# On The Log-Concavity of Polygonal Figurate Number Sequences 

Fekadu Tolessa Gedefa<br>Department of Mathematics, Salale University<br>Fiche, Ethiopia<br>e-mail: fekadu_tolessa@slu.edu.et


#### Abstract

This paper presents the log-concavity of the $m$-gonal figurate number sequences. The author gives and proves the recurrence formula for $m$-gonal figurate number sequences and its corresponding quotient sequences which are found to be bounded. Finally, the author also shows that for $m \geq 3$, the sequence $\left\{S_{n}(m)\right\}_{n \geq 1}$ of $m$-gonal figurate numbers is a log-concave.


Keywords: Figurate Numbers, Log-Concavity, $m$-gonal, Number Sequences.
AMS Classification: 11B37, 11B75, 11B99.

## 1 Introduction

Figurate numbers, as well as a majority of classes of special numbers, have long and rich history. They were introduced in Pythagorean school as an attempt to connect Geometry and Arithmetic [1]. A figurate number is a number that can be represented by regular and discrete geometric pattern of equally spaced points [2]. It may be, say, a polygonal, polyhedral or polytopic number if the arrangement form a regular polygon, a regular polyhedron or a regular polytope, respectively. In particular, polygonal numbers generalize numbers which can be arranged as a triangle(triangular numbers), or a square (square numbers), to an $m$-gon for any integer $m \geq 3$ [3].
Some scholars have been studied the log-concavity(or log-convexity) of different numbers sequences such as Fibonacci and Hyperfibonacci numbers, Lucas and Hyperlucas numbers, Bell numbers,Hyperpell numbers, Motzkin numbers, Fine numbers, Franel numbers of order 3 and 4, Apéry numbers, Large Schröder numbers, Central Delannoy numbers, Catalan-Larcombe-French numbers sequences, and so on. See for instance [4, 5, 6, 7, 8, 9, 10, 11, 12].
To the best of the author's knowledge, among all the aforementioned works on the log-concavity and log-convexity of numbers sequences, no one has studied the log-concavity(or log-convexity) of $m$-gonal figurate number sequences. Hence this paper presents the log-concavity behavior of $m$-gonal figurate number sequences.
The paper is structured as follows. Definitions and mathematical formulations of figurate numbers are provided in Section 2. Section 3 focuses on the log-concavity of figurate number sequences, and Section 4 is about the conclusion.

## 2 Definitions and Formulas of Figurate Numbers

In [1, 2, 3], some properties of figurate numbers are given. In this paper we continue discussing the properties of $m$-gonal figurate numbers. Now we recall some definitions involved in this paper.

Definition 2.1. Let $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. Iffor all $j \geq 1, s_{j}^{2} \geq s_{j-1} s_{j+1}\left(s_{j}^{2} \leq\right.$ $s_{j-1} s_{j+1}$ ), the sequence $\left\{s_{n}\right\}_{n \geq 0}$ is called a log-concave(or a log-convex).

Definition 2.2. Let $\left\{s_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers. The sequence $\left\{s_{n}\right\}_{n \geq 0}$ is log-concave(log-convex) if and only if its quotient sequence $\left\{\frac{s_{n+1}}{s_{n}}\right\}_{n \geq 0}$ is non-increasing(nondecreasing).

Log-concavity and log-convexity are important properties of combinatorial sequences and they play a crucial role in many fields for instance economics, probability, mathematical biology, quantum physics and white noise theory $[13,4,14,15,16,17,18,19,12]$.
Now we are going to consider the sets of points forming some geometrical figures on the plane. Starting from a point, add to it two points, so that to obtain an equilateral triangle. Six-points equilateral triangle can be obtained from three-points triangle by adding to it three points; adding to it four points gives ten-points triangle, etc.. Then organizing the points in the form of an equilateral triangle and counting the number of points in each such triangle, one can obtain the numbers $1,3,6,10,15,21,28,36,45,55, \cdots$, OEIS(Sloane's A000217), which are called triangular numbers, see [20, 21, 22, 23]. The $n^{\text {th }}$ triangular number is given by the formula

$$
\begin{equation*}
S_{n}=\frac{n(n+1)}{2}, n \geq 1 \tag{1}
\end{equation*}
$$

Following similar procedure, one can construct square, pentagonal, hexagonal,heptagonal,octagonal, nonagonal,decagonal numbers, . .., m-gonal numbers if the arrangement forms a regular $m$-gon [1]. The $n^{\text {th }}$ term $m$-gonal number denoted by $S_{n}(m)$ is the sum of the first $n$ elements of the arithmetic progression

$$
\begin{equation*}
1,1+(m-2), 1+2(m-2), 1+3(m-2), \ldots, m \geq 3 \tag{2}
\end{equation*}
$$

