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Abstract

This paper continues the analysis of the pattern-avoiding sorting ma-
chines recently introduced by Cerbai, Claesson and Ferrari [CCF]. These
devices consist of two stacks, through which a permutation is passed in
order to sort it, where the content of each stack must at all times avoid a
certain pattern. Here we characterize and enumerate the set of permutations
that can be sorted when the first stack is 132-avoiding, solving one of the
open problems proposed in [CCF]. To that end we present several connec-
tions with other well known combinatorial objects, such as lattice paths and
restricted growth functions (which encode set partitions). We also provide
new proofs for the enumeration of some sets of pattern-avoiding restricted
growth functions and we expect that the tools introduced can be fruitfully
employed to get further similar results.

1 Introduction

Pattern-avoiding sorting machines were introduced in a recent paper by Cerbai,
Claesson and Ferrari [CCF] aiming towards a better understanding of the prob-
lem of sorting permutations with two stacks in series. In the classical formulation
of the Stacksort problem [Kn], an input permutation π = π1 . . . πn is scanned
from left to right and, when πi is the current element, either πi is pushed onto
the stack or the top element of the stack is popped and appended to the out-
put. If there is a sequence of push and pop operations that produces a sorted
output (that is, the identity permutation), then the input permutation is said to
be sortable. There is a well known algorithm, called Stacksort, that sorts every
sortable permutation. It has two key properties:

1. the stack is increasing, meaning that the elements inside the stack are
maintained in increasing order (from top to bottom);

∗G.C. and L.F. are members of the INdAM Research group GNCS; they are partially sup-
ported by INdAM-GNCS 2020 project “Combinatoria delle permutazioni, delle parole e dei
grafi: algoritmi e applicazioni”. E.S. was partially supported by a Leverhulme Research Fellow-
ship.
†Dipartimento di Matematica e Informatica “U. Dini”, University of Firenze, Firenze, Italy,

giulio.cerbai@unifi.it, luca.ferrari@unifi.it
‡Science Institute, University of Iceland, Iceland, akc@hi.is
§Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland,

einar@alum.mit.edu.

ar
X

iv
:2

00
6.

05
69

2v
1 

 [
m

at
h.

C
O

] 
 1

0 
Ju

n 
20

20



output input

SO
π1 . . . πn

⌊
2
1

⌋

output input

σ

⌊
2
1

⌋

π1 . . . πn

SσO SI

Figure 1: Sorting with one stack (left) and sorting with the σ-machine (right).

2. the algorithm is right greedy, meaning that it always chooses to perform a
push operation as long as the stack remains increasing in the above sense;
here the expression “right greedy” refers to the usual pictorial represen-
tation of this problem, in which the input permutation is on the right,
the stack is in the middle and the output permutation is on the left (see
Figure 1, left).

The notion of pattern avoidance allows us to efficiently characterize the set
of the permutations that can be sorted by Stacksort. Let Sn be the symmetric
group over a set of cardinality n, consisting of all permutations of length n. Given
two permutations σ ∈ Sk and π = π1 · · ·πn ∈ Sn, with k ≤ n, we say that σ is
a pattern of π when there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that
πi1πi2 . . . πik (as a permutation) is isomorphic to σ, that is, πi1 , πi2 , . . . , πik are
in the same relative order of size as the elements of σ, in which case we write
σ ' πi1πi2 . . . πik . This notion of patterns in permutations defines a partial order,
and the resulting poset is known as the permutation pattern poset. When σ is a
pattern of π, we say that π contains σ, otherwise π avoids σ. A downset I of
the permutation pattern poset, also called a permutation class, can be described
in terms of its minimal excluded permutations (or, equivalently, the minimal
elements of the complementary upset); these permutations are called the basis
of I. When B is the basis of I we write I = Av(B).

Returning to Stacksort, it is well known that a permutation is sortable if
and only if it avoids the pattern 231. As a consequence, the number of sortable
permutations of length n is the n-th Catalan number. Given that describing
the set of sortable permutations is rather manageable in the classical case, one
would think that similar results can be derived by considering a slightly more
general version of the problem, where a second stack is connected in series to
the first one. Despite the many attempts, very few results have been obtained.
For example, Murphy [M] showed that thus sortable permutations are a class
with infinite basis. To describe the basis and to enumerate the permutations in
question remain open problems.

Due to the toughness of the problem in its full generality, several authors have
considered weaker formulations by introducing some constraints on the sorting
device. In his PhD thesis [W], West studied permutations that can be sorted by
two stacks connected in series using a right greedy algorithm. This is equivalent to
making two passes through a stack. Similarly, Smith [Sm] considered two stacks
in series, where the first stack is required to be decreasing. It is worth noting
that, due to the properties of classical stacksort, the second (final) stack turns
out to be necessarily increasing.
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Pattern-avoiding machines constitute a further proposal to approach the gen-
eral problem of sorting with two stacks. Let σ be a permutation. The σ-machine
consists of two stacks connected in series (see Figure 1, right), obeying the fol-
lowing constraints:

1. At each step of the procedure, the elements in each stack must avoid certain
forbidden configurations, reading from top to bottom. The second stack is
increasing, that is, the sequence of numbers contained in the stack has
to avoid the pattern 21. We express this by saying that the stack is 21-
avoiding. In the same spirit, the first stack is σ-avoiding.

2. The algorithm performed with the two stacks connected in series is right
greedy. As already observed, this is equivalent to making two passes through
a stack, performing the right greedy algorithm at each pass. However, due
to the restriction described above, during the first pass the stack is σ-
avoiding, whereas during the second pass it is 21-avoiding.

We refer to the σ-avoiding stack as the σ-stack. A permutation π is σ-sortable
if it is sortable by the σ-machine. Denote by Sort(σ) the set of σ-sortable permu-
tations and by Sortn(σ) the set of σ-sortable permutations of length n. Denote
by sσ(π) the output of the σ-stack on input π. Observe that, since sσ(π) is the
input to the second (classical) stack, a permutation π is σ-sortable if and only if
sσ(π) avoids 231. This fact, which will be frequently used throughout the paper,
allows us to restrict our attention to the behavior of the σ-stack when analyzing
the sortability of π.

In [CCF], the authors determine the patterns σ such that Sort(σ) is a per-
mutation class, providing explicitly the corresponding basis.

Theorem 1.1 ([CCF], Theorems 3.2 and 3.4). Let σ = σ1σ2σ3 · · ·σk and let σ̂ =
σ2σ1σ3 · · ·σk be the permutation obtained by exchanging the first two elements
of σ. Then:

1. Sort(σ) is a permutation class if and only if σ̂ contains 231.

2. If σ̂ contains 231, then Sort(σ) = Av(132, σr), where σr = σk · · ·σ2σ1.

Theorem 1.1 completely describes the sets of σ-sortable permutations that
are permutation classes. The remaining cases are much more challenging. For
example, amongst the six permutations of length three, Sort(321) = Av(123, 132)
as a consequence of the previous result, but so far the only other solved pattern
is 123: 123-sortable permutations are shown to be enumerated by the partial
sums of partial sums of the Catalan numbers (sequence A294790 in [Sl]) via a
bijection with Schröder paths avoiding the pattern UHD [CF]. In this paper we
deal with one of the remaining patterns of S3, namely 132.

In Section 3 we characterize 132-sortable permutations as those avoiding the
classical pattern 2314 and a certain mesh pattern.

In Section 4 we exploit the pattern avoidance characterization of Sort(132) to
provide a geometrical description of these permutations. This ultimately allows
us to find a recursive construction for Sort(132), which is used to provide a
bijection between Sort(132) and the set of restricted growth functions (rgfs,
to be defined in next section) avoiding the pattern 12231. The enumeration of
the 12231-avoiding rgfs was obtained by Jeĺınek and Mansour in [JM], where
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they present a much more general mechanism that determines the entire Wilf-
equivalence class of these avoiders, that is, the class of patterns that are avoided
by the same number of rgfs of each length n. Their counting sequence is the
binomial transform of the Catalan numbers, which is A007317 in the OEIS [Sl].

In Section 5 we exhibit direct combinatorial proofs for the enumeration of
some patterns in the same Wilf-equivalence class as 12231. We exhibit links
with lattice paths and pattern-avoiding permutations. Two of these patterns
are enumerated via a bijection with a family of labeled Motzkin paths, which
provides a natural combinatorial interpretation for a beautiful continued fraction
for A007317. We also conjecture that a slight variation on the same approach
should lead to the enumeration of many other patterns in the same Wilf-class.
Finally, some of the results in this section lead to an independent proof of the
enumeration of Sort(132).

