
Computing linear extensions for Boolean lattices with

algebraic constraints

Shane Kepley∗, Konstantin Mischaikow†, and Lun Zhang‡

Abstract

In this paper we consider the classical problem of computing linear extensions of a given
poset which is well known to be a difficult problem. However, in our setting the elements
of the poset are multi-variate polynomials, and only a small “admissible” subset of these lin-
ear extensions, determined implicitly by the evaluation map, are of interest. This seemingly
novel problem arises in the study of global dynamics of gene regulatory networks in which case
the poset is a Boolean lattice. We provide an algorithm for solving this problem using linear
programming for arbitrary partial orders of linear polynomials. This algorithm exploits this
additional algebraic structure inherited from the polynomials to efficiently compute the admis-
sible linear extensions. The biologically relevant problem involves multi-linear polynomials and
we provide a construction for embedding it into an instance of the linear problem.

1 Introduction

Consider a set of real polynomials P, defined on a domain Ξ ⊂ Rd, equipped with a partial order ≺.
We are interested in identifying linear extensions (total orders compatible with ≺) that are satisfied
by P under evaluation at a point in Ξ.

To be more precise consider a semi-algebraic set Ξ ⊂ Rd, called the evaluation domain, and a
collection of polynomials P := {p0, . . . , pK} ⊂ R[x1, . . . , xd]. Let ≺ denote a partial order on P
such that if p ≺ q, then

p(ξ) < q(ξ) for all ξ ∈ Ξ. (1)

Let SK+1 denote the set of permutations on K + 1 symbols. We identify linear extensions of P
with a subset of SK+1 as follows. Given σ ∈ SK+1, let ≺σ denote the linear order

pσ(0) ≺σ pσ(1) ≺σ · · · ≺σ pσ(K).

We define the realizable set associated to σ by

Ξσ :=
{
ξ ∈ Ξ : pσ(k)(ξ) < pσ(k+1)(ξ) for all 0 ≤ k ≤ K − 1

}
. (2)

∗sk2011@math.rutgers.edu
†mischaik@math.rutgers.edu
‡lz210@math.rutgers.edu

1

ar
X

iv
:2

00
6.

02
62

2v
1

 [
m

at
h.

C
O

]
 4

 J
un

 2
02

0

Observe that if Ξσ 6= ∅, then ≺σ is a linear extension of ≺. The algebraically constrained linear
extension problem (AC-LEP) defined by (P,≺,Ξ) is to determine

T (P,≺,Ξ) := {σ ∈ SK+1 : Ξσ is nonempty} .

Notice that in the formulation of the AC-LEP we have identified the partial order ≺σ with the
associated element in SK+1. We will use this identification throughout the remainder of the paper.
We say that each σ ∈ T (P,≺,Ξ) is an admissible linear extension.

As is discussed in Section 2 our motivation for study the AC-LEP comes from modeling the
dynamics of regulatory networks in biology and in particular characterizing relevant subsets of
parameter space. For the moment we attempt to put this problem into a broader mathematical
context as the problem itself, as well as our solutions for some special cases, have elements of both
classical real algebraic geometry and order theory.

Quantifier elimination and real algebraic geometry

Observe that if Ξ = Rd, P is an arbitrary collection of polynomials, then σ ∈ SK+1 is admissible
if and only if there exists ξ ∈ Rd such that pσ(k)(ξ) − pσ(k+1)(ξ) < 0 for all 0 ≤ k ≤ K. These
inequalities define a semi-algebraic set and therefore, taking ≺ to be the trivial partial order (i.e. P
is a single anti-chain), this instance of AC-LEP is equivalent to the classical problem of decidability
for real semi-algebraic sets.

The previous example illustrates a major challenge in solving the AC-LEP. The first general
algorithm for solving the quantifier elimination/decidability problem for polynomials in Rd with
feasible running time was the cylindrical algebraic decomposition (CAD) given by Collins [9] in
1975. The CAD algorithm works by subdividing Ξ into subsets on which the polynomials are sign
invariant. Given such a decomposition, decidability is reduced to simply evaluating each polynomial
at a sample point located in each subset and checking if it satisfies the necessary inequalities.
Unfortunately, the computational complexity of the algorithm grows like

O
(

(2D)
2d−1

(K + 1)2d−122d−1−1
)

where D = max {deg p : p ∈ P} .

This worst case running time is known to be sharp even for classes of “nice” polynomials e.g. linear
[8], and moreover, the worst case is also typical [2]. As a result, the question of whether or not
σ ∈ T (P,≺,Ξ), even for a single σ ∈ SK+1, is often intractable for problems of practical interest.

In addition, this algorithm does not provide partial information. It either runs to completion,
in which case it is guaranteed to provide an answer, or it provides no information. Furthermore, we
note that if additional algebraic constraints are added e.g. we assume Ξ0 ⊂ Ξ ⊂ Rd is a strict semi-
algebraic subset, then the CAD algorithm can handle this by simply appending the polynomial
constraints which define Ξ0 to the set of polynomials. However, this dramatically increases the
complexity of the CAD algorithm, despite the fact that the number of admissible linear extensions
can only decrease.

Some improved algorithms have been proposed which aim to reduce the complexity of specific
aspects of the problem or for special classes of polynomials (e.g. [15, 6, 7]). These improvements
often provide dramatic algorithmic speedups for checking whether σ ∈ T (P,≺,Ξ) for a single
linear extension. However, these algorithms have the same worse case running time as the general
CAD algorithm and understanding which classes of polynomials benefit is still a very active area
of research. Therefore, these improved algorithms alone are not sufficient to handle instances of

2

AC-LEP since we are interested in determining which of the (K+1)! possible semi-algebraic sets are
nonempty. An efficient algorithm which does not produce a decomposition of Ξ into sign invariant
subsets would still need to be called (K + 1)! times. However, we will make use of these improved
algorithms as a post-processing step which we discuss further in Section 4.

Computing linear extensions of Boolean lattices

Let us momentarily ignore the algebraic structure in the AC-LEP by forgetting that P is a collection
of polynomials. Hence, we focus only on the poset structure (P,≺), and consider the problem of
computing all linear extensions. The related problem of counting all linear extensions of a partial
order is a well studied problem in order theory. Its importance is due in large part to its connection
with the complexity of sorting elements in a list. If one considers a list of (K + 1) distinct values
which have been partially sorted by making pairwise comparisons on a subset of its elements, then
these comparisons induce a partial order. Therefore, the linearly ordered values of the fully sorted
list are given by one of the possible linear extensions for the partial order. As a result, the complexity
of completely sorting a list is intimately connected to counting linear extensions for posets.

Observe that computing the set of all linear extensions of (P,≺) is not easier than counting them
which is known to be #P -complete [4]. In particular, a polynomial time algorithm for computing
all possible linear extensions for arbitrary posets would imply that P = NP by Toda’s theorem
[21]. Moreover, we are interested not only in counting linear extensions, but explicitly computing
them. Therefore, we are also concerned with how fast the number of admissible linear extensions
grows.

For reasons we discuss in Section 4, we are specifically interested in the case that (P,≺) is a
Boolean lattice. Specifically, for fixed n ∈ N, define Sn := {1, . . . , n} and let 2Sn denote its power
set. The standard n-dimensional Boolean lattice is the poset, (2Sn ,≺B), where ≺B is the partial
order defined by inclusion. We say a poset, (P,≺), is an n-dimensional Boolean lattice if (P,≺) is
order isomorphic to the standard n-dimensional Boolean lattice and we write ≺B in place of ≺.

Estimating the number of linear extensions for Boolean lattices was first considered in [17] which
established a nontrivial upper bound. Later, Brightwell and Tetali [5] proved the following result
that essentially settles the question for all practical considerations. If Q(n) denotes the number of
linear extensions of an n-dimensional Boolean lattice, then

logQ(n)

2n
= log

(
n

bn/2c

)
− 3

2
log e+O

(
lnn

n

)
. (3)

The estimate in Equation (3) illustrates a major challenge in solving the instances of AC-LEP
of interest in this paper. Consider an instance of AC-LEP given by (P,≺B ,Ξ) where (P,≺B) is an
n-dimensional Boolean lattice and Ξ is any evaluation domain.

Suppose we had a black box for efficiently computing all linear extensions of a Boolean lattice
denoted by L ⊂ SK+1. Furthermore, assume we also had a “CAD”-like algorithm which could
efficiently check if Ξσ 6= ∅. Then, one would need to call this algorithm only #L-many times as
opposed to (K + 1)! as we argued above. However, the growth estimate in Equation (3) implies
that the number of calls to this algorithm would still grow exponentially.

