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COMBINATORICS OF INJECTIVE WORDS FOR

TEMPERLEY-LIEB ALGEBRAS

RACHAEL BOYD AND RICHARD HEPWORTH

Abstract. This paper studies combinatorial properties of the complex of pla-
nar injective words, a chain complex of modules over the Temperley-Lieb algebra
that arose in our work on homological stability. Despite being a linear rather
than a discrete object, our chain complex nevertheless exhibits interesting com-
binatorial properties. We show that the Euler characteristic of this complex
is the n-th Fine number. We obtain an alternating sum formula for the rep-
resentation given by its top-dimensional homology module and, under further
restrictions on the ground ring, we decompose this module in terms of certain
standard Young tableau. This trio of results — inspired by results of Reiner and
Webb for the complex of injective words — can be viewed as an interpretation
of the n-th Fine number as the ‘planar’ or ‘Dyck path’ analogue of the number
derangements of n letters. This interpretation has precursors in the literature,
but here emerges naturally from considerations in homological stability. Our
final result shows a surprising connection between the boundary maps of our
complex and the Jacobsthal numbers.
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1. Introduction

In this work we study combinatorial properties of a highly connected complex
that arose in our study of the Temperley-Lieb algebra in [BH20]. Highly connected
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complexes arise naturally in many areas of mathematics. In combinatorics they
arise as matroid complexes and order complexes of geometric lattices [Bjö92], as
order complexes of Cohen-Macaulay posets [BGS82], and in the theory of shella-
bility in its various forms [Bjö92, BW83, Koz08], to name just a few. For the
authors, highly connected complexes arise in the theory of homological stability.
This subject is motivated by the study of homology and cohomology of groups and
spaces, and makes extensive use of complexes such as buildings, split buildings,
complexes of partial bases (of vector spaces, modules, and free groups), complexes
of arcs in surfaces, and many more besides. (Though no standard introductory
reference currently exists for homological stability, we recommend [Wah13]. The
introduction of [RWW17] may also give a good impression of the theory’s scope.)

The complex of injective words is much studied in both combinatorics and topol-
ogy. Its high-connectivity has been proved using various methods, by authors in-
cluding Farmer [Far79], Maazen [Maa79], Björner-Wachs [BW83], Kerz [Ker05],
and Randal-Williams [RW13], and is an important ingredient in proofs of homo-
logical stability for the symmetric groups [Maa79, Ker05, RW13]. Reiner and
Webb [RW04] studied the complex of injective words from a combinatorial point
of view. They showed that its Euler characteristic is the number of derangements
of n letters, and they described its top-dimensional homology representation in
two ways: as an alternating sum, and in terms of standard Young tableaux. A
further decomposition of the top-dimensional homology was given by Hanlon and
Hersh in [HH04].

In our work on homological stability for Temperley-Lieb algebras [BH20], we
introduced and studied the complex of planar injective words, a chain complex of
modules over the Temperley-Lieb algebra on n strands, closely analogous to the
(chain complex of the) complex of injective words. In particular we proved that
the homology of our complex is concentrated in degree (n− 1), as is the case for
the complex of injective words.

In this paper we study the complex of planar injective words from a combina-
torial viewpoint, inspired by the results of Reiner and Webb. We will see that the
role of the number of derangements is now taken by the n-th Fine number. We
will also expose an unexpected appearance of the Jacobsthal numbers.

1.1. Temperley-Lieb algebras and planar injective words. Let n > 0, let R
be a commutative ring, and let a ∈ R. The Temperley-Lieb algebra TLn(a) is
the R-algebra with basis given by the planar diagrams on n strands, taken up to
isotopy, and with multiplication given by pasting diagrams and replacing closed
loops with factors of a. The last sentence was intentionally brief, we hope that
its meaning becomes clearer with the following illustration of two elements x, y ∈
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TL5(a)

x = y =

and their product x · y.

x · y = = = a ·

The Temperley-Lieb algebras arose in theoretical physics in the 1970s [TL71]. They
were later rediscovered by Jones in his work on von Neumann algebras [Jon83],
and used in the first definition of the Jones polynomial [Jon85]. Kauffman gave
the diagrammatic interpretation of the algebras in [Kau87] and [Kau90]. The rank
of TLn(a) as an R-module is the n-th Catalan number Cn [Jon87].

Now let a = v + v−1 where v ∈ R× is a unit (the most commonly studied
case in the literature). The complex of planar injective words W (n) is a chain
complex of TLn(a)-modules. In degree i it is given by the tensor product mod-
ule TLn(a) ⊗TLn−i−1(a) 1, where 1 is the trivial module for TLn−i−1(a). In the
original complex of injective words the i-simplices are words (x0, . . . , xi) on the
alphabet {1, . . . , n} with no repeated entries. The action of Sn on these simplices
is transitive, and the typical stabiliser is Sn−i−1, so that the i-th chain group is iso-
morphic to RSn ⊗RSn−i−1

1. Thus W (n) is an analogue of (the chain complex of)
the complex of injective words, in which the role of Sn is now played by TLn(a).
In [BH20] we showed that Hd(W (n)) = 0 for d 6 n− 2, and since the complex is
concentrated in degrees from −1 to n− 1, it follows that its only homology group
is Hn−1(W (n)). The restriction to the case a = v + v−1 is necessary for TLn(a)
to receive a homomorphism from the group algebra of the braid group, which is
required in order to define the differentials of W (n).

1.2. Results. The n-th Fine number Fn is the number of Dyck paths of length 2n
whose first peak has even height. This is the second of 11 descriptions of the
Fine numbers given by Deutsch and Shapiro in their survey [DS01]. Deutsch and
Shapiro also state the following alternating sum formula for Fn:

Fn =
1

n+ 1

[(
2n

n

)
− 2

(
2n− 1

n

)
+ 3

(
2n− 2

n

)
− · · ·+ (−1)n(n+ 1)

(
n

n

)]
(1)

(See [DS01, Section 4] and also [Deu99, Moo79, Rob04].) We show that this
alternating sum has a very simple interpretation: its m-th term counts the Dyck
paths whose first peak has height at least m.