2 Preliminaries and notation

Given a permutation π = π1π2 . . . πn, the element πi is called a left-to-right
maximum (briefly, ltr-maximum) if πi > max {π1, . . . , πi−1}. Analogously, πi is
called a ltr-minimum if πi < min {π1, . . . , πi−1}. The element π1 is both an ltr-
maximum and ltr-minimum. A descent of π is a pair of elements (πi, πi+1) such
that πi > πi+1. This is a slight deviation from the classical definition, in which
a descent is an index i such that πi > πi+1. A descent is said to be consecutive
if πi+1 = πi − 1. Ascents and consecutive ascents are defined similarly. For
example, the permutation π = 3417625 has three ltr-maxima, namely 3, 4, 7 and
two ltr-minima 3, 1. The descents of π are (4, 1), (7, 6), (6, 2), where only (7, 6)
is a consecutive descent. The ascents are (3, 4), (1, 7), (2, 5) and only (3, 4) is
consecutive.

Given two permutations α = α1 . . . αn and β = β1 . . . βm, the direct sum
α ⊕ β is the permutation π = π1 . . . πnπn+1 . . . πn+m of length n + m such that
π1 . . . πn ' α, πn+1 . . . πn+m ' β and πi < πj , for each i ∈ {1, . . . , n} and
j ∈ {n + 1, . . . , n + m}. The skew sum α 	 β is defined similarly, but requiring
that πi > πj for each i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m}. For example,
213 ⊕ 21 = 21354 and 213 	 21 = 43521. A permutation is said to be layered
if it is the direct sum of decreasing permutations. It is well known that π is
layered if and only if π ∈ Av(231, 312) and there are 2n−1 layered permutations
of length n.

A Dyck path is a path in the discrete plane Z× Z starting at the origin of a
fixed Cartesian coordinate system, ending on the x-axis, never falling below the
x-axis and using two kinds of steps, namely upsteps U = (1, 1) and downsteps
D = (1,−1). The length of a Dyck path is its final abscissa, which coincides
with the total number of its steps. See Figure 2 for an example of Dyck path.
According to their semilength, Dyck paths are counted by Catalan numbers
(sequence A000108 in [Sl]). The n-th Catalan number is cn = 1

n+1

(
2n
n

)
and the

associated ordinary generating function is C(x) = (1−
√

1− 4x)/(2x). A slightly
more general notion of lattice path is obtained by allowing one more kind of
step, the horizontal step H = (1, 0). The resulting paths are called Motzkin paths
and their enumeration (with respect to the total number of steps) is given by
the Motzkin numbers (sequence A001006 in [Sl]).

A Restricted Growth Function (rgf) of length n is a sequence of positive
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Figure 2: A Dyck path (on the left) and the mesh pattern µ =
(132, {(0, 2), (2, 0), (2, 1)}) (on the right).

integers R = r1 · · · rn such that r1 = 1 and ri ≤ 1 + max {r1, . . . , ri−1} for each
i ≥ 2. The rgfs of length n bijectively encode set partitions of [n] = {1, 2, . . . , n},
where, for example, the partition of [5] written in standard notation as 13–25–4
has rgf 12132, whose 3 in place 4 indicates that 4 is in the third block.

Denote by Rn the set of rgfs of length n and let R =
⋃
n≥1Rn. The notion

of pattern avoidance can be naturally extended to rgfs. Given a sequence of
positive integers Q = q1q2 · · · qk, define the standardization of Q as the string
std(Q) obtained by replacing all occurrences of the i-th smallest element with i,
for all i. Then, given a rgf R = r1 . . . rn and a sequence of positive integers
Q = q1 . . . qk, with k ≤ n, Q is a pattern of R if there is a subsequence ri1 . . . rik
of R such that std(ri1 . . . rik) = Q. In this case we write Q ≤ R (and say that
R contains Q); otherwise, we say that R avoids Q. We use the notation R(Q)
to denote the set of the rgfs avoiding Q and Rn(Q) = Rn ∩R(Q). For a more
detailed survey on the notion of pattern avoidance in rgfs, we refer the reader
to [JM] and [CDDGGPS]. Observe that if R is a rgf then each occurrence of the
integer k in R, for any k ≥ 1, is preceded by some occurrence of all the integers
1, . . . , k − 1. A useful consequence is the following lemma, whose easy proof is
omitted.

Lemma 2.1. Let R be a rgf and let Q = q1q2 . . . qk be a sequence of positive
integers. Let Q′ = std(Q) = q′1 . . . q

′
k and suppose that q′1 = t, for some t ≥ 1.

Then Q′ ≤ R if and only if 12 . . . (t− 1)Q′ ≤ R.

3 Pattern avoidance characterization of Sort(132)

For the remainder of this paper, we let σ = 132.

In this section we characterize Sort(σ) in terms of pattern avoidance. First
we need to introduce a slightly more general notion of pattern, originally given
by Brändén and Claesson in [BC]. A mesh pattern of length k is a pair (τ,A),
where τ ∈ Sk and A ⊆ [0, k] × [0, k] is a set of pairs of integers. The elements
of A identify the lower left corners of forbidden squares in the plot of τ (see
Figure 2). An occurrence of the mesh pattern (τ,A) in π is then an occurrence of
the classical pattern τ in π such that no elements of π are placed into a forbidden
square of A.

We start by proving a useful decomposition lemma for σ-sortable permu-
tations. Given a permutation π we decompose it as π = m1B1m2B2 . . .mkBk,
where m1 ≥ m2 ≥ · · · ≥ mk = 1 are the ltr-minima of π and each block Bi
contains all the elements strictly between two consecutive ltr-minima. We refer
to this as the ltr-minima decomposition of π.
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Lemma 3.1. Let π be a permutation and let π = m1B1m2B2 . . .mkBk be its
ltr-minima decomposition. Then:

1. sσ(π) = B̃1B̃2 · · · B̃kmkmk−1 · · ·m2m1, where each B̃i is a suitable rear-
rangement of the elements of Bi.

2. If π is σ-sortable, then x > y for each x ∈ Bi, y ∈ Bj, with i < j.

Proof. 1. For each x ∈ B1, m1xm2 ' 231, thus every element of B1 has to be
popped from the σ-stack before m2 enters. After that, we have m1 and m2

on the σ-stack, with m1 > m2 and m2 above m1. Note that they cannot
both be part of a 132, therefore m2 remains on the σ-stack until the end
of the sorting process. Similarly, each element of B2 has to be popped
before m3 enters, since m3xm2 ' 132 for each x ∈ B2. The same argument
holds for every mj with j ≥ 2.

2. Suppose there are two elements x, y such that x < y, x ∈ Bi and y ∈ Bj ,
with i < j. Then, as a consequence of the previous item, xymk is an
occurrence of 231 in sσ(π), which is a contradiction since π is σ-sortable.

Lemma 3.2. Let π ∈ Sortn(σ) and let π = m1B1m2B2 · · ·mkBk be its ltr-
minima decomposition. Then, when the next element of the input is b ∈ Bi the
content of the σ-stack when read from bottom to top is m1m2 · · ·mib1b2 · · · bt,
where {b1, . . . bt} is a (possibly empty) subset of Bi such that b1 < b2 < · · · < bt.

Proof. The first i ltr-minima m1, . . . ,mi of π lie at the bottom of the σ-stack, by
Lemma 3.1. Then the remaining elements b1, . . . , bt of Bi in the σ-stack must be
in increasing order from bottom to top, for otherwise, if bh > b` for some h < `,
then sσ(π) would contain b`bhmi ' 231, contradicting the σ-sortability of π.

We next show that σ-sortable permutations are characterized by the avoid-
ance of a classical pattern and a mesh pattern. This leads to a more precise
geometrical description of these permutations, as we will show in the next sec-
tion. For the rest of the paper, let µ = (132, {(0, 2), (2, 0), (2, 1)}) be the mesh
pattern depicted in Figure 2. An occurrence of the mesh pattern µ is thus an
occurrence acb of the classical pattern 132 such that:

• every element that precedes a in π is either smaller than b or greater than c;

• every element between c and b in π is greater than b.

Theorem 3.3. If π is σ-sortable, then π ∈ Av(2314, µ).

Proof. Let π = m1B1m2B2 · · ·mkBk be the ltr-minima decomposition of π. Sup-
pose, for a contradiction, that π contains an occurrence bcad of 2314. When a
enters the σ-stack, at least one element between b and c, call it x, has already
been popped from the σ-stack, otherwise we would get the forbidden pattern
acb ' 132 inside the σ-stack. Hence, by Lemma 3.1, sσ(π) contains xdmk ' 231,
violating the hypothesis that π is σ-sortable.