Lemma 2.3 ([1]). For $m \geq 3$ and $n \geq 1$, the $n^{\text {th }}$ term of m-gonal figurate number is given by

$$
\begin{equation*}
S_{n}(m)=\frac{n}{2}[(m-2) n-m+4] \tag{3}
\end{equation*}
$$

Proof. To prove (3), it suffices to find the sum of the first $n$ elements of (2). Hence the first $n$ elements of the arithmetic progression given in (2) is:

$$
1,1+(m-2), 1+2(m-2), 1+3(m-2), \ldots, 1+(n-1)(m-2), \forall m \geq 3
$$

Since the sum of the first $n$ elements of an arithmetic progression $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ is equal to
$\frac{n}{2}\left[s_{1}+s_{n}\right]$, it follows that

$$
\begin{aligned}
S_{n}(m) & =\frac{n}{2}\left[s_{1}+s_{n}\right] \\
& =\frac{n}{2}[1+(1+(n-1)(m-2))] \\
& =\frac{n}{2}[2+(m-2) n-m+2] \\
& =\frac{n}{2}[(m-2) n-m+4] \quad \text { or } \\
S_{n}(m) & =\left(\frac{m-2}{2}\right)\left[n^{2}-n\right]+n
\end{aligned}
$$

This completes the proof.
Lemma 2.4 ([[1]). For $m \geq 3$ and $n \geq 1$,the following recurrence formula for $m$-gonal numbers hold:

$$
\begin{equation*}
S_{n+1}(m)=S_{n}(m)+(1+(m-2) n), S_{1}(m)=1 . \tag{4}
\end{equation*}
$$

Proof. By definition, we have
$S_{n}(m)=1+(1+(m-2))+(1+2(m-2))+\cdots+(1+(m-2)(n-2))+(1+(m-2)(n-1))$
It follows that
$S_{n+1}(m)=1+(1+(m-2))+(1+2(m-2))+\cdots+(1+(m-2)(n-1))+(1+(m-2) n)$ $S_{n+1}(m)=S_{n}(m)+(1+(m-2) n)$.

Thus,for $m \geq 3$ and $n \geq 1$,

$$
S_{n+1}(m)=S_{n}(m)+(1+(m-2) n), S_{1}(m)=1 .
$$

## 3 Log-Concavity of $m$-gonal Figurate Number Sequences

In this section, we state and prove the main results of this paper.
Theorem 3.1. For $m \geq 3$ and $n \geq 3$,the following recurrence formulas for $m$-gonal number sequences hold:

$$
\begin{equation*}
S_{n}(m)=R(n) S_{n-1}(m)+T(n) S_{n-2}(m) \tag{5}
\end{equation*}
$$

with the initial conditions $S_{1}(m)=1, S_{2}(m)=m$ and the recurrence of its quotient sequence is given by

$$
\begin{equation*}
x_{n-1}=R(n)+\frac{T(n)}{x_{n-2}} \tag{6}
\end{equation*}
$$

with the initial conditions $x_{1}=m$, where

$$
R(n)=\frac{m+2(n-2)(m-2)}{1+(n-2)(m-2)}
$$

and

$$
T(n)=-\frac{m-1+(n-2)(m-2)}{1+(n-2)(m-2)}
$$

Proof. By Lemma 2.4, we have

$$
\begin{equation*}
S_{n+1}(m)=S_{n}(m)+(1+(m-2) n) \tag{7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
S_{n+2}(m)=S_{n+1}(m)+(m-1+(m-2) n) \tag{8}
\end{equation*}
$$