Remarkably, the complex of planar injective words W (n) embodies a represen-
tation theoretical ‘lifting’ of the Fine numbers and of this alternating sum formula.
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Theorem A. Let R be a commutative ring, let v ∈ R×, and let a = v+v−1. Then
the Euler characteristic of W (n) is the n-th Fine number, up to sign:

χ(W (n)) = (−1)n−1Fn.

The TLn(a)-module Hn−1(W (n)) therefore has rank equal to the Fine num-
ber Fn. We call it the Fineberg module, and we denote it by Fn(a). (Such top-
dimensional homology groups are often called Steinberg modules, after the top-
dimensional homology of the Tits building of a vector space.) As a consequence of
Theorem A we obtain the following representation-theoretic lifting of (1) in terms
of induced modules.

Corollary B. Under the assumptions of Theorem A, the alternating sum formula

[Fn(a)] =

n∑

m=0

(−1)m
[
1 ↑

TLn(a)
TLm(a)

]

holds in the Grothendieck group K0(TLn(a)). (If TLn(a) is semisimple, then
K0(TLn(a)) is the module of virtual representations of TLn(a).)

We now consider the case R = C, so that a = v+v−1 with v ∈ C
×. Then TLn(a)

is semisimple unless q = v2 is an ℓ-th root of unity for 2 6 ℓ 6 n. In the
case of semisimplicity the irreducible representations Vλ of TLn(a) are indexed by
partitions λ ⊢ n with at most two columns. We prove the following description
of Fn(a) in terms of counts of standard Young tableaux (SYT).

Theorem C. Let R = C, let v ∈ C× be such that v2 is not an ℓ-th root of unity
for 2 6 ℓ 6 n, and let a = v + v−1. Then

Fn(a) ∼=
⊕

λ⊢n
62 columns

|{SYT Q of shape λ with top entry of second column odd}| · Vλ.

(In the case λ = 1n, the unique SYT of shape λ has no second column, and so we
declare that the top entry of its second column is (n+ 1).)

The three results listed above are the direct analogues of Reiner and Webb’s
results relating the complex of injective words to the number of derangements of n
letters [RW04, Propositions 2.1–2.3]. This suggests an interpretation of the n-th
Fine number as the number of ‘planar derangements’ of n letters. This interpreta-
tion has several precursors in the literature: One precursor is the fact that the n-th
Fine number is equal to the number of Dyck paths of length 2n whose first peak has
even height, while Désarménien [Dés83] showed that the number of derangements
of n is equal to the number of permutations whose first ascent π(i) < π(i + 1)
occurs for i even. Another precursor is that Dyck paths can be interpreted as per-
mutations that avoid the pattern 321 [Sta99, p.224], and the Fine number is the
number of derangements that avoid 321 [DS01, Section 8]. It is striking that the
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same interpretation has arisen naturally through our work on homological stability
and injective words.

We now turn to a feature of planar injective words that does not have a precursor
in the case of injective words. The n-th Jacobsthal number Jn is the number of
compositions of n that end with an odd number. It is equal to the number of
sequences n > a1 > a2 > · · · > ar > 0 whose initial term has the opposite parity
to n. The lth Jacobsthal element in TLn(a) is defined to be

J n
l =

∑

l>a1>···>ar>0
l−a1 odd

(−1)(r−1)+l
(µ
λ

)r

Ua1+n−l · · ·Uar+n−l.

(Here λ and µ are constants involved in the definition of W (n), and µ
λ
is equal to

either −v or −v−1.) Observe that the number of irreducible terms in J n
l is Jl. We

prove the following identification of the boundary maps of W (n).

Theorem D. Under the assumptions of Theorem A, for 0 6 i 6 n − 1 the
boundary map di : W (n)i → W (n)i−1 acts as right multiplication by J n

i+1 in the
following sense:

di(x⊗ r) = x · J n
i+1 ⊗ r.

In particular, the image of the boundary map has number of irreducible terms given
by Ji+1.

The formula for the differentials in Theorem D is convenient for explicit compu-
tations, and is used in [BH20] to describe (aspects of) the Fineberg module Fn(a)
in the case of n even.

1.3. Complexes from algebras. We hope that the results of this paper will
encourage others to consider constructing and studying chain complexes of algebra
modules from a combinatorial point of view.

The general idea is that one can combine combinatorial complexes with Sn-
action (such as the complex of injective words) with finite-dimensional algebras
(such as the Temperley-Lieb algebras) and construct algebraic analogues of the
complexes. Examples of possible complexes with Sn-action include the complex
of injective words, the realisation of the poset of ordered partitions of {1, . . . , n}
with k > 2 parts (this can be naturally identified with the permutahedron), and
the realisation of the partition poset, which consists of partitions of {1, . . . , n}
with 1 < k < n parts. Examples of possible algebras include the Temperley-Lieb
algebras studied here, Temperley-Lieb algebras of types B and D, variants such as
the dilute and periodic Temperley-Lieb algebras, and cousins such as the Brauer,
blob and partition algebras. (Here we only list examples that are somewhat close
to the TLn(a); there will be many other candidates besides.)

In all cases, one can undertake the following ‘process’ that has as input a com-
plex C with Sn-action and a family of algebras An, and as output a chain complex
of An-modules. The process takes a Sn-orbit of simplices, and replaces it with
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the An-module induced from the trivial module modulo the subalgebra corre-
sponding to the stabiliser of the ‘original’ orbit. (This is of course only a vague
process, and its success depends on the nature of C and the An.)

1.4. Outline. In Section 2 we recall the basics of Temperley-Lieb algebras that
we require in the rest of the paper. Section 3 recalls the definition of the complex
of planar injective words W (n) from [BH20]. Section 4 recalls Dyck paths, Dyck
words, Catalan numbers and Fine numbers, and refines the usual relationship
between them to take into account the height of the first peak, ending with a
new account of the alternating sum in Equation (1). In Section 5 we recall the
relationship between planar diagrams and Dyck words, and prove Theorem A and
Corollary B. In Section 6 we prove Theorem C. And in Section 7 we recall the
Jacobsthal numbers and prove Theorem D.

