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Some remarks on the power product expansion of the q-exponential series 

Johann Cigler 

Fakultät für Mathematik, Universität Wien 

 

Abstract. We give an overview about the power product expansion of the exponential series and 
derive some q  analogs. 

 

1. Introduction 

Each formal power series 
0

( ) n
n

n

f x a x




   with 0 1a   has a representation as an infinite product of 

the form 

  
1

( ) 1 ,n
n

n

f x g x




   (1) 

a so-called power product expansion. 

More precisely there are uniquely determined coefficients jg  such that   ,
1

1
n

k k
k n k

kk

g x b x


   

with ,n k kb a  for .k n  To see this observe that 

     
1

1, 1,
01

1 1 .
n n

k n k k n
k n n k k n n n

k kk

g x g x b x a x b g x


 


          

Therefore, there is a uniquely determined ng  such that 1, .n n n nb g a    

Such expansions have been studied in a number of papers, cf. [4] and [5] and the references cited 
there. 

A simple example is 

  2

0 0

1 .
nn

n n

x x
 

    (2) 

Here both sides are convergent for 1.x   Since the zeros of the right-hand side are not in the domain 

of convergence there is no contradiction to the fact that the left-hand side has no zeros. 

 

In this note I consider the case of the exponential series 

  
0 1

exp( ) 1
!

n
n

n
n n

x
x e x

n 

     (3) 

and its q  analogs in some detail.  

My interest in this problem has been aroused by the article “A dream of a (number-) sequence” by 
Gottfried Helms [6]. 
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2. Some background information 

Taking logarithms of (3)  yields 

   1 1 /

1 1 1 1

1
log 1 ( 1) ( 1) .

d
k d d kd n d n d

k k
k k d n d n

e
x e x e x x

d d
 

   

          (4) 

Therefore, we get for 1n   

1 /( 1) 0
d

d n d

d n

e

d
   which gives 

 /

, 1

( 1) .
d

d n d
n

d n d

e
e

d

   (5) 

The first terms are  

   1

1 1 3 1 13 1 27
1, , , , , , , ,

2 3 8 5 72 7 128n n
e



     
 

  (6) 

 O. Kolberg [7] used this formula to show that 
1

pe
p

   for a prime number 3p   and that 

( 1) 0n
ne   for 1.n   

The first assertion follows immediately from (5). For the second assertion we consider  

 
1

exp( ) 1 n
n

n

x a x


    and show that 
2

0 na
n

   for 1.n   

Let me reproduce his argument. The inequality is true for 20n   by direct computation. Let now 

20n   and suppose that 
2

0 ma
m

   holds for .m n  Then  

2 3 4
5 32

/ / 2 3
,1 ,5

4

1 1 1 4 1 6 1 8 1 2 3
( 1) .

2 3 4

nn
d d

n n d n d
nd n d n d n d

a a a a a
n d n n n d n n   

                  
     

   

For 
4

n
d   we have 4

n
k

d
   and 

2
.ka

k
  This implies 

5
5

/
4,5

4

1 2
n d

n kd n d

k
a

d n k 

   
 

   

For 20n   we get 
2 3 4

32
2 3

1 4 1 6 1 8 2 3
0.72.

2 3 4

nn

n a a
n n n n n

                       
  

This implies  
5

4

1 1 2 1 1
0.72 0.72 0.24 .n

k

a k
n n k n n
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It also follows that the expansion  

  
2

exp( )
1

1
n

n
n

x
a x

x 


 

   (7) 

  converges for 1.x   

L. Carlitz [2] showed that 
!

n
n

c
e

n
  with integers nc  and derived some arithmetic properties of ,nc  

for example that 0 modnc p  if n p  is relatively prime to the prime number .p  We shall give a 

different proof in Corollary 4.4. 

The first terms of the sequence ( )nc are   

    1
1,1, 2,9, 24,130, 720,8505, .n n

c

      (8) 

 Remark 

The sequence  0,1, 2,9, 24,130,720,8505,  of coefficients of (7) also  occurs as the dimensions of 

representations by Witt vectors (cf. [1] and  OEIS [8], A006973). 

