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Abstract

We study derangements of {1, 2, . . . , n} under the Ewens distribution with parameter θ.

We give the moments and marginal distributions of the cycle counts, the number of cycles, and

asymptotic distributions for large n. We develop a {0, 1}-valued non-homogeneous Markov chain

with the property that the counts of lengths of spacings between the 1s have the derangement

distribution. This chain, an analog of the so-called Feller Coupling, provides a simple way to

simulate derangements in time independent of θ for a given n and linear in the size of the

derangement.
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1 Introduction

The Ewens Sampling Formula [7] arose in population genetics as the joint probability distribution
of the number of selectively neutral alleles Cj(n) represented j times in a sample of n genes, for
j = 1, 2, . . . , n. For positive integers c1, c2, . . . , cn satisfying

∑n
j=1 jcj = n, we have

Pθ(C1(n) = c1, . . . , Cn(n) = cn) =
n!

θ(n)

n
∏

j=1

(

θ

j

)cj 1

cj!
, (1)

for θ ∈ (0,∞), θ(n) := θ(θ + 1) · · · (θ + n − 1) = Γ(n + θ)/Γ(θ), n ≥ 1 and θ(0) = 1.1 In its original
formulation, θ is a parameter related to the rate at which novel alleles appear. In what follows we
denote the law in (1) by ESF(θ); to simplify the notation, we suppress the θ in Pθ in what follows,
where there is no cause for confusion.

The ESF has been studied extensively, and it arises in many different settings in probability and
statistics. [10, Chapter 41] provides an overview, [3] describes numerous applications in combina-
torics, and [6] provides many other examples. Of particular interest here is its appearance as the
distribution of the cycle counts of a θ-biased permutation. Let π be a permutation of {1, 2, . . . , n}
decomposed as a product of cycles. If π is chosen uniformly with probability 1/n!, then Cauchy’s
formula establishes that the cycle counts (C1(n), . . . , Cn(n)) have the ESF(1) law [9], and if a per-
mutation π having k cycles is chosen with probability proportional to θk, then the cycle counts have
the ESF(θ) law. In this case,

P(π) =
θk

θ(n)
, (2)

if the permutation π has k cycles. See [3, Chapters 1 and 2.5] for more detailed discussion and
history.

1We define θ(−k) = 0, for k ∈ N.
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1.1 Derangements

Students of probability often meet derangements in the context of (versions of) the so-called hat-
check problem [8, Chapter IV]: n diners leave their hats at a restaurant before their meal and hats
are returned at random after the meal. What is the probability that no diner gets back their own
hat? Label the diners 1,2,. . . , n and construct a permutation π by setting πj to be the label of the
diner whose hat was returned to j. The question asks us to evaluate the probability that π has no
singleton cycles, and inclusion-exclusion is typically used to show that the required probability is

P1(C1(n) = 0) =
Dn

n!
=

n
∑

l=0

(−1)l
1

l!
, (3)

where Dn is the nth derangement number, the number of n-permutations with no fixed points. The
cycles of a derangement describe groups of diners who share hats among themselves, with no diner
getting his own. The cycle counts (C̃2(n), . . . , C̃n(n)) of such a derangement have a distribution
determined by

L(C̃2(n), . . . , C̃n(n)) = L(C2(n), . . . , Cn(n)|C1(n) = 0) (4)

The distribution on the right of (4) is determined by ESF(1) for a random permutation, and by
ESF(θ) for the biased case, when (3) is replaced by

λn(θ) := P(C1(n) = 0) =
n!

Γ(n+ θ)

n
∑

j=0

(−1)j
θj

j!

Γ(n+ θ − j)

(n− j)!
, (5)

with λ0(θ) = 1, λ1(θ) = 0.

2 Properties of derangements

In this section we collect some results for derangements obtainable directly from (4).

2.1 Factorial moments of the cycle counts

The falling factorial moments are straightforward to compute. For r2, r3, . . . , rb ≥ 0 with 2r2+ · · ·+
brb = m ≤ n,

λn(θ)E(C̃
[r2 ]
2 · · · C̃

[rb]
b ) =

∑

′ c
[r2]
2 · · · c

[rb]
b

n!

θ(n)

n
∏

j=2

(

θ

j

)cj 1

cj !

=
n!

θ(n)

b
∏

j=2

(

θ

j

)rj θ(n−m)

(n−m)!

∑

′′ (n−m)!

θ(n−m)

b
∏

j=2

(

θ

j

)c′j 1

c′j!

n
∏

j=b+1

(

θ

j

)cj 1

cj !

=
n!

θ(n)

b
∏

j=2

(

θ

j

)rj θ(n−m)

(n−m)!
λn−m(θ),

since the last sum is just the probability that a random permutation of (n−m) objects is a derange-
ment; the sum in

∑

′ is over 2c2 + · · ·+ ncn = n, c2 ≥ r2, . . . , cb ≥ rb, cb+1, . . . , cn ≥ 0, and the sum
∑

′′ is over c′2, . . . , c
′
b, cb+1, . . . , cn ≥ 0 satisfying 2c′2 + · · ·+ bc′b + (b + 1)cb+1 + · · ·+ ncn = n−m.

Hence

E(C̃
[r2]
2 · · · C̃

[rb]
b ) = 1l(m ≤ n)

n!