1.5. Acknowledgements. The authors would like to thank the Max Planck In-
stitute for Mathematics in Bonn for its support and hospitality.

2. Temperley-Lieb algebras

In this section we will cover the basic facts about Temperley-Lieb algebras that
we require in the rest of the paper. There is some overlap between the material
recalled here and in [BH20]. General references for readers new to the TLn(a) are
Section 5.7 of Kassel and Turaev’s book [KT08] on the braid groups, and especially
Sections 1 and 2 of Ridout and Saint-Aubin’s survey on the representation theory
of the TLn(a) [RSA14].

2.1. Definitions. A planar diagram on n strands consists of two vertical lines in
the plane, decorated with n dots labelled 1, . . . , n from bottom to top, together
with a collection of n arcs joining the dots in pairs. The arcs must lie between
the vertical lines, they must be disjoint, and the diagrams are taken up to isotopy.
For example, here are two planar diagrams in the case n = 5:

x =

1 1

2 2

3 3

4 4

5 5

y =

1 1

2 2

3 3

4 4

5 5

We will often omit the labels on the dots.

Definition 2.1 (The Temperley-Lieb algebra TLn(a)). Let R be a commutative
ring and let a ∈ R. The Temperley-Lieb algebra TLn(a) is the R-module with
basis given by the planar diagrams on n strands, and with multiplication defined
by placing diagrams side-by-side and joining the ends. Any closed loops created
by this process are then erased and replaced with a factor of a.



INJECTIVE WORDS FOR TEMPERLEY-LIEB ALGEBRAS 7

For example, the product xy of the elements x and y above is:

= = a ·

We have subscribed to the heresy of [RSA14] by drawing planar diagrams that go
from left to right rather than top to bottom. The identity element of TLn(a) is
the planar diagram in which each dot on the left is joined to the corresponding
dot on the right by a straight horizontal line.

For 1 6 i 6 n−1, we define Ui ∈ TLn(a) to be the planar diagram shown below.

Ui =

...

...

i

i+1

1

n

We refer to an arc joining adjacent dots as a cup. Thus Ui has a single cup on left
and right joining dots i and i+ 1. The elements Ui satisfy the following relations:

(1) UiUj = UjUi for j 6= i± 1
(2) UiUjUi = Ui for j = i± 1
(3) U2

i = aUi for all i.

The reader can easily verify these relations for themselves; two of them are shown
in Figure 1. In fact, the generators Ui together with the three relations above
form a presentation of TLn(a) as an R-algebra: Elements of the Temperley-Lieb
algebra are formal sums of monomials in the Ui, with coefficients in the ground
ring R, modulo the relations above. This is proved in [RSA14, Theorem 2.4],
[KT08, Theorem 5.34], and [Kau05, Section 6]. We often write TLn(a) as TLn.
We note here that TL0 = TL1 = R.

2.2. Induced modules.

Definition 2.2 (The trivial module 1). The trivial module 1 of the Temperley-
Lieb algebra TLn(a) is the module consisting of R with the action of TLn(a) in
which every diagram acts as multiplication by 0, except for the identity diagram.
Equivalently, it is the module on which all of the generators U1, . . . , Un−1 act as 0.
We can regard 1 as either a left or right module, and we will usually do that
without indicating so in the notation.

Definition 2.3 (Sub-algebra convention). For m 6 n, we will regard TLm as
the sub-algebra of TLn generated by the elements U1, . . . , Um−1, or equivalently,
the subalgebra in which dots m + 1, . . . , n on the left are joined to the corre-
sponding dots on the right by horizontal straight lines. We will often regard TLn
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...

...

...

...

...

...

1

i

i+1

n

=

(a) The relation U2
i
= aUi.

...

...

...

...

...

...

...

...

1

i

i+1

i+2

n

=

(b) The relation UiUi+1Ui = Ui.

Figure 1. Diagrammatic relations in TLn(a).

as a left TLn-module and a right TLm-module, so that we obtain the left TLn-
module TLn ⊗TLm

1.

The induced modules TLn ⊗TLm
1 will be the building blocks of the com-

plex W (n).
A planar diagram on n strands with black box of size m is a planar diagram on n

strands with the dots 1, . . . , m on the right encapsulated within a black box, such
that there are no cups with endpoints in the black box. For example, the planar
diagrams with 4 strands and black box of size 3 are shown below.

1

2

3

4

The R-linear span of the planar diagrams on n strands with black box of size m has
the structure of a left TLn(a)-module. If x is a planar diagram on n strands, and y
is a planar diagram on n strands with black box of size m, then the product x ·y is
defined by pasting the diagrams in the usual way, subject to the condition that if
the pasting produces a cup attached to the black box, then the diagram is identified
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with 0. For example:

U1U3 · = = = 0.

Proposition 2.4. Given 0 6 m 6 n, TLn(a)⊗TLm(a)1 is isomorphic to the module
of planar diagrams on n strands with black box of size m.

Proof. Let Im denote the left ideal of TLn generated by the elements U1, . . . , Um−1.
In other words, Im is the span of all diagrams which have a cup on the right among
dots 1, . . . , m. It is shown in [BH20] that TLn ⊗TLm

1 is isomorphic to TLn/Im
under the isomorphism that sends x ⊗ 1 ∈ TLn ⊗TLm

1 to x + Im ∈ TLn/Im.
Since TLn has basis given by planar diagrams, and Im has basis given by planar
diagrams with cup among dots 1, . . . , m on the right, the quotient TLn/Im has basis
given by the diagrams with no cups among dots 1, . . . , m on the right, which we
can identify with the n-planar diagrams with black box of size m. This determines
an R-linear isomorphism between TLn ⊗TLm

1 and the module of planar diagrams
on n strands with black box of size m, and it is simple to see that this respects
the module structures. �

2.3. The braiding elements. Now we suppose that a = v + v−1 where v ∈ R is
a unit.

Definition 2.5 (The braiding elements). Define s1, . . . , sn−1 ∈ TLn(v + v−1) by
setting

si = λ+ µUi

where λ, µ ∈ R are defined by one of the following two options:
(1) λ = −1 and µ = v, so that si = vUi − 1
(2) λ = v2 and µ = −v, so that si = v2 − vUi.