Next suppose that acb is an occurrence of 132 in π. We wish to show that acb
is part of an occurrence of either 3142, 2413 or 1423, thus proving that π avoids
the mesh pattern µ. Let m(a) be the ltr-minimum of the block that contains a
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(in particular, m(a) = a if a is a ltr-minimum itself). Then m(a) ≤ a and m(a)
exits the σ-stack after b and c (by Lemma 3.1), so c has to be popped before b
enters, otherwise bcm(a) would be an occurrence of 231 inside sσ(π). We consider
the following two cases. Note that a < b < c, so b, c are not ltr-minima in π.

• c ∈ Bi and b ∈ Bj , with i < j. In this case, mj < m(a) ≤ a, hence
acmjb ' 2413, which is one of the desired patterns.

• c and b are in the same block Bi. First suppose there is a ltr-minimum
m = m`, with ` < i, such that b < m < c; then m > m(a), so m precedes
m(a) in π and macb ' 3142, again one of the listed patterns. Otherwise,
suppose that, for every ltr-minimum m, either m < b or m > c and consider
the element w that immediately precedes b in π. We wish to show that
w < b, which will conclude the proof. Suppose, for a contradiction, that
w > b and let x1, x2, . . . , xs = w be the elements on the σ-stack, after w
has been pushed, that are not ltr-minima when we read from bottom to
top. By Lemma 3.2, we have x1 < x2 < · · · < xs; moreover xs = w > b, so
there is a minimum index t such that xt > b. Now observe that, for ` > t,
all the elements x` are popped from the σ-stack before b enters, because
bx`xt ' 132. We also observe that necessarily xt ≤ c, otherwise c would
already have been popped and sσ(π) would contain the pattern cxtm(a) '
231. We can now assert that b is pushed onto the σ-stack immediately
above xt. In fact, x` < b for every ` < t; moreover, our hypothesis implies
that either m < b or m > c for every ltr-minimum m inside the σ-stack,
therefore b cannot be the first element of an occurrence of 231 (read from
top to bottom) that involves elements inside the σ-stack. However this
results in an occurrence bxtm(a) of 231 in sσ(π), which again contradicts
the hypothesis that π is σ-sortable.

The condition of Theorem 3.3 is also sufficient for a permutation to be σ-
sortable.

Theorem 3.4. If π ∈ Av (2314, µ), then π is σ-sortable.

Proof. Suppose, for a contradiction, that π is not σ-sortable, that is, sσ(π) con-
tains an occurrence of 231. Let π = m1B1m2B2 · · ·mkBk be the ltr-minima de-
composition of π. By Lemma 3.1, we have sσ(π) = B̃1B̃2 · · · B̃kmkmk−1 · · ·m2m1.
Since the ltr-minima are popped from the σ-stack in increasing order, neither b
nor c can be a ltr-minimum. Suppose that b ∈ Bi and c ∈ Bj , for some i ≤ j.
If i < j, then mibmjc ' 2314, which is forbidden. Suppose instead that i = j

and consider the leftmost ascent x < y in B̃i (indeed there is at least one ascent

in B̃i, since the elements b, c constitute a noninversion in B̃i). There are two
possibilities.

1. If y comes after x in π then x has to be popped before y is pushed onto the
σ-stack. Therefore, when x is popped, there are two elements u, v in the
σ-stack, with v above u, such that uvw ' 231, where w is the next element
of the input. If v 6= x, then also v is popped after x (for the same reason),
but this is a contradiction with the fact that x and y constitute an ascent
in B̃i. Thus we have v = x and uxw ' 231, which implies that w 6= y and
uxwy ' 2314 in π, contradicting the assumption that π avoids 2314.
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2. Suppose instead that y precedes x in π. Observe that y has to be on the σ-
stack when x enters, because sσ(π) contains the ascent (x, y) (this fact will
be frequently used in the sequel). In this situation, miyx is an occurrence of
132 in π. We now show that either miyx is an occurrence of µ or π contains
2314. If there is an element z that precedes mi in π such that x < z < y (so
that zmiyx ' 3142), then z cannot be a ltr-minimum. In such a case, in
fact, by Lemma 3.1, z would be in the σ-stack below y when x is pushed,
but zyx ' 231, which is impossible due to the restriction of the σ-stack.
Instead, if z ∈ B` for some ` < i, then m`zmiy ' 2314. Therefore we can
assume that every element that precedes mi in π is either smaller than x or
greater than y. Finally, suppose that there is an element z between y and x
in π such that z < x, which gives an occurrence miyzx of either 2413 or
1423. Then, since y is still in the σ-stack when x is pushed and z precedes x
in π, z enters the σ-stack above y, and so B̃I contains either x . . . z . . . y or
z . . . x . . . y, with z < x. However, both cases give a contradiction, because
(x, y) is the first ascent in sσ(π).

Corollary 3.5. Sort(132) = Av (2314, µ).

In accordance with Theorem 1.1, the set Av (2314, µ) is not a permutation
class; this is due to the presence of the non-classical mesh pattern µ. For ex-
ample, the σ-sortable permutation 2413 contains the pattern 132, which is not
σ-sortable.

4 Grid decomposition of 132-sortable permutations

In this section we exploit the characterization in terms of pattern avoidance in
order to provide a geometric description of Sort(σ). We start by refining the
ltr-minima decomposition π = m1B1m2B2 . . .mkBk of π as follows:

• for j ≥ 1, the j-th vertical strip of π is Bj ;

• for i ≥ 1, the i-th horizontal strip of π is Hi = {x ∈ π : mi < x < mi−1},
where m0 = +∞.

• for any two indices i, j, the cell of indices i, j of π is Ci,j = Hi ∩ Bj (note
that Ci,j is empty when i > j).

• the core of π is C(π) = B1B2 . . . Bk, obtained from π by removing the
ltr-minima.

In what follows, the content of each Bj , Hi, Ci,j will be regarded as a permu-
tation. For example, let π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2. Then (see Figure 3):

• the ltr-minima of π are 13, 10, 6, 3, 1;

• the vertical strips are B1 = 14 15 ' 1 2, B2 = 12 ' 1, B3 = 7 8 11 9 '
1 2 4 3, B4 = ∅ and B5 = 4 5 2 ' 2 3 1;

• the horizontal strips are H1 = 14 15 ' 1 2, H2 = 12 11 ' 2 1, H3 = 7 8 9 '
1 2 3, H4 = 4 5 ' 1 2 and H5 = 2 ' 1;

8
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B1 B2 B3 B4 B5

H1

H2

H3
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H5

Figure 3: The grid decomposition of the permutation π =
13 14 15 10 12 6 7 8 11 9 3 1 4 5 2. The image of π under the bijection of The-
orem 4.9 is the restricted growth function φ(π) = 111223332345445.

• the nonempty cells are C1,1 = 14 15 ' 1 2, C2,2 = 12 ' 1, C2,3 = 11 ' 1,
C3,3 = 7 8 9 ' 1 2 3, C4,5 = 4 5 ' 1 2 and C5,5 = 2 ' 1;

• the core of π is C(π) = 14 15 12 7 8 11 9 4 5 2 ' 9 10 8 4 5 7 6 2 3 1.

The above terminology refers to the graphical representation of π, see Fig-
ure 3. We now collect several properties of σ-sortable permutations, in order to
find a geometric description of them, as well as their enumeration.

The next lemma provides a useful property of σ-sortable permutations. In
spite of its simplicity, it gives a rather strong constraint on the shape of a σ-
sortable permutation.

Lemma 4.1. Let π be a σ-sortable permutation and suppose that the cell Ci,j
is nonempty, for some i, j. Then the cell Cu,v is empty for each pair of indices
(u, v) such that u < i and v > j.

Proof. Suppose there are two elements x ∈ Ci,j and y ∈ Cu,v such that u < i
and v > j. Then mixmvy ' 2314, which is impossible by Theorem 3.3.

Our next results are some pattern avoidance characterizations for Ci,j , Hi

and C(π).

Lemma 4.2. Let π be a σ-sortable permutation and suppose that the cell Ci,j
contains an inversion x > y, where x precedes y in Ci,j. Then there is an ele-
ment z between x and y in π such that z < mi.

Proof. We refer to Figure 4 for a description of the statement of the lemma. For x
and y as above, we have mixy ' 132. In particular, x and y are in the same cell
Ci,j and mi is the corresponding ltr-minimum, hence every element w preceding
mi in π is greater than x (because w > mi−1 and x < mi−1). Therefore, as a
consequence of Theorem 3.3, there exists an element z between x and y in π such
that z < y. If z < mi, then we are done. Otherwise, if z > mi, we can repeat the
same argument using the occurrence mixz of 132, in which we have replaced y
with the element z that comes strictly before y in π; continuing in this way we
eventually find an element of π with the desired property.

9
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Figure 4: The constructions of Lemma 4.2, left, and of Lemma 4.1, right.

Proposition 4.3. If π is a σ-sortable permutation, then Ci,j ∈ Av(132, 213),
for every i, j.