Since 
1

pa
p

  for a prime number p we get ( 1)!.pc p    

Moreover J. Borwein and S. Lou [1] proved that  ( 1)!nc n   for odd ,n  for example 

9 35840 8! 40320,c     and that ( 1)!nc n   for even ,n  for example 4 9 3! 6c     or 

6 130 5! 120.c     

A look at OEIS [8] suggests the sequence OEIS [8], A067911= 
1

1

gcd( , )
nn
d

n
k d n

n

u k n d
 
 
 




 
   

 
  as 

another choice for the numerators  1, 2,3,8,5,72,7,128, .   

Putting n
n

n

r
e

u
  in (5) we get 

 /
, 1 /

( 1) .d dn
n n dd

d n d n d

u
r r

du

   (9) 

Now we see by induction that all nr  are integers if we can show that 
/

n
d
n d

u

du
 is an integer for each 

divisor d  of .n  
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In order to show this we consider the d  intervals 1, , ( 1) ,
n n

j j
d d
   0 ,j d   where in the last 

interval the number n  is replaced by .
n

d
 Since for each i  gcd( , / ) gcd( , )i n d i n  we see that 

/ .d n
n d

u
u

d
  

The first terms are  

    1
1,1, 1,3, 1,13, 1, 27, .n n

r

      (10) 

Note that nr  and nu  need not be relatively prime. For example,   12 12gcd , 3.u r   

Let us mention some  special cases of  (9):  For a prime 2p   we get  1pr    and 2

11 p

p
r p    and 

for a product of two different primes n pq  we get  q p
pqu p q and 

/
/

1

1 1 1 1

1 1 1
( 1)

1 1 1
.

pq pq pqd dn
pq n d q p pqd p q p q

d n n d q p
d

q p q p q p
p q

u u uu
r r r r u

du pu qu pq pq qp pq

p q p q p q
pq qp pq



   

 
         

 

 
      

 


 

 

 

3. Connections with Pascal’s triangle. 

3.1. Let 

1

, 0

n

n

i j

i
P

j





  
   

  
 be the n n  Pascal matrix and let   1

. 0
( , )

n

n i j
H h i j




  with ( , 1)h i i i   

and ( , ) 0h i j  else, i.e.  ( , ) 1h i j i i j    by using Iverson’s convention:   [P]=1 if property P is 

true and [P]=0 else. Then  
1

,

, 0

.
!

n
k
n

n k

i j

iH
H i j k

kk





  
     

  
 

Since 0k
nH   for k n  we get 

   
1 1

,
0 0 0

1 1
exp .

! !

n n
k k

n n k n n n
k k k

P H H H H
k k

 

  

        (11) 

From (3) we get  

 

    

1 2 111 2

1 ,1 2 ,2 1 , 1

1! 2! ( 1)!

.

nn
n n n n n n n

n n n n n n n n

cc c
P I H I H I H

n

I c H I c H I c H



 

              
   




 (12) 
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For example  

   4 4 4,1 4 4,2 4 4,3

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0
2 .

1 2 1 0 0 2 1 0 1 0 1 0 0 0 1 0

1 3 3 1 0 0 3 1 0 3 0 1 2 0 0 1

P I H I H I H

     
     
          
     
     

     

 

From this representation we see again that the numbers nc  are integers.  

If we set         1

1 ,1 2 ,2 , , 0
( , )

n

n n n n n k n k k i j
I c H I c H I c H g i j




     then ( ,0) 1kg i   for .i k  

If it is already proved that ic  is an integer for 1 1,i k    then  from 

     1 1

1 ,, 0 , 0
( , ) ( , )

n n

k k n k n ki j i j
g i j g i j I c H

 
 

   we see that 1( ,0) ( ,0) .k k kg k g k c   Choosing 

11 ( ,0)k kc g k   we get ( ,0) 1kg k   and all ( , )kg i j  are integers. 