Rewriting (7) and (8) for $n \geq 3$, we have

$$
\begin{align*}
S_{n-1}(m) & =S_{n-2}(m)+(1+(m-2)(n-2))  \tag{9}\\
S_{n}(m) & =S_{n-1}(m)+(m-1+(m-2)(n-2)) \tag{10}
\end{align*}
$$

Multiplying (9) by $m-1+(m-2)(n-2)$ and (10) by $1+(m-2)(n-2)$, and subtracting as to cancel the non homogeneous part, one can obtain the homogeneous second-order linear recurrence for $S_{n}(m)$ :
$S_{n}(m)=\left[\frac{m+2(n-2)(m-2)}{1+(n-2)(m-2)}\right] S_{n-1}(m)-\left[\frac{m-1+(n-2)(m-2)}{1+(n-2)(m-2)}\right] S_{n-2}(m), \forall n, m \geq 3$.
By denoting

$$
\frac{m+2(n-2)(m-2)}{1+(n-2)(m-2)}=R(n)
$$

and

$$
-\frac{m-1+(n-2)(m-2)}{1+(n-2)(m-2)}=T(n)
$$

one can obtain

$$
\begin{equation*}
S_{n}(m)=R(n) S_{n-1}(m)+T(n) S_{n-2}(m), \forall n, m \geq 3 \tag{11}
\end{equation*}
$$

with given initial conditions $S_{1}(m)=1$ and $S_{2}(m)=m$.
By dividing (11) through by $S_{n-1}(m)$, one can also get the recurrence of its quotient sequence $x_{n-1}$ as

$$
\begin{equation*}
x_{n-1}=R(n)+\frac{T(n)}{x_{n-2}}, n \geq 3 \tag{12}
\end{equation*}
$$

with initial condition $x_{1}=m$.
Lemma 3.2. For $m \geq 3$, the $m$-gonal figurate number sequence $\left\{S_{n}(m)\right\}_{n \geq 1}$, let $x_{n}=\frac{S_{n+1}(m)}{S_{n}(m)}$ for $n \geq 1$. Then we have $1<x_{n} \leq m$ for $n \geq 1$.
Proof. It is clear that

$$
x_{1}=m, x_{2}=3-\frac{3}{m}, x_{3}=2-\frac{2}{3(m-1)}>1, \text { for } m \geq 3 .
$$

Assume that $x_{n}>1$ for all $n \geq 3$. It follows from (12) that

$$
\begin{equation*}
x_{n}=\frac{m+2(n-1)(m-2)}{1+(n-1)(m-2)}-\frac{m-1+(n-1)(m-2)}{(1+(n-1)(m-2)) x_{n-1}}, n \geq 2 \tag{13}
\end{equation*}
$$

For $n \geq 3$, by (13), we have

$$
\begin{align*}
x_{n+1}-1 & =\frac{m-1+n(m-2)}{1+n(m-2)}-\frac{m-1+n(m-2)}{1+n(m-2)) x_{n}}  \tag{14}\\
& =\frac{\left.(m-1+n(m-2)) x_{n}-(n(m-2)+m-1)\right)}{(1+n(m-2)) x_{n}}  \tag{15}\\
& =\frac{(m-1+n(m-2))\left(x_{n}-1\right)}{(1+n(m-2)) x_{n}}  \tag{16}\\
& >0 \text { for } m \geq 3 .
\end{align*}
$$

Hence $x_{n}>1$ for $n \geq 1$ and $m \geq 3$.
Similarly, it is known that

$$
\begin{equation*}
x_{1}=m, x_{2}=3-\frac{3}{m}, x_{3}=2-\frac{2}{3(m-1)}<m, \text { for } m \geq 3 . \tag{17}
\end{equation*}
$$

Assume that $x_{n} \leq m$ for all $n \geq 3$. It follows from (12) that

$$
\begin{equation*}
x_{n}=\frac{m+2(n-1)(m-2)}{1+(n-1)(m-2)}-\frac{m-1+(n-1)(m-2)}{(1+(n-1)(m-2)) x_{n-1}}, n \geq 2 \tag{18}
\end{equation*}
$$