Proof. Suppose that Ci,j contains an occurrence acb of 132. By Lemma 4.2,
there exists an element z between c and b in π such that z < mi. In particular,
miazb ' 2314, which is a contradiction since π is σ-sortable (by Theorem 3.3).
On the other hand, if Ci,j contains an occurrence bac of 213, then (b, a) is an
inversion in the cell Ci,j and therefore, again by Lemma 4.2, there is an element z
between b and a in π with z < mi and mibzc ' 2314, a contradiction.

Proposition 4.4. If π is a σ-sortable permutation, then Hi ∈ Av(132, 213), for
every i.

Proof. This is a consequence of Lemma 3.1 and Proposition 4.3.

Proposition 4.5. If π is a σ-sortable permutation, then C(π) ∈ Av(213).

Proof. Suppose π contains an occurrence bac of 213 that does not involve any
ltr-minimum and suppose that b ∈ Ci,j for some i, j. Note that b < c, so, by
Lemma 3.1, b and c must belong to the same vertical strip Bj . Now, if a ∈ C`,j ,
with ` > i, then mibac ' 2314, which is a contradiction, since π is σ-sortable.
Therefore we must have a ∈ Ci,j . This results in an occurrence miba of 132,
with b and a both in the cell Ci,j ; thus, by Lemma 4.2, there is an element z
between b and a in π such that z < mi and mibzc ' 2314, which is again a
contradiction.

What we have established so far in this section are necessary conditions
satisfied by σ-sortable permutations. Since each prefix of a σ-sortable permuta-
tion is still σ-sortable, removing the last element from a σ-sortable permutation
π′ ∈ Sortn+1(σ) returns a permutation π ∈ Sortn(σ). In other words, every per-
mutation in Sortn+1(σ) is obtained from a permutation π ∈ Sortn(σ) by inserting
a new rightmost element and suitably rescaling the remaining ones. However, not
just any integers are allowed for such an insertion. Inserting a new minimum,
which corresponds to creating a new vertical strip, is always allowed, because it
cannot create any new occurrence of 2314 or µ. On the other hand, if π has k
ltr-minima and we try to insert a new element in one of the cells Ci,k of the last
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vertical strip, we have to obey the conditions stated in Lemma 4.1 and Propo-
sitions 4.4 and 4.5. In particular, Proposition 4.4 implies that any permutation
in Hi is co-layered, that is, it is the skew sum of increasing permutations. Thus,
in order to get a new co-layered permutation from a given one, and also in order
to avoid the forbidden pattern 2314, we find that there are at most two possible
ways to insert a new rightmost element in Ci,k:

1. min: insert a new minimum in Ci,k (which is also a new minimum of the
horizontal strip Hi);

2. cons: create a consecutive ascent in the two final positions of Ci,k,

recalling that an ascent (a, b) is consecutive if b = a+ 1.
This approach is formalized as follows. Let π be a σ-sortable permutation

with k ltr-minima. For i ≥ 1, the cell Ci,k (belonging to the last vertical strip)
is said to be active if both of the following conditions hold:

(i) Cu,v is empty for each u, v such that u > i and v < k;

(ii) inserting a new rightmost element according to min does not create an
occurrence of 213 in C(π).

Note that, thanks to condition (i), condition (ii) can be equivalently stated
by saying that the permutation

⋃
j≥i+1Cj,k is increasing. Moreover, if a cell Ci,k

is not active, then every insertion of a new rightmost element in Ci,k results in
a non σ-sortable permutation due to Lemma 4.1 and Proposition 4.5. We shall
prove that if instead Ci,k is active, then exactly one of the operations min and
cons can be performed in order to obtain a σ-sortable permutation. To this end
we distinguish two cases, depending on whether Ci,k is empty or not.

Proposition 4.6. Let π = π1 . . . πn be a σ-sortable permutation with k ltr-
minima and let Ci,k = γ1 . . . γt be a nonempty active cell of π. Let x = πn and
suppose x ∈ C`,k. Then:

1. performing min on Ci,k returns a σ-sortable permutation π′ if and only if
` > i;

2. performing cons on Ci,k returns a σ-sortable permutation π′ if and only if
` ≤ i.

Proof. 1. Suppose ` < i and we want to insert a new rightmost element γt+1

into Ci,k according to min. Assume, for a contradiction, that the resulting
permutation π′ is σ-sortable. The elements γt and γt+1 form an inversion
in Ci,k, so by Lemma 4.2 there exists an element z between γt and γt+1 in π
such that z < mi. Hence miγtzx ' 2314, which contradicts the assumption
that π is σ-sortable. Instead, if ` = i, that is, γt = x = πn, then γtγt+1

is an inversion inside Ci,k such that γt and γt+1 are adjacent in π. This
implies that π is not σ-sortable (again as a consequence of Lemma 4.2).

Conversely, suppose that ` > i and γt+1 is inserted into Ci,k according to
min. By Theorem 3.3, π ∈ Av(2314, µ), so we just have to show that the
permutation π′ obtained after the insertion still avoids the two forbidden
patterns. If γt+1 plays the role of the 2 in an occurrence of 132, say acγt+1,

11



then we have either acxγt+1 ' 1423 or acxγt+1 ' 2413, which means that
the selected occurrence of 132 is not an occurrence of the mesh pattern µ.
Otherwise, suppose there is an occurrence bcaγt+1 of 2314 in π′. If mk = 1
precedes c in π, then caγt ' 213 in C(π), contradicting Proposition 4.5.
On the other hand, if mk follows c in π, then c ∈ Bj , for some j < k, and
γt ∈ Bk, with c < γt, contradicting Lemma 3.1.

2. Suppose we insert γt+1 into Ci,k according to cons and ` > i. Then γtxγt+1

is an occurrence of 213 in C(π′), hence π′ is not σ-sortable, due to Propo-
sition 4.5, as desired.

Conversely, suppose that ` < i and we insert γt+1 into Ci,k according to
cons; this means that γt+1 = γt + 1. The resulting permutation π′ does
not contain an occurrence bcad of 2314 with γt+1 = d, for otherwise bcax
would be an occurrence of 2314 in π, contradicting the hypothesis that π
is σ-sortable. On the other hand, suppose there are two elements a, c in π
such that acγt+1 is an occurrence of 132. We now prove that acγt+1 is not
an occurrence of the mesh pattern µ by distinguishing two cases.

If c > mi−1 (note that i > `, so mi−1 exists), then a < γt+1 < mi−1,
so mi−1 precedes a in π (because a < mi−1 and mi−1 is a ltr-minimum)
and mi−1acγt+1 would be an occurrence of 3142. Instead, if c < mi−1,
then c is not a ltr-minimum, because a < c precedes c; moreover, c is in
Ci,k, since c < mi−1 and c > γt+1, hence cγtx is an occurrence of 213 in
C(π), which is impossible due to Proposition 4.5. Finally, if ` = i, then
x = γt, γt+1 = γt + 1 and they are adjacent in π′, so γt+1 is neither part
of an occurrence of 2314 nor of µ, since otherwise γt would be as well,
contradicting the hypothesis that π is σ-sortable.

If Ci,k is empty, then the operation cons does not make sense, so the only
possibility is to try to perform min. The next proposition asserts that this can
always be done.

Proposition 4.7. Let π = π1 . . . πn be a σ-sortable permutation with k ltr-
minima and let Ci,k be an empty active cell of π. Let π′ be the permutation
obtained from π by inserting a new rightmost element y in Ci,k according to min.
Then π′ is σ-sortable.

Proof. By Theorem 3.3 we have that π ∈ Av(2314, µ) and we want to prove
that π′ ∈ Av(2314, µ). Suppose there are three elements b, c, a in π such that
bcay ' 2314. Since c > b, the element c is not a ltr-minimum of π. Suppose that
c ∈ Cu,v, for some u, v. If a is a ltr-minimum, then of course v < k, and we have
also u > i, because y is the minimum of its horizontal strip and y > c. This would
imply that Cu,v is a nonempty cell, with u > i and v < k, which is impossible
since Ci,k is active. Otherwise, if a is not a ltr-minimum, then cay ' 213 in C(π′),
which again contradicts the assumption that Ci,k is active.

Next, in order to prove that π′ does not contain the mesh pattern µ, suppose
there are two elements a, c in π such that acy ' 132 and suppose c ∈ Bj , for
some j ≤ k. If j < k, then acmky is an occurrence of 2413, as desired. Otherwise,
if j = k, we have that c ∈ C`,k, for some ` < k, because Ci,k is empty before
we insert y; moreover, m` precedes a in π, because m` > y and a < y. Thus
m`acy ' 3142, as desired.
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Corollary 4.8. Let π be a σ-sortable permutation. Then, for every active cell
of π, exactly one of min and cons generates a σ-sortable permutation.

