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BECK-TYPE IDENTITIES FOR EULER PAIRS OF ORDER r

CRISTINA BALLANTINE AND AMANDA WELCH

Abstract. Partition identities are often statements asserting that the set PX

of partitions of n subject to condition X is equinumerous to the set PY of
partitions of n subject to condition Y . A Beck-type identity is a companion
identity to |PX | = |PY | asserting that the difference b(n) between the number
of parts in all partitions in PX and the number of parts in all partitions in PY

equals a c|PX′ | and also c|PY ′ |, where c is some constant related to the original
identity, and X′, respectively Y ′, is a condition on partitions that is a very
slight relaxation of condition X, respectively Y . A second Beck-type identity
involves the difference b′(n) between the total number of different parts in all
partitions in PX and the total number of different parts in all partitions in PY .
We extend these results to Beck-type identities accompanying all identities
given by Euler pairs of order r (for any r ≥ 2). As a consequence, we obtain
many families of new Beck-type identities. We give analytic and bijective
proofs of our results.
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1. Introduction

The origin of this article is rooted in two conjectures by Beck which appeared
in The On-Line Encyclopedia of Integer Sequences [1] on the pages for sequences
A090867 and A265251. The conjectures, as formulated by Beck, were proved by
Andrews in [3] using generating functions. Certain generalizations and combinato-
rial proofs appeared in [6] and [11]. Combinatorial proofs of the original conjectures
were also given in [5]. Several additional similar identities were proved in the last
two years. See for example [4, 7, 8, 9]. In order to define Beck-type identities, we
first introduce the necessary terminology and notation.

In this article N denotes the set of positive integers. Given a non negative
integer n, a partition λ of n is a non increasing sequence of positive integers λ =

(λ1, λ2, . . . , λk) that add up to n, i.e.,

k∑

i=1

λi = n. Thus, if l = (λ1, λ2, . . . , λk) is a

partition, we have l1 ≥ l2 ≥ . . . ≥ lk. The numbers λi are called the parts of λ and
n is called the size of λ. The number of parts of the partition is called the length
of λ and is denoted by ℓ(λ).

If l, µ are two arbitrary partitions, we denote by l ∪ µ the partition obtained
by taking all parts of l and all parts of µ and rearranging them to form a par-
tition. For example, if l = (5, 5, 3, 2, 2, 1) and µ = (7, 5, 3, 3), then l ∪ µ =
(7, 5, 5, 5, 3, 3, 3, 2, 2, 1).

When convenient, we use the exponential notation for parts in a partition. The
exponent of a part is the multiplicity of the part in the partition. For example,
(7, 52, 4, 33, 12) denotes the partition (7, 5, 5, 4, 3, 3, 3, 1, 1). It will be clear from the
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context when exponents refer to multiplicities and when they are exponents in the
usual sense.

Let S1 and S2 be subsets of the positive integers. We define Or(n) to be be
the set of partitions of n with all parts from the set S2 and Dr(n) to be the set of
partitions of n with parts in S1 repeated at most r− 1 times. Subbarao [10] proved
the following theorem.

Theorem 1.1. |Or(n)| = |Dr(n)| for all non-negative integers n if and only if
rS1 ⊆ S1 and S2 = S1 \ rS1.

Andrews [2] first discovered this result for r = 2 and called a pair (S1, S2) such
that |O2(n)| = |D2(n)| an Euler pair since the pair S1 = N and S2 = 2N− 1 gives
Euler’s identity. By analogy, Subbarao called a pair (S1, S2) such that |Or(n)| =
|Dr(n)| an Euler pair of order r.

Example 1 (Subbarao [10]). Let

S1 = {m ∈ N : m ≡ 1 (mod 2)};

S2 = {m ∈ N : m ≡ ±1 (mod 6)}.

Then (S1, S2) is an Euler pair of order 3.

Note that Glaisher’s bijection used to prove |Or(n)| = |Dr(n)| when S1 = N and
S2 = 2N− 1 can be generalized to any Euler pair of order r. If (S1, S2) is an Euler
pair of order r, let ϕr be the map from Or(n) to Dr(n) which repeatedly merges
r equal parts into a single part until there are no parts repeated more than r − 1
times. The map ϕr is a bijection and we refer to it as Glaisher’s bijection.

Given (S1, S2), an Euler pair of order r, we refer to the elements in S2 = S1 \rS1

as primitive elements and to the elements of rS1 = S1\S2 as non-primitive elements.
We usually denote primitive parts by bold lower case letters, for example a. Non-
primitive parts are denoted by (non-bold) lower case letters. If a is a non-primitive
part and we want to emphasize the largest power k of r such that a/rk ∈ S1, we
write a = rka with a ∈ S2.

Let O1,r(n) be the set of partitions of n with parts in S1 such that the set of
parts in rS1 has exactly one element. Thus, a partition in O1,r(n) has exactly one
non-primitive part (possibly repeated). Let D1,r(n) be the set of partitions of n
with parts in S1 in which exactly one part is repeated at least r times.

Let ar(n) = |O1,r(n)| and cr(n) = |D1,r(n)|. Let br(n) be the difference between
the number of parts in all partitions in Or(n) and the number of parts in all
partitions in Dr(n). Thus,

br(n) =
∑

l∈Or(n)

ℓ(l)−
∑

l∈Dr(n)

ℓ(l).

Let Tr(n) be the subset of D1,r(n) consisting of partitions of n in which one part
is repeated more than r times but less than 2r times. Let c′r(n) = |Tr(n)|. Let
b′r(n) be the difference between the total number of different parts in all partitions
in Dr(n) and the total number of different parts in all partitions in Or(n) (i.e., in
each partition, parts are counted without multiplicity). If we denote by ℓ̄(l) the
number of different parts in l, then

b′r(n) =
∑

l∈Dr(n)

ℓ̄(l)−
∑

l∈Or(n)

ℓ̄(l).
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In [1], Beck conjectured that, if S1 = N and S2 = 2N− 1, then

a2(n) = b2(n) = c2(n)

and

c′2(n) = b′2(n).