For $n \geq 3$, by (18), we have

$$
\begin{align*}
x_{n+1}-m & =-\frac{n(m-2)^{2}}{1+n(m-2)}-\frac{m-1+n(m-2)}{1+n(m-2)) x_{n}}  \tag{19}\\
& =-\frac{\left.n(m-2)^{2} x_{n}+n(m-2)+m-1\right)}{(1+n(m-2)) x_{n}}  \tag{20}\\
& <-\frac{\left.n(m-2)^{2}+n(m-2)+m-1\right)}{(1+n(m-2)) x_{n}}  \tag{21}\\
& =-\frac{n(m-2)(2 m-3)}{(1+n(m-2)) x_{n}}  \tag{22}\\
& <0 \text { for } m \geq 3 .
\end{align*}
$$

Hence $x_{n} \leq m$ for $n \geq 1$ and $m \geq 3$.
Thus, in general, from the above two cases it follows that $1<x_{n} \leq m$ for $n \geq 1$ and $m \geq 3$.
Lemma 3.3 ([15]). Let $\left\{A_{n}\right\}_{n \geq 0}$ be a sequence of positive real numbers given by the recurrence

$$
A_{n}=R(n) A_{n-1}+T(n) A_{n-2}, n \geq 2
$$

with given initial conditions $A_{0}, A_{1}$ and $\left\{x_{n}\right\}_{n \geq 1}$ its quotient sequence, given by

$$
x_{n}=R(n)+\frac{T(n)}{x_{n-1}}, n \geq 2
$$

with initial condition $x_{1}=\frac{A_{1}}{A_{0}}$. If there is $n_{0} \in \mathbb{N}$ such that $x_{n_{0}} \geq x_{n_{0}+1}, R(n) \geq 0, T(n) \leq 0$, and

$$
\Delta R(n) x_{n-1}+\Delta T(n) \leq 0
$$

for all $n \geq n_{0}$, then the sequence $\left\{A_{n}\right\}_{n \geq n_{0}}$ is a log-concave.
Theorem 3.4. For all $m \geq 3$, the sequence $\left\{S_{n}(m)\right\}_{n \geq 1}$ of m-gonal figurate numbers is a logconcave.

Proof. Let $\left\{S_{n}(m)\right\}_{n \geq 1}$ be a sequence of $m$-gonal figurate numbers given by the recurrence (5) and let $\left\{x_{n}\right\}_{n \geq 1}$ be its quotient sequence given by (6).
In order to prove the log-concavity of $\left\{S_{n}(m)\right\}_{n>1}$ for all $m \geq 3$, by Lemma3.3, we only need to show that $\left\{x_{n}\right\}_{n \geq 1}$ is non-increasing, $R(n) \geq \overline{0}, T(n) \leq 0$, and

$$
\Delta R(n) x_{n-2}+\Delta T(n) \leq 0
$$

for all $n \geq 3$.
By (11), since $R(n) \geq 0$ and $T(n) \leq 0$, for $m, n \geq 3$, assume, inductively that $x_{1} \geq x_{2} \geq x_{3} \geq$ $\cdots \geq x_{n-2} \geq x_{n-1}$.
Expressing $x_{n}$ from (6) and taking in to account that $\frac{T(n+1)}{x_{n-1}} \leq \frac{T(n+1)}{x_{n-2}}$, one can obtain

$$
\begin{equation*}
x_{n}=R(n+1)+\frac{T(n+1)}{x_{n-1}} \leq R(n+1)+\frac{T(n+1)}{x_{n-2}} \tag{23}
\end{equation*}
$$

Now, we need to show that $x_{n} \leq x_{n-1}$. To show this, consider

$$
\begin{equation*}
R(n+1)+\frac{T(n+1)}{x_{n-2}} \leq R(n)+\frac{T(n)}{x_{n-2}}=x_{n-1} \tag{24}
\end{equation*}
$$

Hence from (23) and (24), we can conclude that the quotient sequence $\left\{x_{n}\right\}_{n \geq 1}$ is non-increasing. It follows from (24) that

$$
\begin{equation*}
[R(n+1)-R(n)] x_{n-2}+T(n+1)-T(n) \leq 0 \tag{25}
\end{equation*}
$$

By denoting $R(n+1)-R(n)=\Delta R(n)$ and $T(n+1)-T(n)=\Delta T(n)$, we get the compact expression for (25) as:

$$
\Delta R(n) x_{n-2}+\Delta T(n) \leq 0, \forall n \geq 3
$$

Thus, by Lemma 3.3, the sequence $\left\{S_{n}(m)\right\}_{n \geq 1}$ of $m$-gonal figurate numbers is a log-concave for $m \geq 3$.
This completes the proof of the theorem.