 

3.2. For later applications let us state a slight generalization. Let m  be a positive integer and consider 

the matrices   
1

1( ) ( )
, , 0

, 0

( , ) [ ]

n

nm m
n k k i j

i j

i
H h i j i j mkm

k









   
             

 whose entries ( ) ( , )m
kh i j satisfy 

( ) ( , )m
k

i
h i i mk m

k

  
       
 

 and ( ) ( , ) 0m
kh i j   else. 

They satisfy ( ) ( ) ( )
, , 1 ,1
m m m

n k n k nH kH H  because 

( ) ( ) ( ) ( )
1 1 1 1( , ) ( , ) ( , ( 1)) ( ( 1), )

1

1 1

m m m m
k kh i h i mk h i i m k h i m k i mk

i i i
k

km m m

k k

       

                                     




 

 

and  ( ) ( )
1 1( , ) ( , ) 0m m

kh i h j 


   else. Therefore we get 
 ( )

( )
, !

km
nm

n k

H
H

k
   for ,1n nH H  

and 

     ( ) ( ) ( ) ( )
, ,

0 1

exp .m m m m
n n k n n k n k

k k

P H H I c H
 

       (13) 

 

For 2m   we  get the “ doubled” Pascal triangle (OEIS [8], A178112). 

 

 



6 
 

4. Power product expansion of the q  exponential series 

Let us now consider the q  exponential series  

 
0

exp ( )
[ ]!

n

q
n

x
x

n

   (14) 

 and its counterpart  

 
2

0

Exp ( ) .
[ ]!

n n

q
n

x
x q

n

 
 
 



    (15) 

As usual we set 1[ ] [ ] 1 n
qn n q q       and [ ]! [1][2] [ ].n n   

Depending on the context q  is either a complex number or an indeterminate. The needed results about 

q  series may for example be found in [3]. 

Theorem 4.1 

The coefficients ( )ne q of the power product expansion of 

   
1

exp ( ) 1 ( ) n
q n

n

x e q x


    (16) 

are given by 

 
1

/

, 1

( ) (1 )
( ) ( 1) .

[ ]

d n
d n d

n
d n d

e q q
e q

d n n






     (17) 

The coefficients ( )nE q  of the expansion 

   1

1

1
Exp ( ) exp ( ) 1 ( )

exp ( )
n

q nq
nq

x x E q x
x





   
    (18) 

are given by                        

 
1

/

, 1

( ) ( 1)
( ) ( 1) .

[ ]

d n
d n d

n
d n d

E q q
E q

d n n






     (19) 

 They satisfy  

  2 1 2 1 2 1

1
( ) ( ) .n n ne q E q e

q  

 
   

 
  (20) 

Proof 

For 0 1q   we have   1

0

exp ( ) 1 (1 )k
q

k

x q q x
 



    and therefore 
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0 0 1

1

1 1

(1 )
log exp ( ) log 1 (1 )

(1 ) 1 (1 )
.

1 [ ]

nk

k
q

k k n

n n
n

n
n n

q q x
x q q x

n

q x q
x

n q n n

  

  

 

 


    

 
 



 

 
 (21) 

This gives (17). In the same way we get (19). Comparing both formulas gives (20). 

 

The first terms of the sequence  ( )ne q are  

1( ) 1,e q   2

1
( ) ,

1
e q

q



 3 ( ) ,

[3]

q
e q    

 2 3

4

1
( ) ,

[2][4]

q q
e q

 
  

 2

5

1
( ) ,

[5]

q q q
e q

 
 

 2 2 3 4 5 6

6 2

1 3 2 2 2 2
( ) ,

[2] [3][6]

q q q q q q q
e q

     


 22

7

1
( ) , .

[7]

q q q
e q

 
    

 

The first terms of the sequence  ( )nE q  are  

1( ) 1,E q   2 ( ) ,
1

q
E q

q



 3 ( ) ,

[3]

q
E q    

 3

4

1
( ) ,

[2][4]

q q q
E q

 
  

 2

5

1
( ) ,

[5]

q q q
E q

 
 

 2 3 4 5 6

6 2

1 2 2 2 2 3
( ) ,

[2] [3][6]

q q q q q q q
E q

     


 22

7

1
( ) , .