Propositions 4.6 and 4.7 can be interpreted as a constructive procedure to
generate inductively every σ-sortable permutation. Starting from π ∈ Sortn(σ),
one can either insert a new rightmost minimum or choose an active cell of π
and insert a new rightmost element by performing either min or cons, according
to the rules of Propositions 4.6 and 4.7. Moreover, if the number of active cells
of π is t, then π produces t + 1 σ-sortable permutations of length n + 1: one
for each active cell and one when a new minimum is inserted. In principle, this
gives rise to a generating tree for σ-sortable permutations, which is often a useful
tool for enumeration. Unfortunately, we have not been able to fully understand
the succession rule of such a tree (namely, we do not know how to compute the
number of active sites of the permutations generated by a permutation with a
given number of active sites). However, by exploiting the grid structure of σ-
sortable permutations, our generating procedure leads to a bijection with a class
of pattern avoiding rgfs.

Let π = π1 . . . πn be a permutation with k ltr-minima m1, . . . ,mk and set
m0 = +∞. Define the map φ by setting φ(π) = r1 . . . rn, where ri = j if mj ≤
πi < mj−1. In other words, the map φ scans the permutation π from left to
right and records the index of the horizontal strip that contains the current
element of π, including the ltr-minima in the corresponding strips. For example, if
π = 13 14 15 10 12 6 7 8 11 9 3 1 4 5 2, then φ(π) = 111223332345445 (see Figure 3).
Note that φ is defined for any permutations. We will now show that, when
restricted to σ-sortable permutations, the map φ is a bijection between Sortn(σ)
and Rn(12231).

Theorem 4.9. Let φ : Sortn(σ)→ Rn(12231) be defined as above. Then φ is a
bijection.

Proof. By Lemma 2.1, avoiding 12231 is equivalent to avoiding 2231. We start
by proving that, for each σ-sortable permutation π, φ(π) avoids 2231, that is,
φ is well-defined. Suppose, on the contrary, that φ(π) contains an occurrence
ri1ri2ri3ri4 of 2231. Consider the leftmost occurrence rj of the integer ri1 in π
(note that j ≤ i1). Then rj corresponds through φ to the ltr-minimum of the hor-
izontal strip of index ri1 in π. Hence the elements πjπi2πi3πi4 form an occurrence
of 2314 in π, which contradicts Theorem 3.3.

That φ is injective is a consequence of Corollary 4.8. Moreover, using the
construction of Proposition 4.6, we will show that φ is surjective. Given a rgf
R = r1r2 . . . rn, construct the permutation πR by scanning R from left to right
and, when the current element is r`, insert a new rightmost element π` in the
following way (suitably rescaling the previous elements when necessary):

• when r` is the first occurrence of an integer in R then π` = 1;

• otherwise, π` is inserted in the horizontal strip Hr` , according to the rules
of Proposition 4.6.

We now wish to prove that, if the rgf R avoids 2231, then πR is a σ-sortable
permutation such that φ(πR) = R. It is easy to see that φ(πR) = R, as a direct
consequence of the definition of φ. Since insertions inside active cells are always

13



Pattern p Formula for |Rn(p)| OEIS

12123, 12132, 12134, 12213,

12231, 12234, 12312, 12321,

n−1∑

k=0

(
n− 1

k

)
ck A007317

12323, 12331, 12332

Table 1: The eleven patterns of the Wilf-class enumerated by A007317, see [JM,
Table 3].

allowed, what remains to be shown is that each element is in fact inserted into
an active cell. We now argue by contradiction, and suppose that y is the first
element that is inserted into a nonactive cell Ci,j . According to the definition of
an active cell, there are two cases to consider.

1. If there exists a nonempty cell Cu,v, with u > i and v < j, then, given any
x ∈ Cu,v, the elements of R corresponding to muxmjy form an occurrence
of 2231, which is forbidden.

2. Suppose that inserting a new rightmost element according to min creates
an occurrence bay of 213 that does not involve any ltr-minima. Let Hu be
the horizontal strip that contains b and let Hv be the horizontal strip that
contains a. Note that v ≥ u > i. If v > u, then the elements corresponding
to mubay in R form an occurrence of 2231, which is again a contradic-
tion. On the other hand, if v = u, then a belongs to the same horizontal
strip of b, so, since a < b, a was inserted according to min. Therefore, by
Proposition 4.6 and our choice of y, the element a′ that precedes a in C(π)
belongs to Hw, for some w > u. As a consequence, the elements muba

′c
correspond to an occurrence of 2231 in R, which is impossible.

Corollary 4.10. For every natural number n, |Sortn(σ)| = |Rn(12231)|.

The enumeration of these rgfs follows from the results in [JM], where it is
shown that 12231 is Wilf-equivalent to 12332 (see Table 1 here). Moreover, they
also show that 1221-avoiding rgfs are enumerated by the Catalan numbers.
Hence, as a consequence of Theorem 31 in [JM], we immediately obtain the
following formula for σ-sortable permutations:

|Sortn(σ)| =
n−1∑

k=0

(
n− 1

k

)
ck.

The above sequence is A007317 in [Sl].

5 Combinatorial proofs for pattern-avoiding restricted
growth functions

In the previous section we have completely solved the problem of counting σ-
sortable permutations, by explicitly finding a bijection with the class of 12231-
avoiding rgfs, whose enumeration is known [JM]. However, this does not provide
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a clear understanding of why the resulting counting sequence is the binomial
transform of Catalan numbers. What we would like to have is a transparent
bijective link between σ-sortable permutations and some combinatorial objects
whose structure immediately reveals the connection with this counting sequence.

The current section is devoted to illustrating some bijections involving sets
of rgfs avoiding a certain pattern. Although the enumerations of these sets are
known, essentially as corollaries of the general mechanism presented by Jeĺınek
and Mansour [JM], we provide new direct combinatorial proofs, exhibiting links
with other well studied combinatorial structures. More precisely, we start by
describing a presumably new bijection between Rn(1221) and the set of Dyck
paths of semilength n. Moreover, for some of the patterns p listed in Table 1,
we describe bijections between R(p) and other combinatorial objects, such as
labeled Motzkin paths and pattern-avoiding permutations. Finally, we define
a bijection between R(12321) and R(12231) that, together with some of the
previous results, gives a transparent bijective argument that fully explains the
enumeration of σ-sortable permutations.

5.1 The pattern 1221

The following lemma is contained in [CDDGGPS] and provides a nice character-
ization of 1221-avoiding rgfs.

Lemma 5.1 ([CDDGGPS], Lemma 6.2). Let R be a rgf. Then R ∈ R(1221) if
and only if the subword w(R) obtained by removing the first occurrence of each
letter in R is weakly increasing.

As an immediate consequence, we have the following corollary.

Corollary 5.2. Let R = r1 . . . rn ∈ R(1221) and M = max(R). If R has no
repeated elements let t = 1, otherwise let t be the maximum among repeated
elements of R. Then r1 . . . rnj ∈ R(1221) if and only if t ≤ j ≤M + 1.

The previous corollary can be rephrased using the language of generating trees
(see for instance [BDLPP]). In particular, we say that an integer x is an active
site of the rgf R ∈ R(1221) whenever adding x at the end of R returns another
rgf belonging to R(1221) (whose length is of course increased by one). Due to
Corollary 5.2, the set of active sites of R is the interval {t, t+ 1, . . . ,M,M + 1}
and thus there are M+1−t+1 active sites, where M and t are as in the corollary.
In the language of generating trees, any rgf obtained from R this way is called
a child of R.

For the next theorem, we recall the definition of a double rise in a Dyck path,
which is an occurrence of the consecutive pattern UU.

Theorem 5.3. There is a bijection ψ from Rn(1221) to the set of Dyck paths
of semilength n, such that the maximum of R ∈ Rn(1221) equals one plus the
number of double rises in the path ψ(R). As a consequence, denoting by fn,k the
number of elements in Rn(1221) whose maximum is k, we get that fn,k = nn,k,
where nn,k is the (n, k)-th Narayana number.

Proof. Recall from [BDLPP] that every Dyck path P̃ of semilength n + 1 is
obtained (in a unique way) from a Dyck path P of semilength n by inserting a
peak UD either before a D-step in the last descending run of P or after the last
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D-step. This construction gives rise to a well known generating tree for Dyck
paths, such that the number of active sites of a path P is k + 1, where k is
the length of the maximal suffix of P entirely made of D-steps. The path P̃ is
therefore a child of P in the associated generating tree. Our goal is to define (in
a recursive fashion) a bijection α between the generating tree of R(1221) and
the generating tree of Dyck paths. In other words, we wish to show that α is a
bijection preserving both the size (that is, a rgf R ∈ Rn(1221) is mapped to a
Dyck path of semilength n) and the number of active sites.