λn(θ)θ(n)

λ(n−m)(θ)θ(n−m)

(n−m)!

b
∏

j=2

(

θ

j

)rj

. (6)

In particular, for j = 2, . . . , n,

EC̃j(n) =
n!

λn(θ)θ(n)

λ(n−j)(θ)θ(n−j)

(n− j)!

θ

j
. (7)

Note that P(C̃n−1(n) = 0) = 1, and indeed EC̃n−1(n) = 0.
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2.2 Distribution of the cycle counts

To compute the distribution of the cycle counts, suppose that X is a discrete random variable taking
values in {0, 1, 2, . . . , n}, with distribution pl = P(X = l), 0 ≤ l ≤ n. Define

uj = EX [j] =

n
∑

l=j

l[j] pl, j = 1, 2, . . . , n,

where l[j] = l(l − 1) · · · (l − j + 1) and u0 = 1. Inverting this relationship gives

pr =
1

r!

n−r
∑

l=0

(−1)l
1

l!
ur+l =

1

r!

n
∑

i=r

(−1)i−r 1

(i− r)!
ui.

Using the result in (6), choose j ∈ {2, . . . , n}, i ≤ ⌊n/j⌋ and set

ui = EC̃j(n)
[i] =

n!

λn(θ)θ(n)

λ(n−ji)(θ)θ(n−ji)

(n− ji)!

(

θ

j

)i

.

Then for 0 ≤ r ≤ ⌊n/j⌋,

P(C̃j(n) = r) =

(

θ

j

)r
1

r!

n!

λn(θ)θ(n)

×

⌊n/j⌋
∑

i=r

n(−1)i−r 1

(i− r)!

λ(n−ji)(θ)θ(n−ji)

(n− ji)!

(

θ

j

)i−r

. (8)

The special case j = n, r = 1 is used in Section 4.3.1.

Remark 1. Many of these results are well known in the case of random derangements, for which
θ = 1. For example,

P1(C̃2(n) = 0) =
n!

Dn

⌊n/2⌋
∑

i=0

(−1)i
1

i!

(

1

2

)i D(n−2i)

(n− 2i)!
.

The integers
a(n) = Dn P1(C̃2(n) = 0), n = 1, 2, 3, . . .

give the number of derangements of n objects that have all cycles of length at least 3; computing the
first few values gives

a(2) = 0, a(3) = 2, a(4) = 6, a(5) = 24, a(6) = 160, a(7) = 1140, a(8) = 8988, . . . .

It is readily checked that this is (the start of) sequence A038205 in the Online Encyclopedia of Integer
Sequences [15], where other formulae are provided.

2.3 The number of cycles

The distribution of the number of cycles, K̃n, may be found from the fact that the number D(n, k)
of derangements of size n having k cycles is

D(n, k) =

k
∑

l=0

(−1)l
(

n

l

)[

n− l

k − l

]

,
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where
[

n
k

]

is the unsigned Stirling number of the first kind. It follows that

P(K̃n = k) =
1

λn(θ)

∑

π:|π|=k

π a derangement

P(π)

=
1

λn(θ)

∑

π:|π|=k

π a derangement

θk

θ(n)
(from (2))

=
θkD(n, k)

λn(θ)θ(n)
, k = 1, 2, . . . , ⌊n/2⌋. (9)

Note that

λn(θ) =
1

θ(n)

n
∑

k=1

θkD(n, k) =
1

θ(n)

n
∑

l=0

(−1)l
(

n

l

)

θl
n
∑

k=l

θk−l

[

n− l

k − l

]

=
1

θ(n)

n
∑

l=0

(−1)l
(

n

l

)

θlθ(n−l)

=
n!

θ(n)

n
∑

l=0

(−1)l
θl

l!

θ(n−l)

(n− l)!
,

providing a direct validation of (5). K̃n has mean

EK̃n = E(C̃2(n) + · · ·+ C̃n(n)) =
1

λn(θ)

n!

θ(n)

n
∑

j=2

λ(n−j)(θ)
θ(n−j)

(n− j)!

θ

j
(10)

2.4 Properties derived from the Conditioning Relation

ESF(θ) may be represented as the law of independent Poisson random variables Z1, Z2, . . . , Zn with

EZj = xjθ/j for any x > 0, (11)

conditioned on Tn := Z1 + 2Z2 + · · · + nZn = n. This is known as the Conditioning Relation,
and is exploited in the context of combinatorial structures in [3]. The same relationship holds for
derangements too: defining T1n = 2Z2 + · · ·+ nZn, we have

L(C̃2(n), . . . , C̃n(n)) = L(Z2, . . . , Zn | T1n = n). (12)

To see this, note that for c2 ≥ 0, . . . , cn ≥ 0 satisfying 2c2 + · · ·+ ncn = n,

P(C1(n) = 0, C2(n) = c2, . . . , Cn(n) = cn) =

= P(Z1 = 0, Z2 = c2, . . . , Zn = cn | Tn = n)

= P(Z1 = 0, Z2 = c2, . . . , Zn = cn, Z1 + T1n = n) /P(Tn = n)

= P(Z1 = 0)P(Z2 = c2, . . . , Zn = cn | T1n = n)P(T1n = n) /P(Tn = n) (13)

while

P(C1(n) = 0) = P(Z1 = 0 | Tn = n)

= P(Z1 = 0, Tn = n) /P(Tn = n)

= P(Z1 = 0)P(T1n = n) /P(Tn = n) (14)

Dividing (13) by (14) and using (4) establishes (12).
The relationship in (12) means that asymptotic results can be read off from the general theory

in [3]. For example, the C̃j(n) are asymptotically independent Poisson random variables with mean
θ/j, which follows from (6) as well. We note for later use the consequence that

λn(θ) = P(C1(n) = 0)→ Pθ(Z1 = 0) = e−θ, n→∞. (15)
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The largest cycles, when scaled by n have asymptotically the Poisson-Dirichlet law with param-
eter θ. Total variation estimates for the Poisson result also follow from [3], and methods akin to
those in [5] may be used to derive central limit results, for example. We will not pursue this further
here.