This work

In this work we present efficient algorithms for solving two specific instances of the AC-LEP. The
first is the linearly constrained linear extension problem (LC-LEP), in which P is a set of linear

3

polynomials, Ξ is a polytope, and ≺ is an arbitrary partial order. We present an efficient algorithm
for solving the LC-LEP in Section 3. The second instance of the AC-LEP, which we call the
parameter space decomposition (PSD) problem and describe now (see Definition 4.6 for a precise
definition), is motivated by an application from systems biology described in Section 2.

Definition 1.1. For n ∈ N, an interaction function of order n is a polynomial in n variables,
z = (z1, . . . , zn), of the form

f(z) =

q∏
j=1

fj(z) (4)

where each factor has the form
fj(z) =

∑
i∈Ij

zi

and the indexing sets {Ij : 1 ≤ j ≤ q} form a partition for {1, . . . , n}. We define the interaction
type of f to be n := (n1, . . . , nq) where nj denotes the number of elements in Ij .

Remark 1.2. We leave it to the reader to check that the order of the indexing sets Ij does not
matter for any of the analysis in this paper. Therefore, for convenience in reporting results (see
Section 5) we will always assume that

n1 ≥ n2 ≥ · · · ≥ nq.

To define an instance of the PSD problem, fix an interaction function f of order n and let P
be the collection of polynomials in the 2n positive real variables, {`i, δi : 1 ≤ i ≤ n}, obtained by
evaluating f(z) with each zi ∈ {`i, `i + δi}. Taking all possible combinations of zi for 1 ≤ i ≤ n
produces the polynomials for the PSD problem,

P = {p0, . . . , p2n−1} ⊂ R[`1, . . . , `n, δ1, . . . , δn]. (5)

In Section 4, we will define an indexing map between the 2n elements of P and the standard n-
dimensional Boolean lattice. Let ≺B denote the Boolean lattice partial order with respect to this
index map, and set Ξ = (0,∞)2n. The PSD problem is the instance of the AC-LEP defined by
(P,≺B ,Ξ). In Section 4, we prove that (P,≺B ,Ξ) satisfies Equation (1). However, we present
some examples before continuing.

Example 1.3. The simplest nonlinear PSD problem arises from the interaction function

f(z) = (z1 + z2)z3

which has interaction type, n = (2, 1). The PSD polynomials for this interaction function are given
by

p0 = (`1 + `2)`3 p4 = (`1 + `2 + δ1)`3

p1 = (`1 + `2)(`3 + δ3) p5 = (`1 + `2 + δ1)(`3 + δ3)

p2 = (`1 + `2 + δ2)`3 p6 = (`1 + `2 + δ1 + δ2)`3

p3 = (`1 + `2 + δ2)(`3 + δ3) p7 = (`1 + `2 + δ1 + δ2)(`3 + δ3).

The PSD evaluation domain is Ξ = (0,∞)6 and the partial order, ≺B , is imposed on P by identifying
pi with the vertex of a unit cube whose coordinates are (i)2 ∈ F3

2 where (i)2 is the binary expansion

4

of i. The solution to this PSD problem is the set of admissible linear extensions of (P,≺B), such
that σ ∈ T

(
P,≺B , (0,∞)6

)
if and only if Ξσ 6= ∅. We note that there are 8! = 40, 320 linear orders

on P. However, only 48 of these are linear extensions of ≺B , and of these, only the following 20
linear extensions are admissible.

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 3, 4, 6, 5, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 2, 4, 3, 6, 5, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

(0, 1, 2, 4, 6, 3, 5, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 2, 5, 6, 3, 7)

(0, 1, 4, 2, 6, 5, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 1, 4, 5, 2, 6, 3, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 2, 1, 4, 6, 3, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 2, 6, 5, 3, 7)

The 28 “missing” linear extensions are those which do not satisfy certain algebraic constraints
which are imposed by the polynomial structure. For example, observe that for fixed ξ ∈ (0,∞)6, if
p3(ξ) < p6(ξ), then p1(ξ) < p4(ξ) must also hold.

Unlike the partial order which constrains all possible linear extensions, this order relation is
conditional. Indeed, there exist choices of ξ such that p3(ξ) > p6(ξ) in which case there is no
requirement imposed on the order of p1(ξ), p4(ξ), and in fact, there are admissible linear extensions
which satisfy both choices, e.g. the first two orders in column four. As another example, observe
that p5(ξ) < p6(ξ), if and only if p1(ξ) < p2(ξ).

This algebraic constraint is bi-conditional, however, it also can not be represented in the partial
order since both choices occur in at least one admissible order.

To emphasize the role of the interaction function in determining the algebraic constraints, we
consider a similar PSD problem that is also an instance of LC-LEP.

Example 1.4. Consider the interaction type, n = (1, 1, 1) with corresponding interaction function

f = z1 + z2 + z3.

As in Example 1.3, we obtain 8 PSD polynomials given explicitly by

p0 = `1 + `2 + `3 p4 = `1 + `2 + `3 + δ1

p1 = `1 + `2 + `3 + δ3 p5 = `1 + `2 + `3 + δ1 + δ3

p2 = `1 + `2 + `3 + δ2 p6 = `1 + `2 + `3 + δ1 + δ2

p3 = `1 + `2 + `3 + δ2 + δ3 p7 = `1 + `2 + `3 + δ1 + δ2 + δ3

The evaluation domain and partial order are identical to the PSD problem in Example 1.3. Never-
theless, only the following 12 linear extensions are admissible

(0, 1, 2, 3, 4, 5, 6, 7)

(0, 1, 2, 4, 3, 5, 6, 7)

(0, 1, 4, 2, 5, 3, 6, 7)

(0, 1, 4, 5, 2, 3, 6, 7)

(0, 2, 1, 3, 4, 6, 5, 7)

(0, 2, 1, 4, 3, 6, 5, 7)

(0, 2, 4, 1, 6, 3, 5, 7)

(0, 2, 4, 6, 1, 3, 5, 7)

(0, 4, 1, 2, 5, 6, 3, 7)

(0, 4, 1, 5, 2, 6, 3, 7)

(0, 4, 2, 1, 6, 5, 3, 7)

(0, 4, 2, 6, 1, 5, 3, 7)

Similarly, the missing 36 linear extensions in this example fail to satisfy some algebraic con-
straints. In both cases, the set of admissible linear extensions is a fraction of the set of all linear
extensions of the Boolean lattice. In other words, the algebraic structure implies that the admis-
sible linear extensions are a sparse subset of all linear extensions. The algorithm in this paper

5

exploits the algebraic and order theoretic aspects of the PSD problem to overcome the computa-
tional complexity limitations which plague both problems in general. Furthermore, we prove that
this algorithm finds all possible linear extensions. For both examples we obtained the (12 and 20
respectively) admissible solutions without first computing the linear extensions of (P,≺B) and then
checking which are admissible.

Related work

As is indicated above our original motivation for this paper arises from problems in systems biology
for which explicit complete solutions to the PSD problem are required. As such the majority of
this introduction has focused on the question of efficacy of computation. However, there is another
direction in which the work of this paper overlaps with other efforts. In particular, observe that
the case where the interaction function is linear, i.e. has interaction type n = (1, . . . , 1), solving
the AC-LEP is equivalent to identifying all the cells of a hyperplane arrangement. This latter
problem has been the subject of considerable study (see [18] for an introduction) and in particular,
Maclagan [13] provides the number of solutions for the linear PSD problem for n = 1, . . . , 7. Our
computations (see Table 1) lead to the same numbers, as expected.

After accounting for symmetry in the number of linear PSD solutions for interaction types
(1, 1, 1, 1), (1, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1), reported in column two of Table 1, we obtain

336

4!
= 14 := a4,

61920

5!
= 516 := a5,

89414640

6!
= 124187 := a6

which align with sequence A009997 in the OEIS [16]. From [11], we know this sequence represents
the number of comparative probability orderings on all subsets of n elements that can arise by
assigning a probability distribution to the individual elements. The equivalence of comparative
probability orderings and solutions to the linear PSD problem follows directly from the definition
of comparative probability.

