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Abstract

In this paper, which is based on the author’s MSc thesis, we study in detail the co-

homology theory for twisted coalgebras introduced in [2] by M. Aguiar and S. Mahajan.

We compute it completely in various examples, including those proposed by Aguiar and

Mahajan, and obtain structural results: in particular, we study its multiplicative struc-

ture, provide a Künneth formula, and succeed in giving an alternative description of this

cohomology theory which, in particular, allows for its effective computation.

At the very end of the paper, we briefly outline how all the computations done in this

paper can be swiftly explained and extended to an arbitrary Koszul twisted coalgebra

through their corresponding Koszul duality theory. While doing so, we work out the ex-

ample of the species of linear orders: we show it is twisted Koszul, compute its dual and

the (doubly) graded dimensions of its components, which turn out to be the unsigned

Stirling numbers of the first kind.
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Introduction

The present paper serves two purposes. First, it is an illustration of the possibility to com-

pletely understand a new cohomology theory, that of coalgebras in the combinatorial spe-

cies of A. Joyal [11], which are usually known as twisted coalgebras. This theory originated

in the work of M. Aguiar and S. Mahajan on deformations of coalgebras in the category of

species: their objective, among other, was constructing certain Hopf algebras in this cat-

egory that encode the combinatorics of structures such as linear orders, graphs and posets,

for example.

Second, it is intended to show how homological algebra can complement the field of

enumerative and analytic combinatorics: using homological tools, we completely solve the

problem of computing the cohomology groups of a coalgebra in the category species and in

particular the second cohomology group of it, thereby completely solving a problem posed

originally by M. Aguiar and S. Mahajan; our solution is effective and can be implemented

in a computer, being analogous to the computation of the cohomology groups of a locally

finite CW-complex through the use of the cellular cochain complex.

To explain our results, we use the language of representation theory and homological al-

gebra. Concretely, let E be the species of singletons, which is a Hopf algebra in the category

of species. The cohomology theory of Aguiar and Mahajan is then encoded by the derived

functor X 7→ Ext(X,E) in the category of E-bicomodules: it turns out that the full subcat-

egory of the coalgebras that Aguiar and Mahajan are interested in corresponds to the full

subcategory of certain “linearized” bicomodules.

It is useful to think of the left bicomodule structure as the data of an operation of restric-

tion on the combinatorial objects encoded by X, and of the right bicomodule structure as

the data of an operation on such objects, the compatibility axiom of a bicomodule encoding

a compatiblity relation between these two operations. The datum of such a bicomodule X

includes, in particular, the sequence (X[0],X[1], . . .) where for each p ∈N the k-vector space

X[p] is a kSp -module. We say X is weakly projective if for each p ∈N the module X[p] is a

projective kSp -module, and write sgnp for the one dimensional sign representation of Sp ,

its appearance which we now explain.

Although the machinery we use in the paper is mainly homological, the appearance of

the species of the sign representation is due to a rich interplay between homological al-

gebra and the combinatorics of hyperplane arrangements: the cobar construction of the

twisted coalgebra E is the simplicial cochain complex of the triangulation of the sphere by

the Coxeter complex for the braid arrangement, and its cohomology is concentrated in top

degree, where it is the sign representation of the symmetric group. The main result of this

paper is the following:
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Theorem. Suppose that X is a weakly projective E-bicomodule. There is a complex S∗(X)

so that for each p ∈ N we have Sp (X) = HomSp (X[p],sgnp ) that computes the cohomology

groups H∗(X). If the ground ring contains Q, the differential δp : Sp (X) −→ Sp+1(X) is such

that for z ∈X[p +1] we have

(δpφ)(z) =
p+1∑
j=1

(−1) j
(
φ(z ′

j )−φ(z ′′
j )

)
,

where the assignments z 7→ z ′
j , z ′′

j restrict and contract, respectively, the “j th label” of z.

In particular, one can compute the second cohomology group H 2(X) using the three rep-

resentations X[1],X[2] and X[3] and the contraction and restriction operations of X on such

spaces.

We have also addressed the problem of determining when products exist in this cohomo-

logy theory and describing them using the complex above. Our result comes paired with a

Künneth isomorphism in the category of E-bicomodules: since E is a Hopf algebra, there is

an internal product ⊗ in its category of bicomodules, and our result is the following:

Theorem. Let X and Y be E-bicomodules, and assume that k is a field and at least one of X

or Y is locally finite. There is an isomorphism of complexes, natural in X and Y, of the form

S∗(X)⊗S∗(Y) −→ S∗(X⊗Y).

Moreover, every morphism of E-bicomodules X −→ X⊗X induces a product in cohomo-

logy and, in particular, if the bicomodule X is induced from a coalgebra structure on X, the

comultiplication of X is a morphism of E-bicomodules and induces a cup product in H∗(X).

To conclude this paper and set the stage for future applications, we interpret the main res-

ults above in terms of Koszul duality for twisted (co)algebras. As it turns out, the twistes coal-

gebra E is Koszul, and the complex S∗(X) that we discovered through a spectral sequence

method is, in fact, the Koszul complex K ∗(X,E) of E.

After explaining this, we conclude with an example where we show that the species L of

linear orders considered by Aguiar and Mahajan is Koszul, compute its Koszul dual and its

doubly graded Betti numbers: we show these are precisely the unsigned Stirling numbers of

the first kind. More, precisely, we have the following result, which follows immediately from

the twisted version of the Milnor–Moore theorem over a field of characteristic zero.

Theorem. The twisted Koszul dual algebra to L is L¡ = S(s−1Lie), the free twisted commutat-

ive algebra on the desuspension of the symmetric sequence Lie. In particular, for each j ,n ∈N,

the component of weight j of the Sn-module L¡(n) is in bijection with the permutations of n

consisting of exactly j disjoint cycles, which are enumerated by the unsigned Stirling numbers

of the first kind. Î
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Useful references. We refer the reader to [22] for an introduction to homological al-

gebra and recommend coupling it with [17] for a comprehensive exposition on spectral se-

quences. As a reference on combinatorial species, we use the seminal article of A. Joyal [11]

and the book of Labelle, Leroux y Bergeron [13]. Finally, our reference for the formalism of

monoidal categories is C. Kassel’s book [12], for the basics on abelian categories the book of

Freyd [9], and for the simplicial formalism, the book [22] and that of S. MacLane [16].

Running conventions. Throughout, k is a unital commutative ring, and when we write ⊗
y Hom, we will be considering the usual functors on k-modules, unless stated otherwise; an

important exception is our use of ⊗ for the Cauchy product of species. Since we will write

them with lower-case boldfaced letters, while k-modules will always be written in capital

italics, no confusion should arise.

A decomposition S of length q of a set I is an ordered tuple (S1, . . . ,Sq ) of possible empty

subsets of I , which we call the blocks of S, that are pairwise disjoint and whose union is

I . We say S is a composition of I if every block of S is nonempty. It is clear that if I has n

elements, every composition of I has at most n blocks. We will write S ` I to mean that

S is a decomposition of I , and if necessary will write S `q I to specify that the length of S

is q . Notice the empty set has exactly one composition which has length zero, the empty

composition, and exactly one decomposition of each length n ∈N0. If T is a subset of I and

σ : I −→ J is a bijection, we let σT : T −→σ(T ) be the bijection induced by σ.

Acknowledgements. I wholeheartedly thank my former MSc advisor M. Suárez–Alvarez

for the countless mathematical conversations we had during my time in the University of

Buenos Aires (2013–2017) —which I remember fondly— and for his invaluable input during

the period of time when the thesis that this article is based on was written.
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1 Algebras and coalgebras in species

1.1 The category of species

Denote by Set× the category of finite sets and bijections.

Definition 1.1. A combinatorial species over a category C is a functor X : Set× −→ C. Con-

cretely, a combinatorial species X is obtained by assigning

S1. to each finite set I an object X(I ) in C,

S2. to each bijection σ : I −→ J an arrow X(σ) :X(I ) −→X[ j ],

in such a way that

S3. for every pair of composable bijections σ and τ, we have X(τσ) =X(τ)X(σ) and,

S4. for every finite set I , it holds that X(idI ) = idX(I ).

In particular, for every finite set I we have a map σ ∈ Aut(I ) 7−→ X(σ) ∈ Aut(X(I )) which

gives an action of the symmetric group with letters in I on X(I ). The category Set× is a

grupoid, and it has as skeleton the full subcategory spanned by the sets [n] = {1, . . . ,n} (in

particular, [0] =∅) , and a species is determined, up to isomorphism, by declaring its values

on the finite sets [n] and on every σ ∈ Sn . In view of this, one can think of a combinatorial

species as a sequence (X(n))nÊ0 of objects in C endowed with Sn actions (Sn ×X(n) −→
X(n))nÊ0.

We denote by Sp(C) the category Fun(Set×,C) of species over C, whose morphisms are nat-

ural transformations: explicitly, an arrow η : X−→ Y is an assignment of a map ηI : X(I ) −→
Y(I ) to each finite set I , in such a way that for any bijection I

σ−→ J the following diagram

commutes

X(I ) Y(I )

X[ j ] Y(J )

ηI

X(σ) Y(σ)
η J

This says that we must specify, for each finite set I , an Aut(I )-equivariant map ηI : X(I ) −→
Y(I ). If we view species as sequences of objects on which the symmetric grupoid acts, a

morphism of species X−→Y is simply a sequence of equivariant maps (ηn :Xn −→Yn)nÊ0.

Our main interest will lie on species over sets or vector spaces. We write Sp for the category

of species over Set, the category of sets and functions, and call its objects set species. If a

species takes values on the subcategory FinSet of finite sets we call it a finite set species, and

if X(∅) is a singleton, we say it is connected. We write Spk for the category of species over

k Mod, the category of modules over k, and call its objects linear species. If a species takes
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values on the subcategory k mod of finite generated modules we call it a linear species of

finite type, and we say it is connected if X(∅) is k-free of rank one.

Denote by k[−] the functor Set −→ k Mod that sends a set X to the free k-module with

basis X, which we will denote by kX, and call it the linearization of X. By postcomposition,

we obtain a functor L : Sp −→ Spk that sends a set species X to the linear species kX. The

species in Spk that are in the image of k[−] are called linearized species. Thus, a linearized

species X= kX0 is such that, for every finite set I , the vector space X(I ) has a chosen basis

X0(I ), the morphisms X(I ) −→ X[ j ] map basis elements to basis elements, and the action

of Aut(I ) on X(I ) is by permutation of the basis elements.

Definition 1.2. Given a species X : Set× −→ Set and a finite set I , we call X(I ) the set of

structures of speciesX over I . If s ∈X(I ), we call I the underlying set of s, and call s an element

of X or an X-structure. If I
σ−→ J is a bijection, the element X(σ)(s) = t is the structure over J

obtained by transporting s along σ, which we will usually denote, for simplicity, by σs.

Definition 1.3. Two X structures s and t over respective sets I and J are said to be iso-

morphic if there is a bijection σ : I −→ J that transports s to t , and we say σ is a structure

isomorphism from s to t . A permutation that transports a structure s to itself is said to be an

automorphism of s.

In most cases, if X is a species and I is a set, X(I ) consists of a collection of combinatorial

structures of some kind labelled in some way by the elements of I . For example, there is

a species Pos that assigns to every finite set I the set Pos(I ) of partial orders on I , and to

every bijection σ : I −→ J the function Pos(σ) : Pos(I ) −→Pos(J ) which assigns to every order

on I the unique order on J that makes σ an order isomorphism: in concrete terms, Pos(σ)

“relabels” a poset on I according to σ.

Examples

To understand all that follows it useful to have a list of examples in mind. We collect in this

section such a list. For a comprehensive treatment of combinatorial species, we refer the

reader to [13].

E1. The exponential or uniform species E : Set× −→ FinSet is the species that assigns to

every finite set I the singleton set {I }, and to any bijection σ : I −→ J the unique bijec-

tion E(σ) : E(I ) −→ E(J ). Remark that E is the unique species, up to isomorphism, that

has exactly one structure over each finite set. For ease of notation, we will write ∗I for

{I }.

E2. The species of partitions P assigns to each finite set I the collection of partitions of I :

sets T = {T1, . . . ,Ts} of nonempty disjoint subsets of I whose union is I . If σ : I −→ J is a
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bijection and T is a partition of I , P(σ)(T ) = {σT1, . . . ,σTs} is the partition of J obtained

by transporting T along σ.

E3. The species of compositions C assigns to each finite set I the collection of composition

of I : ordered tuples (F1, . . . ,Ft ) of nonempty disjoint subsets of I whose union is I . If

σ : I −→ J is a bijection and F is a composition of I , C(σ)(F ) = (σF1, . . . ,σFt ) is the

composition of J obtained by transporting F along σ.

E4. There is a species Simp that assigns to each set I the collection of simplicial structures

on I , this is, collections of finite subsets S ⊆ 2I that contain all singleton sets of ele-

ments of I , and such that whenever ∆ ∈ S and ∆′ ⊆∆, then ∆′ ∈ S. We call the elements

of S simplices.