3 The Feller Coupling

The Feller Coupling was introduced in [4] as a way to generate the cycles in a growing permutation
one at a time, and it has proved very useful in the study of the asymptotics of properties of the ESF;
[5] illustrates some of these. To describe the Feller Coupling, define independent Bernoulli random
variables ξi satisfying

P(ξi = 1) =
θ

θ + i− 1
, P(ξi = 0) =

i− 1

θ + i− 1
, i ≥ 1. (16)

The cycle counts are determined by the spacings between the 1s in realizations of ξi, i ≥ 1. If we
define

Cj(n) = #j − spacings in 1ξ2ξ3 · · · ξn1, (17)

then

(i) The law of (C1(n), . . . , Cn(n)) is ESF(θ); and

(ii) Zj = Cj(∞) = #j - spacings in 1ξ2ξ3 · · · are independent Poisson-distributed random vari-
ables with EZj = j/θ.

Further details may be found in [4] and [3, Chapter 5].
In the spirit of the Feller Coupling, we will construct a sequence of random variables η1 =

1, η2, η3, . . . with the property that for any n the law of the counts of spacings between the 1s in
1η2η3 · · · ηn1 is precisely that of (4). As might be anticipated, ηn, ηn−1, . . . , η2, η1 = 1 is no longer a
sequence of independent random variables, but rather a Markov chain. We will identify the structure
of this chain, and provide some applications of its use.

3.1 A useful Markov chain

To identify the Markov chain, for j ∈ N let

∆∗
j = {(aj, aj−1, . . . , a1) ∈ {0, 1}

j : aj = 0 and ∄ i < j s.t. ai = ai−1 = 1},

and
∆j = {(aj , aj−1, . . . , a1) ∈ ∆∗

j : a1 = 1}

Note that ∆1 = ∅. Let ξi, i ≥ 1 be the Bernoulli random variables defined in (16), and define

λj(θ) := P((ξj , ξj−1, . . . , ξ1) ∈ ∆j)

=
∑

(rj ,rj−1,...,r1)∈∆j

P(ξj = rj , ξj−1 = rj−1, . . . , ξ1 = r1),

which for j > 1 is the probability that a random j-permutation with parameter θ constructed
according to the Feller Coupling is a derangement; we have seen that λj(θ) is given by (5).

Define R1 = {(1)} and for j ≥ 2,

Rj = {0, 1}
j−1 × {1} = {(a1, . . . , aj) ∈ {0, 1}

j : aj = 1}.

For 1 ≤ i ≤ n and r = (rn, . . . , r1) ∈ Rn, let Ni(r) be the number of i-spacings in the sequence (1 r)
(i.e., the number of sub-patterns 1 0i−1 1 in (1 r)), and define

ρ(a1, . . . , an) = {r = (rn, rn−1, . . . , r1) ∈ Rn : N1(r) = a1, . . . , Nn(r) = an}.
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We seek to construct a random sequence of 0s and 1s, η = (ηn, . . . , η2, η1 = 1) such that if

C̃i(n) := Ni(η), i = 2, . . . , n,

then
P(C̃2(n) = c2, . . . , C̃n(n) = cn) = P(C1(n) = 0, . . . , Cn(n) = cn|C1(n) = 0). (18)

Simplifying the r.h.s. of (18), we have

P(C̃j(n) = cj , 2 ≤ j ≤ n) = P(C1(n) = 0, Cj(n) = cj , 2 ≤ j ≤ n)/P(C1(n) = 0)

= λ−1
n (θ)

∑

(rn,rn−1,...,r1)

∈ρ(0,c2 ,...,cn)

P(ξn = rn, . . . , ξ1 = r1).

Note that if (rn, rn−1, . . . , r1) ∈ ρ(0, c2, . . . , cn), then rn = r2 = 0. This suggests defining ηn, ηn−1, . . . , η2, η1 =
1 with law

P(ηn = rn, . . . , η1 = r1) = P(ξn = rn, . . . , ξ1 = r1 | (ξn, . . . , ξ1) ∈ ∆n)

=

{

λ−1
n (θ)P(ξn = rn, . . . , ξ1 = r1), if (rn, . . . , r1) ∈ ∆n

0, otherwise.

By construction, (C̃2(n), . . . , C̃n(n)) has the law of (C1(n), . . . , Cn(n)) conditioned on C1(n) = 0.
Since ξj are independent random variables, given ηi, the vectors (ηn, ηn−1, . . . , ηi+1) and (ηi−1, . . . , η1)
are independent and hence ηn, ηn−1, . . . , η1 is a Markov chain, starting from ηn+1 = 1.