Organization of paper

The remainder of this paper is organized as follows. In Section 2 we briefly describe how the PSD
problem arises naturally in the study of global dynamics for gene regulatory networks. In Section
3, we present an efficient algorithm for solving instances of the LC-LEP. In Section 4, we show that
the LC-LEP is related to the PSD problem in the following way. If

(
P,≺B , (0,∞)2n

)
is an instance

of the PSD problem, then we construct an associated instance of LC-LEP, denoted by (P ′,≺B ,Ξ′),
which satisfies the inclusion

T
(
P,≺B , (0,∞)2n

)
⊆ T (P ′,≺B ,Ξ′) . (6)

We refer to this instance of LC-LEP as the linearized PSD problem associated to
(
P,≺B , (0,∞)2n

)
.

We exploit this construction and the algorithm for solving the LC-LEP presented in Section 3, to
provide a means of efficiently computing a collection of candidates that contains the solution to the
PSD problem. We prove that in some cases the inclusion in Equation (6) is actually an equality.
More generally, this inclusion is strict, but the candidate set is a sparse subset of the collection of all
linear extensions of (P,≺B). In this case we describe algorithms for removing the non-admissible
solutions.

6

Finally, in Section 5 we present the results for all PSD solutions with order up to four. Addi-
tionally, we have some results for PSDs or order five and size. For the remaining cases and PSDs
of higher order the computations become too large.

2 Dynamic Signatures Generated by Regulatory Networks

This section provides a brief description of how the AC-LEP arises in the context of mathematical
modeling of problems from systems biology. Biologists often describe regulatory networks in terms
of annotated directed graphs, such as that shown in Figure 1(a) where the labeling of the edges,
n → m or n a m indicates whether node n activates or represses node m. Our goal is to describe
the type of dynamics that can be expressed by the regulatory network. This requires imposing a
mathematical interpretation on the regulatory network that is compatible with its use as a biological
model. With this in mind, we assign to node m a state variable, xm > 0, that corresponds with
the quantity of a protein, mRNA, or a signaling molecule. Precise nonlinear expressions for the
interactions of the variables are not assumed to be known, but we do assume that the sign of the
rate of change of xm is determined by the expression

−γmxm + Λm(x) (7)

where γm indicates the decay rate and Λm is a parameter dependent function that characterizes
the rate of growth of xm. Note that Λm is a function of xn if and only if there exists an edge from
n to m in the regulatory network.

(a)

5 1 4

2

3

(b) xn

`m,n

`m,n + δm,n

θm,n

Figure 1: (a) Example of a regulatory network. (b) Model for edge n → m where `m,n indicates
low level of growth rate of xm induced by xn and `m,n + δm,n indicates high level of growth rate
of xm induced by xn. θm,n provides information about the value of xn that lies between low values
inducing low and high expression levels.

Since the biological model provides minimal information about the effect of xn on xm we want
to choose a mathematical expression with a minimal set of assumptions. The rates of growth of xm
due to xn are labeled as 0 < `m,n < `m,n + δm,n. Figure 1(b) corresponds to an edge n → m and
θm,n indicates that the rate of increase `m,n must occur at some lesser value of xn and the rate of

7

increase `m,n + δm,n must occur at some greater value of xn. An arrow of the form n a m leads to
the opposite relation.

This introduces three positive parameters, `m,n, δm,n, and θm,n, for each edge in the regulatory
network. Note that this is the minimal number of parameters that allows one to quantify the
assumption that xn activates xm (or equivalently that xn represses xm). We encode this information
with the following functions

λ+
m,n(xn) =

{
`m,n if xn < θm,n

`m,n + δm,n if xn > θm,n
and λ−m,n(xn) =

{
`m,n + δm,n if xn < θm,n

`m,n if xn > θm,n.

We do not assume that the values of `m,n, δm,n, or θm,n are known. This is intentional as many of
these parameters do not have an easy biological interpretation and/or correspond to physical con-
stants which are difficult or impossible to precisely measure. Thus, the goal is not to determine the
dynamics at any choice of parameters, but to determine the range and robustness of the qualitative
dynamics exhibited by a network.

A regulatory network such as that of Figure 1(a) does not indicate how multiple inputs to a
particular node should be processed. An approach that is used is to assume a simple algebraic
relationship involving sums and products of the λ±. As an example, a reasonable choice for x1 of
Figure 1(a) is

Λ1(x2, x3, x4) =
(
λ+(x2) + λ+(x3)

)
λ−(x4). (8)

Observe that each λ± takes only two values and therefore, generically Equation (8) takes 8 distinct
values which are precisely the values of the elements of P in the PSD of Example 1.3.

As is suggested in the caption of Figure 1(b), we do not interpret the values of λ±, or Λ as
literal expressions of the nonlinear interactions, but rather, that the associated parameter values
are landmarks of whatever of the “true” nonlinear function is. This has several consequences.

1. We cannot expect Equation (7) to provide precise information about the growth rate of xm.
Therefore we restrict our attention to asking whether xm is increasing or decreasing. However,
we wish to answer this question over all the possible parameter values γ, θ, ` and δ.

2. The only values of xm at which the dynamics of xn change are of the form θm,∗. The associated
hyperplanes xj = θk,j decompose phase space [0,∞)N , where N is the number of nodes in
the network, into N -dimensional rectangular regions called domains.

3. Since we have determined T
(
{p0, . . . , p7} ,≺, (0,∞)6

)
for (8) we can determine all possible

signs of (7) associated with (8) by cataloguing the relative values of γ1θj,1, j = 4, 5 with
respect to {p0, . . . , p7}.

The Dynamic Signatures Generated by Regulatory Networks (DSGRN) library is software that,
given the information of the form provided by consequence 3, is capable of efficiently building a
database of the global dynamics of a regulatory network over all of parameter space [10, 14]. In
[10] the authors considered networks whose nodes have at most three in-edges, and at most three
out-edges. This constraint was due to the difficulty in solving the PSD problem and the results
of this paper provide a means to vastly expand the capabilities of DSGRN [14]. In particular,
DSGRN can now handle the algebraic combinations of 4 to 6 in-edges as is indicated in Section 5,
and arbitrarily many out-edges.

8

3 Solving the LC-LEP

In this Section, we provide an efficient algorithm to solve the LC-LEP defined in Section 1. Note
that if q ∈ R[x1, . . . , xd] is a linear polynomial, then evaluation of q defines a linear functional
on Rd. Thus, there exists a unique vector uq ∈ Rd, that we call the representation vector for q,
satisfying

q(ξ) = uq · ξ for all ξ ∈ Rd.

Equivalently, uq is the vector of coefficients of q. Since the evaluation domain for the LC-LEP is a
polytope, there exists a collection of linear polynomials QΞ, such that

Ξ =
{
ξ ∈ Rd : ξ · uq > 0 for all q ∈ QΞ

}
. (9)

We assume that (9) is satisfied for the remainder of this section.
To foreshadow our approach recall that by definition σ ∈ T (P,≺,Ξ) if and only if Ξσ 6= ∅.

Our approach to determining the latter is to recast it in the language of linear algebra on cones in
Rd. From this perspective, the problem is equivalent to rigorously solving a linear programming
problem and the efficacy of our algorithm is based on the fact that this can be done efficiently.
With this goal in mind, we begin with a few remarks concerning cones and ordered vector spaces.

3.1 Cones

Definition 3.1. A subset C ⊂ Rd is a cone if v ∈ C and θ ∈ [0,∞) implies that θv ∈ C. The cone
C is pointed if it is closed, convex, and satisfies

C ∩ −C = C ∩ {−v : v ∈ C} = 0. (10)

Observe that (10) implies that a pointed cone does not contain any lines. A vector v ∈ Rd is
a conic combination of {v1, . . . , vk} ⊂ Rd if v = θ1v2 + · · · + θkvk where θ1, . . . , θk ≥ 0. Suppose
V = {v1, . . . , vk} ⊂ Rd. The conic hull of V is given by

cone(V) :=

{
k∑
i=1

θivi : 0 ≤ θi, i = 1, . . . , k

}
.

The following result is left to the reader to check.

Proposition 3.2. Given V = {v1, . . . , vk} ⊂ Rd, cone(V) is the smallest closed convex cone that
contains V .

We make use of the following propositions.

Proposition 3.3. Suppose V = {v0, . . . , vm} ⊂ Rd is a collection of nonzero vectors such that
cone(V) is a pointed cone. Then, there exists some v′ ∈ Rd such that v′ · vi > 0 for all 0 ≤ i ≤ m.

Proof. Observe that −vm /∈ cone({v0, . . . , vm−1}) ⊂ cone(V) since cone(V) is pointed. Hence
{−vm} and cone({v0, . . . , vm−1}) are disjoint, convex, closed subsets of Rd.

Therefore, by the hyperplane separation theorem [3], there exists v′ ∈ Rd such that v′ ·−vm < 0
and v′ · v > 0 for any v ∈ cone({v0, . . . , vm−1}).