We start by setting α(1) = UD. Note that 1 has two active sites, since the
children of 1 are 11 and 12. The path UD has two active sites as well, since
its children are UUDD and UDUD. Now let R = r1 . . . rn and α(R) = p1 . . . p2n,
for some n ≥ 1. Suppose that the number of active sites of both R and α(R)
is k. Let M = max(R) and let t be the maximum element of R that is not
a ltr-maximum of R. By Corollary 5.2, the active sites of R form the interval
{t, t + 1, . . . ,M,M + 1}, with M + 1 − t + 1 = k by hypothesis. Moreover, the
length of the maximal suffix of D-steps of α(R) is k − 1. We shall describe α on
the children of both R and α(R), and show that the number of active sites is
still preserved.

• The child of R corresponding to the active site M is mapped to the path
obtained from α(R) by inserting a new peak UD immediately after the
last D-step of α(R). Here the active sites of the resulting sequence are
M + 1−M + 1 = 2. The same happens for the resulting Dyck path, since
the length of the maximal suffix of D-steps is 1.

• For i = t, . . . ,M − 1, the child of R corresponding to the active site i
is mapped to the path obtained from α(R) by inserting a new peak UD

immediately before the (M+1−i)-th D step of the last descending run. The
number of active sites of the resulting rgf is then M+1−i+1 = M+2−i,
which is also the length of the maximal suffix of D-steps of the resulting
path.

• Finally, the child of R corresponding to the active site M + 1 is mapped
to the path obtained from α(R) by inserting a new peak UD immediately
before the first D-step of the last descending run of α(R). In this case the
number of active sites of the resulting rgf is M + 2 − (t + 1) = k + 1.
Moreover, the number of active sites of the resulting path is also k + 1,
since the length of its maximal suffix of D-steps is increased by one with
respect to α(R).

Therefore α is a bijection between the two generating trees, as desired. To
conclude, observe that the number of double rises in α(R) is equal to max(R)−1.
Indeed, by definition of α, each double rise in α(R) corresponds to the first
occurrence of an integer in R, except for the first occurrence of 1 (which does
not create a double rise). As is well known (see for example [De]), the number of
Dyck paths of semilength n with k − 1 double rises is given by nn,k, which gives
the desired equality fn,k = nn,k.
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Corollary 5.4. Let n ≥ 0 and gn = |Rn(12332)|. Denote by g(n, k) the number
of elements in Rn(12332) whose maximum is k, for 1 ≤ k ≤ n. Then

g(n+ 1, k + 1) =
n∑

j=k

(
n

j

)
nj,k.

Proof. As observed in [JM], every 12332-avoiding rgf of length n + 1 can be
obtained by choosing n − j positions for the 1s (except for the first 1, which
is fixed) and then choosing a rgf R̂ ∈ Rj(1221) for the remaining j spots

(where the elements of R̂ incremented by 1 will be inserted). In particular, if
the maximum of R̂ is k, then the resulting rgf has maximum k + 1. So, as a
consequence of Theorem 5.3, we have g(n+ 1, k + 1) =

∑n
j=k

(
n
j

)
nj,k.

As it turns out, the formula in Corollary 5.4 also enumerates σ-sortable per-
mutations according to the number of their ltr-minima. A proof will be given in
upcoming sections (Proposition 5.11 and Theorem 5.17) by means of a bijection
between 12231- and 12321-avoiding rgfs. However, although we have a precise
geometrical description of Sort(σ), we have not been able to find a direct proof
of this.

Open Problem 5.5. Prove directly (that is, without using a bijection involving
different objects) that the number of 132-sortable permutations of length n + 1
with k + 1 left-to-right minima is given by

n∑

j=k

(
n

j

)
nj,k.

5.2 The patterns 12323 and 12332

Let

F (x) =
∑

n≥0

(
n−1∑

k=0

(
n− 1

k

)
ck

)
xn

be the ordinary generating function of σ-sortable permutations (or, equivalently,
of R(12323) and of R(12332)). Then F (x) can be expressed using the following
continued fraction (see, for example, [B, F]):

F (x) =
1

1− 2x−
x2

1− 3x−
x2

1− 3x−
x2

1− 3x− . . .

A nice combinatorial interpretation of this continued fraction can be given in
terms of labeled Motzkin paths, via Flajolet’s general correspondence [F]. More
precisely, |Sortn+1(σ)| is the number of Motzkin paths of length n such that each
horizontal step at height zero has two types of labels `0, `1 and each horizontal
step at height at least one has three types of labels `0, `1, `2. LetMlab

n be the set
of such labeled Motzkin paths of length n. We now define a map β from Mlab

n

to rgfs of length n + 1 (see Figure 5). Let P ∈ Mlab
n and let ∆ be an initially
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`0 `1
U

U D `2 `0

D `0 `0

Figure 5: The labeled Motzkin path corresponding, via the bijection β of The-
orem 5.6, to the restricted growth function 12134435367, which in turn corre-
sponds to the set partition 13–2–479–56–8–10–11.

empty stack. We construct a rgf R by scanning from left to right the labels of
P (including U and D for upstep and downstep, respectively). We start by setting
R = 1. Then we append a new rightmost element to R according to the following
rules, where L denotes the currently scanned label:

• if L = U then append a new strict maximum M and push M onto ∆;

• if L = D then append top(∆) and pop it from ∆;

• if L = `0, then append a new strict maximum (without pushing it onto ∆);

• if L = `1 then append 1;

• if L = `2 then append top(∆) (without popping it from ∆).

In other words, U corresponds to the first occurrence of a letter x that ap-
pears at least twice in R, D to the last occurrence of such a letter, and `2 to
an occurrence of such an x that is neither the first nor the last. Moreover, the
label `0 corresponds to an element x 6= 1 appearing only once and the label `1
corresponds to the element 1.

It is worth noting the correspondence between the labels of a Motzkin path P
described above and properties of the set partition associated (in Section 2) to
the rgf R = β(P ). Namely, if B is a block of cardinality at least 2 in such a
partition and B doesn’t contain 1, then U, D and `2 correspond, respectively, to
the least, the largest and any of the remaining elements of the block. Further-
more, `0 corresponds to a singleton block not containing 1 and `1 corresponds to
the elements of the block containing 1. With this correspondence the auxiliary
stack ∆ is seen to keep track, at each stage of the construction of R, of the
open blocks in the corresponding partition, that is those blocks that have not
yet received all their elements.

Theorem 5.6. The map β is a bijection between Mlab
n and Rn+1(12323).

Proof. It is straightforward to see that β is injective and that β(P ) is a rgf for
every P ∈ Mlab

n . Since |Mlab
n | = |Rn(12323)|, we only need to show that β(P )

avoids 12323, for each P ∈ Mlab
n . Suppose, for a contradiction, that abcb′c′ is

an occurrence of 12323 in β(P ). This implies, of course, that b, c 6= 1. Without
loss of generality, we may assume that b and c are the first occurrences of the
corresponding integers in β(P ); then both b and c correspond to U-steps in P
and are pushed onto ∆. Moreover, since b′ = b and b′ follows c in β(P ), when c
enters ∆, b is still in, and so c lies above b in ∆. Now observe that the element b′

must correspond to either a D-step or a horizontal step labeled `2 of P . However,
in both cases, when b′ is inserted into β(P ), b has to be at the top of the stack,
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hence c should have been popped. This would imply that there are no more
occurrences of c in β(P ) after b′, which is not the case, since c′ = c.

Remark 5.7. If we replace the stack ∆ with a queue Ξ, then the same map gives
a bijection with rgfs avoiding 12332. The proof is analogous to the previous one,
and is omitted.

Remark 5.8. If we restrict the previous bijections to Motzkin paths with no
horizontal steps labeled `1, then we get bijections with rgfs that avoid 1212
(if we use a stack ∆) or 1221 (if we use a queue Ξ), provided that we remove
the 1 at the beginning and decrease all the other elements by one. This follows
again from the characterization of R(12323) and R(12332) given in [JM]. The
corresponding continued fraction is then:

F (x) =
1

1− x−
x2

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

This gives an alternative proof of the fact that rgfs avoiding either 1221
or 1212 are enumerated by the Catalan numbers, whose generating function is
known to be given by the above continued fraction.