[7]

q q q
E q

 
    

 

Let now  
1

( ) gcd [ ],[ ]
n

n
j

u q j n


  be the product of the polynomial greatest divisors of the 

polynomials 1[ ] 1 jj q q       and 1[ ] 1 .nn q q       Since     1 1d nq q   if and only if 

d n  we see that 
1

lim ( ) .n nq
u q u


  

Let us write 
( )

( ) .
( )

n
n

n

r q
e q

u q
  Then we get as above 

 
1

/
, 1 /

( ) (1 ) ( )
( ) ( 1) ( ) .

( ) [ ]

n
d dn n

n n dd
d n d n d

u q q u q
r q r q

du q n n






    (22) 

The first terms of  ( )nr q are  

     22 3 2 2 2 3 4 5 6 21,1, ,1 , 1 , 1 3 2 2 2 2 , 1 , .q q q q q q q q q q q q q q q q                 
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Remark 

For 0q   the series exp ( )q x  reduces to 2 1
1

1
x x

x
   


  and therefore (16) reduces to (2). 

Comparing coefficients we get 
2

(0) 1nr   and (0) 0nr   else.  

 

Theorem 4.2 

The polynomials ( 1) ( )n
nr q  have integer coefficients and leading coefficient 1 for 1.n   

Proof 

Let us first show that ( 1) ( )n
nr q  has leading coefficient 1 for 1.n   

The highest terms of q  in ( 1) ( )n
nr q  occur in 

1 1 1( ) ( 1) ( ) ( ) ( )( 1) [ ] ( 1)
1 .

[ ] [ ] [ ]

n n n
n n n nu q q u q u q u qq n q

n n n n n n n

      
    

 
 

The  coefficient of the leading term of  
( )

[ ]
nu q

n
 is 1 and the leading term of 

1[ ] ( 1)nn q

n

 
 is 2.nq    

 

Next we show that ( )nr q  is a polynomial in q  with integer coefficients. 

We show first that 
( )

( )
[ ]!
n

n

c q
e q

n
  where ( )nc q  is a polynomial in q  with integer coefficients. 

Let 

1

. 0

( )

n

n

q i j

i
P q

j





  
      

and let  
1

, 0

( ) 1 .
1

n

n

q i j

i
H q i j





  
       

 

Then   
1

, 0

( ) [ ]! .

n

k
n

q i j

i
H q k i j k

k





  
       

  

 

This implies the well-known q  analog of (11) 

   
1

0 , 0

( )
exp ( ) ( ).

[ ]!

n
k
n

q n n
k i j

iH q
H q P q

jk




 

  
    

  
   (23) 

If we write ,

( )
( )

[ ]!

k
n

n k

H q
H q

k
  then 

     ,
1 1

( ) ( ) ( ) ( ) ( ) .k
n n k n n k n k

k k

P q I e q H q I c q H q
 

       (24) 
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We now show that each ( )nc q  is a  polynomial in q  with integer coefficients. Since 1( ) 1c q   this is 

true for 1.k   Let     1

, , , , 0
0

( ) ( ) ( ) .
k n

n j n j k i j i j
j

I c q H q g q





   

Assume that all 1, , ( )k i jg q  are polynomials with integer coefficients. We know that ,0, 1k kg  since for 

n k  we get ( ).kP q  Then ,0, 1,0, 1, , 1,0,1 ( ) ( )k k k k k k k k k k kg g g c q g c q        shows that ( )kc q  has 

integer coefficients and therefore that all , , ( )k i jg q  are polynomials in q with integer coefficients. 

Since 
1

[ ]!k
 is a formal power series with integer coefficients we see that  

( ) ( )
( ) [ ]

[ ]!
k k

k

u q c q
r q q

k
   is also a polynomial with integer coefficients. 