E5. Again, let X be a topological space. There is a species FX that assigns to each finite

set I the configuration space FX (I ) ⊆ X I of X with coordinates on I : FX (I ) consists

of tuples (xi )i∈I with xi 6= x j whenever i and j are distinct elements of I . As in the

previous example, there is an obvious action of any bijection σ : I −→ J that permutes

the coordinates. For each fixed finite set I , the set of types of structures over I is usually

called the unordered configuration space EX (I ).

E6. There is a species of parts ℘ that sends each finite set I to the collection 2I of parts of I ,

and sends each bijection σ : I −→ J to the induced bijection σ∗ : 2I −→ 2J . In a similar

way, if n is a positive integer, there is a species ℘n which sends each finite set I to the

set ℘n of its subsets of cardinality n; notice that ℘n(I ) is empty if I has less than n

elements, and that ℘n is a subspecies of ℘ for each n.

E7. A graph with vertices on a set I is a pair (I ,E) where E is a collection of 2-subsets of I .

For each finite set I , let Gr(I ) be the collection of graphs on I . If σ : I −→ J is a bijection

and (I ,E) is a graph on I , we set Gr(σ)(I ,E) = (J ,σ(E)). This defines the species Gr of

graphs.

E8. For each finite set I , let L0(I ) be the collection of linear orders on I . If σ : I −→ J is

a bijection, we let L0(σ) send a linear order i1i2 · · · it on the set I to the linear order

σ(i1) · · ·σ(it ) on J . This defines the species L0 of linear orders.

1.2 The Cauchy product

The category Spk of species over k Mod is abelian and monoidal with respect to the “point-

wise” Hadamard product given for each pair of species X and Y and each finite set I by the

formula

(X⊗H Y)(I ) =X(I )⊗Y(I ).

It turns out that algebras for this tensor product are rather simple: endowing a species X

with the structure of an algebra for ⊗H amounts to endowing each individual space X(I )
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with an algebra structure and, in particular, does not combine in any interesting the se-

quence of spaces defined by X.

There is another product in Spk , called the Cauchy product which we will denote by ⊗,

which will play a central role in all that follows, and which categorifies the usual (Cauchy)

product of power series. In particular, it will intertwine into a single object the various

pieces of X, and provide us with a richer product and, hence, with a more interesting class

of (co)algebras.

Definition 1.4. Let X and Y be linear species over k. The Cauchy product X⊗Y is the linear

species such that for every finite set I

(X⊗Y)(I ) = ⊕
(S,T )`I

X(S)⊗Y(T ),

the direct sum running through all decompositions of I of length two, and for every bijection

σ : I −→ J

(X⊗Y)(σ) = ⊕
(S,T )`I

X(σS)⊗Y(σT ).

As it happens with the Hadamard product, the Cauchy product is better understood when

viewing species as the product of representations of the various symmetric groups. Indeed,

for each n and each pair (p, q) with p +q = n, there is an isomorphism⊕
S⊆I ,#S=p

X(S)⊗Y(T ) ' Ind
Sp+q

Sp×Sq
(X[p]⊗Y[q]),

and these collect to give an isomorphism

(X⊗Y)([n]) ' ⊕
p+q=n

Ind
Sp+q

Sp×Sq
(X[p]⊗Y[q]).

This construction extends to produce a bifunctor ⊗ : Spk × Spk −→ Spk . In what follows,

whenever we speak of the category Spk , we will view it as a monoidal category with the

monoidal structure given by the Cauchy product.

It is important to notice the construction of the Cauchy product in Spk carries over to

the category Sp(C) when C is any monoidal category with finite coproducts which commute

with its tensor product. The main example of this phenomenon happens when C is the

category Set. If X and Y are set species, the species X⊗Y has

(X⊗Y)(I ) = ⊔
(S,T )`I

X(S)×Y(T ),
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so that a structure z of species X⊗Y over a set I is determined by a decomposition (S,T ) of I

and a pair of structures (z1, z2) of species X and Y over S and T , respectively.

The linearization functor L : Sp−→ Spk preserves the monoidal structures we have defined

on these categories, in the sense there is a natural isomorphism

L(X⊗Y) −→LX⊗LY

for each pair of objects X,Y in Sp. For details on such monoidal functors see [12, Chapter XI

§4]. The following will be useful, and we record it for future reference:

Proposition 1.1. If X,Y1, . . . ,Yr are linear species, a map of species α : X −→ Y1 ⊗ ·· · ⊗Yr

determines and is determined by a choice of equivariant k-module maps

αI :X(I ) −→⊕
Y1(S1)⊗·· ·⊗Yr (Sr ),

one for each finite set I , the direct sum running through decompositions (S1, . . . ,Sr ) of length

r of I . Î
The mapαI is specified uniquely by its components at each decomposition S = (S1, . . . ,Sr ),

which we denote α(S1, . . . ,Sr ) without further mention to the set I which is implicit, for⋃
S equals I . Moreover, it suffices to specify αI for I the sets �n� with n ∈ N0. This said,

we will usually define a map α : X −→ Y1 ⊗ ·· · ⊗Yr by specifying its components at each

decomposition of length r of I .

1.3 Twisted coalgebras and bialgebras

An associative algebra (X,µ,η) in the category Spk , which we will call simply a twisted al-

gebra, is determined by a multiplication

µ :X⊗X−→X

and a unit η : 1 −→X. Specifying the first amounts to giving its components

µ(S,T ) :X(S)⊗X(T ) −→X(I )

at each decomposition (S,T ) of every finite set I , and specifying the latter amounts to a

choice of the element η(∅)(1) ∈ X(∅), which we will denote by 1 if no confusion should

arise. We think of the multiplication as an operation that glues partial structures on I , and

of the unit as an “empty” structure.

For example, the species of graphs admits a multiplication kGr⊗kGr−→ kGr which is the

linear extension of the map that takes a pair of graphs (g1, g2) ∈Gr(S)×Gr(T ) and constructs
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the disjoint union g1tg2 on I . The unit for this multiplication is the empty graph ∅ ∈Gr(∅).

One can readily check µ is associative and unital with respect to η, so we indeed have a

algebra kGr.

Dually, a coalgebra (X,∆,ε) in Spk , which we call a twisted coalgebra, is determined by a

comultiplication

∆ :X−→X⊗X

and a counit ε : X −→ 1. The comultiplication has, at each decomposition (S,T ) of I , a

component ∆(S,T ) : X(I ) −→X(S)⊗X(T ), which we think of as breaking up a combinator-

ial structure on I into substructures on S and T , while the counit is a map of k-modules

X(∅) −→ k.

To continue with our example, the linearization of the species of graphs admits a comulti-

plication kGr−→ kGr⊗kGr that sends a graph g on a set I to gS⊗gT ∈ kGr(S)⊗kGr(T ), where

gS and gT are the subgraphs induced by g on S and T , respectively. This comultiplication

admits as counit the morphism ε : kGr −→ 1 that assigns 1 ∈ k to the empty graph. In this

way, we obtain a coalgebra structure on kGr which is, in fact, compatible with the algebra

structure we described in the previous paragraph: we therefore have a bialgebra structure

on kGr.

Our main example of a bialgebra in Spk is the provided by the following proposition.

Proposition 1.2. The linearized exponential species E is a twisted bialgebra with multiplica-

tion and comultiplication with components

µ(S,T ) :E(S)⊗E(T ) −→E(I ), ∆(S,T ) :E(I ) −→E(S)⊗E(T )

at each decomposition (S,T ) of a finite set I such that

µ(S,T )(∗S ⊗∗T ) =∗I , ∆(S,T )(∗I ) =∗S ⊗∗T

and with unit and counit the morphisms ε : E −→ 1 and η : 1 −→ E such that ε(∗∅) = 1 and

η(1) =∗∅.

Proof. The verifications needed to prove this follow immediately from the fact that E(I ) is a

singleton for every finite set I . Î
The exponential species plays a central role in the category of bialgebras, as evinced by

the following proposition.

Proposition 1.3.

1. The exponential species E0 admits a unique structure of set- theoretic bialgebra.
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2. If X0 is a set theoretical coalgebra in Sp, the linearization of the unique morphism of

species X0 −→E0 is a morphism of coalgebras.

3. In particular, every twisted coalgebra coming from a set theoretic coalgebra is canonic-

ally an E-bicomodule.

Proof. If s is a singleton set and x is any set, there is a unique function x −→ s, and it follows

from this, first, that the bialgebras structure defined on E is the only linearized bialgebra

structure, and, second, that if X is a species in Sp, there is a unique morphism of species

X −→ E. If X is a pre-coalgebra in Sp, the following square commutes because E(S)×E(T )

has one element:
E(I ) E(S)×E(T )

X(I ) X(S)×X(T ),

∆

∆

and, by the same reason, X −→ E is pre-counital. All this shows that the exponential spe-

cies E is terminal in the category of linearized coalgebras. This completes the proof of the

proposition. Î

We will fix some useful notation to deal with coalgebras. Let X = kX0 be a linearized

species that is a coalgebra in Spk . If z is an element of X0(I ), we write

∆(I )(z) =∑
z S ⊗ z �T

with z S⊗z �T denoting an element of X(S)⊗X(T ) (not necessarily an elementary tensor,

à la Sweedler).

Consider now a left E-comodule X with coaction λ : X −→ E⊗X. Since E(S) = k{∗S}, the

component X(I ) −→E(S)⊗X(T ) can canonically be viewed as map X(I ) −→X(T ) which we

denote by λI
T , and call the it the restriction from I to T to the right.

In these terms, that λ be counital means λI
I is the identity for all finite sets I , and the

equality 1⊗λ◦λ=∆⊗1◦λ, which expresses the coassociativity of λ, translates to the condi-

tion that we haveλI
A =λB

A◦λI
B for any chain of finite sets A ⊆ B ⊆ I . It follows that, if FinSetinc

is the category of finite sets and inclusions, a left E-comodule X in Spk can be viewed as a

pre-sheaf

FinSetinc −→ k Mod.

These are usually called FI-modules in the literature, see for example [7]. When convenient,

we will write z �S for λI
S(z) without explicit mention to I , which will usually be understood
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from context. Using this notation, we can write the coaction on X as

λ(I )(z) =∑
eS ⊗ z �T.

Of course the same consideration apply to a right E-comodule, and we write z  T for

ρI
T (z). If X is both a left and a right E-comodule with coactions λ and ρ, the compatilibity

condition for it to be an E-bicomodule is that, for any finite set I and pair of non-necessarily

disjoint subsets S,T of I , we have ρS
S∩Tλ

I
S = λT

S∩Tρ
I
T . Schematically, we can picture this as

follows:

S ∩T

S T

I

ρ λ

ρλ

There is a category FinSetbinc such that an E-bicomodule is exactly the same as a pre-sheaf

FinSetbinc −→ Spk ; we leave its construction to the categorically inclined reader. If the struc-

ture on X is cosymmetric, we will write z∥S for the common value of z S and z �S. There is

a close relation between linearized coalgebras and linearized E-bicomodules, as described

in the following proposition.

Proposition 1.4. Let (X,∆) be a linearized coalgebra, and let fX : X −→ E be the unique

morphism of linearized coalgebras described in Proposition 1.3. There is onX anE-bicomodule

structure so that the coactions λ :X−→E⊗X and ρ :X−→X⊗E are obtained from postcom-

position of ∆ with fX⊗1 and 1⊗ fX, respectively. Î
We refer the reader to [2, Chapter 8, §3, Proposition 29]. Remark that, with this proposi-

tion at hand, the notation introduced for bicomodules and that introduced for coalgebras

is consistent.

1.4 Twisted Hopf algebras

LetXbe a twisted bialgebra with structure maps∆ andµ. Recall that a speciesX is connected

if X(∅) is free of rank one. The following result in [2] states every connected twisted bial-

gebra is automatically a Hopf algebra, and this automatically endows the various categories

of representations of X with extra structure.

More generally, a twisted bialgebra X is a Hopf algebra precisely when X(∅) is a Hopf k-

algebra, and the antipode of X can, in that case, be explicitly constructed from the antipode

of X(∅) —this is a variant of what is known as Takeuchi’s theorem, see the monograph [3,

Proposition 9] for more details.
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Theorem 1.1. Let (X,µ,∆) be a twisted bialgebra.

1. If X is a Hopf algebra with antipode s, thenX(∅) is a Hopf k-algebra with antipode s(∅).

2. If X(∅) is a Hopf k-algebra with antipode s0, then X is a Hopf algebra, and s can be

iteratively constructed from s0,µ and ∆.

