 and 1 ∈ D1 then

HC,C1,D,D1
(x) = HC,C1,D,D1\{1}(x)− x ,

Finally, if 1 ∈ C1 and 1 ∈ D1 then

HC,C1,D,D1
(x) = HC,C1\{1},D,D1\{1}(x)− x .

This is implemented in procedure fCD(C,D,x,P). Just to take a random example, in order to get

the algebraic equation satisfied by P =
∑∞

n=0 a(n)x
n where a(n) is the number of Dyck paths with

no ascending run of length 2 and no descending run of length 3 just type

fCD({2},{ 3 },x,P);

getting

1− (x+ 1)
(

x2 − x+ 1
)

P + x
(

x3 + x2 − x+ 1
)

P 2 + x4
(

x5 − x3 + 2x2 − 1
)

P 3

+x4
(

x6 − 3x5 + x4 − x+ 1
)

P 4 + x6
(

x7 + 2x4 + x3 + x2 + 1
)

P 5

+x9
(

2x6 + x5 + 2x3 + 3x2 − x+ 1
)

P 6 + x11
(

x6 + 2x5 + x3 + 3x2 − 2x+ 1
)

P 7

+x15
(

x4 + x3 + x2 + 1
)

P 8 + x18
(

x3 + x2 + 1
)

P 9 + x22P 10 = 0 .

Avoiding Ascending Run-Lengths and Descending Run-Lengths with infinite Sets to

Avoid

The above procedure fCD(C,D, x, P) can be easily modified to procedure

fCDr(C,D,r,x,P)

11

where C and D are sets of arithmetical progressions written in the form ar + b for a and b non-

negative integers and r is a symbol ranging over the non-negative integers. For example, to get the

generating function for the sequence of Dyck paths where there are no ascending run-lengths in the

infinite set {3, 5, 7, 9, 11, . . .}, type:

fCDr({2*r+3 },{},r,x,P);

getting

−1 + (−x+ 1)P + x2 (x− 1)P 3 = 0 .

For the equation satisfied by the generating function of the sequence enumerating Dyck paths

where there are no ascending run-lengths in the infinite set {2, 4, 6, 8, 10, . . .}, and no descending

run-lengths in the infinite set {1, 3, 5, 7, 9, . . .}, type:

fABr({ 2*r+2 } , { 2*r+1 } ,r,x,P);

getting

1 +
(

−x2 − 1
)

P − P 2x2 + x2
(

3x2 + 2
)

P 3 − P 4x4 − x4
(

x2 + 1
)

P 5 + x6P 6 = 0 .

Homework Assignments

As in most of our papers, our main goal was to demonstrate an approach rather than discover

new theorems. It would be relatively straightforward to combine procedures fAB(A,B,x,P) and

fCD(C,D,x,P) to produce procedure fABCD(A,B,C,D,x,P) using the ‘clever’ approach, thereby

giving a ‘clever analog’ of the general problem discussed in Part I. We leave this to the interested

reader.

Avoiding an ascending run-length of length a is the same thing as saying that UaD can’t occur at

the start of the word, and DUaD can’t occur later, and analogously for avoiding descending run-

lengths. This naturally generalizes to the problem of counting Dyck paths avoiding as consecutive

subwords (i.e. ‘factors’ in the language of formal languages) an arbitrary finite set of forbidden

subwords. Both the ‘dumb’ approach and the ‘clever’ approach can be easily adapted to this

problem, and even when the subwords to avoid are ‘infinite set’ consisting of regular expressions.

We also leave this to the interested reader, as well as interfacing it with restricted peak-heights and

valley-heights.

Conclusion

For many enumeration problems the ‘dumb’ approach, keeping it simple, suffices, notwithstanding

Richard Guy’s cautionary tales, since by mumbling a few words, one can easily shut-up the tradi-

tional, machinophobic ‘rigorist’, who would have to accept it, at least reluctantly (he would still

say that such a proof ‘gives no insight’). This KISS approach is based on number-crunching, using

numeric dynamic programming as the engine.

12

But for larger problems, we may need, unfortunately, to do some ‘thinking’ by examining the

combinatorial-recursive structure of the combintorial sets involved. Luckily, this approach can be

automated as well, requiring us to only meta-think once by writing a general program that teaches

the computer to do the thinking for us. This clever approach is based on symbol-crunching, using

symbolic dynamic programming as the engine.

References

[ELY] Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh, Dyck Paths with Peaks Avoiding or

Restricted to a Given Set, Studies in Applied Mathematics 111 (2003), 453-465.

[G1] Richard K. Guy, The strong law of small numbers, Amer. Math. Monthly, 95 (1988), 697–712.

[G2] Richard K. Guy, The second strong law of small numbers, Math. Mag. 63 (1990), 3–20.

[KP] Manuel Kauers and Peter Paule, “The Concrete Tetrahedron”, Springer, 2011.

[M] Toufik Mansour, Counting Peaks at Height k in a Dyck Path, Journal of Integer Sequences, 5

(2002), Article 02.1.1

[PW] P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences 4

(2001), #01.1.3.

[Sl] Neil Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org .

[St] Richard Stanley, “Catalan Numbers”, Cambridge University Press, 2015.

[Z1] Doron Zeilberger, Lagrange Inversion Without Tears (Analysis) (based on Henrici), The Per-

sonal Journal of Shalosh B. Ekhad and Doron Zeilberger,

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/lag.html .

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick),

Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: ShaloshBEkhad at gmail dot com .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-

Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: DoronZeil at gmail dot com .

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeil-

berger and arxiv.org .

13

First Written: June 3, 2020. This version: June 12, 2020.

14