The first terms of the sequence   1
( )n n

r q


 are  1, 1, ,q 2 31 ,q q   21 ,q q q    

 2 2 3 4 5 61 3 2 2 2 2 ,q q q q q q q       221 , .q q q     

For a prime number n p  we get ( ) [ ]pu q p  and   

 

   

1 1

1
1 2

2

1 1

( ) (1 ) ( ) [ ] (1 ) 1
( ) 1 (1 )

[ ] (1 )

( ) 1

[ ].
(1 ) (1 )

p p
p p p p

p

p
p

jj p j

j j

u q q u q p q
r q q q

p p p p p p q

p p
q q q

j j
q

p q p q

 






 

 
          



   
     

     
 

 


 

 

For the sequence   1
( )n n

c q


 we get more information. 

Theorem 4.3 

Let n m be positive integers and 
2

.
i

m
m e



   If n mk  we get   ,mk m kc c   if n is not a multiple 

of m then   0.n mc    

Proof 

 Since 
1 2[ ] ! 1 1 1

[ ] ! 1 1 1

km km km r
q

q

km r q q q

km q q q

     


  
  for mq   reduces to 

21 1 1
[ ] !

1 1 1 m

r
m m m

m m m

r 
  
  

  


  
  we see that for mq   

   , ,

( ) ( ) ( )[ ]!
lim lim ( ) .

[ ]! [ ]! [ ]! [ ] !m m
m

km r km r
rn n n m

n km r m n n km mq q

H q H q Hkm
H H q H

km r km km r r 


 


  
  

 
 

Therefore we get  
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1

,
0 0

( )
( ) .

[ ] !
m

jm
n m

n m n km m
j k

H
P H

j 

 


 

    (25) 

Since 

[ ]! [ ]! [ ] [ 1] [ 1]

[ ]![( ) ]! [ ]![( ) ]! [( ) ] [( ) 1] [( ) 1]

nm r nm r nm nm r nm r nm

km km n k m r km n k m n k m r n k m r n k m

      
             

  

and 
( )

[ ] 1
1

[( ) ] 1

nm i

n k m i

nm i q

n k m i q



 

 
 

  
 for mq  and 0 i m   we see that 

1 ( ) 1

1 1 1

1 1 1
lim lim lim lim lim .

1 1 1m m m m m

mn mn m n k

km kmq q q q q
q q q q

nm r nm n n nq q q

km km k k kq q q   

  

    

           
                        

  

 

Therefore we get  

mq

i
i

m
km

k

  
            

 

  and 

       
1

1
( )

( )
, ,

, 0
, 0

.
!

m

n
n km

nm
n km m n k

i j
i j

i Hi
H i j km i j km Hm

km k
k









                               

 

Thus (25) gives   

     
1

1
( )

,
0 1

( )
( ) exp ( ) .

[ ] !
m

jm
mn m

n m n n k n km m
j k

H
P H I c H

j 

  




 

 
    

 
    (26) 

On the other hand we know that  

   
1 1

,
01

( )
( ) ( ) ( ) ( )

[ ]!

jm m
jn

n j n j j n
j j mj

H q
I c q H q b q H q

j

 

 

      (27) 

for some polynomials ( ) [ ].jb q q  

For mq   this reduces to 

   
11

,
0 1

( )
( ) ( )

[ ] !
m

j mm
n m

n j m n j m
j j

H
I c H

j 

  


 

     (28) 

because ( )
,( ) [ ] ! 0.

m

m m
n m n kH H m     

Therefore we get from (24) 

   
1

1

,
0

( )
( ) ( ) ( ) .

[ ] !
m

jm
n m

n m n j m n j m
j j m

H
P I c H

j 

   




 

 
   

 
    (29) 
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Comparing with (26) we see that   0j mc    if j m is not a multiple of m and that   .jm m jc c   

Corollary 4.4 (Carlitz [2]) 

Let p be a prime number. If n p is relatively prime to p then 0 mod .nc p  If n pm  then 

mod .n pm mc c c p   

In another direction we prove a slight extension of the fact that 
2

(0) 1nr   and (0) 0nr   else. 