3. In particular, if X is a connected bialgebra, X is a Hopf algebra.

Proof. For a proof and an explicit formula for s in terms of s0, we refer the reader to [2,

Chapter 8, §3.2, Proposition 8.10, and §4.2, Proposition 8.13]. The third part follows from

the second since k is, in a unique way, a Hopf k-algebra. Î

We define some connected bialgebras that will be of interest in Section 2. In view of the

previous result, they are all Hopf algebras in the category of linear species. Remark that,

since the algebraal category Spk is symmetric, the tensor product of two twisted Hopf al-

gebras is again a twisted Hopf algebra, so the following examples provide further ones by

combining them into products. In all cases the unit and counit are the projection and the

inclusion of the unit 1 in the component of ∅.

H1. Fix a finite set I and a decomposition (S,T ) of I . If `1 and `2 are linear orders on S and

T respectively, their concatenation `1 ·`2 is the unique linear order on I that restricts to

`1 in S and to `2 in T , and such that s < t if s ∈ S and t ∈ T ; this operation is in general

not commutative. If ` is a linear order on I , write `|S for the restriction of ` to S, and `

for the reverse order to `. The species of linear orders L0 admits a bialgebra structure

such that

• multiplication is given by concatenation: µ(S,T )(`1,`2) = `1 ·`2 ,

• comultiplication is given by restriction: ∆(S,T )(`) = `|S ⊗`|T .

In particular, this endows the linearizationLwith a cosymmetric bicomodule structure

over E. The map L −→ E that sends a linear order on a finite set I to ∗I = {I } is a map

of bialgebras. The antipode is given, up to sign, by taking the reverse of a linear order:

s(I )(`) = (−1)#I`.

H2. If (S,T ) is a decomposition of a finite set I , and F = (F1, . . . ,Fs) and G = (G1, . . . ,Gt ) are

compositions of S and of T , respectively, the concatenation F ·G is the composition

(F1, . . . ,Fs ,G1, . . . ,Gt ) of I . If F = (F1, . . . ,Ft ) is a composition of I , the restriction of F to

S is the composition F |S of S obtained from the decomposition (F1 ∩S, . . . ,Ft ∩S) of S

by deleting empty blocks, which usually has shorter length than that of F . Finally, the

reverse of a composition F is the composition F whose blocks are listed in the reverse

order of those in F . The species C of compositions has a bialgebra structure such that

• multiplication is given by concatenation: µ(S,T )(F,G) = F ·G ,

• comultiplication is given by restriction: ∆(S,T )(F ) = F |S ⊗F |T .
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This is cocommutative but not commutative. The morphismL−→C that sends a linear

order i1 · · · it on a set I to the composition ({i1}, . . . , {it }) is a map of bialgebras. The

formula for the antipode is not as immediate as the previous ones. For details, see

[3, Section 11].

H3. If (S,T ) is a decomposition of a finite set I , and X and Y are partitions of S and T ,

respectively, the union X ∪Y is a partition of I . If X is a partition of I , then X |S = {x∩S :

x ∈ X }à {∅} is a partition of S, which we call the restriction of X to S. The species P of

partitions admits a bialgebra structure such that

• multiplication is given by the union of partitions: µ(S,T )(X ,Y ) = X ∪Y ,

• comultiplication is given by restriction: ∆(S,T )(X ) = X |S ⊗Y |T .

This is both commutative and cocommutative. The map C −→ P that sends a decom-

position F of a set I to the partition X of I consisting of the blocks of F is a bialgebra

map. The morphism E −→ P that sends ∗I = {I } to the partition of I into singletons is

also a map of bialgebras. See [3, Theorem 33] for a formula for the antipode of P.

H4. If p is a poset with underlying set I , and (S,T ) is a decomposition of I , we say S is a lower

set of T with respect to p and write S ≺p T if no element of T is less than an element of

S for the order p, and we write pS for p ∩ (S×S), the restriction of p to S. The linearized

species Pos of posets admits a bialgebra structure so that

• multiplication is given by the disjoint union of posets: if p1 and p2 are posets with

underlying sets S and T , respectively, µ(S,T )(p1, p2) = p1 tp2,

• comultiplication is obtained by lower sets and by restriction: for p a poset defined

on S tT , we set ∆(S,T )(p) = pS ⊗pT if S ≺p T , and set ∆(S,T )(p) = 0 if not.

It is worthwhile to remark that one can define another multiplication on this species: if

p1 and p2 are posets on disjoint sets S and T , respectively, let p1 ∗ p2 be the usual join of

posets. This is associative and has unit the empty poset, and the inclusion of linear orders

into posets L−→ P is a morphisms of algebras if L is given the concatenation product. We

also remark that the maps described above fit into a commutative diagram of Hopf algebras

as illustrated in the figure

C

L P

E

and we will analyse the resulting maps in cohomology in Section 2. For more examples of

Hopf algebras in species, and their relation to classical combinatorial results, we refer the

reader to [2, Chapter 13].



PEDRO TAMAROFF 15

2 The cohomology of twisted coalgebras

2.1 Definitions and first examples

Let H be a twisted coalgebra and X a -bicomodule, and let us define a cosimplicial k-

module C∗(X,H) as follows. For each n ∈N:

1. Define C n(X,H) to be HomSpk
(X,H⊗n) the set of maps in Spk from X to the iterated

tensor product H⊗n .

2. For 0 < i < n + 1, consider the map d i : C n(X,H) −→ C n+1(X,H) induced by post-

composition with the coproduct of H at the i th position.

3. For i = 0,n+1, let d 0,d n+1 : C n(X,H) −→C n+1(X,H) be the maps obtained post com-

posing with the left and right comodule maps of X, respectively.

It is straightforward to check that, by virtue of the coassociativity ofH and the bicomodule

axioms, the maps above satisfy the usual cosimplicial identities. It follows that if for each

n ∈N we define the alternated sum δn =∑n+1
i=0 (−1)i d i , we obtain a cohomologically graded

complex (C∗(X,H),δ∗).

Definition 2.1. The cohomology of X with values in H is the cohomology of the complex

(C∗(X,H),δ∗), and we denote it by H∗(X,H).

The homologically inclined reader will notice that these cohomology groups are equal to

Ext∗(X,H) with the Ext taken in the category of H-bicomodules. In the following we will

mainly consider the case in which H is the exponential species, but will make it clear when

a certain result can be extended to other twisted coalgebras. Usually, it will be necessary that

H is linearized and with a linearized bimonoid structure, and we will usually require that H

be connected. Because of the plethora of relevant examples of such bimonoids found in [2]

and other articles by the same authors, such as [3], there is no harm in restricting ourselves

to such species.

Fix an E-bicomodule X. The complex C∗(X,E), which we will denote more simply by

C∗(X), has in degree q the collection of morphisms of species α :X−→E⊗q . Such a morph-

ism is determined by a collection of k-linear maps α(I ) :X(I ) −→E⊗q (I ), one for each finite

set I , which is equivariant, in the sense that for each bijection σ : I −→ J between finite sets,

and every z ∈X(I ), the equality σ(α(I )(z)) =α(J )(σz) holds.

Remark 2.1. For each finite set I , the space E⊗q (I ) is a free k-module with basis the tensors

of the form

F1 ⊗·· ·⊗Fq
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with F = (F1, . . . ,Fq ) a decomposition of I ; for simplicity, we use the latter notation for such

basis elements. In terms of this basis, we can write

α(I )(z) = ∑
F`q I

α(F )(z)F

where α(F )(z) ∈ k.

We recall that the cochain α is completely determined by an equivariant collection of

functionalsα(F ) :X(I ) −→ k, the components ofα, one for each decomposition F of a finite

set I . The equivariance condition is now that, for a bijection σ : I −→ J , and (F1, . . . ,Fq ) a

decomposition of I , we have

α(F1, . . . ,Fq )(z) =α(σ(F1), . . . ,σ(Fq ))(σz)

for each z ∈X(I ). Recall that when writting α(F )(z) we omit I , recalling that it is always the

case I =∪F .

Now fix a q-cochain α : X −→ E⊗q in C∗(X). By the remarks in the last paragraph, to

determine the (q +1)-cochain δα :X−→E⊗(q+1) it is enough to determine its components.

Lemma 2.1. For each decomposition F = (F0, . . . ,Fq ) of a set I , then the component of the i th

coface diα at F is given, for z ∈X(I ), by

(d iα)(F0, . . . ,Fq )(z) =


α(F1, . . . ,Fq )(z �F c

0 ) if i = 0,

α(F0, . . . ,Fi ∪Fi+1, . . . ,Fq+1)(z) if 0 < i < q +1,

α(F0, . . . ,Fq−1)(z F c
q ) if i = q +1.

(1)

Proof. Indeed, let us follow the prescription above and compute each coface map explicitly.

If z ∈ X(I ), to compute d 0α(z), we must coact on z to the left and evaluate the result at α,

that is

(1⊗α◦λ)(I )(z) = ∑
(S,T )`I

∗S ⊗α(T )(z �T ),

and the coefficient at a decomposition F = (F0, . . . ,Fq ) is α(F1, . . . ,Fq )(z � F c
0 ). The same

argument gives the last coface map. Now consider 0 < i < q+1, so that we must take z ∈X(I ),

apply α, and then comultiply the result at coordinate i . Concretely, write

α(I )(z) = ∑
F`q I

α(I )(F )(z)F

and pick a decomposition F ′ = (F0, . . . ,Fq ) into q +1 blocks of I . There exists then a unique
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F `q I such that 1i−1 ⊗∆⊗1q−i (F ) = F ′, to wit, F = (F0, . . . ,Fi ∪Fi+1, . . . ,Fq ), and in this way

we obtain the formulas of Equation (1). Î
SinceE is counital, the complex above admits codegeneracy maps, which are much easier

to describe: they are obtained by inserting an empty block into a decomposition. Con-

cretely, for each j ∈ {0, . . . , q +1},

(σ jα)(F1, . . . ,Fq )(z) =α(F1, . . . ,F j ,∅,F j+1, . . . ,Fq ).

As a consequence of this, a cochain α :X−→E⊗q in C∗(X) is in the normalized subcomplex

C
∗

(X) if its components are such that α(F )(z) = 0 ∈ k whenever F contains an empty block.

Alternatively, we can construct a (non-unital) coalgebra E with E(∅) = 0 and E(I ) = E(I )

whenever I is nonempty, and describe the normalized complex C
∗

(X) as the complex of

maps X−→E
⊗∗

with differential induced by the alternating sum of the coface maps we just

described.

Remark 2.2. For each finite set I the space E
⊗q

(I ) has basis the compositions of I into q

blocks, while E⊗q (I ) has basis the decompositions of I into q blocks. In particular, E
⊗q

(I ) = 0

if q > #I , while E⊗q (I ) is always nonzero. This observation will be crucial in Section 3.

2.2 The cobar complex and cup products

Since the twisted coalgebra E is, in fact, a twisted commutative Hopf algebra, we can endow

the complex C∗(X) with the structure of a dga algebra and hence produce on the cohomo-

logy groups H∗(X,E) a structure of a commutative associative algebra, as follows.

First, let us give an alternative way of constructing the complex C∗(X). Let Ω∗(E) denote

the cobar construction on the coalgebra E. This is a dg twisted algebra which is freely gener-

ated by s−1E, the shift of the species E without the counit, and whose differential is induced

from the coproduct of E: it is the unique coderivation extending the map

∆ : s−1E−→ (s−1E)⊗2 ⊆Ω∗(E).

We can then form the space

HomSpk
(X,Ω∗(E))

which, as a graded vector space, coincides with the normalized complex for C∗(X,E): the

way we shifted E makes sure that maps X−→E
⊗n

live in degree n. Observe, moreover, that

that hom-set above inherits a differential δ1 by postcomposition with the differential

d :Ω∗(E) −→Ω∗+1(E),
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and this coincides in fact with the internal sum of the coface maps above, omitting the end-

points 0 and n +1. To obtain the full differential δ, we consider the canonical degree −1 in-

jection τ : E−→Ω∗(E) and the differential δ2 obtained by the following composition where

p is the degree of ϕ :X−→E⊗p :

δ2(ϕ) =µΩ∗(E)(ϕ⊗τ◦λ+ (−1)pτ⊗ϕ◦ρ).

A perhaps involved but straightforward computation shows that δ1 −δ2 coincides with δ,

so that we obtain a new description of the complex C∗(X,E) a complex twisted by τ (the

summand δ2 is the twist determined by τ):

C∗(X,E) = (
Homτ(X,Ω∗(E)),δ1 −δ2

)
.

Proposition 2.1. The dg coalgebra Ω∗(E) is in fact a dg bialgebra if we endow it with the

shuffle coproduct induced from the commutative product of E, which we will denote by

∆Ω∗(E).

Proof. This statement is completely dual to the classical statement (see for example Chapter

8 in [17]) that if A is a commutative algebra then the bar construction B A is a commutative

algebra with the shuffle product induced from the commutative product of A. We remind

the reader that it is crucial that A be commutative (and hence, in our case, that E be cocom-

mutative) for this product to be compatible with the differential of B A. Î
Definition 2.2. We define the external product

−×− : C∗(X,E)⊗C∗(X,E) −→C∗(X⊗Y,E)

so that for two cochains ϕ,ψ ∈C∗(X,E) we have ϕ×ψ=µΩ∗(E) ◦ (ϕ⊗ψ).