Andrews proved these identities in [3] using generating functions. Combinatorial
proofs were given in [5]. For the case r ≥ 2, S1 = N, and S2 = {k ∈ N : k 6≡ 0
(mod r)}, Fu and Tang [6] gave generating function proofs for

(1) ar(n) =
1

r − 1
br(n) = cr(n)

and

(2) c′r(n) = b′r(n).

They also proved combinatorially that ar(n) = cr(n). In [11], Yang gave combina-
torial proofs of (1) and (2) in the case r ≥ 2, S1 = N, and S2 = {k ∈ N : k 6≡ 0
(mod r)}.

Our main theorems establish the analogous result for all Euler pairs. We will
prove the theorems both analytically and combinatorially. We refer to the results
in Theorem 1.2 as first Beck-type identities and to the result in Theorem 1.3 as
second Beck-type identity.

Theorem 1.2. If n, r are integers such that n ≥ 0 and r ≥ 2, and (S1, S2) is an
Euler pair of order r, then

(i) ar(n) =
1

r − 1
br(n)

(ii) cr(n) =
1

r − 1
br(n).

Theorem 1.3. If n, r are integers such that n ≥ 0 and r ≥ 2, and (S1, S2) is an
Euler pair of order r, then c′r(n) = b′r(n).

Example 2. We continue with the Euler pair of order 3 from Example 1. We have

O3(7) = {(7), (5, 12), (17)}; D3(7) = {(7), (5, 12), (32, 1)};

and

O1,3(7) = {(32, 1), (3, 14)}; D1,3(7) = {(17), (3, 14)}.

Glaisher’s bijection is given by

(7)
ϕ3

−→ (7)

(5, 1, 1) −→ (5, 1, 1)

(1, 1, 1
︸ ︷︷ ︸

, 1, 1, 1
︸ ︷︷ ︸

, 1) −→ (3, 3, 1)

We note that

a3(7) = |O1,3(7)| = 2, c3(7) = |D1,3(7)| = 2, and b3(7) = 11− 7 = 4.

Thus,
1

r − 1
b3(7) = a3(7) = c3(7).
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If we restrict to counting different parts in partitions, we see that there are a
total of 4 diferent parts in the partitions of O3(7) and a total of 5 different parts
in the partitions of D3(7). Since T3(7) = {(3, 14)}, we have

b′3(7) = 5− 4 = 1 = |T3(7)|.

The analytic proofs of Theorems 1.2 and 1.3 are similar to the proofs in [3] and [6],
while the combinatorial proofs follow the ideas of [5]. However, the generalizations
of the proofs in the aforementioned articles to Euler pairs of order r ≥ 2 are
important as establishing the theorems in such generality leads to a multitude of
new Beck-type identities. We reproduce several Euler pairs listed in [10]. For
each identity |Or(n)| = |Dr(n)| holding for the pair below, there are companion
Beck-type identities as in Theorems 1.2 and 1.3.

The following pairs (S1, S2) are Euler pairs (of order 2).

(i) S1 = {m ∈ N : m 6≡ 0 (mod 3)};
S2 = {m ∈ N : m ≡ 1, 5 (mod 6)}.

In this case, the identity |O2(n)| = |D2(n)| is known as Schur’s identity.

(ii) S1 = {m ∈ N : m ≡ 2, 4, 5 (mod 6)};
S2 = {m ∈ N : m ≡ 2, 5, 11 (mod 12)}.

In this case, the identity |O2(n)| = |D2(n)| is known as Göllnitz’s iden-
tity.

(iii) S1 = {m ∈ N : m = x2 + 2y2 for some x, y ∈ Z};
S2 = {m ∈ N : m ≡ 1 (mod 2) and m = x2 + 2y2 for some x, y ∈ Z}.

The following is an Euler pair of order 3.

(iv) S1 = {m ∈ N : m = x2 + xy + y2 for some x, y ∈ Z};
S2 = {m ∈ N : gcd(m, 3) = 1 and m = x2 + xy + y2 for some x, y ∈ Z}.

The following pairs (S1, S2) are Euler pairs of order r.

(v) S1 = {m ∈ N : m ≡ ±r (mod r(r + 1))};
S2 = {m ∈ N : m ≡ ±r (mod r(r + 1)) and m 6≡ ±r2 (mod r2(r + 1))}.

(vi) S1 = {m ∈ N : m ≡ ±r,−1 (mod r(r + 1))}.
S2 = {m ∈ N : m ≡ ±r,−1 (mod r(r + 1)) and m 6≡ ±r2,−r (mod r2(r +
1))}.

If r = 2, this Euler pair becomes Göllnitz’s pair in (ii) above.
(vii) Let r + 1 be a prime.

S1 = {m ∈ N : m 6≡ 0 (mod r + 1)};
S2 = {m ∈ N : m 6≡ tr, t(r + 1) (mod r2 + r) for 1 ≤ t ≤ r}.

If r = 2, this Euler pair becomes Schur’s pair in (i) above.

(viii) Let p be a prime and r a quadratic residue (mod p).
S1 = {m ∈ N : m quadratic residue (mod p)};
S2 = {m ∈ N : m 6≡ 0 (mod r) and m quadratic residue (mod p)}.

Note that each case (v)-(vii) gives infinitely many Euler pairs and therefore leads
to infinitely many new Beck-type identities. We also note that in (vii) we corrected
a slight error in (3.4) of [10].
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Example 3. Consider the Euler pair in (vii) above with r = 4. We have
S1 = {m ∈ N : m 6≡ 0 (mod 5)};

S2 = {m ∈ N : m 6≡ 4t, 5t (mod 20) for 1 ≤ t ≤ 4}.