More explicitly, for 3 ≤ i ≤ n− 1, (rn, rn−1, . . . , ri+2, x) ∈ ∆∗
n−i and y ∈ {0, 1}, let

τi+1(x, y) := P(ηi = y | ηn+1 = 1, ηn = rn, . . . , ηi+2 = ri+2, ηi+1 = x)

=
P(ηn+1 = 1, ηn = rn, . . . , ηi+2 = ri+2, ηi+1 = x, ηi = y)

P(ηn+1 = 1, ηn = rn, . . . , ηi+2 = ri+2, ηi+1 = x)

We compute this for x, y ∈ {0, 1}. Starting with the case x = y = 0, and for 3 ≤ i ≤ n − 1, we
write τi+1(0, 0) = A/B, where

A = λ−1
n (θ)P(ξn+1 = 1, ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)P((ξi, . . . , ξ1) ∈ ∆i)

= λ−1
n (θ)P(ξn+1 = 1, ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)λi(θ)

and

B = λ−1
n (θ)P(ξn+1 = 1, ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)

×{P((ξi, . . . , ξ1) ∈ ∆i) + P(ξi = 1)P((ξi−1, . . . , ξ1) ∈ ∆i−1)}

= λ−1
n (θ)P(ξn+1 = 1, ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)

×

{

λi(θ) +
θ

θ + i− 1
λi−1(θ)

}

so that

τi+1(0, 0) =
λi(θ)

{

λi(θ) +
θ

θ+i−1λi−1(θ)
} .

On the other hand,

P(ηi = 0 | ηi+1 = 0) = P(ηi+1 = 0, ηi = 0)/P(ηi+1 = 0) = C/D,

where

C = λ−1
n (θ)P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)P((ξi, . . . , ξ1) ∈ ∆i)

= λ−1
n (θ)P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)λi(θ)
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and

D = λ−1
n (θ)P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)

×{P((ξi, . . . , ξ1) ∈ ∆i) + P(ξi = 1)P((ξi−1, . . . , ξ1) ∈ ∆i−1)}

= λ−1
n (θ)P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)

{

λi(θ) +
θ

θ + i− 1
λi−1(θ)

}

Hence

P(ηi = 0 | ηi+1 = 0) =
λi(θ)

{

λi(θ) +
θ

θ+i−1λi−1(θ)
} .

Similarly we can deduce that

τi(0, 1) =

θλi−1(θ)
θ+i−1

λi(θ) +
θλi−1(θ)
θ+i−1

= P(ηi = 1 | ηi+1 = 0),

while
τi(1, 1) = 0 = P(ηi = 1 | ηi+1 = 1)

and
τi(1, 0) = 1 = P(ηi = 0|ηi+1 = 1).

We summarise the discussion as follows.

Theorem 1. (i) For each n ≥ 3, the sequence of random variables ηn+1 = 1, ηn, . . . , η2, η1 = 1 is a
non-homogeneous Markov chain with transition matrices

Pr :=

(

P(ηr = 0 | ηr+1 = 0) P(ηr = 1 | ηr+1 = 0)
P(ηr = 0 | ηr+1 = 1) P(ηr = 1 | ηr+1 = 1)

)

given by

Pr =









(θ + r − 1)λr(θ)

(θ + r − 1)λr(θ) + θλr−1(θ)

θλr−1(θ)

(θ + r − 1)λr(θ) + θλr−1(θ)

1 0









, (19)

for r = n− 1, . . . , 3,

P2 =

(

1 0
1 0

)

, P1 =

(

0 1
0 1

)

.

(ii) The counts C̃j(n), j = 2, . . . , n of the j-spacings between consecutive 1s in the sequence
1ηn · · · η21 have joint distribution given by (4).

3.2 The ordered cycles

The η process generates the length of cycles in an n-derangement in order, starting from the artificial
boundary at ηn+1 = 1. Denoting the length of the first cycle by A1(n), we have

P(A1(n) > l) = P(ηn+1 = 1, ηn = 0, . . . , ηn−l+1 = 0)

=

n−1
∏

r=n−l+1

(θ + r − 1)λr(θ)

(θ + r − 1)λr(θ) + θλr−1(θ)
,

which is readily computed. Some numerical illustrations appear in Table 7.

7



When n is large, we have for x ∈ (0, 1)

logP(A1(n) > ⌊nx⌋) = −
n−1
∑

r=n−⌊nx⌋+1

log

(

1 +
θ

θ + r − 1

λr−1(θ)

λr(θ)

)

∼ −θ
n−1
∑

r=n(1−x)

1

θ + r − 1

λr−1(θ)

λr(θ)

∼ −θ

∫ 1

1−x

u−1du = θ log(1 − x),

using (15). It follows that n−1A1(n) has asymptotically a Beta distribution with density θ(1 −
x)θ−1, 0 < x < 1. The joint law of the ordered spacings may be used in a similar way to show
directly that n−1(A1(n), A2(n), . . .) has asymptotically the GEM distribution with parameter θ;
see [3, Chapter 5.4].

4 Simulating derangements

While we have a good understanding of the asymptotics of the distribution of cycle counts, for small
values of n simulation may be a useful approach to answer more detailed questions where explicit
results are hard to find. Simulating derangements for the uniform case (θ = 1) is a classical problem,
and there have been many suggested methods, including [1], [11] and [13] which use a modification
of the Fisher-Yates algorithm for random permutations and a rejection step, and improved by [14].
[12] exploits two different techniques, one based on random restricted transpositions and one on
sequential importance sampling. We are not aware of explicit methods for the case of arbitrary θ,
but the Markov chain approach provides an efficient way to do this.