Note that we use the fact E is a twisted Hopf algebra, which implies that the category of E-

bicomodules admits an internal tensor product. Concretely, if X and Y are E-bicomodules,

we endow the tensor product X⊗Y with the left and right diagonal actions coming from the

product of E.

Remark 2.3. In case we have a comultiplication map ∆ : X−→X⊗X making X into a coal-

gebra in the category of E-bicomodules, we can use this external product to obtain a cup

product in C∗(X), which we will write

−^− : C∗(X,E)⊗C∗(X,E) −→C∗(X,E).

Remark 2.4. In general, the algebra H∗(X) will be non-commutative: for example, if X is

concentrated in cardinal 0, then the datum ofX really amounts to that of the coalgebraX[0],
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a coalgebra in k-modules, and H∗(X) is the algebra dual to it, which may well be non-

commutative.

If X is a E-bicomodule and ∆ : X → X⊗X a morphism of E-bicomodules, we write, for

each I and each z ∈X[I ],

∆[I ](z) = ∑
(S,T )`I

z(S) ⊗ z(T )

à la Sweedler, with each summand z(S) ⊗ z(T ) appearing here standing for an element —not

necessarily an elementary tensor— of the submodule X[S]⊗X[T ] of (X⊗X)[I ]. If α : X→
E⊗p and β : X → E⊗q are a p- and a q-cochain in the complex C∗(X), then their product

α^β ∈C p+q (X) has coefficients given by

α^β(F )(z) =α(F1,p )(z(F1,p )) ·β(Fp+1,p+q )(z(Fp+1,p+q ))

for all I , all decompositions F = (F1, . . . ,Fp+q ) of I and all z ∈ X[I ]. Here we are being suc-

cinct and writing Fi ,i+ j for both the decomposition (Fi , . . . ,Fi+ j ) obtained from F and for the

union of this decomposition. Our main source of examples of coalgebras in E-bicomodules

comes from the following simple observation:

Proposition 2.2. Let X′ be a nonempty set-valued species with left and right restrictions and

let X be the E-bicomodule obtained by linearization from X′. There is a morphism of E-

bicomodules ∆ :X→X⊗X such that

∆[I ](z) = ∑
(S,T )`I

z S ⊗ z �T

for each finite set I and each z ∈X′[I ]. Î
In what follows, we will usually consider every E-bicomodule whose underlying species

is a linearization of a twisted coalgebra in the way described in this proposition.

3 An alternative description of cohomology

The objective of this chapter is to obtain an alternative and more useful description of the

cohomology groups of an E-bicomodule X. We show that for every E-bicomodule X there

is a filtration on the complex C∗(X) giving rise to a spectral sequence of algebras which

converges to H∗(X). If X is weakly projective, that is, if for each non-negative integer j ,

X[ j ] is a projective kS j -module, this collapses at the E 1-page. Because we can completely

describe this page, this provides us with a complex that calculates H∗(X), and which can be

used for effective computations.
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To be explicit, by this we mean each component of this complex is finitely generated

whenever X has finitely many structures on each finite set, and in that case the differential

of an element depends on finite data obtained from it —this is in contrast with the situation

of C∗(X). Moreover, the spectral sequence is one of algebras whenever we endow C∗(X)

with a cup product arising from a diagonal map ∆ : X −→ X⊗X, so these remarks apply

to the computation of the cup product structure of H∗(X), and we exploit this for the cup

product we defined in Section 2.

Some more running conventions. Let X be a species. The support of X is the set of non-

negative integers j for which X[ j ] is nontrivial. We say X is finitely supported if is has finite

support, and that it is concentrated in cardinal j if the support of X is exactly { j }. The sup-

port of a nontrivial species X is contained in a smallest interval of non-negative integers,

whose length we call the length of X. The species X is of finite type if X[ j ] is a finitely gen-

erated k-module for each nonnegative integer j , and it is finite if it is both of finite type and

finitely supported.

3.1 The spectral sequence

LetX be a species in Spk and let j be a non-negative integer. We define species τ jX and τ jX,

which we call the upper truncation of X at j and the lower truncation of X after j as follows.

For every finite set I , we put

τ jX(I ) =
X(I ) if #I É j ,

0 else,
τ jX(I ) =

X(I ) if #I Ê j ,

0 else.

If σ : I −→ J is a bijection then (τ jX)(σ) = X(σ) whenever I has at most j elements, while

(τ jX)(σ) is the unique isomorphism 0 −→ 0 in the remaining cases. Similarly, (τ jX)(σ) =
X(σ) whenever I has at least j elements, while (τ jX)(σ) is the unique isomorphism 0 −→ 0

in the remaining cases. It is clear both of this constructions depend functorially on X, and

that there is a short exact sequence

0 −→ τ jX−→X−→ τ j+1X−→ 0. (2)

By convention, τ jX= 0 and τ jX=X if j is negative. We will write τ j
i for the composition τi ◦

τ j , which is the same as τ j ◦τi , andX[ j ] instead of τ j
j ; this species is concentrated in cardinal

j . This will be of use in Section 3.2. Observe that we can carry out these constructions in the

categories ofH-(bi)comodules for any twisted coalgebraH. Precisely, we have the following

proposition:
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Proposition 3.1. Let H be a twisted coalgebra, let X be a left H-comodule, and fix a non-

negative integer j .

T1. The truncated species τ jX is an H-subcomodule of X in such a way that the inclusion

τ jX−→X is a morphism of H-comodules, and

T2. the truncated species τ jX is uniquely anH-comodule in such a way that the morphisms

in the short exact sequence (2) in Spk are in fact of H-comodules.

It is clear the above can, first, be extended to H-bicomodules, and second, be dualized

to H-modules, and then extended to H-bimodules. This provides a spectral sequence for

monoids and modules, which we will not discuss.

Proof. Denote by λ the coaction of X. To see T1, we have to show that λ(τ jX) ⊆H⊗τ jX,

which is immediate, and T2 is deduced from this: we identify τ jX with the quotient X/τ jX,

which inherits an H-comodule structure making the maps in the short exact sequence (2)

maps of H-comodules. Î

In what follows, we will need to identify the comodule structure of X[ j ]. This is done in

the following lemma.

Lemma 3.1. Let H be a connected twisted coalgebra. An H-(bi)comodule concentrated in

one cardinal necessarily has the trivial H-coaction. Î

Proof. For trivial reasons, the comodule map(s) land only on the summand that is com-

pletely determined by the counitality axioms, meaning that the action is trivial: for any x ∈X
we have that λ(x) = x ⊗1 or in the right module case, that ρ(x) = 1⊗x. Î

LetX be anE-bicomodule. For each integer p, let F pC∗(X) be the collection of chains that

vanish on τp−1X. This is a subcomplex because τpX is a E-subbicomodule of X, so we have

a descending filtration of the complex C∗(X). When there is no danger of confusion, we will

write F pC∗ instead of F pC∗(X). This filtration in C∗(X) induces a filtration on H∗ = H∗(X)

with F p H∗(X) = im(H∗(F pC∗) −→ H∗), and we write E0(H) for the bigraded object with

E p,q
0 (H) = F p H p+q

F p+1H p+q .

As explained in detail in [17, Chapter 2, §2], this filtration gives rise to a cohomology spec-

tral sequence (Er ,dr )rÊ0. According to the construction carried out there, the E0-page has

E p,q
0 = F pC p+q

F p+1C p+q
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and differential d pq
0 : E pq

0 −→ E p,q+1
0 induced by that of C∗(X), and, in particular, we have

E pq
0 = 0 when p < 0 or p +q < 0. Moreover:

Proposition 3.2. Let p be an integer.

1. There is a natural isomorphism F pC∗(X) −→ C∗(τpX) that induces, in turn, an iso-

morphism (E p∗
0 ,d p∗

0 ) −→C p+∗(X(p)), so that

2. for every integer q, there are isomorphisms E pq
1 −→ H p+q (X(p)), and, viewing this as

an identification,

3. the differential d pq
1 : E pq

1 −→ E p+1,q
1 is the composition of the connecting homomorph-

ism H p+q (X(p)) −→ H p+q+1(τp+1X) of the long exact sequence corresponding to the

short exact sequence 0 −→X(p) −→ τpX−→ τp+1X−→ 0 and the map H∗(ι) induced by

the inclusion ι :X(p +1) −→ τp+1X.

Proof. The exact sequence of E-bicomodules

0 −→ τp−1X−→X
π−→ τpX−→ 0

is split in Spk , so applying the functor C∗(−) gives an exact sequence

0 −→C∗(τpX) −→C∗(X) −→C∗(τp−1X) −→ 0.

This gives the desired isomorphism of F pC∗(X) with C∗(τpX), since the injective map C∗(π)

has image the kernel of C∗(ι), which is, by definition, F pC∗(X). This proves the first claim of

the proposition.

Similarly, we have a short exact sequence of bicomodules

0 −→X(p) −→ τpX−→ τp+1X−→ 0,

also split in Spk , and which gives us the exactness of the second row of the following com-

mutative diagram:

0 F p+1C∗ F pC∗ E p∗
0 0

0 C∗(τp+1X) C∗(τpX) C∗(X(p)) 0

The desired natural isomorphism E p,∗
0 −→ C∗(X(p)) is the unique dashed arrow that ex-

tends the commutative diagram, and this proves the second claim of the proposition. To

prove the last one, we note the diagram above can be viewed as an isomorphism of exact

sequences, and so the connecting morphisms are also identified. Moreover, the differential
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at the E1-page is induced from the connecting morphism of long exact sequence associated

to the exact sequence

0 −→ F p+1C∗ −→ F pC∗ −→ F pC∗/F p+1C∗ −→ 0

and the projection F p+1C∗ −→ F p+1C∗/F p+2C∗ which correspond, under our isomorph-

isms, to the connecting morphism of the short exact sequence

0 −→X(p) −→ τpX−→ τp+1X−→ 0

and to the map C∗(ι) : C∗(τp+1X) −→C∗(X(p +1)) induced by the inclusion. Î
We will prove in the next section that the spectral sequence just constructed converges to

H∗(X). A first step towards this is the following result:

Proposition 3.3. The filtration is bounded above and complete.

Proof. Using the identification provided by the isomorphisms F pC∗ −→ C∗(τp ,X) of Pro-

position 3.2 and the split exact sequences 0 −→ τpX −→ X −→ τp+1X −→ 0 we are able,

in turn, to identify C∗(X)/F p+1C∗(X) with C∗(τpX). In these terms, what the proposition

claims is that the canonical map

C∗(X) −→ lim←−−C∗(τpX)

is an isomorphism, and this is clear: if a cochain vanishes on every τpX then it is zero, so

the map is injective, and if we have cochains αp : τpX−→E⊗∗ that glue correctly, we obtain

a globally defined cochain α :X−→E⊗∗, so the map is surjective. Î

Proposition 3.4. If X vanishes in cardinals above N , then the normalized complex C
∗

(X)

vanishes in degrees above N , and, a fortiori, the same is true for H∗(X).

Proof. Let p > N , consider a p-cochainα in the normalized complex C
∗

(X), and let us show

thatα vanishes identically. Indeed, if I is a finite set, the mapα(I ) :X(I ) −→ E
⊗p

(I ) is zero: if

I has more than p elements, its domain is zero because X vanishes on I , and if I has at most

p elements, then its codomain is zero, since there are no compositions of length p of I . Î
This has two important consequences, the first of which will be thoroughly exploited in

the next sections.

Corollary 3.1. Fix an integer j .

1. We have H q (τ jX) = 0 if q > j .

2. The E1-page of the spectral sequence lies in a cone in the fourth quadrant. Î
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Because the E1-page of the spectral sequence involves the cohomology of the species

X(p) for p Ê 0, we turn our attention to the cohomology of species concentrated in a car-

dinal.

3.2 The E1-page

This section is devoted to describing the E1-page of the spectral sequence, and showing it

concentrated in one row —so that the spectral sequence degenerates at the E2-page— when

X is weakly projective in Spk . Recall that by this we mean that, for each non-negative integer

j , X[ j ] is a projective kS j -module.

For j Ê 1 and for each integer p Ê−1, let Σp ( j ) be the collection of compositions of length

p +2 of [ j ]. We will identify the elements of Σ j−2( j ) with permutations of [ j ] in the obvious

way. There are face maps ∂i :Σp ( j ) −→Σp−1( j ) for i ∈ {0, . . . , p} given by

∂i (F0, . . . ,Fi ,Fi+1, . . . ,Fp+1) = (F0, . . . ,Fi ∪Fi+1, . . . ,Fp+1)

that make the sequence of sets Σ∗( j ) = (Σp ( j ))pÊ−1 into an augmented semisimplicial set.

We write kΣ∗( j ) for the augmented semisimplicial k-module obtained by linearizing Σ∗( j ),

and kΣ∗( j )′ for the dual semicosimplicial augmented k-module.