It is now easy to verify that the elements si satisfy the braid relations :

• sisj = sjsi for i 6= j ± 1
• sisjsi = sjsisj for i = j ± 1.

Moreover, the si are invertible and satisfy the rule:

s−1
i = λ−1 + µ−1Ui.

It is also immediate to verify that si acts on 1 as multiplication by λ.
The si in fact form the generators in a presentation of TLn(v+v−1) as a quotient

of the Iwahori-Hecke algebra of type An−1. In particular, they satisfy further
relations of degree 2 and 3, that we will not list here. See [BH20] for more details.

Remark 2.6. There is a homomorphism from (the group algebra of) the braid
group into TLn(v+v−1) given on generators by si 7→ si. This can be regarded as a
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...

...

...

...

...

...

1

i

i+1

n

+µ= λ

si = λ +µ Ui

Figure 2. Smoothings of si.

Kauffman bracket-style smoothing operation from braids to planar diagrams: The
formula for si tells us to smooth a positive crossing in the two possible ways with
weights λ and µ as in Figure 2, and the formula for s−1

i tells us to smooth a negative
crossing in the two possible ways with weights λ−1 and µ−1. In general, given a
braid diagram with p crossings, each crossing is smoothed in the 2 possible ways,
with appropriate weights, to obtain a linear combination of 2p planar diagrams.
We may also consider hybrid diagrams obtained by concatenating planar and braid
diagrams, or obtained by partially smoothing braid diagrams, though this will not
be important in the rest of the paper.

3. Injective words and planar injective words

Throughout this section we will consider the Temperley-Lieb algebra TLn(a),
where a = v+ v−1 for v ∈ R a unit. We will make use of the elements s1, . . . , sn−1

of Definition 2.5.
An injective word on the letters {1, . . . , n} is a tuple (x0, . . . , xi) whose entries

come from the set {1, . . . , n}, with no repeated entries in the tuple. Injective
words form a poset under the subword relation: w > v if v is a subword of w.
The complex of injective words is most commonly defined as the realisation of this
poset, as in [Far79] or [BW83]. However, note that for any injective word w, the
poset of elements v 6 w is Boolean. It follows that the poset of injective words is
a simplicial poset, and its realisation admits a cell structure in which the cells are
simplices, with an i-simplex for each word (x0, . . . , xi). This cell complex can be
obtained from a semi-simplicial set, as in [RW13]. For us, the complex of injective
words will be the augmented cellular chains of the cell complex described above,
studied for example in [Ker05]. We define it explicitly now.

Definition 3.1 (The complex of injective words). The complex of injective words
is the chain complex C(n) of Sn-modules, concentrated in degrees −1 to (n −
1), that in degree i is the free R-module with basis given by tuples (x0, . . . , xi)
where x0, . . . , xi ∈ {1, . . . , n} and no letter appears more than once. We allow
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the empty word (), which lies in degree −1. The differential of C(n) sends a

word (x0, . . . , xi) to the alternating sum
∑i

j=0(−1)j(x0, . . . , x̂j , . . . , xi).

We can rewrite C(n) in terms of the group algebra RSn. Denote by s1, . . . , sn−1 ∈
Sn the adjacent transpositions si = (i i + 1). These elements satisfy the braid
relations listed beneath Definition 2.5. There is an isomorphism

C(n)i ∼= RSn ⊗RSn−i−1
1,

where 1 is the trivial module of RSn−i−1. Under this isomorphism the word
(x0, . . . , xi) is sent to σ⊗1 where σ ∈ Sn is a permutation such that σ(n− i+j) =
xj . Furthermore, the differential d : C(n)i → C(n)i−1 becomes the map

d : RSn ⊗RSn−i−1
1 −→ RSn ⊗RSn−i

1

defined by d(x ⊗ 1) =
∑i

j=0(−1)jx · (sn−i+j−1 · · · sn−i) ⊗ 1. (See [Hep20].) This
description inspires the following definition of the planar analogue.

Definition 3.2 (The complex of planar injective words [BH20]). Let R be a com-
mutative ring, let v ∈ R×, let a = v + v−1, and let n > 0. The complex of planar
injective words is the chain complex W (n)∗ of TLn(a)-modules defined as follows.
For i in the range −1 6 i 6 n− 1, the degree-i part of W (n)∗ is defined by

W (n)i = TLn(a)⊗TLn−i−1(a) 1

and in all other degrees we set W (n)i = 0. Note that

W (n)−1 = TLn(a)⊗TLn(a) 1 = 1.

For i > 0 the boundary map di : W (n)i → W (n)i−1 is defined to be the alternating

sum
∑i

j=0(−1)jdij, where

dij : TLn ⊗TLn−i−1(a) 1 → TLn ⊗TLn−i(a) 1

x⊗ r 7→ (x · sn−i+j−1 · · · sn−i)⊗ λ−jr.

In the expression sn−i+j−1 · · · sn−i, the indices decrease from left to right. Observe
that dj is well-defined because the elements sn−i, . . . , sn−i+j−1 all commute with
all generators of TLn−i−1(a). We have depicted W (n)∗ in Figure 3. For notational
purposes we will write W (n) and only use a subscript when identifying a particular
degree.