Theorem 4.5 

The identity (16) reduces modulo 2q  to 

   2 3 2

1

1 (1 ) (1 2 ) 1 ( ) modn
n

n

x q x q x g q x q


          (30) 

where  1( ) 1,g q    1

2
( ) 1 2n

ng q q   for 0n   and 2 ( ) 0,ng q   2 1( )ng q q    else.  

Proof  

For any commutative ring  R  with identity the infinite product  
1

1 n
n

n

g x


  with ng R  

can be expanded into a formal power series 2
1 21 .a x a x    

Let us choose  2[ ] / .R q q   Its elements can be written as a bq  with integers ,a b  and 2 0.q   

Since    2 1 1 2[ ]! (1 ) 1 1 (1 ) 1 ( 1) modn nn q q q q q q n q q               we see that 

21
1 ( 1) mod .

[ ]!
n q q

n
    Therefore 2 3 2exp ( ) 1 (1 ) (1 2 ) mod .q x x q x q x q        

On the other hand we have 

1
/

, 1

( ) (1 )
( ) ( 1) .

[ ]

d n
d n d

n
d n d

e q q
e q

d n n






    

Since 

  1
21 ( 1) 1(1 ) 1 ( 1) 1 1

mod
[ ] (1 )

n n q qq n q nq
q q

n n n q n n n

      
    


 

it suffices to show that ( )ng q  satisfies  

2/ ( ) 1
( 1) mod .

d
d n d

d n

g q
q q

d n
    
 

  

For 1d   we get ( ).ng q  For d n  we get 
( 1)

.
n

n


 

For 1 d n   we get / 0d
n dg   except if 2kn

d
  for some .k   
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Thus for odd n  we get 
1 1

( ) .ng q q
n n

     

Let now 2 .kn u  Here we need only consider 1,d   d n  and 2id u for 0 .i k   

We get  
 212

2 2 2 1/ 2
1 2( )( ) 1

( 1) ( 1) ( 1) ( 1) 2 .
2 2 2

i
i

i i ik i

uk iud
d u u u k in d

i i i

qg qg q
q

d u u u



 
 

          
 

  

This gives summed up  

1 2 3
1 1

1 1 1 1 1
2 2 2

2 4 2 2
k k k

k k
q q q q q

u u u u u
  

 

                         
       

  

Together with 
1 1

( )
2n k

g q
n u

    we get 
1

.q
n

  

Let us verify this for the first terms of ( ) :ne q  

1 1( ) 1 ( ),e q g q   0
2 2

1
( ) 1 1 2 ( ),

1
e q q q g q

q
     


 

 3 32
( ) 1 ( ),

1

q
e q q q q g q

q q
       

 
2 3

2
4 42 3

1
( ) (1 ) 1 2 ( ), .

(1 )(1 )

q q
e q q q g q

q q q q

 
     

   
  

 

References 

[1] J. Borwein and S. Lou, Asymptotics of a sequence of Witt vectors, J. Approx. Th. 69  
      (1992), 326-337 
[2] L. Carlitz, Some arithmetic properties of the coefficients in a certain expansion,  
      Nordisk Matematisk Tidsskrift 9 (1961), 117-122 
[3] G. Gasper and M. Rahman, Basic hypergeometric series, Cambridge Univ. Press 2004 
[4] H. Gingold, H.W. Gould, and Michael E. Mays, Power product expansions, Utilitas  
      Mathematica 34 (1988), 143-161 
[5] H. Gingold and A. Knopfmacher, Analytic properties of power product expansions,  
      Can. J. Math. 47 (1995), 1219-1239 
[6] Gottfried Helms, A dream of a (number-) sequence,  
      http://go.helms-net.de/math/musings/dreamofasequence.pdf 
[7] O. Kolberg, A property of the coefficients in a certain product expansion of the  
     exponential function,  Nordisk Matematisk Tidsskrift 8 (1960), 33-34 
[8] OEIS, The Online Encyclopedia of Integer Sequences, http://oeis.org/ 
 