## 4 Conclusion

In this paper, we have discussed the log-behavior of $m$-gonal figurate number sequences. We have also proved that for $m \geq 3$, the sequence $\left\{S_{n}(m)\right\}_{n \geq 1}$ of $m$-gonal figurate numbers is a log-concave.

## Acknowledgements

The author is grateful to the anonymous referees for their valuable comments and suggestions.

## References

[1] E. Deza and M. Deza, Figurate numbers. World Scientific, 2012.
[2] J. Hartman, Figurate numbers, The Mathematics Teacher, vol. 69, pp. 47-50, 1976.
[3] C. Weaver, Figurate numbers., Mathematics Teacher, vol. 67, no. 7, pp. 661-666, 1974.
[4] M. Ahmiaab, H. Belbachirb, and A. Belkhirb, The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences, in Annales Mathematicae et Informaticae, vol. 43, pp. 3-12, 2014.
[5] M. Aigner, Motzkin numbers, European Journal of Combinatorics, vol. 19, no. 6, pp. 663675, 1998.
[6] E. Deutsch and L. Shapiro, A survey of the fine numbers, Discrete Mathematics, vol. 241, no. 1, pp. 241-265, 2001.
[7] I. Gessel, Some congruences for apéry numbers, Journal of Number Theory, vol. 14, no. 3, pp. 362-368, 1982.
[8] S. F. Santana and J. Diaz-Barrero, Some properties of sums involving pell numbers, Missouri Journal of Mathematical Sciences, vol. 18, no. 1, pp. 33-40, 2006.
[9] Z.-W. Sun, On delannoy numbers and schröder numbers, Journal of Number Theory, vol. 131, no. 12, pp. 2387-2397, 2011.
[10] Z.-W. Sun, Congruences for franel numbers, Advances in Applied Mathematics, vol. 51, no. 4, pp. 524-535, 2013.
[11] N. J. Sloane et al., The On-line Encyclopedia of Integer Sequences, 2003.
[12] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci, vol. 576, no. 1, pp. 500-535, 1989.
[13] N. Asai, I. Kubo, and H.-H. Kuo, Roles of log-concavity, log-convexity, and growth order in white noise analysis, Infinite Dimensional Analysis, Quantum Probability and Related Topics, vol. 4, no. 01, pp. 59-84, 2001.
[14] N. Asai, I. Kubo, and H.-H. Kuo, Bell numbers, log-concavity, and log-convexity, 1999.
[15] T. Došlic, Log-balanced combinatorial sequences, International journal of mathematics and mathematical sciences, vol. 2005, no. 4, pp. 507-522, 2005.
[16] L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Advances in Applied Mathematics, vol. 39, no. 4, pp. 453-476, 2007.
[17] Y. Wang and Y.-N. Yeh, Log-concavity and lc-positivity, Journal of Combinatorial Theory, Series A, vol. 114, no. 2, pp. 195-210, 2007.
[18] F.-Z. Zhao, The log-behavior of the catalan-larcombe-french sequence, International Journal of Number Theory, vol. 10, no. 01, pp. 177-182, 2014.
[19] L.-N. Zheng, R. Liu, and F.-Z. Zhao, On the log-concavity of the hyperfibonacci numbers and the hyperlucas numbers, Journal of Integer Sequences, vol. 17, no. 2, p. 3, 2014.
[20] J. Bell, Euler and the pentagonal number theorem, arXiv preprint math/0510054, 2005.
[21] K. Ono, S. Robins, and P. T. Wahl, On the representation of integers as sums of triangular numbers, aequationes mathematicae, vol. 50, no. 1-2, pp. 73-94, 1995.
[22] M. Olson et al., Triangular numbers: The building blocks of figurate numbers., Mathematics Teacher, vol. 76, no. 8, pp. 624-25, 1983.
[23] M. Wunderlich, Certain properties of pyramidal and figurate numbers, Mathematics of Computation, vol. 16, no. 80, pp. 482-486, 1962.