Remark 5.9. As a consequence of the bijections in Theorem 5.6 and Remark 5.7,
the statistic “sum of the numbers of U and `0 steps” in Mlab

n is equidistributed
with the statistic “(value of the) maximum minus one” both in Rn+1(12332)
and in Rn+1(12323). The same holds for the statistics “number of labels `0” and
“number of singletons 6= {1}”, as well as for the statistics “number of labels `1”
and “number of occurrences of 1 minus one”. Some computations seem to suggest
that the distribution of the maximum is the same for several other patterns of
the same Wilf-class, namely 12123, 12132, 12213, 12231, 12312, 12321, 12331, so
we suspect that the same approach should lead to straightforward bijections, by
suitably modifying the interpretation of the steps.
For example, define ri to be a repeated ltr-maximum of a rgf r1r2 . . . rn if ri =
max {r1, . . . , ri−1}. Then steps having label `1 seem to have the same distribution
as the repeated ltr-maxima in R(12321) and R(12312), so in order to define a
bijection with Mlab it could be enough to find the “correct” interpretations for
steps having labels D and `2.

5.3 The patterns 12321 and 12312

In this subsection we deal with rgfs avoiding the patterns 12321 and 12312,
respectively, by exhibiting a connection with permutations avoiding the patterns
321 and 312, respectively.

Let R = r1 . . . rn be a rgf. Recall from Remark 5.9 that ri is said to be
a repeated ltr-maximum when ri = max {r1, . . . , ri−1}, that is, when ri is at
least as great as all preceding letters, but not a ltr-maximum. Denote by Rn.r.
the set of rgfs with no repeated ltr-maxima. The notations Rn.r.n and Rn.r.(Q),
for a pattern Q, are defined in the usual way. If R = r1 . . . rn ∈ Rn.r. is a rgf
with no repeated ltr-maxima, denote by R̃ the subsequence of R obtained by
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deleting its ltr-maxima. Note that R̃ is not necessarily a rgf. For example, if
R = 121311245246, then R̃ = 111224.

Lemma 5.10. Let R ∈ Rn.r.. Then R avoids 12321 if and only R̃ is weakly
increasing.

Proof. Suppose R̃ = . . . ba . . ., where b > a. Note that b is not a repeated ltr-
maximum of R, so there has to be an element c in R such that c > b and c comes
before b. Then R contains an occurrence cba of 321 and therefore it also contains
12321, by Lemma 2.1.

Conversely, if R contains an occurrence abcb′a′ of 12321, then b′ precedes a′

in R̃ and b′ > a′, so R̃ is not weakly increasing.

We can now define a bijection between Rn.r.(12321) and Av(321). In fact,
the previous lemma roughly says that the combinatorial structure of elements
of Rn.r.(12321) is analogous to that of permutations in Av(321), that is, they
can both be written as a shuffle of two weakly increasing sequences (namely, the
strictly increasing sequence of the ltr-maxima and the weakly increasing sequence
of the remaining elements). Let R = r1 . . . rn ∈ Rn.r.(12321) and suppose R̃ =
ri1 . . . rik , where k ≥ 0. Construct a permutation of length n by keeping the same

positions for the ltr-maxima and mapping R̃ to a strictly increasing sequence
S = s1 . . . sk as follows:

• s1 = ri1 ;

• sj = sj−1 + (rij − rij−1) + 1, for j ≥ 2.

Finally, in order to get a permutation that avoids 321, insert the remain-
ing elements in increasing order (they will be the ltr-maxima). For instance, if
R = 121314234, then R̃ = 11234, so we get S = 12468 and the resulting permu-
tation is 351729468 (bold elements are the ltr-maxima). Note that a rgf having
maximum k (equivalently, with k ltr-maxima) is mapped to a permutation with k
ltr-maxima. It is straightforward to prove that the resulting permutation avoids
321. Moreover, since 321-avoiding permutations are uniquely determined by posi-
tions and values of their ltr-maxima, the strictly increasing sequence S is enough
to uniquely identify one such permutation. Therefore the map defined above is
injective. Finally, the construction proposed can be easily inverted, so the map
is a size-preserving bijection between Rn.r.(12321) and Av(321). We thus have
the following result, whose proof immediately follows from the above discussion.

Proposition 5.11. The number of rgfs in Rn.r.n (12321) is cn. Moreover, the
number of rgfs in Rn.r.n (12321) having maximum k is given by nn,k.

Next we show that any rgf avoiding 12321 is obtained by choosing a sequence
in Rn.r.(12321) and then inserting some repeated ltr-maxima.

Theorem 5.12. Let R be a rgf and let α(R) be the sequence obtained from R by
removing all the repeated ltr-maxima. Then α(R) is a rgf. Moreover, R avoids
12321 if and only α(R) avoids 12321.

Proof. It is easy to check that α(R) is still a rgf and clearly α(R) avoids 12321
if R does. On the other hand, suppose that R contains an occurrence abcb′a′ of
12321. Note that b′ and a′ are not repeated ltr-maxima, so they are elements of
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α(R) and they follow c in R. Let c′ be the first occurrence of the integer c in R.
Then c′ ∈ α(R) and c′ precedes b′ in α(R), so α(R) contains an occurrence c′b′a′

of 321, which is equivalent to containing 12321.

Corollary 5.13. For each n ≥ 1, we have

|Rn+1(12321)| =
n∑

k=0

(
n

k

)
ck.

Moreover, there are
∑n

j=k

(
n
j

)
nj,k rgfs in Rn+1(12321) with maximum k.

Proof. This is a direct consequence of the results proved in this subsection, to-
gether with the fact that the first element of a rgf cannot be a repeated ltr-
maximum.

Remark 5.14. The same approach can be used to find a bijection between
Rn.r.(12312) and Av(312). In fact, 312-avoiding permutations are also uniquely
determined by the positions and values of their ltr-maxima, and a completely
analogous argument can be applied. As a consequence, we also have

|Rn+1(12312)| =
n∑

k=0

(
n

k

)
ck.

5.4 A bijection between R(12321) and R(12231)

In Section 4 we showed that σ-sortable permutations are in bijection with rgfs
avoiding 12231. Although the labeled Motzkin path approach described in Sec-
tion 5.2 could be fruitful, a direct combinatorial enumeration for the pattern
12231 seems to be rather more complicated than for the patterns treated in the
previous section. Here we illustrate a bijection between R(12231) and R(12321),
thus obtaining an independent proof of the enumeration of Sort(σ).

From now on we say that ri1ri2ri3 is an occurrence of the pattern 2̃31 in R if
ri1ri2ri3 is an occurrence of 231 and ri1 is not a ltr-maximum of R (that is, ri1
is not the first occurrence of the corresponding integer). Note that R(12231) =
R(2̃31) and also R(12321) = R(321), so we can focus on the patterns 2̃31 and
321 instead of 12231 and 12321, respectively. Given a rgf R = r1 . . . rn, define
rm(R, 321) = i1i2i3, where riiri2ri3 is the lexicographically rightmost occurrence
of 321 in R. In other words, for any other occurrence rjirj2rj3 of 321, we must
have either j1 < i1, or j1 = i1 and j2 < i2, or j1 = i1, j2 = i2 and j3 < i3. If R
avoids 321, set rm(321) = 000 by convention. Similarly, denote by lm(R, 2̃31) =
i1i2i3 the lexicographically leftmost occurrence of 2̃31 in R. If R avoids 2̃31, set
lm(R, 2̃31) = (n+ 1)(n+ 1)(n+ 1).

Now, let R = r1 . . . rn ∈ R(2̃31), a hypothesis we will assume throughout the
rest of this section. Define recursively a rgf γ(R) as follows.

1. R(0) = R.

2. For t ≥ 0, if R(t) contains 321, then R(t+1) is obtained from R(t) by ex-
changing the elements ri1 and ri2 , where i1i2i3 = rm(R(t), 321).

3. Finally, define γ(R) = R(k), where k is the minimum index such that R(k)

avoids 321.
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i1 i2 i3 i1 i2 i3

Figure 6: On the left, the rightmost occurrence of the pattern 321 in R(t), with
indices i1i2i3. Shaded boxes correspond to forbidden regions. On the right, the
resulting pattern in R(t+1), obtained by exchanging the elements in positions i1
and i2.

It is easy to verify that, at each step, R(t) is a rgf; moreover R(k) avoids 321
by construction. Thus, in order to prove that the map γ is well defined, we have
to show that the integer k indeed exists. This follows from the next lemma.

Lemma 5.15. For every t ≥ 0, we have rm(R(t+1), 321) <` rm(R(t), 321),
where <` denotes the lexicographical order.

Proof. Let R(t) = r
(t)
1 . . . r

(t)
n and, similarly, R(t+1) = r

(t+1)
1 . . . r

(t+1)
n . Moreover,

let rm(R(t), 321) = i1i2i3 and rm(R(t+1), 321) = j1j2j3. Note that, as illustrated
in Figure 6, our hypothesis imposes some constraints on the elements of R(t).