Remark 3.3 (Visualising W (n)). Recall from the diagrammatic description of the
induced module TLn(a)⊗TLm(a) 1 when m 6 n given in Section 2.2 that elements
of W (n)i can be regarded as diagrams where the first n− i − 1 dots on right are
encapsulated within a black box, and if any cups can be absorbed into the black
box, then the diagram is identified with 0. The differential d : W (n)i → W (n)i+1

is then given by pasting special elements onto the right of a diagram, followed
by taking their signed and weighted sum. These special elements each enlarge the
black box by an extra strand, and plumb one of the free strands into the new space
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TLn ⊗TL0 1

dn−1

��

n− 1

TLn ⊗TL1
1

dn−2
��

n− 2

...

d2

��

TLn ⊗TLn−2 1

d1

��

1

TLn ⊗TLn−1 1

d0

��

0

1 −1

Figure 3. The complex W (n)

in the black box, see Figure 4 The resulting diagrams can be simplified using the

d : 7→ −λ−1 +λ−2

Figure 4. Example: D : W (4)2 → W (4)1

smoothing rules for diagrams with crossings described in Remark 2.6. We leave
it to the reader to make this description as precise as they wish, and note here
that this is where the notion of braiding, so often seen in homological stability
arguments, fits into our set up.

In [BH20] we showed the following analogue of the high-connectivity of the
complex of injective words. It was the main technical underpinning of our proof
of homological stability for Temperley-Lieb algebras.

Theorem 3.4 ([BH20]). Hd(W (n)) = 0 for d 6 (n− 2).

The top homology of the Tits building is known as the Steinberg module. This
inspires the name in the following definition.

Definition 3.5. The n-th Fineberg module is the TLn(a)-module

Fn(a) = Hn−1(W (n)).
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We often suppress the a and simply write Fn. The rank of Fn is the n-th Fine
number Fn.

4. Dyck paths, Catalan numbers, and Fine numbers

We now recall Dyck paths, Catalan numbers and Fine numbers. We also recall
the familiar formula for the Catalan numbers and extend it to take the height
of the first peak into account, leading to a new proof of Equation (1) from the
introduction.

A Dyck path is a path starting and ending on the horizontal axis, built using the
steps (1, 1) and (1,−1), and never falling below the horizontal axis. We abbreviate
the steps (1, 1) and (1,−1) by u and d respectively. Thus Dyck paths are in
correspondence with Dyck words, i.e. words in the letters u and d containing equal
numbers of us and ds, and such that no initial segment contains more ds than us.
The following figure shows a Dyck path and its corresponding Dyck word.

uuduuddd

The n-th Catalan number Cn is the number of Dyck paths of length 2n. For
example, C3 = 5:

See Corollary 6.2 of [Sta99], and the paragraphs before and after it, for a discussion
of the Catalan numbers. A peak in a Dyck path is a sequence of consecutive steps
up, followed by a step down. The n-th Fine number Fn is the number of Dyck
paths of length 2n in which the first peak has even height. For example, F3 = 2
as the previous set of diagrams demonstrates. See [DS01] for a nice discussion of
the Fine numbers.

Proposition 4.1. The number of Dyck paths of length 2n whose first peak has
height m or greater is(

2n−m

n−m

)
−

(
2n−m

n−m− 1

)
=

m+ 1

n+ 1

(
2n−m

n

)

In particular, taking m = 0 gives the familiar result

Cn =

(
2n

n

)
−

(
2n

n+ 1

)
=

1

n+ 1

(
2n

n

)
.
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Proof. We begin by recalling the proof of the case m = 0 by the ‘reflection trick’.
See Lemma 5.27 of [KT08]. We will then adapt this to the general case.

Consider the set of all paths built from the steps (1, 1) and (1,−1), starting
at (0, 0) and ending at (2n, 0). The Dyck paths are those that do not go below
the x-axis, and the rest we call bad paths. Given a bad path, we locate the first
point at which it meets the line y = −1, and reflect the remainder of the path
through that line. The result is a path from (0, 0) to (2n,−2). And indeed, this
establishes a bijection between the set of bad paths, and the set of paths from (0, 0)
to (2n,−2). A path from (0, 0) to (2n, 0) has n ups and n downs, so that there
are

(
2n
n

)
in total. And a path from (0, 0) to (2n,−2) has n − 1 ups and n + 1

downs, so there are
(

2n
n+1

)
in total. Therefore the total number of Dyck paths (Cn)

is
(
2n
n

)
−
(

2n
n+1

)
.

For general m we now repeat the procedure, but only consider paths that begin
with at least m up steps. Then the number of paths from (0, 0) to (2n, 0) is

(
2n−m
n−m

)
,

and the number from (0, 0) to (2n,−2) is
(

2n−m
n−m−1

)
, as we see by considering the

distribution of the up moves after the first m. �

Now let us fix n. Given 0 6 m, we write Bm for the number of Dyck paths whose
first peak occurs at height m or greater. Thus Bm = 0 for m > n. Then (Bm −
Bm+1) is the number of Dyck paths whose first peak has height exactly m, and so
the Fine number Fn is nothing other than

Fn = (B0 − B1) + (B2 − B3) + · · · =

n∑

m=0

(−1)mBm.

In particular, using Proposition 4.1 above we recover the formula in Equation (1):

Fn =
n∑

m=0

(−1)m
m+ 1

n+ 1

(
2n−m

n

)

=
1

n + 1

[(
2n

n

)
− 2

(
2n− 1

n

)
+ 3

(
2n− 2

n

)
− · · ·+ (−1)n(n + 1)

(
n

n

)]

5. Planar diagrams and Dyck paths

We now recall the familiar relationship between planar diagrams and Dyck paths,
and we extend it to take the height of the first peak into account.

Proposition 5.1. The set of planar diagrams on n strands is in bijection with the
set of Dyck paths (or words) of length 2n.

Corollary 5.2. The rank of TLn(a) as an R-module is the Catalan number Cn.

There are several choices for such a bijection; the one that is relevant to us is as
follows: Take a planar diagram on n strands, and work through the dots in order,
starting with 1, . . . , n on the right, followed by n, . . . , 1 on the left. At each dot we
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encounter an arc, either for the first time or for the second time: if it is the first
time, record a u, and if it is the second time, record a d. For example, here is a
planar diagram, the corresponding Dyck word, and the corresponding Dyck path.

uuuddudd

See [RSA14, pp.966-967] or [KT08, Lemma 5.33] for details.