Then (S1, S2) is an Euler pair of order 4 and we have

O4(7) = {(7), (6, 1), (32, 1), (3, 22), (3, 14), (3, 2, 12), (23, 1), (22, 13), (2, 15), (17)};

D4(7) = {(7), (6, 1), (32, 1), (3, 22), (4, 3), (3, 2, 12), (23, 1), (22, 13), (4, 2, 1), (4, 13)}.

Glaisher’s bijection is given by

(7)
ϕ4

−→ (7)

(6, 1) −→ (6, 1)

(3, 3, 1) −→ (3, 3, 1)

(3, 2, 2) −→ (3, 2, 2)

(3, 1, 1, 1, 1
︸ ︷︷ ︸

) −→ (4, 3)

(3, 2, 1, 1) −→ (3, 2, 1, 1)

(2, 2, 2, 1) −→ (2, 2, 2, 1)

(2, 2, 1, 1, 1) −→ (2, 2, 1, 1, 1)

(2, 1, 1, 1, 1
︸ ︷︷ ︸

, 1) −→ (4, 2, 1)

(1, 1, 1, 1
︸ ︷︷ ︸

, 1, 1, 1) −→ (4, 1, 1, 1)

We have O1,4(7) = {(4, 13), (4, 2, 1), (4, 3)}; D1,4(7) = {(17), (2, 15), (3, 14)}.

We note that a4(7) = |O1,4(7)| = 3, c3(7) = |D1,3(7)| = 3, and b3(7) = 40−31 =
9, so 1

3b4(7) = a4(7) = c4(7).
If we restrict to counting distinct parts, we see that there are 19 distinct parts

in the partitions of O4(7) and 21 distinct parts in the partitions of D4(7). So
b′4(7) = 21− 19 = 2 = |T4(7)| since T4(7) = {(17), (2, 15)}.

2. Proofs of Theorem 1.2

2.1. Analytic Proof. In this article, whenever we work with q-series, we assume
that |q| < 1. When working with two-variable generating functions, we assume
both variables are complex numbers less that 1 in absolute value. Then all series
converge absolutely. The generating functions for |Dr(n)| and |Or(n)| are given by
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∞∑

n=0

|Dr(n)|q
n =

∏

a∈S1

(1 + qa + q2a + · · ·+ q(r−1)a)

=
∏

a∈S1

1− qra

1− qa
;

and
∞∑

n=0

|Or(n)|q
n =

∏

b∈S2

1

1− qb
.

To keep track of the number of parts used, we introduce a second variable z,
where |z| < 1. Let

Dr(n;m) = {l ∈ Dr(n) | l has exactly m parts}

and
Or(n;m) = {l ∈ Or(n) | l has exactly m parts}.

Then, the generating functions for |Dr(n;m)| and |Or(n;m)| are

fDr
(z, q) =

∞∑

n=0

∞∑

m=0

|Dr(n;m)|zmqn =
∏

a∈S1

(1 + zqa + z2q2a + · · ·+ z(r−1)q(r−1)a)

=
∏

a∈S1

1− zrqra

1− zqa
;

and

fOr
(z, q) =

∞∑

n=0

∞∑

m=0

|Or(n;m)|zmqn =
∏

b∈S2

1

1− zqb
.

To obtain the generating function for the total number of parts in all partition
in Dr(n) (respectively Or(n)), we take the derivative with respect to z of fDr

(z, q)
(respectively fOr

(z, q)), and set z = 1. We obtain

∂

∂z

∣
∣
∣
∣
z=1

fDr
(z, q)

=
∏

a∈S1

1− qra

1− qa

∑

a∈S1

−rqra(1− qa) + qa(1− qra)

(1− qa)(1 − qra)

=
∏

a∈S1

1− qra

1− qa

∑

a∈S1

(
qa

1− qa
−

qra

1− qra
− (r − 1)

qra

1− qra

)

=
∏

a∈S1

1− qra

1− qa







∑

a∈S1

∞∑

k=1
r∤k

qka −
∑

a∈S1

(r − 1)
qra

1− qra







;

and

∂

∂z

∣
∣
∣
∣
z=1

fOr
(z, q) =

∏

b∈S2

1

1− qb

∑

b∈S2

qb

1− qb
.
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Since |Dr(n)| = |Or(n)|, we have

∞∑

n=0

br(n)q
n =

∏

b∈S2

1

1− qb

(
∑

b∈S2

qb

1− qb
−

∑

a∈S1

k∈N
r∤k

qka +
∑

a∈S1

(r − 1)
qra

1− qra

)

.

Next we show that

∑

b∈S2

qb

1− qb
=

∑

a∈S1

k∈N
r∤k

qka.(3)

The set of exponents of q in the left sum is C = {mb | m ∈ N, b ∈ S2}. The set
of exponents of q in the right sum is D = {ka | k ∈ N, r ∤ k, a ∈ S1}.

To prove (3), we create a matching of the elements of D and C.
Let d be an element of D. Then d = ka where k ∈ N, r ∤ k, and a ∈ S1. Since

a ∈ S1 = S2⊔ rS2 ⊔ r2S2 · · · , there is some integer j ≥ 0 and some and b ∈ S2 such
that a = rjb. Then d = (krj)b ∈ C.

Conversely, consider c ∈ C. Then c = mb where m ∈ N and b ∈ S2. Let j be
the largest non-negative integer such that rj is a factor of m. If m = rjm′, we have
c = m′(rjb). Since r ∤ m′ and rjb ∈ S1, this is an element of D. Thus, C = D,
and (3) holds.

Then the generating function for br(n) becomes

∞∑

n=0

br(n)q
n =

∏

b∈S2

1

1− qb

(

(r − 1)
∑

a∈S1

qra

1− qra

)

=
∏

a∈S1

(1 + qa + q2a + · · ·+ q(r−1)a)

(

(r − 1)
∑

a∈S1

qra

1− qra

)

.