There is an action of S j on each Σp ( j ) by permutation, so that if τ ∈ S j and if (F0, . . . ,Ft ) is

a composition of [ j ], then

τ(F0, . . . ,Ft ) = (τ(F0), . . . ,τ(Ft )).

It is straightforward to check the coface maps are equivariant with respect to this action,

so Σ∗( j ) is, in fact, an augmented semisimplicial S j -set. Consequently, kΣ∗( j ) and kΣ∗( j )′

have corresponding S j -actions compatible with their semi(co)simplicial structures.

This complexΣ∗( j ) is known in the literature as the Coxeter complex for the braid arrange-

ment, and its cohomology can be completely described.

Proposition 3.5. The complex associated to kΣ∗( j )′ computes the reduced cohomology of a

( j −2)-sphere with coefficients in k, that is,

H p (kΣ( j )′) =
0 if p 6= j −2

k�ξ j � if p = j −2

The non-trivial term is the k-module freely generated by the class of the map ξ j : kΣ∗( j ) −→ k

such that ξ j (σ) = δσ=1 and the action of kS j on H j−2(kΣ∗( j )′) is the sign representation.
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Remark 3.1. In what follows, sgn j will denote the sign representation of kS j just described.

Note that, when j = 1, S j−2 =∅, and the reduced cohomology of such space is concentrated

in degree −1, where it has value k.

Proof. We sketch a proof, and refer the reader to [1] and [5] for details. The braid arrange-

ment Bj of dimension j in R j is the collection of hyperplanes

{Hs,t : 1 É s < t É j }, with Hs,t

defined by the equation xt = xs . This arrangement has rank j −1 and its restriction to the

hyperplane H with equation x1 + ·· · + x j = 0 is essential, and defines a triangulation K of

the unit sphere S j−2 ⊆ H . Concretely, the r -dimensional simplices of K are in bijection

with compositions of [ j ] into r + 2 blocks, so that a composition F = (F0, . . . ,Fr+1) corres-

ponds to the r -simplex obtained by intersecting S j−2 with the subset defined by the equal-

ities xs = xt whenever s, t are in the same block of F and the inequalities xs Ê xt whenever

t > s relative to the order of the blocks of F . It follows that kΣ∗( j )′ computes the reduced

simplicial cohomology of S j−2, and the generator of the top cohomology group is the func-

tional ξ j : kΣ∗( j ) −→ k described in the statement of the proposition. More generally, if

ξσ : kΣ j−2( j ) −→ k is the functional that assigns σ to 1 and every other simplex to zero, then

�ξσ� = (−1)σ�ξ j �. Because the action of S j on kΣ j−2( j )′ is such that σξ j = ξσ, this proves

H j−2(kΣ∗( j )′) is the sign representation of kS j . Î

We can describe the complex that calculates the cohomology of a species concentrated in

cardinal j in terms of the Coxeter complex Σ∗( j ):

Proposition 3.6. Fix a non-negative integer j Ê 1, and let X be an E-bicomodule concen-

trated in cardinal j . There is an isomorphism of semi-cosimplicial k-modules

Ψ∗ : C
∗

(X) −→ HomS j (X[ j ],kΣ∗( j )′[2]).

In particular, if X[ j ] is a projective kS j -module, then H p (X) = 0 when p 6= j and there is an

isomorphism

ξ : H j (X) −→ HomS j (X[ j ],sgn j ).

This isomorphism is such that if α :X−→ E⊗ j is a normalized j -cocycle, then

ξ(�α�)(z) = ∑
σ∈S j

(−1)σα(σ)(z)�ξ j �, (3)

for each z ∈X[ j ].
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If k is a field of characteristic coprime to j ! then every kS j -module is projective by virtue

of Maschke’s theorem, so the above applies. If k is a field of characteristic zero, then every

species X is weakly projective, and conversely.

Proof. Since X is concentrated in cardinal j , a normalized p-cochain α : X−→ E
⊗p

is com-

pletely determined by an equivariant k-linear map α̃ : X[ j ] −→ E
⊗p

( j ). Moreover, E
⊗p

( j ) is

a free k-module with basis the tensors F1⊗·· ·⊗Fp with (F1, . . . ,Fp ) a composition of [ j ], that

is, E
⊗p

( j ) can be equivariantly identified with kΣp−2( j ). Because E
⊗p

( j ) is a free k-module,

every k-linear map β : X[ j ] −→ E
⊗p

( j ) corresponds uniquely to a map βt : X[ j ] −→ E
⊗p

( j )′

so that

βt (z)(F1, . . . ,Fp ) =β(F1, . . . ,Fp )(z).

In this way we obtain a map

Ψ∗ : C
∗

(X) −→ HomS j (X[ j ],kΣ∗( j )′[2]),

which is clearly an isomorphism of graded k-modules, and this map is compatible with

the semicosimplicial structure and S j -equivariant. The non-trivial observation needed to

check this is that the first and last coface maps of C
∗

(X) are zero: this follows from Lemma 3.1,

which states X has trivial coactions, so these maps vanish upon normalization.

Assume now that X[ j ] is kS j -projective, so that the functor HomS j (X[ j ],−) is exact. The

canonical map

θ : H∗(HomS j (X[ j ],kΣ∗( j )′[2])) −→ HomS j (X[ j ], H∗(kΣ∗( j )′[2]))

is then an isomorphism, and we can conclude by Lemma 3.5 that H p (X) is zero except for

p = j , and that we have a canonical isomorphism induced by Ψ and θ

ξ : H j (X) −→ HomS j (X[ j ],sgn j ).

It remains to prove the last formula. To this end, consider a j -cocycle α : X[ j ] −→ E⊗ j ( j ).

This corresponds under Ψ to the map X(p) −→ kΣ j−2( j )′ that assigns to z the functional∑
σα(σ)(z)ξσ. Passing to cohomology and using the equality �ξσ� = (−1)σ�ξ j � valid in view

of Lemma 3.5 for all σ ∈ S j , we obtain (3). Î
Corollary 3.2. If X is weakly projective, then E1 is concentrated in the p-axis, where

E p,0
1 ' HomSp (X(p),sgnp ),

so that, in particular, the spectral sequence degenerates at E2.
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This motivates us to consider, independently of convergence matters, the complex S∗(X)

that has Sp (X) = HomSp (X(p),sgnp ) and differentials induced from that of the E1-page. Al-

though this may not compute H∗(X), it provides us with another invariant for X. We call

S∗(X) the small complex of X. We will give an explicit formula for its differential in The-

orem 3.2.

Proof. The above follows for p Ê 1 by the last proposition, and the case p = 0 follows by

definition of the E0-page. Î
The description of the inverse arrow to ξ will be useful for computations.

Lemma 3.2. With the hypotheses of Proposition 3.6, the inverse arrow to ξ is the map

Θ : HomS j (X[ j ],sgn j ) −→ H j (X)

that assigns to an S j -equivariant map f : X[ j ] −→ sgn j the class of any lift F of f according

to the diagram

X[ j ]

kΣ j−2( j )′ sgn j 0

f
F

π

In particular, if k is a field of characteristic coprime to j !, we can choose F to be the composi-

tion of f with the S j equivariant map Λ : sgn j −→ kΣ j−2( j )′ such that

Λ(�ξ j �) = 1

j !

∑
σ∈S j

(−1)σξσ.

We can now prove, by an easy inductive argument, that the support of the cohomology

groups of a weakly projective species of finite length X is no bigger than the support of X.

This is a second step toward proving the convergence of our spectral sequence, which we

will completely address in the next section. Concretely:

Proposition 3.7. Let X be an E-bicomodule of finite length, which is weakly projective in Spk ,

and let q be a non-negative integer.

1. If X is zero in cardinalities below q, then H i (X) = 0 for i < q.

2. In particular, it follows that H p (τqX) = 0 for p < q.

Proof. Assume X is a species that vanishes in cardinalities below q , and proceed by induc-

tion on the length ` of X. The base case in which ` = 1 is part of the content in Proposi-

tion 3.6. Indeed, if X has lenght 1 it is concentrated in some degree p larger than q , and that

proposition says H j (X) = 0 if j 6= p.
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For the inductive step, suppose `> 1, and let j be the largest element of the support of X.

The long exact sequence corresponding to

0 −→ τ j−1X−→X−→ τ jX−→ 0.

includes the exact segment

H q (τ jX)︸ ︷︷ ︸
0

−→ H q (X) −→ H q (τ j−1X)︸ ︷︷ ︸
0

. (4)

The choice of the integer j implies τ jX is of length one, and τ j−1X is of length smaller than

that of X, so by induction the cohomology groups appearing at the ends of (4) vanish. This

proves the first claim, and the second claim is an immediate consequence of it. Î

Proposition 3.8. Let X be an E-bicomodule. For every non-negative integer j , the projection

X−→ τ j+1X induces

1. a surjection H j+1(τ j+1X) −→ H j+1(X), and

2. isomorphisms H q (τ j+1X) −→ H q (X) for q > j +1.

In terms of the filtration on H∗(X), this means that F p H p+q = H p+q for q Ê 0.

Proof. Fix a non-negative integer j and consider the exact sequence

0 −→ τ jX−→X−→ τ j+1X−→ 0.

The associated long exact sequence gives an exact sequence

H j+1(τ j+1X) −→ H j+1(X) −→ H j+1(τ jX)︸ ︷︷ ︸
0

,

and exact sequences

H q−1(τ jX)︸ ︷︷ ︸
0

δ−→ H q (τ j+1X) −→ H q (X) −→ H q (τ jX)︸ ︷︷ ︸
0

,

for q > j + 1, with the zeroes explained by Proposition 3.4. This proves both claims and

finishes our proof. Î

3.3 Convergence

The filtration defined on C∗(X) is bounded above, and we have shown it is complete, so it

suffices to check the spectral sequence is regular to obtain convergence —see the Complete



PEDRO TAMAROFF 29

Convergence Theorem in [22, Theorem 5.5.10]. We have proven the spectral sequences de-

generates at the E 2-page whenX is weakly projective, and this implies the spectral sequence

is regular, so the cited theorem can be applied. We give a mildly more accessible argument

to justify convergence, which the reader can compare with the exposition in [10, pp. 137-

140] and [17, pp. 99-102].

Proposition 3.9. If X is an E-bicomodule that is weakly projective in Spk , then the group

H p (τq+1X) vanishes for every integer p < q.

In other words, the filtration on C∗(X) is regular, that is, for each integer n, we have that

H n(F pC∗) = 0 for large p depending on n; in this case p > n works. This guarantees the

spectral sequence is regular, see [6, Chapter XV, §4].

Proof. Let X be as in the statement. The sequence of inclusions

· · · −→ τ jX−→ τ j+1X−→ ·· · (5)

gives a tower of cochain complexes C = {C (τ jX)} jÊ1 of k-modules. We noted, in the proof

of Proposition 3.3, that the canonical map C∗(X) −→ lim←−− j
C∗(τ jX) is an isomorphism, and

furnishes a map

η : H∗(X) −→ lim←−− j
H∗(τ jX).

Let us show that this is an isomorphism. Fix r Ê 0. The tower of cochain complexes C

satisfies the Mittag-Leffler condition since every arrow in it is onto: every inclusion in (5) is

split in Spk , so there is a short exact sequence

0 −→ lim←−−
1
j
H r−1(τ jX) −→ H r (X)

η−→ lim←−− j
H r (τ jX) −→ 0.

We need only prove lim←−−
1
j
H r−1(τ jX) = 0, and, to do this, that the tower of abelian groups

{H r−1(τiX)}iÊ0 satisfies the Mittag-Leffler condition: let ι(k, j ) : H r (τkX) −→ H r (τ jX)) be

the arrow induced by the inclusion for k Ê j , and let us show that for each j there is some i

such that image(ι(k, j )) = image(ι(i , j )) for every k Ê i . Fix j , and let us show i = r +2 works

by considering three cases.

• If j < r , then for every k Ê j the map ι(k, j ) is zero because its codomain is zero, so the

claim is true.

• If j Ê r + 1, then for every k Ê j , the map ι(k, j ) is an isomorphism. In this case, we

have the exact sequence

0 −→ τ jX
i−→ τkX

π−→ τk
j+1X−→ 0



30 THE COHOMOLOGY OF TWISTED COALGEBRAS

whose corresponding long exact sequence includes the segment

H r (τk
j+1X)︸ ︷︷ ︸
0

−→ H r (τkX)
ι(k, j )−−−−→ H r (τ jX) −→ H r+1(τk

j+1X)︸ ︷︷ ︸
0

,

with the zeroes explained by Proposition 3.7 and the fact τk
j+1X is zero at cardinals r

and r +1.

• Finally, suppose j = r , and fix k Ê j . If k Ê r +2, the map ι(k, j +1) is an isomorphism,

and ι(k, j ) factors as ι( j +1, j )◦ ι(k, j +1), so that the image of ι(k, j ) equals the image

of ι( j +1, j ).