Proposition 5.3. The rank of TLn(a) ⊗TLm(a) 1 is equal to the number of Dyck
paths of length 2n whose first peak occurs at height m or greater.

Proof. Proposition 2.4 shows that TLn ⊗TLm
1 has basis given by the n-planar

diagrams with black box of size m, i.e. the diagrams that have no cups among
dots 1, . . . , m on the right. These are precisely the diagrams which have no arcs
that start and end among dots 1, . . . , m on the right. Therefore, under the bijection
between planar diagrams and Dyck paths, these diagrams correspond exactly to
the paths that start with m up steps, i.e. the paths whose first peak has height m
or greater. �

We are now in a position to prove Theorem A, which states that the Euler
characteristic of W (n) is (−1)n−1Fn, where Fn is the n-th Fine number.

Proof of Theorem A. Let us fix n and define Bm to be the number of Dyck paths
of length 2n whose first peak occurs at height m or greater, so that rank(TLn⊗TLm

1) = Bm. And let us write Am for the number of Dyck paths of length 2n whose
first peak occurs at height exactly m. Then

χ(W (n)) = − rank(TLn ⊗TLn
1) + rank(TLn ⊗TLn−1

1)− rank(TLn ⊗TLn−2
1) + · · ·

· · ·+ (−1)n−2 rank(TLn ⊗TL1 1) + (−1)n−1 rank(TLn ⊗TL0 1)

= −Bn +Bn−1 − Bn−2 + · · ·+ (−1)n−1B0

= (−1)n−1[(B0 − B1) + (B2 − B3) + · · · ]

with final term in the bracket either Bn if n is even, or (Bn−1−Bn) if n is odd. But
this is precisely (−1)n−1[A0 + A2 + A4 + · · ·+ An] if n is even, and (−1)n−1[A0 +
A2 + A4 + · · ·+ An−1] if n is odd. In either case, we obtain (−1)n−1Fn. �

Combined with Proposition 4.1, the proof above gives us Equation (1):

Fn = (−1)n−1χ(W (n))

= B0 −B1 + · · ·+ (−1)nBn

=
1

n + 1

[(
2n

n

)
− 2

(
2n− 1

n

)
+ 3

(
2n− 2

n

)
− · · ·+ (−1)n(n + 1)

(
n

n

)]
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We also obtain the representation-theoretic analogue Corollary B. Indeed, for a
bounded chain complex C of finitely generated modules over any ring or algebra A,
the relation ∑

m

(−1)m[Cm] =
∑

m

(−1)m[Hm(C)] (2)

holds in K0(A). In particular, if A is semisimple then K0(A) coincides with the
representation ring of A, and the same relation holds there. We therefore obtain:

[Fn] = (−1)n−1

n−1∑

d=−1

(−1)d[Hd(W (n))]

= (−1)n−1

n−1∑

d=−1

(−1)d[W (n)d]

= (−1)n−1
n−1∑

d=−1

(−1)d[1 ↑TLn

TLn−d−1
]

=

n∑

m=0

(−1)m[1 ↑TLn

TLm
].

Here the first equation is a consequence of Theorem 3.4, the second is an instance
of (2), and the third follows from the definition

W (n)d = TLn ⊗TLn−d−1
1 = 1 ↑TLn

TLn−d−1
.

6. Young tableaux

In this section we will describe the top-dimensional homology Fn = Hn−1(W (n))
as a module over TLn when our ground ring R is the complex numbers and the
algebra TLn is semisimple. In this case the irreducible representations of TLn are
indexed by certain Young diagrams, and we are able to identify the multiplicity of
each irreducible in Fn. A nice account of the theory used here is given in chapters 4
and 5 of [KT08], and see also the brief account in section 11 of Jones’ paper [Jon87].
In particular we will use the language of partitions, Young diagrams and Young
tableaux, for which one can refer to Sections 5.1 and 5.2 of [KT08]. More detailed
references are recalled in Remark 6.1.

For this section we will fix n > 1 and assume that our ground ring R is the field
of complex numbers C, that v and a = v + v−1 are non-zero complex numbers,
and that q = v2 is not a d-th root of unity for 2 6 d 6 n. The latter condition
guarantees that TLn(a) is semisimple. We also assume that (λ, µ) = (−1, v) in
order to accord with the conventions of [KT08].

Under these assumptions, the Temperley-Lieb algebra TLp(a) is semisimple for
each 0 6 p 6 n, with one irreducible representation Vλ for each partition λ ⊢ p
whose Young diagram has at most two columns. The representation corresponding
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to the partition 1p = (1, . . . , 1) ⊢ p, whose Young diagram is a single column of p
boxes, is

V1p = 1.

The operations of restriction and induction on the modules Vλ are now determined
by the rules

Vλ ↓
TLp

TLp−1

∼=
⊕

µ→֒λ

Vµ, λ ⊢ p

Vλ ↑
TLp

TLp−1

∼=
⊕

λ→֒µ

Vµ, λ ⊢ (p− 1)

where all λ and µ are assumed to have diagrams with at most two columns. Recall
that the notation µ →֒ λ means that the diagram of µ is obtained from that of λ
by deleting a single corner box, and that λ →֒ µ means that the diagram of µ is
obtained from that of λ by adding a single corner box. See Remark 6.1 below for
references.

Proof of Theorem C. For this proof, all partitions are assumed to have diagrams
with at most two columns.

To prove the claim it suffices to identify the isomorphism class [Fn] within the
ring of isomorphism classes of TLn-modules. We have

(−1)n−1[Fn] =
n−1∑

j=−1

(−1)j[W (n)j ].

(This is analogous to the usual relationship between the Euler characteristic of a
chain complex and the Euler characteristic of its homology, and is proved in the
same way, using the fact that because TLn is semisimple, any short exact sequence
of TLn-modules splits.) Observe that

W (n)j = TLn ⊗TLn−j−1
1 = V1n−j−1 ↑TLn

TLn−j−1

so that altogether we have

[Fn] = (−1)n−1

n−1∑

j=−1

(−1)j [V1n−j−1 ↑TLn

TLn−j−1
].