Therefore

∞∑

n=0

br(n)q
n =

∞∑

n=0

(r − 1)|O1,r(n)|q
n =

∞∑

n=0

(r − 1)|D1,r(n)|q
n.

Equating coefficients results in ar(n) =
1

r − 1
br(n) and cr(n) =

1

r − 1
br(n).

2.2. Combinatorial Proof.

2.2.1. br(n) as the cardinality of a set of marked partitions. We start with another
example of Glaisher’s bijection.

Example 4. We continue with the Euler pair of order 3 from Example 1, but this
time use n = 11.

O3(11) = {(11), (7, 14), (52, 1), (5, 16), (111)};
D3(7) = {(11), (9, 12), (7, 3, 1), (52, 1), (5, 32)}.

Thus, b3(11) = 27− 13 = 14.

Glaisher’s bijection is given by
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(11)
ϕ3

−→ (11)

(7, 1, 1, 1
︸ ︷︷ ︸

, 1) −→ (7, 3, 1)

(5, 5, 1) −→ (5, 5, 1)

(5, 1, 1, 1,
︸ ︷︷ ︸

1, 1, 1
︸ ︷︷ ︸

) −→ (5, 3, 3)

(1, 1, 1
︸ ︷︷ ︸

, 1, 1, 1
︸ ︷︷ ︸

, 1, 1, 1,
︸ ︷︷ ︸

︸ ︷︷ ︸

1, 1) −→ (9, 1, 1)

From Glaisher’s bijection, it is clear that each partition λ ∈ Or(n) has at least
as many parts as its image ϕr(λ) ∈ Dr(n).

When calculating br(n), we sum up the differences in the number of parts in
each pair (λ, ϕr(λ)). Write each part µj of µ = ϕr(λ) as µj = rkja with a ∈ S2.
Then, µj was obtained by merging rkj parts equal to a in λ and thus contributes
an excess of rkj − 1 parts to br(n). Therefore, the difference between the number

of parts of λ and the number of parts of ϕr(λ) is

ℓ(ϕr(λ))∑

j=1

(rkj − 1).

Example 5. In the setting of Example 4, we see that (7, 3, 1) contributes 2 to
b3(11), (5, 3, 3) contributes 2 + 2 to b3(11), and (9, 1, 1) contributes 8 to b3(11).
Thus, b3(11) = 2 + 4 + 8 = 14.

Definition 1. Given (S1, S2), an Euler pair of order r, we define the set MD1,r(n)
of marked partitions of n as the set of partitions in Dr(n) such that exactly one
part of the form rka with k ≥ 1 and a ∈ S2 has as index an integer t satisfying
1 ≤ t ≤ rk − 1. If µ ∈ Dr(n) has parts µi = µj = rka, k ≥ 1, with i 6= j, the
marked partition in which µi has index t is considered different from the marked
partition in which µj has index t.

Note that marked partitions, by definition, have a non-primitive part. Then,
from the discussion above we have the following interpretation for br(n).

Proposition 1. Let n, r be integers such that n ≥ 1 and r ≥ 2. Then,

br(n) = |MD1,r(n)|.

Definition 2. An r-word w is a sequence of letters from the alphabet {0, 1, . . . r−
1}. The length of an r-word w, denoted ℓ(w), is the number of letters in w. We
refer to position i in w as the ith entry from the right, where the most right entry
is counted as position 0.

Note that leading zeros are allowed and are recorded. For example, if r = 5, the
5-words 032 and 32 are different even though in base 5 they both represent 17. We
have ℓ(032) = 3 and ℓ(32) = 2. The empty bit string has length 0 and is denoted
by ∅.

Definition 3. Given (S1, S2), an Euler pair of order r, we define the set DDr(n)
of r-decorated partition as the set of partitions in Dr(n) with at least one non-
primitive part such that exactly one non-primitive part rka (with k ≥ 1 and a ∈ S2)
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is decorated with an index w, where w is an r-word satisfying 0 ≤ ℓ(w) ≤ k − 1.
As in Definition 1, if µ ∈ Dr(n) has parts µi = µj = rka, k ≥ 1, with i 6= j,
the decorated partition in which µi has index w is considered different from the
decorated partition in which µj has index w.

Thus, for each part µi = rkia of µ ∈ DDr(n) there are
rki − 1

r − 1
possible indices

and for each partition µ ∈ DDr(n) there are precisely
1

r − 1

ℓ(µ)
∑

j=1

(rkj − 1) possible

decorated partitions with the same parts as µ.

The discussion above proves the following interpretation for
1

r − 1
br(n).

Proposition 2. Let n, r be integers such that n ≥ 1 and r ≥ 2. Then,

1

r − 1
br(n) = |DDr(n)|.

While it is obvious that |MD1,r(n)| = (r − 1)|DDr(n)|, to see this combi-
natorially, consider the map ψr : MD1,r(n) → DDr(n) defined as follows. If
l ∈ MD1,r(n), then ψr(l) is the partition in DDr(n) in which the r-decorated part
is the same as the marked part in l. The index of the part of ψr(l) is obtained from
the index of the part of l by writing it in base r and removing the leading digit.
Clearly, this is a r − 1 to 1 mapping.

2.2.2. A combinatorial proof for ar(n) =
1

r − 1
br(n). To prove combinatorially that

ar(n) =
1

r − 1
br(n) we establishing a one-to-one correspondence between O1,r(n)

and DDr(n).

From DDr(n) to O1,r(n):
Start with an r-decorated partition µ ∈ DDr(n). Suppose the non-primitive

part µi = rka, with k ≥ 1 and a ∈ S2, is decorated with r-word w of length ℓ(w).
Then, 0 ≤ ℓ(w) ≤ k − 1. Let dw be the decimal value of of w. We set d∅ = 0. We
transform µ into a partition l ∈ O1,r(n) as follows.