4.1 Rejection methods

There are at least two such methods. For example, we can use the Feller Coupling to simulate
(C1(n), C2(n), . . . , Cn(n)) from ESF(θ) and take (C̃2(n), . . . , C̃n(n)) = (C2(n), . . . , Cn(n)) as an
observation from (4) if C1(n) = 0. The acceptance probability is λn(θ), which is ≈ e−θ, so this
strategy is slow if θ is large. Indicative results are shown in Table 1.

Table 1: Rejection method. Derangements of size n, estimates based on 10,000 accepted runs.

θ = 0.5 θ = 1.0 θ = 5.0
time accept theory time accept theory time accept theory

n (secs) rate (5) (secs) rate (5) (secs) rate (5)

10 0.38 0.590 0.591 0.62 0.372 0.368 9.58 0.024 0.023
50 1.40 0.607 0.604 2.17 0.372 0.368 86.19 0.010 0.010
250 6.89 0.600 0.606 10.71 0.367 0.368 532.1 0.007 0.007

The Conditioning Relation (12) provides another approach: the naive implementation takes
x = 1 in (11), and simulates independent Poisson random variables Z2, . . . , Zn with EZj = θ/j and

accepts (Z2, . . . , Zn) as an observation of the counts (C̃2(n), . . . , C̃n(n)) if T1n = 2Z2+· · ·+nZn = n.
The acceptance probability is P(T1n = n); for large n, [3, Theorem 4.13] shows that nP(T1n = n) ∼
e−γθ/Γ(θ), where γ is Euler’s constant. We can do much better by adapting the argument in [2,
Section 5] by choosing x = x(n) more carefully: choose c as the solution of the equation θ(1−e−c) = c,
and set x = e−c/n. We then have

nP(T1n = n) ∼ e−γθeu(c)/Γ(θ), n→∞, (20)
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where u(c) = −c + θ
∫ 1

0 v−1(1 − e−cv)dv. The quantity eu(c) is the asymptotic factor by which the
acceptance rate increases compared to the naive rate when x = 1, c = 0. When θ = 5, this is 379.6,
indicating a dramatic speed up over the naive version. Indicative results are shown in Table 2.

Table 2: Conditioning Relation method. Derangements of size n, estimates based on 10,000 accepted
runs. Values of c: -1.256 (θ = 0.5), 0 (θ = 1), 4.965 (θ = 5).

θ = 0.5 θ = 1.0 θ = 5.0
time accept theory time accept theory time accept theory

n (secs) rate (20) (secs) rate (20) (secs) rate (20)

10 2.46 0.059 0.061 2.59 0.055 0.056 4.41 0.032 0.088
50 62.84 0.012 0.012 68.04 0.011 0.011 51.23 0.015 0.018
250 1730 0.002 0.002 1884 0.002 0.002 1223 0.003 0.004

Thus one of these methods is slow for large n, the other for large θ. In contrast, the Markov
chain approach provides a method that is acceptable for large n and θ.

4.2 Simulating derangements via the Markov chain

It is straightforward to use the transition mechanism from Theorem 1 to generate a derangement
from the spacings between the 1s in the Markovian sequence 1ηnηn−1 . . . η21. Indicative results are
shown in Table 3. As anticipated, the run time of the Markov chain method is essentially constant
as a function of θ for a fixed value of n, a property obviously not shared by the rejection methods.
Comparing timings of these methods (which were implemented in R) depends of course on the
details of the code and the computer they are run on, so they should only be viewed as relative. It
is interesting to note that the acceptance rate of the Conditioning Relation method is not monotone
in θ, because of the nature of the conditioning event. The first rejection method is sometimes faster
than the Markov chain method, presumably because of the simpler coding required.

Table 3: Markov chain method. Derangements of size n, estimates based on 10,000 accepted runs.

Run time (secs)
n θ = 0.5 θ = 1.0 θ = 5.0

10 0.686 0.654 0.642
50 4.665 4.636 4.752
250 32.98 32.91 33.57

4.3 Examples

We give four examples of the use of the simulation, for one of which the analytical answer is known,
and for three of which it is not.2

4.3.1 The probability of a single cycle

Since
P(C̃n(n) = 1) = P(Cn(n) = 1 | C1(n) = 0) = P(Cn(n) = 1)/P(C1(n) = 0),

we obtain

P(C̃n(n) = 1) =
n!

θ(n)

θ

n

1

λn(θ)
, (21)

which also follows from (7) because P(C̃n(n) = 1) = EC̃n(n).

2R code for performing the computations described in the paper may be obtained from ST.
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The asymptotics of (21) follow readily, using the fact that n−αΓ(n+α)/Γ(n)→ 1 as n→∞ to
obtain

P(C̃n(n) = 1) ∼ Γ(θ + 1)
( e

n

)θ

, n→∞. (22)

In Table 7 some representative simulated and exact values are shown.