9

Proposition 3.4. Suppose V = {v0, . . . , vm} ⊂ Rd is a collection of nonzero vectors such that
cone(V) is a pointed cone. If −v /∈ cone(V), then cone(V ∪ {v}) is pointed.

Proof. Suppose that cone(V ∪ {v}) is not pointed. Then, there exists w 6= 0 such that w,−w ∈
cone(V ∪ {v}) or equivalently

w =

m∑
i=0

αivi + αv and − w =

m∑
i=0

βivi + βv

where αi, βi, α, β are all nonnegative. Note that if α = β = 0, then ±w ∈ cone(V), which contradicts
the assumption that V is pointed. The sum of the two equations above is

−(α+ β)v =

m∑
i=0

(αi + βi)vi.

This implies that −v ∈ cone(V), contradicting the assumption that cone(V) is pointed.

The previous propositions illustrate the importance of solving the cone inclusion problem: given
a vector v ∈ Rd, and finite set of vectors V ⊂ Rd, determine whether or not v ∈ cone(V). Algorithm
1, stated below, solves this problem. Observe that checking if v ∈ cone(V) is equivalent to solving
the following linear programming feasibility problem.

Does there exist α

such that Vα = v (11)

and α ≥ 0?

where V is the column matrix of V .
Linear programming is a powerful tool that is widely used in convex optimization, and as a result,

there are many available solvers/algorithms for solving the linear programming feasibility problem
[22]. The results can be made rigorous by performing computations using interval arithmetic [19]
or rational linear programming [1] in the case that V is rational. Observe that the PSD problem
defined in Section 1 satisfies this constraint. As is made clear in Section 5, we use different solvers
depending on the machine employed to do the computations. In any case, we take for granted the
existence of a rigorous solver for the feasibility problem in Equation 11 as a “black box” which we
call LPSolver which is employed in the following algorithm.

Algorithm 1: Cone inclusion

Input: v, V = {v1, . . . , vm}, LPSolver
Output: True,False
Result: Return True if v ∈ cone(V) otherwise False

1 Function InCone(v, V, LPSolver):
2 Return LPSolver(v, V)
3 End Function

The next algorithm uses Proposition 3.4 (see line 4) and Algorithm 1 to determine if a set of

10

vectors defines a pointed cone.

Algorithm 2: Cone pointedness

Input: V = {v1, . . . , vm}
Output: True,False
Result: Return True if cone(V) is pointed otherwise False

1 Function CheckCone(V):
2 V ′ = {v1}
3 for i = 2 ... m do
4 if InCone(−vi, V ′) then
5 Return False
6 else
7 V ′ = V ′ ∪ {vi}
8 end

9 end
10 Return True

11 End Function

We now show that the LC-LEP can be reformulated as a problem of identifying whether some
specific subsets of vectors generate pointed cones.

Definition 3.5. Given an instance of the LC-LEP, (P,≺,Ξ), we define the base cone as cone(V0) :=
cone(VΞ ∪ V≺) where VΞ and V≺ are defined as follows. Set

VΞ := {uq : q ∈ QΞ}

where QΞ are the representation vectors as defined in Equation (9). Applying Algorithm 2 to VΞ

(and the fact that we assume Ξ 6= ∅) shows that cone(VΞ) is pointed. Define

V≺ := {u : u is the representing vector of p− q where q ≺ p and p, q ∈ P} .

Observe that if (P,≺) satisfies Equation (1), then the representation vector for p− q is an element
of V≺ by definition. Therefore, by Proposition 3.3, V≺ is pointed.

The motivation behind our definition of V0 is that it characterizes the algebraic constraints in
the LC-LEP in terms of linear algebra that can be efficiently checked. The next proposition shows
that the same idea works for linear extensions.

Given σ ∈ SK+1, we define

Vσ := V0 ∪
{
upσ(i+1)

− upσ(i) : pσ(i) ∈ P, i = 0, . . . ,K − 1
}
. (12)

Proposition 3.6. For any σ ∈ SK+1, Ξσ 6= ∅ if and only if cone(Vσ) is a pointed cone.

Proof. First we assume Ξσ 6= ∅ and that ξ ∈ Ξσ. On one hand, if cone(Vσ) is not pointed, then
there are nonzero vectors −v, v ∈ cone(Vσ). However, the definition of Ξσ implies that −v · ξ > 0
and v · ξ > 0, which is a contradiction.

On the other hand, if cone(Vσ) is pointed, then by Proposition 3.3 there exists a ξ0 ∈ Rd such
that ξ0 ·v > 0, for all v ∈ Vσ. Thus, the definition of Vσ implies that ξ0 ∈ Ξσ and hence Ξσ 6= ∅.

We emphasize that the importance of Proposition 3.6 is the implied equivalence

T (P,≺,Ξ) = {σ : Ξσ 6= ∅} = {σ : cone(Vσ) is pointed} .

11

3.2 An algorithm for identifying T (P ,≺,Ξ)

In this section we present an algorithm for solving an arbitrary instance of the LC-LEP.

Algorithm 3: LC-LEP solver

Input: σpart = [],P, V = V0, Ret = {}
Output: T (P,≺,Ξ)
Result: Ret: collection of all linearly realizable total order under restriction of V

1 Function OrderingGenerator(σpart,P, V, Ret):
2 if σpart == [] and CheckCone(V) is not True then
3 Return
4 end
5 l + 1 = length of σpart

6 if l == K then
7 add σpart to Ret

8 Return

9 end
10 for i = 0 .. K do
11 if i 6∈ σpart then
12 u′ = upi − upσpart(l)

13 if not InCone(−u′, V) then
14 OrderingGenerator(σpart + [i],P, V ∪ {v′}, Ret)
15 end

16 end

17 end

18 End Function

To prove the correctness of the algorithm it is useful to denote the return of Algorithm 3 given
input (P,≺,Ξ) as Talg(P,≺,Ξ).

Definition 3.7. For fixed (P,≺,Ξ), σ ∈ SK+1 and for k = 1, · · · ,K, define

Vσ,k = {upσ(i) − upσ(i−1)
}i=1,...,k ∪ V0,

where V0 is the base cone for (P,≺,Ξ) as in Definition 3.5, and upσ(j) , j = 0, . . . ,K is the represen-
tation vector of pj ∈ P. For convenience, we define Vσ,0 = V0 and we observe that Vσ,K = Vσ from
Equation (12).

Theorem 3.8. Algorithm 3 solves the LC-LEP.

Proof. Given (P,≺,Ξ), we need to show that T (P,≺,Ξ) = Talg(P,≺,Ξ). We may assume that
cone(V0) is pointed since if not, then both Talg(P,≺,Ξ) and T (P,≺,Ξ) are empty.

We first show that Talg(P,≺,Ξ) ⊂ T (P,≺,Ξ), i.e. for any σ ∈ Talg(P,≺,Ξ) we show that the
set Ξσ 6= ∅. As indicated above we assume cone(V0) = cone(Vσ,0) is pointed. For Algorithm 3, lines
2-4 returns the empty set if cone(V0) is not pointed. Otherwise, it passes to lines 5-9 which checks
if σpart is a total order over {0, . . . ,K}. If so, it is added to the return variable, Ret. If σpart is
not a total order, then lines 10-17 extend it to a total order by recursively constructing Vσ,i from
Vσ,i−1 for 1 ≤ i ≤ K.

Therefore, it suffices to show that Vσ,k are all pointed for k = 1, . . . ,K.

12

Fix k ∈ {1, . . . ,K}. In lines 11-12, we find a candidate i ∈ {0, . . . ,K} which is not in the image
of σpart, and define Vσ,k+1 = Vσ,k ∪ {u′} where u′ = upi − upσ(k) . In line 13, we verify that −u′ /∈
V = Vσ,k−1 and it follows from Proposition 3.4, that cone(Vσ,k) is pointed. For each σ appended
to Ret, we have cone(Vσ,k) is pointed for k = 0, . . . ,K. In particular, cone(Vσ,K) = cone(Vσ) is
pointed, and from Proposition 3.6, we have Ξσ 6= ∅.

We now prove that T (P,≺,Ξ) ⊂ Talg(P,≺,Ξ). Assume that σ ∈ T (P,≺,Ξ). By definition
this means that Ξσ 6= ∅ and from Proposition 3.6, Vσ is pointed. For each k = 1, . . . ,K, we have
Vσ,k ⊂ Vσ, and thus Vσ,k is pointed. As Vσ,k is pointed, we know −(upσ(k) − upσ(k−1)

) /∈ Vσ,k−1 for
k = 1, . . . ,K. Therefore, line 13 in Algorithm 3 will not fail to extend σ at each step in the recursion
and after K recursive extensions, σ will be appended to Ret and thus, σ ∈ Talg(P,≺,Ξ).