Define µ̄ to be the partition whose parts are all non-primitive parts of µ of the
form µj = rta with j ≤ i, i.e., all parts rta with t > k and, if µi is the pth part of
size rka in µ, then µ̄ also has p parts equal to rka.

Define µ̃ to be the partition whose parts are all parts of µ that are not in µ̄.

(1) In µ̄, split one part of size rka into dw + 1 parts of size rk−ℓ(w)a and
rk − (dw + 1)rk−ℓ(w) primitive parts of size a. Every other part in µ̄ splits
completely into parts of size rk−ℓ(w)a. Denote the resulting partition by l̄.

(2) Let l̃ = ϕ−1
r (µ̃). Thus, l̃ is obtained by splitting all parts in µ̃ into primitive

parts.

Let l = l̄ ∪ l̃. Then l ∈ O1,r(n) and its set of non-primitive parts is {rk−ℓ(w)a}.

Remark 1. Since dw+1 ≤ rℓ(w), in step 1, the resulting number of primitive parts
equal to a is non-negative. Moreover, in l̄ there is at least one non-primitive part.

Example 6. We continue with the Euler pair of order 3 from Example 1. Consider
the decorated partition
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µ = (1215, 13502, 135, 51, 35, 15, 15, 3)

= (35 · 5, (33 · 5)02, 3
3 · 5, 3 · 17, 35, 3 · 5, 3 · 5, 3 · 1) ∈ DDr(1604).

We have k = 3, ℓ(w) = 2, dw = 2, and

µ̄ = (35 · 5, 33 · 5);

µ̃ = (33 · 5, 3 · 17, 35, 3 · 5, 3 · 5, 3 · 1).

To create λ̄ from µ̄:

(1) Part 135 = 33 · 5 splits into three parts of size 15 and eighteen parts of size
5.

(2) Part 1215 = 35 · 5 splits into eighty one parts of size 15.

This results in λ̄ = (1584, 518).

To create λ̃ from µ̃:

All parts in µ̃ are split into primitive parts. Thus, part 33 · 5 splits into twenty
seven parts of size 5, part 3 · 17 splits into three parts of size 17, both parts of 3 · 5
split into three parts of size 5 each, and part 3 · 1 splits into three parts of size 1.
Part 35 is already primitive so remains unchanged.

This results in λ̃ = (35, 173, 533, 13). Then, setting λ = λ̄ ∪ λ̃ results in λ =
(35, 173, 1584, 551, 13) ∈ O1,r(1604). The non-primitive part is 15 = 3 · 5.

From O1,r(n) to DDr(n):
Start with a partition λ ∈ O1,r(n). In l there is one and only one non-primitive

part rka with k ≥ 1 and a ∈ S2. Let f be the multiplicity of the non-primitive part
of λ. We transform l into an r-decorated partition in DDr(n) as follows.

Apply Glaisher’s bijection to l to obtain µ = ϕr(l) ∈ Dr(n). Since λ has a
non-primitive part, µ will have at least one non-primitive part.

Next, we determine the r-decoration of µ. Consider the non-primitive parts µji

of µ of the form rtia, with a ∈ S2 (same a as in the non-primitive part of λ) and
ti ≥ k. Assume j1 < j2 < · · · . For notational convenience, set µj0 = 0. Let h be
the positive integer such that

(4)

h−1∑

i=0

µji < f · rka ≤
h∑

i=0

µji .

Then, we will decorate part µjh = rtha. To determine the decoration, let

N =

h−1∑

i=0

µji

rka
.

Then, (4) becomes

rkaN < f · rka ≤ rkaN + rtha,

which implies 0 < f −N ≤ rth−k.
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Let d = f − N − 1 and ℓ = th − k. We have 0 ≤ ℓ ≤ th − 1. Consider the
representation of d in base r and insert leading zeros to form an r-word w of length
ℓ. Decorate µjh with w. The resulting decorated partition is in DDr(n).

Example 7. We continue with the Euler pair of order 3 from Example 1. Consider
the partition λ = (35, 173, 1584, 551, 13) ∈ O1,r(1604). The non-primitive part is 15.
We have k = 1, f = 84.

Glaisher’s bijection produces the partition µ = (1215, 1352, 51, 35, 152, 3) = (35 ·
5, 33 · 5, 33 · 5, 3 · 17, 35, 3 · 5, 3 · 5, 3 · 1) ∈ MD(1604). The parts of the form 3ri · 5
with ri ≥ 1 are 1215, 135, 135, 15, 15. Since 1215 < 84(31 · 5) ≤ 1215 + 135, the
decorated part will be the first part 135 = 33 · 5. We have N = 1215/15 = 81.

To determine the decoration, let dw = 84 − 81− 1 = 2 and ℓ = 3 − 1 = 2. The
base 3 representation of dw is 2. To form an 3-word of length 2, we introduce one
leading 0. Thus, the decoration is w = 02 and the resulting decorated partition is
(1215, 13502, 135, 51, 35, 15, 15, 3) = (35 · 5, (33 · 5)02, 33 · 5, 3 · 17, 35, 3 · 5, 3 · 5, 3 · 1) ∈
DDr(1604).

2.2.3. A combinatorial proof for cr(n) =
1

r − 1
br(n). We note that one can compose

the bijection of section 2.2.2 with the bijection of [6] to obtain a combinatorial
proof of part (ii) of Theorem 1.2. However, we give an alternative proof that

cr(n) =
1

r − 1
br(n) by establishing a one-to-one correspondence between D1,r(n)

and DDr(n). This proof does not involve the bijection of [6] and it mirrors the
proof of section 2.2.2.

From DDr(n) to D1,r(n):
Start with an r-decorated partition µ ∈ DDr(n). Suppose the non-primitive

part µi = rka, with k ≥ 1 and a ∈ S2, is decorated with r-word w of length ℓ(w)
and decimal value dw. Then, 0 ≤ ℓ(w) ≤ k − 1. We transform µ into a partition
λ ∈ D1,r(n) as follows.