More precisely, r
(t)
j ≤ r

(t)
i2

, for each j = i1 + 1, . . . , i2 − 1. Also, for each j =

i2+1, . . . , i3−1, either r
(t)
j ≤ r

(t)
i3

or r
(t)
j ≥ r

(t)
i1

. Finally, r
(t)
j ≥ r

(t)
i2

for each j > i3.
We will repeatedly use these inequalities throughout this proof. Our goal is now
to show that j1j2j3 <` i1i2i3. Suppose, by contradiction, that j1j2j3 ≥` i1i2i3.
Consider the following case analysis.

• Suppose j1 > i1. If j1 < i2, then necessarily r
(t+1)
j1

= r
(t)
j1
≤ r

(t)
i2

, due to
the above constraints. Hence we must have j2, j3 6= i2, since otherwise the
indices j1, j2, j3 would not correspond to an occurrence of 321 in R(t+1).

This implies that r
(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

= r
(t)
j1
r
(t)
j2
r
(t)
j3

is an occurrence of 321

in R(t) as well, with j1j2j3 >` i1i2i3: this is a contradiction, since we are
assuming that rm(R(t), 321) = i1i2i3. Next suppose that j1 = i2 (and so

j2 > i2). Note that r
(t)
i1

= r
(t+1)
i2

= r
(t+1)
j1

, hence r
(t)
i1
r
(t)
j2
r
(t)
j3

is an occurrence

of 321 in R(t) with i1j2j3 >` i1i2i3, which is impossible. Finally, suppose

that j1 > i2. Then obviously r
(t)
j1
r
(t)
j2
r
(t)
j3

= r
(t+1)
j1

r
(t+1)
j2

r
(t+1)
j3

is an occurrence

of 321 in R(t), with j1j2j3 >` i1i2i3, again a contradiction.

• Suppose instead that j1 = i1 and j2 > i2. Then r
(t+1)
i1

= r
(t)
i2

and j2 > i2,

so r
(t)
i2
r
(t)
j2
r
(t)
j3

is an occurrence of 321 in R(t), with i2j2j3 >` i1i2i3, which is
impossible.

• Finally, the case j1 = i1 and j2 = i2 is clearly impossible, since we have

r
(t+1)
i1

= r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

.

Next we show that γ is a bijection by proving that the recursive construction
defined above can be reversed. More precisely, R(t) can obtained from R(t+1)

by transforming the leftmost occurrence of 2̃31 into an occurrence of 321 (see
Figure 7).
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ww
321 L99 lm(2̃31)

Figure 7: The diagram of Lemma 5.16.

Lemma 5.16. Let t ≥ 0. Let rm(R(t), 321) = i1i2i3 and lm(R(t+1), 2̃31) = j1j2j3.
Then i1 = j1 and i2 = j2.

Proof. We again refer to Figure 6 for an illustration of the constraints imposed
on the elements of R(t) by the position of the rightmost occurrence of 321 inside
R(t). We proceed by induction on t.

Suppose first that t = 0, that is, R(0) = r
(0)
1 . . . r

(0)
n avoids 2̃31, but contains

321. Set R(1) = r
(1)
1 . . . r

(1)
n , rm(R(0), 321) = i1i2i3 and lm(R(1), 2̃31) = j1j2j3.

Note that r
(1)
i1
r
(1)
i2
r
(1)
i3

is an occurrence of 2̃31 in R(1). Indeed, by Lemma 2.1,

the first occurrence of the integer r
(0)
i2

in R(0) precedes r
(0)
i1

, since r
(0)
i1

> r
(0)
i2

.
Therefore j1j2j3 ≤` i1i2i3. We have to show that i1 = j1 and i2 = j2. Suppose,

to the contrary, that j1 < i1. If either j2 = i1 or j2 = i2, then r
(0)
j1
r
(0)
i1
r
(0)
j3

would

be an occurrence of 2̃31 in R(0), which is impossible since R(0) ∈ R(2̃31). Thus we
must have j2 6= i1 and j2 6= i2. In particular, since j2 6= i2, we must have either

j3 = i1 or j3 = i2, otherwise r
(0)
j1
r
(0)
j2
r
(0)
j3

= r
(1)
j1
r
(1)
j2
r
(1)
j3

would be an occurrence

of 2̃31 in R(0) as well. However, if either j3 = i1 or j3 = i2, then r
(0)
j1
r
(0)
j2
r
(0)
i2

would be an occurrence of 2̃31 in R(0), which is again a contradiction. Therefore
it has to be i1 = j1. Finally, the case j1 = i1 and j2 < i2 is forbidden, due to
the restrictions depicted in Figure 6. Summing up, we must have i1 = j1 and
i2 = j2, as desired.

Now suppose that t ≥ 1. Let R(t) = r
(t)
1 . . . r

(t)
n . For the rest of this proof, we

fix the following notation:

- rm(R(t−1), 321) = t1t2t3;

- lm(R(t), 2̃31) = s1s2s3;

- rm(R(t), 321) = i1i2i3;

- lm(R(t+1), 2̃31) = j1j2j3.

By the inductive hypothesis we have s1 = t1 and s2 = t2. Moreover, Lemma 5.15
implies that t1t2t3 >` i1i2i3, hence t1t2 ≥` i1i2 and s1s2 ≥` i1i2. Note that

r
(t+1)
i1

r
(t+1)
i2

r
(t+1)
i3

is an occurrence of 2̃31 in R(t+1), so we must have j1j2j3 ≤`
i1i2i3. Our goal is to show that i1 = j1 and i2 = j2. We shall proceed by
contradiction, so we assume that j1 < i1 or j2 < i2. Our strategy consists in
finding an occurrence of 2̃31 in R(t) such that the indices of its first two elements
strictly precede i1i2 (in the lexicographical order). Indeed, this would imply that
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s1s2 <` i1i2, since s1s2s3 = lm(R(t), 2̃31), which is impossible since we know that
s1s2 ≥` i1i2.

Suppose first that j1 < i1. If {j2, j3} ∩ {i1, i2} = ∅, then r
(t)
j1
r
(t)
j2
r
(t)
j3

is the

desired occurrence of 2̃31 in R(t), since in this case j1, j2, j3 are not involved in
the transition from R(t) to R(t+1) and we are assuming that j1 < i1. Therefore at
least one of j2 and j3 must coincide with either i1 or i2. We will now show that,
in each case, we are able to find an occurrence of 2̃31 in R(t) with the desired
property.

• If j2 = i1, then r
(t+1)
j2

= r
(t+1)
i1

< r
(t)
i1

, hence r
(t)
j1
r
(t)
j2
r
(t)
j3

is an occurrence of

2̃31 in R(t), and j1j2 <` i1i2.

• If j2 = i2, then r
(t)
j1
r
(t)
i1
r
(t)
j3

is an occurrence 2̃31 in R(t), and j1i1 <` i1i2.

• If j3 = i1, then r
(t)
j1
r
(t)
j2
r
(t)
i2

is an occurrence of 2̃31 in R(t), and j1j2 <` i1i2.

• If j3 = i2, then r
(t)
i2
< r

(t)
i1

= r
(t+1)
i2

, hence r
(t)
j1
r
(t)
j2
r
(t)
i2

is an occurrence of 2̃31

in R(t), and j1j2 < i1i2.

The above case-by-case analysis shows that i1 = j1. Moreover, we cannot have
j2 < i2; this is again due to the restrictions illustrated in Figure 6.

Theorem 5.17. The map γ is a size-preserving bijection between R(12321) and
R(12231). Moreover, γ preserves the maximum value of a rgf.

By Theorem 5.17 and Corollary 5.13, the distribution of the maximum letter
in rgfs over Rn(12231) is given by

∑n
i=k

(
n
i

)
ni,k. This provides a combinatorial

(even if not direct) proof of the formula stated in Open Problem 5.5 for the
distribution of ltr-minima of Sort(132).

6 Final remarks and future work

In Sections 3 and 4 we have characterized the elements of the set Sort(132),
thus solving one of the open problems for pattern-avoiding machines introduced
in [CCF]. For three remaining patterns σ of length 3, namely 213, 231 and 312,
a characterization of the σ-sortable permutations remains to be found, as well as
their enumeration. The pattern 231 seems to be significantly more challenging
than the others. This is arguably due to what seems to be the case, according
to computational evidence, namely that the 231-machine can sort more permu-
tations of length n, for each n ≥ 3, than the machines associated to any other
pattern of length 3 (in particular, it is the only one that can sort every permu-
tation of length 3).

The enumeration of 132-sortable permutations has been obtained by means
of a bijection with rgfs avoiding 12231, whose enumeration can be found in [JM]
as an application of a much more general mechanism. In Section 5 we have found
new direct proofs for related classes of rgfs, exhibiting connections with other
well known combinatorial objects, such as lattice paths and pattern-avoiding
permutations. In particular, the bijection with labeled Motzkin paths in Theo-
rem 5.6 seems amenable to being extended and generalized, in order to cover the
enumeration of many patterns in the same Wilf-equivalence class.
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