4 Solving the general PSD problem

In this section we present a solution for the PSD problem described in Section 1. The solution
is based on the observation that the PSD problem has a natural Boolean lattice structure. Thus,
for the linear PSD problem, the LC-LEP solver described in Section 3 provides a solution. For
nonlinear PSD problems, we construct a map that “embeds” it into an instance of LC-LEP (of
higher dimension) in the sense that the inclusion in Equation (6) holds. We prove a sufficient
condition for which this inclusion is equality and describe a method for disqualifying spurious
solutions when it is strict.

4.1 The PSD as an instance of AC-LEP

Throughout this section
(
P,≺B , (0,∞)2n

)
denotes a PSD problem for a fixed interaction function

f of order type n ∈ Nq as defined in Equation (5) where ≺B is the Boolean lattice partial order.
Our first goal is to show that

(
P,≺B , (0,∞)2n

)
satisfies Equation (1), and in particular, that every

σ ∈ T
(
P,≺B , (0,∞)2n

)
is a linear extension of a Boolean lattice. We start by defining appropriate

indices for the elements of P.

Definition 4.1. Suppose n ∈ Nq is the interaction type for f ∈ R [z1, . . . , zn]. As in Defini-
tion 1.1 let {I1, . . . , Iq} denote the indexing sets for each summand of f . Setting I :=

⋃q
j=1 Ij

we denote a typical element of I by Ij(k) which we define as the kth largest element of Ij . Let
E := {α : {1, . . . , n} → {0, 1}} be the set of all Boolean functions defined on I. The Boolean
indexing map, denoted by B : E →

{
0, . . . , 2n−1

}
, is defined by the formula

B(α) :=

q∑
j=1

nj−1∑
k=0

α(Ij(k))2κj,k κj,k = k +

j−1∑
j′=1

nj′ .

We will also consider, α ∈ E, as a vector of Boolean functions defined as follows. Let Ej denote
the set of Boolean functions defined on Ij . Then, elements of E can be represented as vectors of
the form

α = (α1, . . . , αq) where αj := α
∣∣∣
Ij
∈ Ej for 1 ≤ j ≤ q.

Note that under this identification, E has the equivalent representation as E = E1 × · · · × Eq.

13

Definition 4.2. Suppose n ∈ Nq is the interaction type for an interaction function, f ∈ R [z1, . . . , zn]
as in Definition 1.1, and E denotes the corresponding Boolean indices. For α ∈ E, define pα ∈ P ⊂
R [`1, . . . , `n, δ1, . . . , δn], by the formula

pα :=

q∏
j=1

∑
k∈Ij

`k + α(k)δk

 . (13)

When convenient, we use a linear indexing scheme for elements of P which we define via the
Boolean indexing map by identifying pi := pα where α = B−1(i). To avoid confusion, we exclusively
use Greek subscripts when referring to elements of P by their Boolean indices, and Latin subscripts
when referring to elements of P by their linear indices. We leave it to the reader to check that the
linearly indexed polynomials in Examples 1.3 and 1.4 are in agreement with that of Definition 4.2
via this identification.

Definition 4.3. Let α, β ∈ E be a pair of Boolean indices corresponding to n ∈ Nq. An ordered
pair (α, β) satisfies the one bit condition if α(Ij(k)) ≤ β(Ij(k)), for all 1 ≤ j ≤ q and 0 ≤ k ≤ nj−1,
with equality for all but exactly one (j, k) pair.

Remark 4.4. Observe that if (α, β) satisfy the one bit condition and (j0, k0) is the unique pair for
which α and β take different values, then α(Ij0(k)) = 0 and β(Ij0(k)) = 1.

Remark 4.5. The one bit condition induces a poset structure on E by setting α ≺ β for each
(α, β) satisfying the one bit condition, and extending the relation transitively.

Definition 4.6. Suppose n ∈ Nq is the interaction type for an interaction function, f ∈ R [z1, . . . , zn]
as in Definition 1.1, and E denotes the corresponding Boolean indices. Let P be the set of poly-
nomials indexed as in Definition 4.2. The PSD problem is defined by the triple, (P,≺, (0,∞)2n)
where ≺ is given by Remark 4.5.

The next proposition proves that (P,≺, (0,∞)2n) satisfies Equation (1), and furthermore that
(P,≺) is a Boolean partial order which justifies expressing the PSD problem as

(
P,≺B , (0,∞)2n

)
.

Proposition 4.7. Consider a PSD problem (P,≺, (0,∞)2n). Then,

1. (P,≺) is a Boolean lattice.

2. For any α, β ∈ E, if α ≺ β, then

pα(ξ) < pβ(ξ) for all ξ ∈ (0,∞)2n.

Proof. To prove the first claim, let Sn = {1, . . . , n} and let (2Sn ,≺B) denote the standard Boolean
lattice. Define a map, ϕ : E → 2Sn , by the formula

ϕ(α) = {j ∈ Sn : α(j) = 1} ,

and we note that ϕ is a bijection since E is defined to be the collection of all Boolean maps defined
on Sn. Furthermore, for any α, β ∈ E, we have by Definition 4.3 that α ≺ β if and only if

{j ∈ Sn : α(j) = 1} ⊂ {j ∈ Sn : β(j) = 1}

14

implying that ϕ is an order isomorphism.
To establish the second claim, we must show that if α ≺ β, then pα(ξ) < pβ(ξ) holds for all

ξ ∈ (0,∞)2n. Note that by transitivity, it suffices to prove this holds for (α, β) satisfying the one
bit condition. In this case we have

β(Ij(k))− α(Ij(k)) =

{
1 if j = j0 and k = k0

0 otherwise.

for some j0 ∈ {1, . . . , q}, k0 ∈ {0, . . . , nj0−1}. If ξ = (`1, . . . , `n, δ1, . . . , δn) ∈ Ξ, then from Equation
(13) we have

pβ(ξ) =

∑
k∈Ij0

`k + α(Ij(k))δk

+ δk0

 ∏
j 6=j0

∑
k∈Ij

`k + α(Ij(k))δk

= pα(ξ) + δk0
∏
j 6=j0

∑
k∈Ij

`k + α(Ij(k))δk

> pα(ξ)

as required.

With Proposition 4.7 in mind, we return to writing ≺B in place of ≺ for the PSD problem where
≺B is the partial order of a Boolean lattice inherited by P from the one bit condition.

4.2 The linear PSD problem

We consider two cases of the PSD problem: the interaction type n ∈ Nq for the function f ∈
R [z1, . . . , zn] has the form n = (1, 1, . . . , 1) or n = (n). In the first case, f is linear (see Example 1.4)
and the PSD problem is an instance of LC-LEP. In the second case, log f is linear so after a
simple change of variables, we obtain an instance of LC-LEP with equivalent solutions since log is
monotone, hence order preserving l. We focus on the first case, leaving it to the reader to check
that the second case is same modulo the evaluation domain (R2n versus (0,∞)2n). Following the
algorithm described in Section 3, we encode the partial order defined by ≺B as a set of linear
constraints defined by a base cone which we must show is pointed. We begin by denoting the set
of representation vectors for P as

V :=
{

upα ∈ {0, 1}
2n

: upα is the representation vector of pα, α ∈ E
}
.

We define the set,

V≺B :=
{
upβ − upα : upα ,upβ ∈ V, (α, β) satisfies the one bit condition

}
. (14)

which encodes the ≺B partial order into the representation vectors. These vectors will be the
generators of the base cone for the algorithm in Section 3. Thus, we must show that cone(V≺B)
generates a pointed cone.

Lemma 4.8. Let C0 := cone(V≺B) denote the cone generated by V≺B , then C0 is pointed.

15

Proof. By Proposition 3.2, C0 is closed and convex so it suffices to prove that if v ∈ C0 and −v ∈ C0,
then v = 0. Fix ξ ∈ (0,∞)2n and suppose (α, β) satisfies the one bit condition. By the formula in
Equation (13) it follows that

pβ − pα = δi

for some i ∈ {1, . . . , n}. Since δi = ξn+i > 0 for all ξ ∈ Ξ, it follows that

pβ(ξ)− pα(ξ) > 0,

for every (α, β) satisfying the one bit condition. Passing to the representation vectors, it follows
that for every v ∈ V≺B , we have v · ξ > 0. Taking the conic hull, we have that if v ∈ C0 \ {0},
then v · ξ > 0. It follows that if v,−v ∈ C0 simultaneously, then v · ξ ≥ 0 and −v · ξ ≥ 0 implying
v = 0.