Table 4: Probability that a derangement has a single cycle. Simulations use the Markov chain
method, and estimates are based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0
sim exact asymp sim exact asymp sim exact asymp

n (21) (22) (21) (22) (21) (22)

10 0.476 0.480 0.462 0.270 0.272 0.272 0.021 0.021 0.178
50 0.211 0.208 0.207 0.054 0.054 0.054 5×10−5 3.29×10−5 5.70×10−5

250 0.092 0.093 0.092 0.011 0.011 0.011 0.0 1.62×10−8 1.82×10−8

4.3.2 The probability that all cycle lengths are distinct

This is a variant of the problem discussed in [2], for which there is no easy analytical answer. The
difference between the number of cycles and the number of distinct cycle lengths is

D̃n =

n
∑

j=2

(C̃j(n)− 1)+,

where (x)+ = max(0, x). We want P(D̃n = 0), which can be estimated by simulation.
In [2, eq. (10)] it is shown that for a permutation having the ESF(θ) distribution, the asymptotic

probability that it has no repeated cycle lengths is e−γθ/Γ(θ +1). A modification of that argument
shows that for derangements,

D̃n ⇒ D̃ =
∑

j≥2

(Zj − 1)+,

where the Zj are the familiar independent Poisson random variables with EZj = θ/j, so that

P(D̃n = 0) → P(Zj ≤ 1, j ≥ 2) =
∏

j≥2

e−θ/j(1 + θ/j)

=
1

e−θ(1 + θ)

e−γθ

Γ(θ + 1)
=

e−θ(γ−1)

Γ(θ + 2)
(23)

Some representative values are given in Table 5.

Table 5: P(D̃n = 0), the probability that a derangement has distinct cycle lengths. Simulations
using the Markov chain method, and estimates are based on 100,000 runs. The last row comes from
(23).

n θ = 0.5 θ = 1.0 θ = 5.0

10 0.885 0.774 0.357
50 0.920 0.776 0.091
250 0.927 0.765 0.028
∞ 0.929 0.763 0.012
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4.3.3 The probability that all cycle lengths are even, or odd

The third example is a little more subtle. We want to calculate

αn = P
(

∑

j even

C̃j(n) = 0
)

, βn = P
(

∑

j odd

C̃j(n) = 0
)

,

the probability that a derangement has all odd or all even cycle lengths, respectively. Clearly, if n is
odd then βn = 0. We estimated αn and βn by simulation, and some representative values are given
in Table 6.

Table 6: The probability αn that a derangement of length n has all odd cycle lengths, and the
probability βn that it has all even cycle lengths. Simulations using the Markov chain method, and
estimates are based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0

n αn βn αn βn αn βn

10 0.162 0.777 0.185 0.666 0.071 0.496
11 0.469 0.278 0.062
50 0.173 0.513 0.105 0.306 0.004 0.033
51 0.261 0.114 0.004
250 0.133 0.342 0.049 0.138 9×10−5 8.9×10−4

251 0.160 0.051 6×10−5

4.3.4 The ordered cycle lengths

In Section 3.2 we discussed briefly the size of the first cycle generated by the Markov chain. In
Table 7, we compare some properties of the longest cycle length for different values of n and θ, and
in Table 8 give some monotonicity properties of the ordered lengths. In the Appendix we provide
proofs for some conjectures motivated by the simulation results.

Table 7: Probability on that the largest cycle length is the first, the mean length EA1(n) of the first
cycle, and the mean length EL1(n) of the longest cycle. Simulations use the Markov chain method,
and estimates are based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0
n on EA1(n) EL1(n) on EA1(n) EL1(n) on EA1(n) EL1(n)

10 0.847 7.64 8.16 0.766 6.45 7.17 0.604 3.91 4.79
50 0.775 34.33 38.43 0.652 26.51 32.15 0.356 10.78 16.99
250 0.761 167.8 190.2 0.630 126.70 157.00 0.311 44.27 76.58

Table 8: Probability that a derangement has weakly decreasing ordered cycle lengths (ց) or weakly
increasing ordered cycle lengths (ր). Simulations use the Markov chain method, and estimates are
based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0
n ց ր ց ր ց ր

10 0.833 0.646 0.730 0.475 0.486 0.216
50 0.666 0.287 0.433 0.101 0.023 3.5×10−4

250 0.561 0.130 0.257 0.020 4.2×10−4 0.000
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5 Discussion

Our work was motivated by understanding how the Feller Coupling might be adapted to simulate
derangements under the Ewens Sampling Formula with arbitrary parameter θ. The result is a
{0, 1}-valued non-homogeneous Markov chain ηn+1 = 1, ηn, ηn−1, . . . , η1 = 1 for which the spacings
between the 1s in 1ηnηn−1 · · · η1 produce the ordered cycle sizes of a θ-biased derangement of length
n. For the uniform case, the method described in [14] may also be described as a Markov chain
(although it was not in that paper), and its transition matrix reduces to that in (19) when θ = 1;
it is interesting to note that its construction differs dramatically from ours. The general method is
compared to two other rejection-based methods, and shown to behave well.

We have focused here on the behavior of counts of cycle lengths, but the sequence ηn, ηn−1, . . . , η1 =
1 may be used to generate the ordered permutation itself by a simple auxiliary randomisation [3,
Chapter 5]: The first cycle starts with the integer 1, integers being chosen uniformly from the avail-
able unused integers at each ηi = 0, and closing the growing cycle and starting a new cycle with the
smallest available integer at each ηi = 1. Probabilities associated with particular ordered cycle sizes
may be computed from the Markov chain, and asymptotic properties of these lengths also follow
directly.

Our chain does not generate derangements of size n+ 1 from one of size n, a property satisfied
by the Feller Coupling (see the discussion after (17)). Rather, the chain produces a derangement
for a given value of n, and needs to be re-run to generate one of size n+ 1.