Let ¯̄µ be the partition whose parts are all non-primitive parts of µ of the form
µj = rta with j ≥ i, and k− ℓ(w)− 1 < t ≤ k, i.e., all parts rta with k− ℓ(w)− 1 <
t < k and, if there are p− 1 parts of size rka in µ after the decorated part, then µ̄
also has p parts equal to rka.

Let ˜̃µ be the partition whose parts are all parts of µ that are not in ¯̄µ.
In ¯̄µ, perform the following steps.

(1) Split one part equal to rka into r(dw + 1) parts of size rk−ℓ(w)−1a and
m primitive parts of size a, where m = rk − r(dw + 1)rk−ℓ(w)−1. Apply
Glaisher’s bijection ϕr to the partition consisting of m parts equal to a.

(2) Split all remaining parts of ¯̄µ completely into parts of size rk−ℓ(w)−1a.

Denote by ¯̄l the partition with parts resulting from steps 1 and 2 above.

Let l = ¯̄l∪ ˜̃µ. Since r(dw +1) ≥ r, it follows that λ ∈ D1,r(n). The part repeated

at least r times is rk−ℓ(w)−1a.

Remark 2. Since dw+1 ≤ rℓ(w), the splitting in step 1 can be performed. If w = ∅
and there are no parts equal to rka after µi, then µi splits into r equal parts of size
rk−1a, and there are no other parts in ¯̄µ to split. Of course, there could also be
parts of size rk−1a in ˜̃µ.
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Example 8. We continue with the Euler pair of order 3 from Example 1. Con-
sider the partition µ = (32805, (10935)0120, 10935, 1215, 45, 45, 25, 9, 3) = (38 ·5, (37 ·
5)0120, 3

7 ·5, 35 ·5, 32 ·5, 32 ·5, 25, 32 ·1, 3 ·1) ∈ DDr(56017). Then the decorated part
is µ2 = 37 ·5 and the decoration is w = 0120. We have k = 7, ℓ(w) = 4, dw = 15. So

¯̄µ = (37 · 5, 37 · 5, 35 · 5);

˜̃µ = (38 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1).

(1) 37 · 5 splits into
• r(dw + 1) = 48 parts of 32 · 5 and
• m = rk − r(dw + 1)rk−ℓ(w)−1 = 37 − 48(32) = 1755 parts of 5.
The 1755 parts of 5 merge into two parts of 3645, one part of 1215, and

two parts of 135.
(2) 37 · 5 splits into two hundred and forty three parts of 32 · 5 and 35 · 5 splits

into twenty seven parts of 32 · 5.

This results in

¯̄λ = (36452, 1215, 1352, 45318);

λ = ¯̄λ ∪ ˜̃µ = (32805, 36452, 1215, 1352, 45320, 25, 9, 3) ∈ D1,r(56017). The part
repeated at least three times is 45 = 32 · 5.

From D1,r(n) to DDr(n):
Start with a partition λ ∈ D1,r(n). Then, among the parts of λ, there is one

and only one part that is repeated at least r times. Suppose the repeated part is
rka, k ≥ 0 and a ∈ S2, and denote by f ≥ r its multiplicity in λ. As in Glaisher’s
bijection we merge repeatedly parts of l that are repeated at least r times to obtain
µ ∈ Dr(n). Since λ has a part repeated at least r times, µ will have at least one
non-primitive part.

Next, we determine the decoration of µ. In this case, we want to work with
the parts of µ from the right to the left (i.e., from smallest to largest part). Let
µ̃q = µℓ(µ)−q+1. Consider the parts µ̃ji of the form rtia, with a ∈ S2 and ti ≥ k. If
t1 < t2 < · · · , we have j1 < j2 < · · · .

As before, we set µ̃j0 = 0. Let h be the positive integer such that

(5)

h−1∑

i=0

µ̃ji < f · rka ≤
h∑

i=0

µ̃ji .

Then, we will decorate part µ̃jh = rtha. To determine the decoration, let

(6) N =

h−1∑

i=0

µ̃ji

rka
.

Then, (5) becomes

rkaN < f · rka ≤ rkaN + rtha,

which implies 0 < f −N ≤ rth−k.

Let d =
f −N

r
− 1 and ℓ = th − k − 1. We have 0 ≤ ℓ ≤ th − 1. Consider the

representation of d in base r and insert leading zeros to form an r-word w of length
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ℓ. Decorate µ̃jh with w. The resulting decorated partition (with parts written in
non-increasing order) is in DDr(n).

Remark 3. To see that f−N above is always divisible by r, note that if f = qr+ t
with q, t ∈ Z and 0 ≤ t < r, then there are t terms equal to rka in the numerator
of N . All other terms, if any, are divisible by rk+1a. Therefore, the remainder of
N upon division by r is t.

Example 9. We continue with the Euler pair of order 3 from Example 1. Consider
the partition λ = (32805, 36452, 1215, 1352, 45320, 25, 9, 3) ∈ D1,r(56017). The part
repeated at least three times is 45 = 32 · 5. We have k = 2 and f = 320.

Applying Glaisher’s bijection to λ results in

µ = ϕ3(λ) = (38 · 5, 37 · 5, 37 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32, 3 · 1) ∈ Dr(56017).

The parts of the form 3ti ·5 with ti ≥ 2 are 32 ·5, 32 ·5, 35 ·5, 37 ·5, 37 ·5, 38 ·5. Since
32 ·5+32 ·5+35 ·5+37 ·5 < 320·32 ·5 ≤ 32 ·5+32 ·5+35 ·5+37 ·5+37 ·5, the decorated
part will be the second part (counting from the right) equal to 37 · 5 = 10935. We

have N =
32 · 5 + 32 · 5 + 35 · 5 + 37 · 5

32 · 5
= 272. Thus d =

320− 272

3
− 1 = 15 and

ℓ = 7−2−1 = 4. The base 3 representation of d is 120. To form a 3-word of length
4, we introduce one leading 0. Thus, the decoration is w = 0120 and the resulting
decorated partition is

µ =(32805, (10935)0120, 10935, 1215, 45, 45, 25, 9, 3)

=(38 · 5, (37 · 5)0120, 3
7 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1) ∈ DDr(56017).