4.3 The general PSD problem

Given a general PSD problem
(
P,≺B , (0,∞)2n

)
we present the construction of a LC-LEP denoted

by (P ′,≺B ,Rm) with the property that T
(
P,≺B , (0,∞)2n

)
⊆ T (P ′,≺B ,Rm). The importance of

this is that (P ′,≺B ,Rm) can be solved using Algorithm 3 and hence we obtain a rigorous upper
bound on T

(
P,≺B , (0,∞)2n

)
.

Definition 4.9. Given an interaction type n ∈ Nq, let E = E1×· · ·×Eq denote the corresponding
Boolean indices. Set m :=

∑q
j=1 2nj and define the linearized evaluation domain to be

R2n1 × · · · × R2nq ∼= Rm. (15)

Define a polynomial ring in m indeterminates with Boolean indexing by

R := R
[{
xj,αj : αj ∈ Ej , 1 ≤ j ≤ q

}]
, (16)

and define a collection of linear polynomials by

P ′ := {p′α : α ∈ E} ⊂ R where p′α :=

q∑
j=1

xj,αj .

The linearized PSD problem determined by n is to compute T (P ′,≺B ,Rm).

Theorem 4.10. Fix an interaction type, n ∈ Nq and let T
(
P,≺B , (0,∞)2n

)
and T (P ′,≺B ,Rm)

denote the corresponding PSD and linearized PSD problems, respectively. The following are true.

1. Let α, β ∈ E and ξ ∈ (0,∞)2n. If pα(ξ) < pβ(ξ) and

ξ′j,αj = log

∑
k∈Ij

ξk + αj(k)ξn+k

 ∈ Rm,

then p′α(ξ′) < p′β(ξ′).

2. T
(
P,≺B , (0,∞)2n

)
⊆ T (P ′,≺B ,Rm).

16

Proof. To prove the first claim, we define a map, T : (0,∞)2n → Rm, by ξ 7→ ξ′ := T (ξ) where the
coordinates of ξ′ are given by the formula

ξ′j,αj = log

∑
k∈Ij

ξk + αj(k)ξn+k

. (17)

Observe that T is defined to satisfy the functional equation

log ◦pα(ξ) = p′α ◦ T (ξ) for all α ∈ E, ξ ∈ (0,∞)2n. (18)

Therefore, if α, β ∈ E and ξ ∈ (0,∞)2n satisfies pα(ξ) < pβ(ξ), then log (pα(ξ)) < log (pβ(ξ)) and
it follows from Equation (18) that p′α(ξ′) < p′β(ξ′) where ξ′ = T (ξ) as required.

To prove the second claim, consider P and P ′ equipped with the linear indices as in Definition
4.2, and suppose σ ∈ T

(
P,≺B , (0,∞)2n

)
. Then, by definition there exists ξ ∈ (0,∞)2n satisfying

pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ).

Let ξ′ = T (ξ) and apply the first result to successive pairs in the ordering which implies that for
all 0 ≤ k ≤ 2n − 2, we have

p′σ(k)(ξ
′) = log

(
pσ(k)(ξ)

)
< log

(
pσ(k+1)(ξ)

)
= p′σ(k+1)(ξ

′).

Thus, we ξ′ ∈ Rm satisfies

p′σ(0)(ξ
′) < p′σ(1)(ξ

′) < · · · < p′σ(2n−1)(ξ
′),

and it follows that σ ∈ T (P ′,≺B ,Rm) which completes the proof.

Example 4.11. Recall the PSD in Example 1.3 with interaction function f(z) = (z1 + z2)z3

corresponding to interaction type n = (2, 1). The polynomials for the linearized PSD problem are

p′0 = x1,0 + x2,0 p′4 = x1,1 + x2,0

p′1 = x1,0 + x2,1 p′5 = x1,1 + x2,1

p′2 = x1,2 + x2,0 p′6 = x1,3 + x2,0

p′3 = x1,2 + x2,1 p′7 = x1,3 + x2,1

where we have used linear indexing to match the polynomials in Example 1.3.

4.4 Solving the PSD problem for interaction type n = (2, 1, . . . , 1).

In this section we prove the following theorem.

Theorem 4.12. Let f be an interaction function with interaction type, n = (2, 1, . . . , 1). Let
T
(
P,≺B , (0,∞)2n

)
denote the corresponding PSD problem and (P ′,≺B ,Rm) the associated lin-

earized PSD problem. Then T
(
P,≺B , (0,∞)2n

)
= T (P ′,≺B ,Ξ′) where Ξ′ = Rm ∩ {−ξ′1,0 + ξ′1,1 +

ξ′1,2 − ξ′1,3 > 0}.

The proof of the theorem is based on the following lemma

17

Lemma 4.13. Fix parameters, x0, x1, x2, x3 ∈ R, and define the function, g : R→ R by the formula

g(t) = exp(tx0)− exp(tx1)− exp(tx2) + exp(tx3).

If x0 < x1 ≤ x2 < x3, then g has a positive root if and only if g′(0) < 0.

Proof. Suppose first that t0 is a root of g. Expanding exp(t0x1) and exp(t0x2) to first order about
x0 and x3, respectively, and applying the mean value theorem yields the formula

g(t0) = −t0 exp(t0c1)(x1 − x0)− t0 exp(t0c2)(x2 − x3) = 0 (19)

for some c1 ∈ (x0, x1) and c2 ∈ (x2, x3). We define k = c2 − c1 and multiply Equation (19) by
t0e
−kt0 to obtain

ekt0(x3 − x2)− (x1 − x0) = 0.

Noting that c1 < x2 < c2, it follows that k > 0. Therefore if t0 > 0, then x3 − x2 < x1 − x0 or
equivalently, g′(0) = x0 − x1 − x2 + x3 < 0.

Conversely, if g′(0) < 0 then g has at least one positive root since clearly g(0) = 0 and lim
t→∞

g(t) =

∞.

Proof of Theorem 4.12. Suppose σ ∈ T
(
P,≺B , (0,∞)2n

)
and ξ ∈ (0,∞)2n

σ , then by Theorem 4.10
we have ξ′ = T (ξ) ∈ Rmσ . Note that by definition the first four coordinates of ξ′ are given by the
formulas

ξ′1,0 = log(ξ1 + ξ2)

ξ′1,1 = log(ξ1 + ξ2 + ξn+2)

ξ′1,2 = log(ξ1 + ξ2 + ξn+1)

ξ′1,3 = log(ξ1 + ξ2 + ξn+1 + ξn+2).

Since ξi > 0 for i ∈ {1, 2, n+ 1, n+ 2}, it follows that

−ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0,

so we have σ ∈ T (P ′,≺B ,Ξ′).
Conversely, suppose σ ∈ T (P ′,≺B ,Ξ′) and ξ′ ∈ Ξ′σ. From the Boolean lattice ≺B we have ξ′1,0 <

ξ′1,1 ≤ ξ′1,2 < ξ′1,3 or ξ′1,0 < ξ′1,2 ≤ ξ′1,1 < ξ′1,3. Moreover, ξ′ also satisfies, −ξ′1,0 +ξ′1,1 +ξ′1,2−ξ′1,3 > 0.

Hence, Lemma 4.13 implies that there exists t′ > 0 such that ξ̂′ := t′ξ′ satisfies

exp(ξ̂′1,0)− exp(ξ̂′1,1)− exp(ξ̂′1,2) + exp(ξ̂′1,3) = 0.

Next, we define ξ̂ ∈ (0,∞)2n by

ξ̂j =



exp(ξ̂′j,0) 2 < j ≤ n
exp(ξ̂′j,1)− exp(ξ̂′j,0) n+ 2 < j < 2n
1
2 exp(ξ̂′1,0) j = 1, 2

exp(ξ̂′1,2)− exp(ξ̂′1,0) j = n+ 1

exp(ξ̂′1,1)− exp(ξ̂′1,0) j = n+ 2

One easily verifies that ξ̂j > 0 for all 1 ≤ j ≤ 2n, and that T (ξ̂) = ξ̂′. From Theorem 4.10, we

have ξ̂ ∈ (0,∞)2n
σ = {ξ ∈ (0,∞)2n : pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ)} which implies that

σ ∈ T
(
P,≺B , (0,∞)2n

)
.