We now identify the induced modules appearing above. Given λ ⊢ n and p 6 n,
let Nλ,p denote the number of SYT for which the labels in the first column begin,
starting from the top, with 1, . . . , p. Observe that if i is in the range 0 6 i 6 n,
then Nλ,i−1−Nλ,i is precisely the number of SYT of shape λ whose second column
has top entry i, and whose first column necessarily has top entries 1, . . . , i− 1.

We claim:

V1p ↑
TLn

TLp

∼=
⊕

λ⊢n

V
⊕Nλ,p

λ
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To see this, we induce V1p up to TLp+1, then TLp+2, and so on. At each stage, the
module will be a direct sum of modules Vλ for various λ, and we will consider each
irreducible summand Vλ to be labelled by an SYT of the relevant shape λ, according
to the following rules. At the initial step, the single summand V1p is labelled by
the unique SYT of shape 1p, which is a single column with labels 1, . . . , p. And as
one passes from one step to the next, we interpret the rule

Vλ ↑
TLm+1

TLm

∼=
⊕

λ→֒µ

Vµ

as saying that when we induce up the module labelled by an SYT Q, we obtain
the sum of the two modules labelled by the SYT obtained from Q by adding a
single box containing (m + 1). Beginning with the unique SYT of shape 1p, and
adding single boxes labelled p + 1, p + 2, . . . , n so that one has an SYT at each
stage, produces precisely one copy of each SYT with n boxes whose first column
starts 1, . . . , p. Compare with Exercise 5 on p.93 of [Ful97]. This proves the claim.

The claim above gives us

[Fn] = (−1)n−1
n−1∑

j=−1

(−1)j[V1n−j−1 ↑TLn

TLn−j−1
]

= (−1)n−1

n−1∑

j=−1

(−1)j
∑

λ⊢n

Nλ,n−j−1[Vλ]

=
∑

λ⊢n

[
n∑

k=0

(−1)kNλ,k

]
[Vλ].

Thus the multiplicity of Vλ in Fn is
∑n

k=0(−1)kNλ,k. If λ 6= 1n, then this multi-
plicity is precisely
∑

i odd, i6n

(Nλ,i−1−Nλ,i) = |{SYT of shape λ with top entry of second column odd}|

as required. (The assumption λ 6= 1n guarantees that Nλ,n = 0, so that a potential
final term in the case of n even does not make a difference.) And if λ = 1n

then Nλ,i = 1 for all i, so that the multiplicity is 0 if n is odd and 1 if n is even,
which agrees with the special convention outlined in the statement. This completes
the proof. �

Remark 6.1 (References for the representation theory of Temperley-Lieb alge-
bras). With the assumptions from the start of the section, Theorem 2.2 of [Wen88]
shows that the Iwahori-Hecke algebraHn(q) is semisimple. Theorem 5.18 of [KT08]
shows that the distinct irreducible modules of Hn(q) are the modules Vλ, one for
each partition λ ⊢ n, with no restriction on the shape. Section 5.7.3 of [KT08]
then shows that TLn(a) is semisimple, with one irreducible representation Vλ for
each partition λ ⊢ n of n whose Young diagram has at most two columns, and
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that these Vλ pull back to the representations of Hn(q) with the same names.
The fact that V1n = 1 can be seen by comparing Examples 5.12(b) and Theo-
rem 5.29 of [KT08]. The rules for induction and restriction of the representa-
tions Vλ of Hn(q) are

Vλ ↓
Hn(q)
Hn−1(q)

∼=
⊕

µ→֒λ

Vµ, λ ⊢ n,

Vλ ↑
Hn(q)
Hn−1(q)

∼=
⊕

λ→֒µ

Vµ, λ ⊢ (n− 1),

again with no restriction on the shape of λ and µ. The first of these rules is
Proposition 5.13 of [KT08], and the second follows by Frobenius reciprocity. From
the first of these we can immediately deduce the stated rule for restriction in the
Temperley-Lieb case, and the rule for induction then follows, again by Frobenius
reciprocity. The assumptions on n stated at the start of this section imply the
analogous assumptions for all p in the range 0 6 p 6 n, so that we can replace n
with any such p throughout this remark.

7. Jacobsthal numbers and the boundary maps of W (n)

In this section we give a combinatorial description of the boundary maps inW (n)
and relate them to the Jacobsthal numbers. We start by recalling the boundary
maps, and the Jacobsthal numbers.

Recall from Definition 3.2 that for i > 0 the boundary map has the following
description

di : W (n)i → W (n)i−1

di : TLn ⊗TLn−i−1
1 → TLn ⊗TLn−i

1

x⊗ r 7→

i∑

j=0

(−1)jdij(x⊗ r)

=

i∑

j=0

(−1)j(x · sn−i+j−1 · · · sn−i)⊗ λ−jr

=

i∑

j=0

(−1)jλ−j(x · (λ− µUn−i+j−1) · · · (λ− µUn−i))⊗ r.

Here there are two possibilities for λ and µ, namely (λ, µ) = (−1, v) or (λ, µ) =
(v2,−v), and note for future reference that µ

λ
= −v and µ

λ
= −v−1 respectively.

The n-th Jacobsthal number Jn [Slo] is (among other things) the number of
compositions of n that end with an odd number. So for example, taking n = 4
the relevant compositions are 31, 13, 211, 121, 1111. The Jacobsthal number Jn

can also be described as the number of sequences n > a1 > a2 > · · · > ar > 0
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whose initial term has the opposite parity to n. These sequences are in one-
to-one correspondence with the compositions. If you label the ‘gaps’ in 1, . . . , n
by 1, . . . , n− 1 the sequence dictates at which gaps one should divide up 1, . . . , n
to obtain the composition. For the above examples, when n = 4, the relevant
sequences are 3, 1, 3 > 2, 3 > 1 and 3 > 2 > 1. (We allow the empty sequence,
and say that by convention its initial term is a1 = 0, and r = 0. Of course this only
occurs when n is odd.) More precisely, the correspondence between compositions
and sequences is as follows: Given a composition c1c2 · · · cr, the corresponding
sequence is n > a1 > · · · > ar−1 > 0 where aj = n − (cr + cr−1 + · · · + cr−j+1).
Observe that the initial term is a1 = n − cr, so that since cr is odd, a1 has the
opposite parity to n.