Finally, we note that the Markov chain approach may be adapted to deal with other restricted
patterns in the cycle lengths, such as requiring all cycles to have length at least l, or no cycles of
length two or four.
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A Monotonicity proofs

This appendix provides analytical proofs for some of what has been observed in the simulation
studies described in Section 4.3. More precisely, we prove αn < βn for n = 2b, and show that the
probability of having A1(n) ≥ A2(n) ≥ . . . ≥ AK̃n

(n) is strictly greater than the probability of
A1(n) ≤ A2(n) ≤ . . . ≤ AK̃n

(n) for n ≥ 5.

For i = 4, . . . , n− 1, the shift operator, denoted by S
(n)
i : ∆n −→ ∆n, is defined as follows. For

any r = (rn, rn−1, . . . , r1) ∈ ∆n with ri = 1 and ri−2 = 0,

S
(n)
i (r) = Si(r) = (rn, . . . , ri+1, 0, 1, 0, ri−3, . . . , r1).

Let S
(n)
i = Si(r) = r for any other r ∈ ∆n. In other words, Si shifts 1 at position i of r to position

i − 1, provided to not have a 1 at position i − 2. Let Y (n) = (Y
(n)
n+1 = 1, Y

(n)
n , Y

(n)
n−1, . . . , Y

(n)
1 ) be a

{0, 1}−valued Markov chain with transition probability matrix

(

P(Y
(n)
i = 0 | Y

(n)
i+1 = 0) P(Y

(n)
i = 1 | Y

(n)
i+1 = 0)

P(Y
(n)
i = 0 | Y

(n)
i+1 = 1) P(Y

(n)
i = 1 | Y

(n)
i+1 = 1)

)

=

(

pi qi
1 0

)

,

where qi = 1− pi, for i = 3, .., n, and Y
(n)
2 = 0, Y

(n)
1 = 1.

Lemma 1. For 4 ≤ i ≤ n − 1, let r = (rn, . . . , r1) ∈ ∆n with ri = 1 and ri−2 = 0. Then
P(Y = Si(r)) > P(Y = r) if and only if piqi−1/pi−2qi > 1.

From now on, we suppose for the chain Y , we have piqi−1/pi−2qi > 1 for any 4 ≤ i ≤ n − 1.
Then it is not hard to see that for n ≥ 2k, conditioned on having exactly k cycles (i.e. k + 1 1’s in
Y (n)), the most likely outcome of Y (n) is 10n−2k+11(01)k−1 and the one with the minimum chance
of happening is 1(01)k−10n−2k+11.

For r = (rn, rn−1, . . . , r1) ∈ ∆n, denote by |r| the number of 1s in r or the number of indices
i for which ri = 1, and let σ1(r) be the biggest i < n + 1 for which ri = 1. Then by induction,
for j = 2, . . . , |r|, let σj(r) be the biggest index i < σj−1(r) such that ri = 1. For convenience let
σ0(r) = n+ 1 and note that σ|r|(r) = 1 always.

Lemma 2. Let 4 ≤ i ≤ n− 1 and r = (rn, rn−1, . . . , r1) ∈ ∆n such that ri = 1 and ri−2 = 0. Then

P(η = Si(r)) > P(η = r).

Proof.

P(η = Si(r))

P(η = r)
=

P(ηi = 0 | ηi+1 = 0)P(ηi−1 = 1 | ηi = 0)

P(ηi−2 = 0 | ηi−1 = 0)P(ηi = 1 | ηi+1 = 0)

=

1
θ+i−2 .

λi(θ)

λi−1(θ)+
θ

θ+i−2λi−2(θ)

1
θ+i−1 .

λi−1(θ)

λi−2(θ)+
θ

θ+i−3λi−3(θ)

=
1

θ+i−2 .
i−1

θ+i−1
1

θ+i−1 .
i−2

θ+i−2

=
i− 1

i− 2
> 1.

(24)

since λi(θ) =
i−1

θ+i−1

(

λi−1(θ) +
θ

θ+i−2λi−2(θ)
)

, for i ≥ 3.

Remark 2. Note that we could easily use the conditional relation between η and ξ to prove Lemma 2.
Namely, for r ∈ ∆n with ri = 1, ri−2 = 0, the left hand side of Equality (24) is equal to

P(ξ = Si(r))

P(ξ = r)
=

P(ξi = 0)P(ξi−1 = 1)

P(ξi = 1)P(ξi−1 = 0)
=

i− 1

i− 2
.
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Using multiple shifting or directly from the conditional relation of ξ and η, it is trivial to conclude
the following proposition.

Proposition 1. Let r, r′ ∈ ∆n with |r| = |r′| = b. Then

P(η = r)

P(η = r′)
=

P(ξ = r)

P(ξ = r′)
=

b−1
∏

j=1

σj(r
′)− 1

σj(r) − 1

Note that the proportion in the statement of Proposition 1 does not depend on θ.
We say a sequence r = (rn, . . . , r1) ∈ ∆n is even if for any i = 1, . . . , |r|, σi−1(r) − σi(r) is even.

Similarly, r is odd if for any i = 1, . . . , |r|, σi−1(r) − σi(r) is odd. In other words, the length of all
cycles in an even (odd, respectively) sequence is even (odd, respectively). We denote by En and On

the set of all even elements and odd elements of ∆n, respectively. Also, let

E ′n = {r ∈ En : ∃i = 0, . . . , ⌊(|r| − 1)/2⌋ s.t. σ2i(r)− σ2i+1(r) = 2}.