Fix non-negative integers p and q with p < q as in the statement. For every integer j ,

the double truncation τ j
q+1X is of finite length and begins in degrees greater than q , so that

H p (τ j
q+1X) = 0 by Proposition 3.7. Because we have just shown that

η : H p (τq+1X) −→ lim←−−H p (τ j
q+1X)

is an isomorphism, we can conclude that H p (τq+1X) = 0, as we wanted. Î

Proposition 3.10. Suppose X is a weakly projective E-bicomodule. There is an isomorphism

of bigraded objects E∞ −→ E0(H), so that the spectral sequence converges to H, and, as it

collapses at the E1-page, this gives an isomorphism E p,0
2 −→ H p .

Proof. We have already shown that E2 = E∞. Moreover, as we observed after Proposition 3.8,

we have F p H p+q = H p+q if q Ê 0 while, from Proposition 3.9, H p+q (τpX) = 0 when q < 0, so

that F p H p+q = 0 in this case. This means the only non-trivial filtration quotients are exactly

E p,0
0 (H) = H p , and that there is an isomorphism

E p,0
∞ = E p,0

2 −→ E p,0
0 (H)

which can be explicitly described as follows. Consider the diagram in Figure 1, built from

portions of long exact sequences coming from the split exact sequences

0 −→X(i ) −→ τiX−→ τi+1X−→ 0

for i ∈ {q −1, q, q +1}, and in which the horizontal arrows are the differential d1 of the E1-

page of our spectral sequence. The maps labelled ι∗ in the diagram are injective because

the diagonals are exact and there are zeros where indicated, and π∗ is surjective by the same
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· · · · · ·H q (X(q))H q−1(X(q −1)) H q+1(X(q +1))

H q (τqX)

H q (τq−1X)

H q (X(q −1))= 0

0 =H q−1(τqX)

H q+1(τq+1X)

0 =H q (τq+1X)

d1 d1

δ ι∗

δ ι∗

π∗

Figure 1: The diagram used in the proof of Proposition 3.10.
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reason. We now calculate:

E p,0
∞ = E p,0

2 = kerd1

imd1
= kerδ

im ι∗δ
= ι∗(H q (τqX))

ι∗ imδ

' H q (τqX)

imδ
= H q (τqX)

kerπ∗

' H q (τq−1X) = E p,0
0 (H)

= H q (X).

This is what we wanted. Î
We can summarize the above in the following theorem.

Theorem 3.1. If X is an E-bicomodule, weakly projective in Spk , the small complex S∗(X)

computes H∗(X). Î
A useful corollary of this is what follows.

Corollary 3.3. IfX is anE-bicomodule over a field of characteristic zero, then for every integer

q, the dimension of H q (X) is bounded above by the multiplicity of the irreducible representa-

tion sgnq in X(q). In particular, the support of H∗(X) is contained in that of X. Î
Observation 3.1. Fix a nonnegative integer q and a linearized species X. It is useful to note

that an element f ∈ HomSq (X(q),sgnq ) vanishes on every basis structure z ∈ X(q) that is

fixed by an odd permutation. This improves the last bound on dimk H q (X) and significantly

simplifies computations.

3.4 The small complex

The purpose of this section is to give an explicit formula for the differential of the E1-page

of the spectral sequence, equivalently, for the differential of the combinatorial complex,

corresponding to a weakly projective E-bicomodule X. Once this is addressed, we show

how to use it to calculate H∗(X) for the species considered in Section 2. Throughout the

section, we fix a weakly projective E-bicomodule X.

Lemma 3.3. The connecting morphism δ : H j (X[ j ]) −→ H j+1(τ j+1X) corresponding to the

short exact sequence

0 X[ j ] τ jX τ j+1X 0

is such that, for a cocycle α :X[ j ] −→E
⊗ j

, we have δ�α� = �dα̃� where

α̃ : τ jX−→E
⊗ j



PEDRO TAMAROFF 33

is the cochain that extends α by zero away from cardinal j . Therefore, the differential of the

E1-page is such that

d1�α� = �dα̃◦ ι�,

that is, d1�α� is the class of the restriction of dα̃ to X( j +1).

Proof. One follows the construction of the connecting morphism for the diagram of nor-

malized complexes

...
...

...

HomSpk(τ j+1X,E
⊗ j

) HomSpk(τ jX,E
⊗ j

) HomSpk(X[ j ],E
⊗ j

)

HomSpk(τ j+1X,E
⊗( j+1)

) HomSpk(τ jX,E
⊗( j+1)

) HomSpk(X[ j ],E
⊗( j+1)

)

...
...

...

ι∗

d

π∗

If α : X[ j ] −→ E⊗ j is a normalized cocycle, and if α̃ : τ jX −→ E
⊗ j

extends α by zero then

certainly ι∗α̃ = α, and α̃ is normalized, and its restriction to X[ j ] is zero. So in fact dα̃ is a

cochain

dα̃ : τ j+1X−→E⊗( j+1)

and it is then its own lift for the map π∗. The lemma follows. Î

Corollary 3.4. Suppose that c ∈ H j (X[ j ]) is represented by the class of a normalized cocycle

α : X[ j ] −→ E⊗ j . Then d1(c) ∈ H j+1(X( j +1)) is represented by the class normalized cocycle

γ : X( j + 1) −→ E⊗( j+1) such that for a permutation σ of a finite set I of j + 1 elements and

z ∈X(I ),

γ(σ)(z) =α(σ(2), . . . ,σ( j +1))(z � (I àσ(1)))

+ (−1) j+1α(σ(1), . . . ,σ( j ))(z  (I àσ( j +1))).
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Proof. We compute:

dα̃(σ(1), . . . ,σ( j +1))(z) = α̃(σ(2), . . . ,σ( j +1))(z � (I àσ(1)))

+
j∑

i=1
(−1)i α̃(σ(1), . . . ,σ(i )∪σ(i +1), . . . ,σ( j +1))(z)

+ (−1) j+1α̃(σ(1), . . . ,σ( j ))(z  (I àσ( j +1))).

Now α̃ equals α on sets of cardinality j so the first and last summands are those of the

statement of the corollary, while the sum vanishes, since α̃ vanishes on sets of cardinality

different from j . Î

We have a commutative diagram

H p (X(p)) Sp (X)

H p+1(X(p +1)) Sp+1(X)

d1

Ψ

∂

Ψ

and we have already identified d1. We now carefully follow the horizontal isomorphisms

to obtain the formula for the differential ∂ of the combinatorial complex. The following

notation will be useful.

Definition 3.1. If j ∈ [p +1], let λ j be the unique order preserving bijection

[p +1]à j −→ [p],

and, given a permutation σ ∈ Sp+1, we write σàσ( j ) for the permutation λσ( j )σλ
−1
j in

Sp . In simple terms, this permutation is obtained by applying λσ j to numbers of the list

σ1 · · · ˆσ( j ) · · ·σ(p +1).

Lemma 3.4. With the notation above,

1. the sign of σàσ(1) is (−1)σ−σ(1)−1, and

2. the sign of σàσ(p +1) is (−1)σ+p+1−σ(p+1).

Proof. We may obtain the sign of a permutation by counting inversions, that is, if m is the

number of inversions in σ, then the sign of σ is (−1)m . By deleting the first number σ(1) in

σ, we loseσ(1)−1 inversions coming from those numbers smaller thanσ(1), and by deleting

the last number in σ, we lose p +1−σ(p +1) invesions, coming from those numbers larger

than σ(p +1). Î
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Definition 3.2. Fix a finite set I and a structure z ∈X(I ). The left deck of z is the set ldk(z) =
{z  (I à i ) : i ∈ I }, while the right deck of z is the set rdk(z) = {z � (I à i ) : i ∈ I }. If z ∈X(p) and

j ∈ [p], we will write z ′
j ∈X(p −1) for λ j (z  ([p]à j )) and z ′′

j ∈X(p −1) for λ j (z � ([p]à j )).

We now assume k is a field of characteristic zero. With this at hand, we have the following

computational result:

Theorem 3.2. The differential of the small complex S∗(X) is such that if

f :X(p) −→ sgnp

is Sp -equivariant, then d f :X(p+1) −→ sgnp+1 is the Sp+1-equivariant map so that for every

z ∈X(p),

d f (z) =
p+1∑
j=1

(−1) j−1
(

f (z ′
j )− f (z ′′

j )
)

.

It follows that if X is a linearization kX0, the value of d f (z) for f ∈ Sp (X) and an element

z ∈X0(p +1) depends only on the left and right decks of z, and that this data is degree-wise

finite if X is of finite type.

Proof. Fix f ∈ Sp (X). Following the correspondence described in Lemma 3.2, the normal-

ized cochain α :X(p) −→E⊗p representing f is such that α(σ)(z) = (−1)σ

p ! f (z) for each σ ∈ Sp

and each z ∈X(p). By Lemma 3.3 and its corollary, the differential ofα is represented by the

cochain γ :X(p +1) −→E⊗(p+1) such that for z ∈X(p +1) and σ ∈ Sp+1,

γ(σ)(z) =α(σ−σ(1))(z ′
σ,1)+ (−1)p+1α(σ−σ(p +1))(z ′′

σ,p+1).

For brevity, we are writing z ′
σ,i for z � ([p +1]àσ(i )) and z ′′

σ,i for z  ([p +1]àσ(i )). We are

also writing F −Ft to denote the composition obtained from F by deleting block Ft . Going

back to Sp+1(X) via Proposition 3.6, we obtain that

d f (z) = 1

p !

∑
σ∈Sp+1

(−1)σ
(
α(σ−σ(1))(z ′

σ,1)+ (−1)p+1α(σ−σ(p +1))(z ′′
σ,p+1)

)
and we now split the sum according to the value of σ(1) and σ(p +1) as follows. If σ(1) = j ,

then z ′
σ,1 ∈X([p +1]à j ), so we may transport this to [p] by means of λ j : using the notation

previous to the statement of the theorem, we have

α(σ−σ(1))(z ′
σ,1) =α(λ j (σ−σ(1)))(z ′

j ).

Now the sign of the permutation corresponding to the composition λ j (σ−σ(1)), which cor-
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responds to the permutation σàσ(1), is (−1)σ−( j−1) by Lemma 3.4, so that

α(σ−σ(1))(z ′
σ,1) = (−1)σ−( j−1) f (z ′

j ).

Because there are p ! permutations σ such that σ(1) = j for each j ∈ [p +1], we deduce that

1

p !

∑
σ∈Sp+1

(−1)σα(σ−σ(1))(z ′
σ,1) = p !

p !

p+1∑
j=1

(−1)σ+σ−( j−1) f (z ′
j )

=
p+1∑
j=1

(−1) j−1 f (z ′
j )

and this gives the first half of the formula. The second half is completely analogous: the sign

(−1)σ+p+1 partially cancels with (−1)σ+p+1− j where j =σ(p +1) and we obtain the chain of

equalities:

1

p !

∑
σ∈Sp+1

(−1)σ(−1)p+1α(σ−σ(p +1))(z ′′
σ,p+1) = p !

p !

p+1∑
j=1

(−1) j f (z ′′
j )

=−
p+1∑
j=1

(−1) j−1 f (z ′′
j ).

This completes the proof of the theorem. Î

As a consequence of this last theorem, we obtain the following immediate corollaries,

which address the structure of the differential of the combinatorial complex for bicomod-

ules that are symmetric or trivial to one side. There is an analogous statement for for bico-

modules with trivial right structure, and we denote the corresponding differential by d ′′.

Corollary 3.5. For every symmetric bicomodule X and every nonnegative integer q there is an

isomorphism H q (X) ' HomSq (X(q),sgnq ). On the other hand, if X has a trivial left structure,

then the differential in S∗(X) is such that for every functional f ∈ Sp (X), we have d ′ f (z) =∑p+1
j=1 (−1) j−1 f (z ′

j ). Î

3.5 Some computations

To illustrate the use of the combinatorial complex we compute the cohomology groups of

some of the twisted coalgebras introduced in Section 4.1 and, in doing so try to convince

the reader of the usefulness of the results of this section.

To begin with, we include a new computation that is greatly simplified with the use of

the small complex. We remark that, as far as the author knows, the only computation of
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such cohomology groups that was known previously before the methods in this paper were

introduced, are H∗(E) and the first two cohomology groups of H∗(L).

The species of singletons and suspension. Define the species s of singletons so that for

every finite set I , s(I ) is trivial whenever I is not a singleton, and is k-free with basis I if I is a

singleton. By Lemma 3.1, the species s admits unique right and left E-comodule structures,

and thus a unique E-bicomodule structure. By induction, it is easy to check that, for each

integer q Ê 1, the species s⊗q , which we write more simply by sq , is such that sq (I ) is k-free

of dimension q ! if I has q elements with basis the linear orders on I , and the action of the

symmetric group on I is the regular representation, while sq (I ) is trivial in any other case. By

convention, set s0 = 1, the unit species. It follows that the sequence of species S = (sn)nÊ0

consists of weakly projective species, and we can completely describe their cohomology

groups. They are the analogues of spheres for species, its first property consisting of having

cohomology concentrated in the right dimension:

Proposition 3.11. For each integer n Ê 0, the species sn has

H q (sn) =
k if q = n ,

0 else.