The Jacobsthal numbers are determined by the recursion Jn = Jn−1 + 2Jn−2

for n > 2, and also satisfy the closed form Jn = 2n−(−1)n

3
. Thus, the compositions

and sequences counted by the Jacobsthal number are about one-third of the total
possible sequences and compositions.

Definition 7.1. Let a = v + v−1 where v ∈ R× is a unit. For every 0 6 l 6 n, we
define the lth Jacobsthal element in TLn(a) as follows:

J n
l =

∑

l>a1>···>ar>0
l−a1 odd

(−1)(r−1)+l
(µ
λ

)r

Ua1+n−l · · ·Uar+n−l

The indices of the Uj which occur vary from (n−(l−1)) to (n−1) and hence are non-
trivial in TLn(a)⊗TLn−(l−1)(a) 1. Recall that we allow the empty sequence (a1 = 0

and r = 0) when l is odd. This corresponds to a constant summand 1 in J n
l for

odd l. Note that the number of irreducible terms in J n
l is Jl. When l = n, mn = 0

and the formula simplifies. We call J n
n the Jacobsthal element, and denote it Jn.

Proof of Theorem D. Firstly we note that the terms appearing in J n
i+1 are non-

zero in TLn ⊗TLn−i
1: the target of di. We consider the cases i odd and i even for

clarity. For ease of notation, let p = n − i − 1. When i is odd, then di is a sum
over an even number of terms, and acts by right multiplication on the left factor
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of x⊗ r by the following element:

i∑

j=0

(−1)jλ−j(λ− µUp+j) · · · (λ− µUp+1)

=

(i−1)/2∑

j=0

(
λ−2j(λ− µUp+2j) · · · (λ− µUp+1)

−λ−2j−1(λ− µUp+(2j+1))(λ− µUp+(2j+1)−1) · · · (λ− µUp+1)
)

=

(i−1)/2∑

j=0

([
λ−2j(λ− µUp+2j) · · · (λ− µUp+1)

−λ−2j−1(λ)(λ− µUp+(2j+1)−1) · · · (λ− µUp+1)
]

+λ−2j−1(µUp+(2j+1))(λ− µUp+(2j+1)−1) · · · (λ− µUp+1)
)

=

(i−1)/2∑

j=0

λ−2j−1µUp+(2j+1)(λ− µUp+(2j+1)−1) · · · (λ− µUp+1)

Here the final equality is given by noting that the terms in the square bracket
cancel out. Substituting k = 2j + 1 gives that di is multiplication by

∑

0<k<i+1
k odd

λ−kµUp+k[(λ− µUp+(k−1)) · · · (λ− µUp+1)]

and multiplying out the terms in the square bracket above gives:
∑

0<k<i+1
k odd

λ−kµUp+k

[
λk−1 +

∑

k>a2>...>ar>0

λk−1−r(−1)r−1µr−1Up+a2 . . . Up+ar

]
.

Let k = a1, and note that since i is odd, then k being odd equates to (i+ 1)− a1
being odd. Putting the two sums in the previous equation together corresponds
to the sequences which enumerate the Jacobsthal compositions. Recall that p =
n− i− 1 = n− (i+1) and since i is odd then multiplication by (−1)(i+1) does not
change the sign. It follows that di is right multiplication on the left of the tensor
product by

J n
i+1 =

∑

i+1>a1>···>ar>0
(i+1)−a1 odd

(−1)(r−1)+(i+1)
(µ
λ

)r

Ua1+n−(i+1) · · ·Uar+n−(i+1).

When i is even, di is a sum over an odd number of terms, and the element which
we left multiply by can be written in a similar fashion to the odd case as follows
(once again fixing p = n− i− 1).
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i∑

j=0

(−1)jλ−j(λ− µUp+j) · · · (λ− µUp+1)

= 1 +

i∑

j=1

(−1)jλ−j(λ− µUp+j) · · · (λ− µUp+1)

= 1−

i/2∑

j=1

λ−2jµUp+2j(λ− µUp+(2j−1)) · · · (λ− µUp+1)).

Substituting k = 2j gives

1−
∑

0<k<i+1
k even

λ−kµUp+k(λ− µUp+(k−1)) · · · (λ− µUp+1))

and we use the computation for i odd to identify this with J n
i+1. We note that

setting k = a1 gives (i+1)−a1 odd, since both i and k are even, and the negative
coefficient of the sum is a consequence of the factor (−1)(i+1). The constant term 1
corresponds to the empty partition, for which we set r = 0 and a1 = 0. �

We now restrict ourselves to a study of the top differential in this setting. Recall
when l = n we call J n

n the Jacobsthal element, and denote it Jn. It is a sum of Jn

terms.
Since Fn is the homology of W (n) in the top degree, it is simply the kernel of the

top differential dn−1 : W (n)n−1 → W (n)n−2. There are identifications W (n)n−1 =
TLn(a)⊗TL0(a) 1

∼= TLn(a) and W (n)n−2
∼= TLn(a)⊗TL1(a) 1

∼= TLn(a).

Proposition 7.2. Under the above identifications, the top differential of W (n) is
right-multiplication by Jn. In particular, there is an exact sequence

0 −→ Fn(a) −→ TLn(a)
−·Jn−−−→ TLn(a).

Proof. This is an application of Theorem D for the case i = n−1, which shows dn−1(x⊗
r) = x · Jn ⊗ r. The identifications above send x ⊗ r to x · r and so under these
the map dn−1 is left multiplication by Jn as described. �
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