This means that for a sequence r ∈ E ′n, the 2i + 1-st spacing between 1s (i.e. 2i + 1-st cycle) in r,
for at least one i in {1, . . . , ⌊(|r| − 1)/2⌋} has length 2. Let n = 2b, and for k ≤ b denote

En,k = {r ∈ En : |r| = k}

E ′n,k = {r ∈ E ′n : |r| = k}

On,k = {r ∈ On : |r| = k}

For l ≤ ⌊b/2⌋, the shift mapping provides a one-one correspondence between En,2l \ E ′n,2l and On,2l.
More precisely, by shifting 1s at positions σ2i+1(r) of r ∈ On,2l, for i = 0, 1, . . . , l − 1, to their right
we get an element r′ ∈ En,2l \ E

′
n,2l, and by shifting 1s at position σ2i+1(r

′) of r′ ∈ En,2l \ E
′
n,2l, for

i = 0, 1, 2, . . . , l − 1, to their left we get r. In other words,

r′ = Sσ2l−1(r) ◦ · · · ◦ Sσ3(r) ◦ Sσ1(r)(r).

For example 100100100100001 ∈ O14,4 is mapped into 100010100010001 ∈ E14,4 \ E
′
14,4. Lemma 1

implies P(Y (n) = r′) > P(Y (n) = r). On the other hand, On,2l+1 is empty for l ∈ Z+. This leads us
to P(Y (n) ∈ En) > P(Y (n) ∈ On), for n = 2b.

In particular, βn = P(η ∈ En) > αn = P(η ∈ On). In fact, we can say more about the relation of
βn and αn.

Theorem 2. Let n = 2b. Then P(Y (n) ∈ En) > P(Y (n) ∈ On). Furthermore, letting un be the

number of 1s in Y
(n)
n , . . . , Y

(n)
1 ,

P(Y (n) ∈ En)− P(Y (n) ∈ E ′n, un is even)− P(Y (n) ∈ En, un is odd) =
∑

r∈On

ϕ(r)P(Y (n) = r),

where

ϕ(r) =

⌊ |r|
2 ⌋−1
∏

i=0

pσ2i+1(r)qσ2i+1(r)−1

qσ2i+1(r)pσ2i+1(r)−2
> 1.

Proof. From the discussion above and Lemma 1 for l ≤ ⌊b/2⌋, r ∈ On,2l, r
′ = Sσ2l−1(r) ◦ · · · ◦Sσ3(r) ◦

Sσ1(r)(r),

ϕ(r) =
P(Y (n) = r′)

P(Y (n) = r)
=

⌊ |r|
2 ⌋−1
∏

i=0

pσ2i+1(r)qσ2i+1(r)−1

qσ2i+1(r)pσ2i+1(r)−2
> 1.

Therefore,

P(Y (n) ∈ En,2l \ E
′
n,2l) =

∑

r∈On,2l

ϕ(r)P(Y (n) = r).

Noting that On,2l+1 is empty for l ∈ Z+, and summing two sides of the above equation over l ≤ ⌊b/2⌋
finishes the proof.
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The following is an immediate consequence of the last theorem.

Theorem 3. Let n = 2b. Then αn < βn. Furthermore,

βn − P(η ∈ E ′n, K̃n even)− P(η ∈ En, K̃n odd) =
∑

r∈On





⌊ |r|
2 ⌋−1
∏

i=0

σ2i+1(r) − 1

σ2i+1(r) − 2



P(η = r).

A sequence r ∈ ∆n is weakly increasing (weakly decreasing, respectively) if for any l = 1, .., |r|−1,
σl−1(r) − σl(r) ≤ σl(r) − σl+1(r) (σl−1(r) − σl(r) ≥ σl(r) − σl+1(r), respectively). The set of all
increasing (decreasing, respectively) sequences in ∆n is denoted by Λ1(n) (Λ2(n), respectively).
Note that Λ1(n) = Λ2(n) = ∆n for n = 2, 3, 4. The simulation results in Table 8 suggest that
P(η ∈ Λ1(n)) is significantly smaller than P(η ∈ Λ2(n)). To prove this, let us define the inversion
operator r ∈ ∆ 7→ ←−r by reversing r, that is let←−r i = rn+2−i, for i = 1, . . . , n+1. It is clear that the
inversion operator induces a bijection on ∆n, and r ∈ ∆n is weakly increasing if only if ←−r is weakly
decreasing, that means the inversion operator also induces a bijection from Λ1(n) to Λ2(n). From
Lemmas 1 and 2, for n ≥ 5 and r ∈ Λ1(n),

P(Y (n) =←−r ) > P(Y (n) = r)

and in particular,
P(η =←−r ) > P(η = r).

Moreover, Proposition 1 implies

P(η =←−r )

P(η = r)
=

|r|−1
∏

i=1

σi(r) − 1

σi(
←−r )− 1

=

|r|−1
∏

i=1

σi(r) − 1

n+ 1− σi(r)
.

Theorem 4. For n ≥ 5, we have

P(Y (n) ∈ Λ2(n)) > P(Y (n) ∈ Λ1(n)).

In particular,
P(η ∈ Λ2(n)) > P(η ∈ Λ1(n))

and

P(η ∈ Λ2(n)) =
∑

r∈Λ1(n)





|r|−1
∏

i=1

σi(r) − 1

n+ 1− σi(r)



P(η = r).
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