3. Proofs of Theorem 1.3

3.1. Analytic Proof. We create a bivariate generating function to keep track of
the number of different parts in partitions in Or(n), respectively Dr(n).

We denote by Or(n;m) the set of partitions of n with parts from S2 using m
different parts. We denote by Dr(n;m) the set of partitions of n with parts from
S1 using m different parts and allowing parts to repeat no more than r − 1 times.
Then,

fOr
(z, q) =

∞∑

n=0

∞∑

m=0

|Or(n;m)|zmqn =
∏

b∈S2

(1 + zqb + zq2b + · · · )

=
∏

b∈S2

(

1 +
zqb

1− qb

)

,

and

fDr
(z, q) =

∞∑

n=0

∞∑

m=0

|Dr(n;m)|zmqn =
∏

a∈S1

(1 + zqa + · · ·+ zq(r−1)a)

=
∏

a∈S1

(

1 +
zqa − zqra

1− qa

)

.
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To obtain the generating function for the total number of different parts in all
partition in Or(n) (respectively Dr(n)), we take the derivative with respect to z of
fOr

(z, q) (respectively fDr
(z, q)), and set z = 1. We obtain

∂

∂z

∣
∣
∣
∣
z=1

fOr
(z, q) =

∑

b∈S2

qb

1− qb

∏

c∈S2,c6=b

(

1 +
qc

1− qc

)

=
∑

b∈S2

qb

1− qb

∏

c∈S2,c6=b

(
1

1− qc

)

=
∏

b∈S2

1

1− qb

∑

b∈S2

qb

and

∂

∂z

∣
∣
∣
∣
z=1

fDr
(z, q) =

∑

a∈S1

qa − qra

1− qa

∏

d∈S1,d 6=a

(

1 +
qd − qrd

1− qd

)

=
∑

a∈S1

qa − qra

1− qa

∏

d∈S1,d 6=a

1− qrd

1− qd

=
∏

a∈S1

1− qra

1− qa

∑

a∈S1

qa − qra

1− qra

Since |Dr(n)| = |Or(n)|, we have

∞∑

n=0

b′r(n)q
n =

∏

a∈S1

1− qra

1− qa

(
∑

a∈S1

qa

1− qra
−

∑

a∈S1

qra

1− qra
−

∑

b∈S2

qb
)

.

Moreover,

∑

a∈S1

qa

1− qra
−

∑

a∈S1

qra

1− qra
=

(
∑

a∈S1

qa +
∑

a∈S1

q(r+1)a

1− qra

)

−

(
∑

a∈rS1

qa +
∑

a∈S1

q2ra

1− qra

)

=

(
∑

a∈S1

qa −
∑

a∈rS1

qa
)

+
∑

a∈S1

q(r+1)a

1− qra
−

∑

a∈S1

q2ra

1− qra

=
∑

b∈S2

qb +
∑

a∈S1

q(r+1)a − q2ra

1− qra
,

the last equality occurring because S1 = S2 ⊔ rS1.
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Therefore,

∞∑

n=0

b′r(n)q
n =

∏

a∈S1

1− qra

1− qa

∑

a∈S1

q(r+1)a − q2ra

1− qra

=
∑

a∈S1

q(r+1)a + q(r+2)a + · · ·+ q(2r−1)a

1 + qa + · · ·+ q(r−1)a

∏

a∈S1

(1 + qa + · · ·+ q(r−1)a)

=
∑

a∈S1

(q(r+1)a + q(r+2)a + · · ·+ q(2r−1)a)
∏

d∈S1,c 6=a

(1 + qd + · · ·+ q(r−1)d)

=

∞∑

n=0

c′r(n)q
n.

3.2. Combinatorial Proof.

3.2.1. b′r(n) as the cardinality of a set of overpartitions. As in section 2.2.1, we use
Glaisher’s bijection and calculate b′r(n) by summing up the difference between the
number of different parts of ϕ(λ) and the number of different parts of λ for each
partition λ ∈ Or(n). For a given a ∈ S2, each part in ϕr(l) of the form rka, k ≥ 0,
is obtained from l by merging rk parts equal to a. Therefore, the contribution to
b′r(n) of each µ ∈ Dr(n) equals

∑

a∈S2

a part of ϕ−1

r (µ)

(mµ(a)− 1),

where

mµ(a) = |{t ≥ 0 | rta is a part of µ}|.

Next, we define a set of overpartitions. An overpartition is a partition in which
the last appearance of a part may be overlined. For example,
(5, 5, 5̄, 3, 3, 2̄, 1, 1, 1̄) is an overpartition of 26. We denote by Dr(n) the set of
overpartitions of n with parts in S1 repeated at most r − 1 times in which exactly
one part is overlined and such that part rsa with s ≥ 0 and a ∈ S2 may be
overlined only if there is a part rta with t < s. In particular, no primitive part
can be overlined. Note that when we count parts in an overpartition, the overlined
part contributes to the multiplicity. The discussion above proves the following
interpretation of br(n).

Proposition 3. Let n ≥ 1. Then, br(n) = |Dr(n)|.

3.2.2. A combinatorial proof for cr(n) = br(n). We establish a one-to-one corre-
spondence between Dr(n) and Tr(n).

From Dr(n) to Tr(n):
Start with an overpartition µ ∈ Dr(n). Suppose the overlined part is µi = rsa

for some s ≥ 1 and a ∈ S2. Then there is a part µj = rta of µ with t < s. Let k
be the largest positive integer such that rka is a part of µ and k < s. To obtain
λ ∈ Tr(n) from µ, split µi into r parts equal to r

ka and r− 1 parts equal to rja for
each j = k + 1, k + 2, . . . , s− 1.
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Example 10. We continue with the Euler pair of order 3 from Example 1. Let

µ = (38 · 5, 37 · 5, 37 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1) ∈ Dr(56017).