Proof. Fix n Ê 0. By the remarks preceding the proposition, it follows that Sq (sn) always

vanishes except when q = n, where it equals HomSn (kSn , sgnn), and this is one dimensional.

Because each sn is weakly projective, S∗(sn) calculates H∗(sn), and the claim follows. Î

The above motivates us to check whether s ⊗− acts as a suspension for H∗(−). Assume

that X is weakly projective, so we may use S∗(X) to compute H∗(X). We claim that S∗(sX)

identifies with S∗(X)[−1]. Indeed, for this it suffices to note, first, that (sX)(n) is isomorphic,

as an kSn-module, to the induced representation k⊗X(n−1) from the inclusion S1×Sn−1 ,→
Sn , and second, that the restriction of the sign representation of Sn under this inclusion is

the sign representation of Sn−1, so that:

HomSn ((sX)(n),sgnn) = HomSn (IndSn
S1×Sn−1

(k ⊗X(n −1)),sgnn))

' HomS1×Sn−1(k ⊗X(n −1),ResSn
S1×Sn−1

sgnn)

' HomSn−1(X(n −1),sgnn−1).

A bit more of a calculation shows the differentials are the correct ones. By induction, of

course, we obtain that s jX has the cohomology of X, only moved j places up.

Proposition 3.12. Assume X is weakly projective. For each j , the suspension s jX is also
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weakly projective, and there is a natural suspension isomorphism

H∗(s jX) −→ s j H∗(X)

in cohomology groups. Î

The exponential species. Every structure on a set of cardinal larger than 1 over the ex-

ponential species E is fixed by an odd permutation: if I is a finite set with more than one

element, there is a transposition I −→ I , and it fixes ∗I . It follows that Sq (E) is zero for q > 1,

and it is immediate that S0(E) and S1(E) are one dimensional, while we already know d = 0.

Thus H q (E,E) is zero for q > 1 and is isomorphic to k for q ∈ {0,1}. The cup product is then

completely determined. This is in line with the computations done in the thesis [8] of J.

Coppola:

Proposition 3.13 (J. Coppola). The cohomology algebra of E is isomorphic to an exterior

algebra k[s]/(s2) in one generator. Î

The species of linear orders. Recall the species of linear orders L0 from Section 3; we en-

dowed its linearization L with the E-bicomodule structure obtained by restricting a linear

order to a subset. The kS j -module L( j ) is free of rank one for every j Ê 0, because S j acts

freely and transitively on the set L( j ) . It follows that the k-module HomS j (L( j ),sgn j ) is free

of rank one and, by virtue of Theorem 3.2, the computation ends here: the differential on

this combinatorial complex is identically zero. We thus deduce that:

Proposition 3.14. For every integer j Ê 0 the k-module H j (L) is free of rank one. Î

We will address the multiplicative structure of H∗(L) below.

The species of partitions. The species of partitions P assigns to each finite set I the col-

lection P(I ) of partitions X of I , that is, families {X1, . . . , X t } of disjoint non-empty subsets

of I whose union is I . There is a left E-comodule structure on P defined as follows: if X is

a partition of I and S ⊂ I , XS is the partition of S obtained from the non-empty blocks of

{x ∩S : x ∈X}. We already noted there is an inclusion E−→P.

Proposition 3.15. The cohomology group H 0(P) is free of rank one, and H 1(P) is free of rank

one generated by the cardinality cocycle. In fact, the inclusion E−→P induces an isomorph-

ism of commutative algebras S∗(P) −→ S∗(E).

Proof. A partition of a set with at least two elements is fixed by a transposition, and this im-

plies, in view of Observation 3.1, that S j (P) = 0 for j Ê 2. On the other hand, S0(P) and S1(P)

are both k-free of rank one, and we already know from Proposition 3.2 that the differential

of S∗(P) is zero. This proves both claims. Î



PEDRO TAMAROFF 39

The species of compositions. The species of compositions C is the non-abelian analogue

of the species of partitions P. Let us recall its construction: the species of compositions C

assigns to each finite set I the set C(I ) of compositions of I , that is, ordered tuples (F1, . . . ,Ft )

of disjoint non-empty subsets of I whose union is I . This has a standard left E-comodule

structure such that if F = (F1, . . . ,Ft ) is a composition of I and S ⊆ I , F S is the composition

of S obtained from the tuple (F1 ∩S, . . . ,Ft ∩S) by deleting empty blocks. We view C as an

E-bicomodule with its cosymmetric structure.

Proposition 3.16. The morphism L−→C induces an isomorphism H∗(C) −→ H∗(L) and, in

fact, an isomorphism of commutative algebras S∗(C) −→ S∗(L).

Proof. It suffices that we prove the second claim, and, since S∗(−) is a functor, that for a fixed

integer q , the map Sq (C) −→ Sq (L) is an isomorphism of modules. This follows from Obser-

vation 3.1: a decomposition F of a set I is fixed by a transposition as soon as it has a block

with at least two elements, and therefore an element of Sq (C) vanishes on every composition

of [q], except possibly on those into singletons. Thus the surjective map S∗(C) −→ S∗(L) is

injective and it is thus an isomorphism of commutative algebras. Î

The species of graphs. We have already defined the species Gr of graphs along with its E-

bicomodule structure obtained by restriction. We have the following result concerning the

cohomology groups of Gr:

Theorem 3.3. If k is of characteristic zero then, for each non-negative integer p Ê 0, dimk H p (Gr)

equals the number of isomorphism classes of graphs on p vertices with no odd automorph-

isms, namely,

1, 1, 0, 0, 1, 6, 28, 252, 4726, 150324, . . .

This sequence is [20, A281003].

Proof. Since the structure on Gr is cosymmetric, the differential of S∗(Gr) vanishes, and Ob-

servation 3.1 tells us Sq (Gr) has dimension as in the statement of the proposition. The tab-

ulation of the isomorphism classes of graphs in low cardinalities can be done with the aid

of a computer —we refer to Brendan McKay’s calculation [18] for the final result— and then

filter out those graphs with odd automorphisms. Î

We can exhibit cocycles whose cohomology classes generate H 1(Gr) and H 4(Gr): in de-

gree one, we have the cardinality cocyle κ, and in degree four, the normalized cochain

p4 : Gr −→ E⊗4 such that for a decomposition F `4 I , and a graph g with vertices on I ,

p4(F1,F2,F3,F4)(g ) is the number of inclusions ζ : p4 −→ g , where p4 is the graph

http://oeis.org/A281003
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1 2 3 4

and ζ(i ) ∈ Fi for i ∈ [4]. One can check this cochain is in fact a cocycle, and it is normalized

by construction.

3.6 Multiplicative matters

We now describe how to exploit the small complex to deduce a Künneth theorem for the

Cauchy product. Later, we will address the multiplcative structure of the spectral sequence.

Proposition 3.17. For each such p, q ∈N there is an isomorphism

φp : HomSp×Sq (X[p]⊗Y[q],sgnp ⊗sgnq ) −→ HomSp+q ((X⊗Yp [p +q],sgnp+q )

where (X⊗Y)p [p +q] is the space of summands X[S]⊗Y[T ] with S of cardinality p.

Proof. This is readily described as follows. For each decomposition (S,T ) of n, let u = uS,T

be the unique bijection that assigns S to [p] and T to [p +1, p + q] in a monotone fashion,

and given an element f ∈ Homp,q (X[p]⊗Y[q],sgnp ⊗sgnq ), set

φp ( f )(z ⊗w) = (−1)sch(S,T ) f (z ′⊗w ′)

where uz = z ′,uw = w ′ and z⊗w ∈X(S)⊗Y(T ). We claim this is Sp+q -equivariant. Note that

the sign of u is sch(S,T ). Indeed, if τ is a permutation of n and (S,T ) is a decomposition of

n, we can write τ = ξρ where ρ = τ1 ×τ2 is a shuffle of (S,T ) and ξ is monotone over S and

over T . It is clear that if (S′,T ′) is the image of (S,T ) under τ and if u′ = u′
S′,T ′ then u = u′ξ.

Moreover, note that u(τ1z ⊗τ2w) is transported to u(z ⊗w) by uρ−1u−1, which belongs to

Sp ×Sq , and we now compute

(−1)τφp ( f )(τ(z ⊗w)) = (−1)τ+u′
f (u′τ(z ⊗w)) (6)

= (−1)τ+u′
f (u(τ1z ⊗τ2w)) (7)

= (−1)τ+u′+ρ f (u(z ⊗w)) (8)

= (−1)τ+u′+ρ+uφp ( f )(z ⊗w) (9)

=φp ( f )(z ⊗w) (10)

where the signs cancel by virtue of the identities ξρ = τ and u′ξ= u. Î
For each p, q ∈N there are canonical maps

HomSp (X[p],sgnp )⊗HomSq (Y[q],sgnq ) −→ HomSp,q (X[p]⊗Y[q],sgnp ⊗sgnq )
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that are all isomorphisms if k is a field and X or Y is finite in each arity, and they collect

along with the maps φ to define a map

−×− : S∗(X)⊗S∗(Y) −→ S∗(X⊗Y).

Explicitly, given maps fp : X(p) −→ sgnp and gq : Y(q) −→ sgnq , we have for each decom-

position (S,T ) and z ⊗w ∈X(S)⊗Y(T )

( fp ∨ gq )(z ⊗w) = (−1)sch(S,T ) fp (uS(z))⊗ gq (uT (w)),

where u = uS,T . We obtain now the main result of this section, a Künneth formula that

allows us to compute the cohomology groups of a product in terms of its factors.

Theorem 3.4 (Künneth formula). Suppose that k is a field of characteristic zero and X or Y is

locally finite. The map −×− : S∗(X)⊗S∗(Y) → S∗(X⊗Y) is an isomorphism of complexes.

Proof. The only detail to check is that this is a morphism of complexes, since we have

already observed it is an equivariant bijection. To see this, we observe that following the

definition reveals that this map is exactly the map induced by the external product

−×− : C∗(X)⊗C∗(Y) −→C∗(X⊗Y)

on the E1-pages of the corresponding spectral sequences for the complexes C∗(X⊗Y) and

C∗(X)⊗C∗(Y), which is what we wanted. Î

The reader can find details for the computation suggested in the last proof in the next

section, where we consider the case of the (interior) cup product ^.

Multiplicative structure of the spectral sequence

We have defined a complete descending filtration

S∗(X) ⊇ F 0C∗(X) ⊇ ·· · ⊇ F pC∗(X) ⊇ F p+1S∗(X) ⊇ ·· ·

on S∗(X) where F pC∗(X) consists of those cochains that vanish on τpX. Assume now that

X is a linearized coalgebra of the form kX0, so that there is a cup product defined on S∗(X),

as detailed in Subsection 2.2. Remark that the proof of the following proposition adapts

immediately to any cup product on S∗(X) induced from a diagonal map X−→X⊗X.

Proposition 3.18. The cup product on S∗(X) is compatible with the filtration, in the sense

that, for every two non-negative integers p and p ′, we have that F p ^ F p ′ ⊆ F p+p ′
.
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Proof. Consider cochains α ∈ F p and β ∈ F p ′
. Then α^ β ∈ F p+p ′

by a pigeonhole argu-

ment: if F = (F ′,F ′′) is a decomposition of a finite set with p + p ′ elements, then F ′ is a

decomposition of a set with at most p elements or F ′′ is a decomposition of a set with at

most p ′ elements, and the formula

(α^β)(F )(z) =α(F ′)(z F ′)β(F ′′)(z �F ′′)

then makes it evident that α^β is an element of F p+p ′
. Î

It follows from this proposition that the cup product descends to a product

F pC

F p+1C
⊗ F p ′

C

F p ′+1C
−→ F p+p ′

C

F p+p ′+1C

so we obtain a multiplicative structure −^− : E pq
0 ×E p ′q ′

0 −→ E p+p ′,q+q ′
0 induced on the E0-

page of the spectral sequence. This induces in turn a multiplicative structure on our spectral

sequence (Er ,dr )rÊ0. Because this spectral sequence degenerates at E 2, we can compute the

cup product in H∗(X) from the combinatorial complex S∗(X). We describe how to do so in

explicit terms.

If S is a subset of [n] = {1, . . . ,n} with m É n elements, and if σ is a permutation of S, we

regard σ as a permutation of [m] by means of the unique order preserving bijection λS :

S −→ [m]. We say (σ1,σ2) is a (p, q)-shuffle of a finite set I with p +q elements whenever σ1

is a permutation of a p-subset S of I ,σ2 is a permutation of a q-subset T of I , and S∩T =∅.