18

4.5 Solving the general PSD problem

In the general case, we have T
(
P,≺B , (0,∞)2n

)
(T (P ′,≺B ,Rm), and thus, computing T (P ′,≺B ,Rm)

provides only a set of candidates for T
(
P,≺B , (0,∞)2n

)
. This candidate set contains spurious lin-

ear extensions so we consider the problem of removing linear extensions which are non-admissible.
We have two strategies for doing this efficiently.

The first is to restrict the evaluation domain to a strict subset, Ξ′ (Rm, such that we still have
the inclusion

T
(
P,≺B , (0,∞)2n

)
⊆ T (P ′,≺B ,Ξ′). (20)

Restricting to a smaller evaluation domain amounts to imposing more of the algebraic constraints
a-priori which results in improved efficiency. In order for the candidate set on the right hand side to
be efficiently computable using the algorithm in Section 3, it must be an instance of LC-LEP i.e. Ξ′

should be a polytope. For example, for the PSD with interaction type n = (2, 1, . . . , 1), analyzed
in Section 4.4, we computed on the restricted domain

Ξ′ = Rm ∩
{
ξ′ ∈ Rm : −ξ′1,0 + ξ′1,1 + ξ′1,2 − ξ′1,3 > 0

}
.

In terms of the algorithm in Section 3, this domain restriction amounts to taking our base cone in
Algorithm 3 to be cone(V0) where

V0 = V≺B ∪ {u}
and u is the representation vector for the linear functional defined by the formula

x 7→ −x1,0 + x1,1 + x1,2 − x1,3.

The requirement that this linear functional must be strictly positive is a special case of the following
Lemma whose proof is a trivial computation.

Lemma 4.14. Suppose α, α′, β, β′ are Boolean indices such that for any ξ ∈ (0,∞)2n, the following
equations are satisfied.

pα(ξ) < pβ(ξ) < pβ′(ξ) < pα′(ξ)

pα(ξ) + pα′(ξ) = pβ(ξ) + pβ′(ξ).

Then,
log(pα(ξ)) + log(pα′(ξ))− log(pβ(ξ))− log(pβ′(ξ)) > 0.

Lemma 4.14 provides a means to restrict the evaluation domain for the general linearized PSD
problem as follows. Fix j ∈ {1, . . . , q} and suppose {α, α′, β, β′} ⊂ E differ only in the jth coordinate
with α ≺B β ≺B β′ ≺B α′, and also assume that B(α) + B(α′) = B(β) + B(β)′ where B is the
Boolean indexing map. Then, it follows that for any ξ ∈ Ξ, the values, {pα(ξ), pα′(ξ), pβ(ξ), pβ′(ξ)},
satisfy both equations in Lemma 4.14. Therefore, if u({α, α′, β, β′}) is the representation vector for
the linear functional defined by

x 7→ xj,B(β) + xj,B(β′) − xj,B(α) − xj,B(α′),

then v({α, α′, β, β′}) lies in Vσ for any σ ∈ T (P,≺B , (0,∞)2n. Equivalently, we may impose the
required linear constraint, xj,B(β) + xj,B(β′) − xj,B(α) − xj,B(α′) > 0 on the evaluation domain of
the linearized problem. Hence, for each 1 ≤ j ≤ q, we define

Vj := {u({α, α′, β, β′}) : B(α) +B(α′) = B(β) +B(β)′, α ≺B β ≺B β′ ≺B α′}

19

and for an arbitrary PSD problem, we may take our base cone to be

V0 = V≺B ∪ VΞ where VΞ =

q⋃
j=1

Vj .

Applying Algorithm 3 with the base cone generated by V0 is equivalent to solving the instance of
LC-LEP defined by (P ′,≺B ,Ξ′) where Ξ′ is the restriction of Rm to the subset for which the linear
functionals defined by each v ∈ Vj are strictly positive for each 1 ≤ j ≤ q.

In addition to restricting the computation to the polytopes discussed above, we can reuse so-
lutions of smaller PSD problems in some larger computations. As an example, suppose P ′ =
{p′0, . . . , p′7} is the set of interaction polynomials for the PSD with interaction type n′ = (2, 1) and
P := {p0, . . . , p15} the polynomials for the PSD problem with interaction type n = (2, 1, 1). Ob-
serve that each admissible linear order on P ′ induces an imposed linear order on the even indexed
polynomials, Peven := {p0, p2, . . . , p14} ⊂ P. A similar linear order is induced on the odd indexed
polynomials, Podd := {p1, p3, . . . , p15} ⊂ P. Hence, a necessary condition to have an admissible
linear extension for P is that the order of Peven and Podd must both be consistent with one of the
PSD solutions in T

(
P ′,≺B , (0,∞)6

)
. This implies the inclusion

T
(
P,≺B , (0,∞)8

)
⊆

⋃
σ′∈T (P′,≺B ,(0,∞)6)

T (P,≺B ∪ ≺σ′ , (0,∞)8) (21)

where ≺B ∪ ≺σ′ represents the refinement of the Boolean lattice partial order, and the partial order
induced by σ′ on the even/odd subsets.

To exploit this in general, we say that the PSD problem of type n′ is a sub-problem for the PSD
problem of type n whenever the polynomials for n must obey an implied partial order determined
by the solutions of n′. Notice that the preceding discussion as well as Equation (21) applies also
to an arbitrary polytope. Therefore, if there are a total of k admissible linear extensions for all
sub-problems of the PSD problem of type n which we have previously computed, then we bootstrap
those results when computing T

(
P,≺B , (0,∞)2n

)
via the inclusion

T
(
P,≺B , (0,∞)2n

)
⊆

k⋃
i=1

T (P,≺B ∪ ≺σ′i ,Ξ
′) ⊆ T (P,≺B ,Ξ′)

where ≺B ∪ ≺σ′i represents the refinement of the Boolean lattice partial order, and the partial
order induced by σ′i on the corresponding subsets obtained from any sub-problem. This technique
has been used in the computation for all the cases of order ≥ 4. Observe that the computation of
T (P,≺B ∪ ≺σ′i ,Ξ

′) can be done distributively for i = 1, . . . , k on different computational nodes,
which, as is indicated in Section 5, we employed for the PSD problems of orders 5 and 6.

In the special case of Section 4.4, we proved that inclusion in Equation (20) is actually equality
when Ξ′ is constructed as we have described. However, in the typical case, these additional alge-
braic constraints are not sufficient to remove all spurious linear extensions except in the case n =
(2, 1, . . . , 1). It remains an open problem to determine a smaller set Ξ′ such that T

(
P,≺B , (0,∞)2n

)
=

T (P ′,≺B ,Ξ′) for other interaction types. However, in the remainder of this section we consider
the problem of extracting T

(
P,≺B , (0,∞)2n

)
from T (P ′,≺B ,Ξ′) when they are not equal.

Observe that we may obtain large subsets of T
(
P,≺B , (0,∞)2n

)
simply by sampling. The

particular strategy that we adopted is as follows. We uniformly sampled between 108 and 109

points
ξ = (l1, . . . , ln, δ1, . . . , δn) ∈ Z2n

+ ∩B2n
∞ (r),

20

where B2n
∞ (r) = {‖ξ‖∞ ≤ r}. We chose r = 1000. Mathematically the particular choice of r is not

important since the PSD polynomials are homogeneous, though in practice it does have an effect on
sampling precision and speed. For each such ξ we evaluated {pα(ξ) : p ∈ P}. If σ ∈ S2n denotes the
linear order of these values, then ξ serves as a “witness” for the claim that Ξσ 6= ∅. This produces

S
(
P,≺B , (0,∞)2n

)
:=
{
σ ∈ T

(
P,≺B , (0,∞)2n

)
: σ is witnessed by at least one sample

}
.

Obviously,
S
(
P,≺B , (0,∞)2n

)
⊆ T

(
P,≺B , (0,∞)2n

)
⊆ T (P,≺B ,Ξ′).

In general, sampling is relatively efficient and in cases where T
(
P,≺B , (0,∞)2n

)
is not too large

(see Table 1 for details), we recover the entire solution.
Once we constructed the set S

(
P,≺B , (0,∞)2n

)
, T (P,≺B ,Ξ′) from sampling and algorithms

in section 3 respectively, we can apply CAD algorithm to check the set

{ξ ∈ Ξ : pσ(0)(ξ) < pσ(1)(ξ) < · · · < pσ(2n−1)(ξ)}

is empty or not for each σ ∈ T (P,≺B ,Ξ′) \ S
(
P,≺B , (0,∞)2n

)
and then T

(
P,≺B , (0,∞)2n

)
is

recovered. The CAD algorithm implementation we are using is CylindricalAlgebraicDecomposition
in Mathematica 11 [12].