Then k = 5 and 37 · 5 splits into three parts equal to 35 · 5 and two parts equal
to 36 · 5. Thus, we obtain the partition

λ = (38 · 5, 37 · 5, 36 · 5, 36 · 5, 35 · 5, 35 · 5, 35 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1)

∈ Tr(56017).

The part repeated more than three times but less than six times is 35 · 5.

From Tr(n) to Dr(n):
Start with a partition λ ∈ Tr(n). Suppose rka is the part repeated more than r

times but less than 2r times. Let µ = ϕr(l) ∈ Dr(n). Overline the smallest part of
µ of form rta with t > k. The resulting overpartition is in Dr(n).

Example 11. We continue with the Euler pair of order 3 from Example 1. Let

λ = (38 · 5, 37 · 5, 36 · 5, 36 · 5, 35 · 5, 35 · 5, 35 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1)

∈ Tr(56017).

The part repeated more than three times but less than six times is 35 · 5. We have
k = 5. Merging by Glaisher’s bijection, we obtain

µ = (38 · 5, 37 · 5, 37 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1) ∈ Dr(56017).

The smallest part of µ of the form rta with t > k = 5 is 37 · 5. Thus we obtain
the overpartition

µ = (38 · 5, 37 · 5, 37 · 5, 35 · 5, 32 · 5, 32 · 5, 25, 32 · 1, 3 · 1) ∈ Dr(56017).

Remark 4. We could have obtained the transformation above from the combi-
natorial proof of part (ii) of Theorem 1.2. In the transformation from D1,r(n) to
DDr(n), if part r

ka is the part repeated more than r times but less than 2r times,
we have f = r + s for some 1 ≤ s ≤ r − 1, h = s + 1, and N = s. Thus d = 0
and the decorated part is the last occurrence of smallest part in the transformed
partition µ that is of the form rta with t > k. Thus, in µ, the decorated part rta
is decorated with an r-word consisting of all zeros and of length t− k − 1, one less
than the difference in exponents of r of the decorated part and the next smallest
part with the same a factor. Since in this case the decoration of a partition in
DDr(n) is completely determined by the part being decorated, we can simply just
overline the part.

4. Concluding remarks

In this article we proved first and second Beck-type identities for all Euler pairs
(S1, S2) of order r ≥ 2. Euler pairs of order r satisfy rS1 ⊆ S1 and S2 = S1 \ rS1.
Subbarao [10] showed that they completely characterize the pairs of subsets of
positive integers for which the following theorem holds.

Theorem 4.1. For any integer n ≥ 0, the number of partitions of n with parts in
S2 is equal to the number of partitions of n with parts in S1 and such that no part
is repeated more than r − 1 times.



BECK-TYPE IDENTITIES FOR EULER PAIRS OF ORDER r 17

Thus, we established Beck-type identities accompanying all partition identities
of the type given in Theorem 4.1.

At the end of [10], Subbarao mentions that this characterization also holds for
vector partitions. Let n1, n2, . . . , ns be integers summing up to n. A vector partition
of (n1, n2, . . . , ns) is a vector of partitions (l(1), l(2), . . . , l(s)) such that each l(i) is a
partition of ni, 1 ≤ i ≤ s. Subbarao extends his theorem as follows.

Theorem 4.2. The number of vector partitions (l(1), l(2), . . . , l(s)) of
(n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all parts of l(i) belong to S1 and
no part is repeated more than r − 1 times equals the number of vector partitions
(µ(1), µ(2), . . . , µ(s)) of (n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all parts of µ(i)

belong to S2.

Analogous Beck-type identities hold for vector partitions.
Let (S1, S2) be an Euler pair of order r ≥ 2. Let b′′r (n) be the difference between

the total number of parts in all vector partitions (l(1), l(2), . . . , l(s)) of (n1, n2, . . . , ns)
such that for each 1 ≤ i ≤ s all parts of l(i) belong to S1 and no part is re-
peated more than r− 1 times and the total number of parts in all vector partitions
(µ(1), µ(2), . . . , µ(s)) of (n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all parts of µ(i)

belong to S2. Then the work of this article proves the following first Beck-type
identity.

Theorem 4.3. Suppose (S1, S2) is an Euler pair of order r ≥ 2. Then
1

r − 1
b′′r (n)

equals the number of vector partitions
(l(1), l(2), . . . , l(s)) of (n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all parts of l(i)

belong to S1 and exactly one part is repeated at least r times. Also,
1

r − 1
b′′r (n)

equals the number of vector partitions (µ(1), µ(2), . . . , µ(s)) of
(n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s exactly one part of µ(i) (possibly
repeated) is from rS1.

Let (S1, S2) be an Euler pair of order r ≥ 2. Let b′′′r (n) be the difference in
the total number of different parts in all vector partitions (l(1), l(2), . . . , l(s)) of
(n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all parts of l(i) belong to S1 and no
part is repeated more than r − 1 times and the total number of parts in all vector
partitions (µ(1), µ(2), . . . , µ(s)) of (n1, n2, . . . , ns) such that for each 1 ≤ i ≤ s all
parts of µ(i) belong to S2. Then we have the following second Beck-type identity.

Theorem 4.4. Suppose (S1, S2) is an Euler pair of order r ≥ 2. Then b′′′r (n) equals
the number of vector partitions (l(1), l(2), . . . , l(s)) of (n1, n2, . . . , ns) such that for
each 1 ≤ i ≤ s all parts of l(i) belong to S1 and exactly one part is repeated more
than r times but less than 2r times.
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