Call (S,T ) the associated composition of such a shuffle. If (S,T ) is a composition of [n],

we will write sch(S,T ) for the Schubert statistic of (S,T ), which counts the number of pairs

(s, t ) ∈ S ×T such that s < t according to the canonical ordering of [n]. Our result is the

following

Theorem 3.5. The cup product induced by the diagonal X−→X⊗X

−^− : Sp (X)⊗C q (X) −→ Sp+q (X)

is such that for equivariant maps f :X(p) −→ sgnp and g :X(q) −→ sgnq , and z ∈X(p +q),

( f ^ g )(z) = ∑
(S,T )`[p+q]

(−1)sch(S,T ) f (λS(z S))g (λT (z �T ))

where the sum runs through decompositions of [p +q] with #S = p and #T = q.

Before giving the proof, we begin with a few preliminary considerations. First, consider

a (p, q)-shuffle (σ1,σ2) of [p + q], with associated composition (S,T ), and let σ be the per-

mutation of [p +q] obtained by concatenating σ1 and σ2.
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Lemma 3.5. For any σ ∈ Sp+q and any (p, q)-composition (S,T ) of [p +q],

1. the sign of σ is (−1)σ
1+σ2+sch(S,T ), and

2. (−1)sch(S,T ) = (−1)sch(T,S)+pq .

Proof. Indeed, by counting inversions, it follows that the number of inversions in σ is pre-

cisely invσ1 + invσ2 + sch(S,T ), which proves the first assertion. The second claims follows

from the first and the fact σ1σ2 and σ2σ1 differ by pq transpositions. Î

Recall that if α : X(p) −→ E⊗p is a cochain, we associate to it the equivariant map f :

X(p) −→ sgnp such that f (z) = α(νp )(z) where νp = ∑
σ∈Sp (−1)σσ is the antisymmetriza-

tion element. Conversely, given such an equivariant map, we associate to it the cochain

α :X(p) −→E⊗p such thatα(σ)(z) = (−1)σ

p ! f (z). We now proceed to the proof of Theorem 3.5.

Proof. To calculate a representative of the class of f ^ g , we lift first lift the maps f :X(p) −→
sgnp and g : X(q) −→ sgnq to cochains α : X −→ E⊗p ,β : X −→ E⊗q that are supported in

X(p) and X(q) respectively, and represent f and g according to the correspondence in the

previous paragraph. We compute for any decomposition (F 1,F 2) of a finite set I and any

z ∈X(I ) that

(α^β)(F 1,F 2)(z) =α(F 1)(z F 1)β(F 2)(z �F 2).

Now consider z ∈X(p+q). Ifσ is a permutation of [p+q], write (σ1,σ2) for the (p, q)-shuffle

obtained by reading σ(1) · · ·σ(p) as a permutation of Sσ = {σ(1), . . . ,σ(p)} and by reading

σ(p +1) · · ·σ(p +q) as a permutation of Tσ = {σ(p +1), . . . ,σ(p +q)}. Then

( f ^ g )(z) = ∑
σ∈Sp+q

(−1)σ(α^β)(σ)(z)

= ∑
σ∈Sp+q

(−1)σα(σ1)(z Sσ)β(σ2)(z �Tσ)

Fix a composition (S,T ) of [p + q]. In the sum above, the permutations σ with (Sσ,Tσ) =
(S,T ) are the (p, q)-shuffles with associated composition (S,T ). We may then replace the

sum throughout Sp+q with the sum throughout (p, q)-compositions (S,T ) of [p +q] and in

turn with the sum throughout shuffles (σ1,σ2) of (S,T ). This reads

( f ^ g )(z) = ∑
(S,T )`[p+q]

∑
(σ1,σ2)

(−1)σ
1σ2

α(σ1)(z S)β(σ2)(z �T ).

We now note that α(σ1)(z  S) = α(λS(σ1))(λS(z  S)), that the sign of λS(σ1) ∈ Sp is (−1)σ
1
,
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and that the same considerations apply to β, so we obtain that

( f ^ g )(z) = 1

p !q !

∑
(S,T )`[p+q]

∑
(σ1,σ2)

(−1)σ
1σ2+σ1+σ2

f (λS(z S))g (λT (z �T )).

Using Lemma 3.5 finishes the proof: the sum
∑

(σ1,σ2)(−1)σ
1σ2+σ1+σ2

consists of p !q ! in-

stances of (−1)sch(S,T ). Î

Suppose now that X is a symmetric E-bicomodule. Then Theorem 3.2 proves the dif-

ferential in S∗(X) is trivial, while Lemma 3.5 along with Proposition 3.5 prove that the cup

product in S∗(X) is graded commutative. We obtain the

Theorem 3.6. Suppose that X is a cosymmetric E-bicomodule. Then S∗(X) is isomorphic

to the cohomology algebra H = H∗(X) via the isomorphism of algebras E2 −→ E0(H). In

particular, H∗(X) is graded commutative. Î

To illustrate, take X to be the species of linear orders. Each S j (X) is one dimensional

generated by the map f j : L( j ) −→ k that assigns σ 7−→ (−1)σ. A calculation, which we omit,

shows

Proposition 3.19. The algebra S∗(L) is generated by the elements f1 and f2, so that if fp is

the generator of Sp (L), we have

f2p ^ f2q =
(

p +q

p

)
f2(p+q), f1 ^ f2p = f2p+1, f1 ^ f2p+1 = 0.

These relations exhibit H∗(L) as a tensor product of a divided power algebra and an exterior

algebra. Î

For a second example, consider Gr with its cosymmetric E-bicomodule structure. We

already know H 4 is one dimensional, and the functional p4 : Gr(4) −→ sgn4 that assigns the

4-path to 1 and every other graph on four vertices to zero is a generator of S4. Even more

can be said: our formula for the cup product and induction shows that for each n Ê 1, the

product f n is nonzero on the graph that is the disjoint union of n paths p4, so that H 4n

is always nonvanishing for n Ê 1. Hence the cohomology algebra H∗(Gr) contains both an

exterior algebra in degree 1 and a polynomial algebra in degree 4.
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4 Coda

4.1 The spectral sequence of a connected bialgebra

One can extend the work done in the first two sections of Section 3 by replacing E with

any linearized connected twisted Hopf algebra H along the following lines. Let X be an

H-bicomodule. The filtration F pC∗(X,H) of C∗(X,H) by the subcomplexes

{α :X−→H⊗∗ :α vanishes on τp−1X}

is natural with respect to H, and it is complete and bounded above. This yields a spec-

tral sequence starting at E p,∗
0 =C p+∗(X(p),H) with first page concentrated in a cone in the

fourth quadrant, and to prove this is convergent in the sense of [22], it suffices we show this

spectral sequence is regular. It should be possible to prove the filtration giving rise to such

spectral sequence is regular, which is equivalent to the statement that H p (τ jX,H) = 0 for

large values of j . This is trivially true if X is of finite length because in such case τ jX= 0 for

large values of j . Independent of convergence matters, we can identify its first page. Indeed,

for each natural number q , write 〈H; q〉1 for the cosimplicial k-module

0 −→H⊗0([p]) −→H⊗1([p]) −→ ·· · −→H⊗ j ([p]) −→ ·· ·

with coface maps and codegeneracies induced by ∆ and ε, and write 〈H; p〉 for the cor-

responding normalized complex of 〈H; p〉. Often we can find a topological space 〈H; p〉
whose cohomology coincides with that of 〈H; p〉. Denote by Hp,q the cohomology groups

H p+q (〈H; p〉), which are all Sp -modules. If X is weakly projective, the arguments outlined

in Section 3.2 of Section 3 show that the E1-page of the spectral sequence has

E p,q
1 ' HomSp (X(p),Hp,q ).

To illustrate this, we observe that the key point of Section 3, which is the case in whichH=E,

is that we may take 〈H; p〉 to be a sphere Sp−2, and Hp,q = 0 for q 6= 0, while Hp,0 is the sign

representation sgnp of Sp . In the general case, one must understand the various modules

Hp,q , hopefully via a geometric construction.

When writing the MSc thesis that then resulted in this paper, we obtained preliminary

results for this in the case H is the species of linear orders. With the aid of a computer, we

obtained the rank of Hp,q for 0 É p É 5, which we list in Figure 2. The attentive reader might

notice this table is nothing else than that of the unsigned Stirling numbers of the first kind.

We will prove this is the case in the next subsection.

1Read “H evaluated at p”.
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1 1 1 1 1 1

0 0 1 3 6 10

0 0 0 2 11 35

0 0 0 0 6 50

0 0 0 0 0 24

0 0 0 0 0 0

Figure 2: The Betti numbers for Ω∗(L).

4.2 An invitation to Koszul duality in twisted coalgebras

We include here a brief way to summarize this paper intended for the readers familiar with

the theory of Koszul duality between algebras and coalgebras which works equally well in

the symmetric monoidal category of species over k. The two main observations to make are

the following:

1. The coalgebra E is the free cocommutative conilpotent coalgebra in one generator 1

—the unit of Spk — and as such is trivially Koszul with Koszul dual algebra E
¡ the free

commutative algebra on the desuspension of 1: it has the same dimension in each

cardinality as E, but the suspension accounts for a change of the trivial representation

in each cardinality to the sign representation sgn∗ that we used so heavily above.

2. The small complex S∗(X) is nothing but the Koszul complex K(X,E) = Hom(X,E¡) and

the resulting cup product in the spectral sequence (that collapses since E is Koszul)

is induced by the comultiplication of E¡. The technical requirement that X be weakly

projective guarantees that homology commutes with the functor Hom(X,−) in each

cardinality, which allows us to replace the twisted dg coalgebraΩ∗(E) by its homology,

the twisted algebra E
¡.

Naturally, this observation was done post hoc by the author some time later after finishing

writing thesis; we have decided to preserve the work done there to illustrate how one can,

without the “heavy machinery” of Koszul duality theory, obtain the complex S∗(X) through

the combinatorics of hyperplane arrangements and Coxeter complexes.

It is interesting to observe that this shows us how the purely algebraic theory of Koszul

duality can shed light into combinatorics: one can see the observation above implies im-

mediately that the Coxeter complex has the homology of a sphere, for example, and that

the representation of this top homology group is the sign representation without doing any

computation at all.
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In particular, the above implies that whenever H is a Koszul twisted coalgebra, for every

H-bicomodule we have available the Koszul complex

K∗(X,H) = HomSpk
(X,H

¡
)

to compute its cohomology groups. Moreover, it often happens that the structure of twisted

(co)algebras arising from combinatorial objects can be nicely understood through combin-

atorial methods. We also remark that in the book [4], V. Dotsenko and M. Bremner explain

how apply methods of Gröbner bases to twisted algebras, which can then be effectively used

to obtain results on the Koszulness of these.

Remark 4.1. It very often happens that H is Koszul for trivial reasons: if H is a cocommut-

ative connected twisted bialgebra, then by the Milnor–Moore theorem [3, Theorem 118] the

underlying coalgebra of H is cocommutative cofree over the collection of its primitives.

We can apply this to the species L of linear orders to deduce the following result which

should aid us in computing H∗(−,L) in the category of L-bicomodules.

Corollary 4.1. The twisted coalgebra L is cofree conilpotent over the species underlying the

free Lie algebra functor and, in particular, it is twisted Koszul with Koszul dual twisted algebra

L
¡ = S(s−1Lie), the free twisted commutative algebra over the desuspension of Lie.

Proof. The fact that the primitives of L is equal to Lie contained in Corollary 121, and by the

Milnor–Moore theorem in the remark above we have have isomorphism

Sc (Lie) −→L

of twisted cocommutative conilpotent coalgebras. Since twisted cocommutative coalgebras

are twisted Koszul, the result follows. Î

With this at hand, we can prove the following result.

Theorem 4.1. The twisted Koszul dual algebra of the coalgebra L is the free commutative

twisted algebra S(s−1Lie) over the desuspesion of Lie. In particular, for each p, q ∈N we have

that

H p−q (Ω∗(L)[p]) = S(s−1Lie)[p]p−q

has basis in correspondence with the permutations of p with p −q disjoint cycles and, hence,

dimk S(s−1Lie)[p]p−q =
[

p

p −q

]
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an unsigned Stirling number of the first kind.

Proof. The first equality follows by Koszul duality, since the algebra S(s−1Lie) is Koszul dual

to L and, as such equal to the homology of the cobar construction on L. For the second

equality, all that we need to do is observe that for a finite set I of size p, an elementary

tensor

z1 ¯·· ·¯ zp−q ∈ S(s−1Lie)[p]p−q

of S(s−1Lie) is in homological degree p − q and corresponds to the datum of an unordered

partition of I into subsets (F1, . . . ,Fp−q ) with zi ∈ Lie(Fi ). On the other hand, for a finite set

[n] we have a basis of Lie[n] indexed by permutations of n that fix 1. In this way, such an

elementary tensor is indeed in bijection with a permutation of I with p −q disjoint cycles,

which is what we wanted. Î
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