5 Results for some PSD problems

In this section we provide (see Table 1) the results of our computations for interaction functions
of orders 4, 5, and 6. A slightly different approach was taken to compute orders 5 and 6, from
that used for 4. This had to do with the machines being used, but highlights the flexibility of our
method.

For interaction functions of order 4, we applied Algorithm 1 using a rational linear programming
algorithm. In particular, we used the implementation MixedIntegerLinearProgram from SageMath 8
[20]. This implies that the output of Algorithm 3 is correct. Observe that interaction type (1, 1, 1, 1)
is linear and type (4) is log linear, and therefore Algorithm 3 produces T

(
P,≺B , (0,∞)2n

)
. The fact

that our output agrees with that of [13] suggests that our code is functioning as desired. To compute
the interaction type (2, 1, 1) we apply Algorithm 3 to obtain T (P ′,≺B ,Rm). By Theorem 4.12 this
determines T

(
P,≺B , (0,∞)2n

)
.

To solve the PSD problem from interaction types (2, 2) and (3, 1) requires that we make use
of the strategy discussed in Section 4.5. Again, we use Algorithm 3 to obtain T (P ′,≺B ,Rm). By
Theorem 4.10, T

(
P,≺B , (0,∞)2n

)
⊂ T (P ′,≺B ,Rm). As indicated in Column 7 of Table 1, we

chose 108 samples from (0,∞)8 and identified 5344 and 3084 linear orders, respectively. We ran
CylindricalAlgebraicDecomposition in Mathematica 11 [12] on each element of T (P ′,≺B ,Rm) \
S
(
P,≺B , (0,∞)2n

)
. As can be seen by comparing Columns 6 and 3, none of these elements were

admissible.
We now turn to the computations of interaction functions of order 5 and 6. As these problems

are too big to be done on a laptop we turned to a server for which SageMath was not installed.
Thus, we made use of a numerical linear programing algorithm, linprog from Python 3.5 package
scipy [23] with the default numerical error 10−13, in Algorithm 1. The interaction type (1, 1, 1, 1, 1)
and (1, 1, 1, 1, 1, 1) are linear and type (5) and (6) are log linear, and therefore via Algorithm 3 we

21

n #T
(
P,≺B , (0,∞)2n

)
#T (P ′,≺B ,Ξ′) #T (P ′,≺B ,Rm) #S(P ′,≺B , (0,∞)2n)

(1,1,1,1) 336 - - -
(4) 336 - - -

(2,1,1) 1,344 1,344 2,352 -
(2,2) 5,344 7,920 26,640 5,344
(3,1) 3,084 5,112 68,641 3,084

(1,1,1,1,1) 61,920 - - 61,920
(5) 61,920 - - 61,920

(2,1,1,1) 790,200 790,200 * 790,200
(2,2,1) - 1,1035,808 * 6570952
(3,2) - * * 71,959,088†

(4,1) - * * 11,213,616†

(1,1,1,1,1,1) 89,414,640 - - 89,414,640
(6) 89,414,640 - - 89,414,640

Table 1: Computational results for several PSD problems. Column 1 indicates the interaction type.
Column 2 provides the number of elements in the AC-LEP of interest. Column 3 provides the
number of elements in an associated LC-LEP. This is not relevant where the AC-LEP problem of
interest is a LC-LEP problem and is indicated by -. The * indicates that the computation was
too large to complete. Column 4 provides the number of elements in the linearized PSD problem
without additional constraints. Again the irrelevance for linear problems is indicated by - and *
indicates that the computation is large to be performed. The last column indicates the number
of cells identified via sampling. We used 108 samples for all n = 4 cases and 109 samples for the
n = 5, 6 cases. The symbol † indicates that our sampling was not sufficient.

obtain Talg
(
P,≺B , (0,∞)2n

)
. We use the sampling technique (see Columns 7 and 8 of Table 1) to

verify each of the elements of Talg
(
P,≺B , (0,∞)2n

)
, thereby obtaining T

(
P,≺B , (0,∞)2n

)
.

The computation for each order 4 case was done on a Mac Pro laptop (2.7 Hz Intel i5 and
memory 8GB) with computation time under 4 hours. The computation of the remaining cases were
done using a computing server with CentOs, intel 17.1, memory 32 GB, and less than 30 nodes.
The computation time for both (1, 1, 1, 1, 1) and (5) was less than 4 hours, while the computation
time for (2, 1, 1, 1) was on the order of 7 days. The codes which produced all of the computations
in Table 1 are available on GitHub.

Acknowledgments

The authors would like to thank Shaun Harker, Sandra Di Rocco, Tomas Gedeon, and Mike Saks for
helpful conversations. The authors acknowledge support from NSF DMS-1521771, DMS-1622401,
DMS-1839294, the NSF HDR TRIPODS award CCF-1934924, DARPA contracts HR0011-16-2-0033
and FA8750-17-C- 0054, and NIH grant R01 GM126555-01.

22

https://github.com/lunzhang1990/parameterRepo

References

[1] David L Applegate, William Cook, Sanjeeb Dash, and Daniel G Espinoza. Exact solutions to
linear programming problems. Operations Research Letters, 35(6):693–699, 2007.

[2] Saugata Basu, Richard Pollack, and Marie Roy. Algorithms in Real Algebraic Geometry. pages
1–676.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization, 2004.

[4] Graham Brightwell and Peter Winkler. Counting Linear Extensions is #P-complete. In Pro-
ceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 175–181, New York, NY, USA, 1991. ACM.

[5] Graham R Brightwell. The Number of Linear Extensions of Ranked Posets. Technical report,
2003.

[6] Christopher W. Brown. Improved projection for cylindrical algebraic decomposition. Journal
of Symbolic Computation, 32(5):447–465, 2001.

[7] Christopher W. Brown. Constructing a single open cell in a cylindrical algebraic decomposition.
Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC,
pages 133–140, 2013.

[8] Christopher W. Brown and James H. Davenport. The complexity of quantifier elimination and
cylindrical algebraic decomposition. Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC, pages 54–60, 2007.

[9] George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decom-
postion. In H. Brakhage, editor, Automata Theory and Formal Languages, pages 134–183,
Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[10] Bree Cummins, Tomas Gedeon, Shaun Harker, Konstantin Mischaikow, and Kafung Mok.
Combinatorial Representation of Parameter Space for Switching Networks. SIAM Journal on
Applied Dynamical Systems, 15(4):2176–2212, 2016.

[11] T. Fine and J. Gill. The enumeration of comparative probability relations. Ann. Prob., 4:667–
673, 1976.

[12] Wolfram Research, Inc. Mathematica, Version 11.

[13] D. Maclagan. Boolean Term Orders and the Root System Bn. Order, 15:279–295, 1999.

[14] Bree Cummins Marcio Gameiro, Shaun Harker. Dsgrn: Dynamic signatures generated by
regulatory networks. https://github.com/marciogameiro/DSGRN, 2020.

[15] Scott McCallum. An improved projection operation for cylindrical algebraic decomposition.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 204 LNCS:277–278, 1985.

[16] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2020.
https://www.sagemath.org.

23

https://github.com/marciogameiro/DSGRN

[17] Jichang Sha and D. J. Kleitman. The number of linear extensions of subset ordering. Discrete
Mathematics, 63(2-3):271–278, 1987.

[18] Richard P. Stanley. An introduction to hyperplane arrangements. In Geometric combinatorics,
volume 13 of IAS/Park City Math. Ser., pages 389–496. Amer. Math. Soc., Providence, RI,
2007.

[19] Herry Suprajitno and I Bin Mohd. Linear programming with interval arithmetic. Int. J.
Contemp. Math. Sciences, 5(7):323–332, 2010.

[20] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8).
https://www.sagemath.org.

[21] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[22] Robert J. Vanderbei. Linear Programming Foundations and Extensions, Third Edition.

[23] Pauli Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

24

	1 Introduction
	2 Dynamic Signatures Generated by Regulatory Networks
	3 Solving the LC-LEP
	3.1 Cones
	3.2 An algorithm for identifying T(P, ,)

	4 Solving the general PSD problem
	4.1 The PSD as an instance of AC-LEP
	4.2 The linear PSD problem
	4.3 The general PSD problem
	4.4 Solving the PSD problem for interaction type n=(2,1,…,1).
	4.5 Solving the general PSD problem

	5 Results for some PSD problems

