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NACHUM DERSHOWITZ
SCHOOL OF COMPUTER SCIENCE
TEL AVIV UNIVERSITY
RAMAT AVIV, ISRAEL
NACHUMG@CS.TAU.AC.IL

Canal street, running across Broadway to the Hudson, near the centre of the city,
is a spacious street, principally occupied by retail stores. ...

The streets are generally well paved, with good side walks,

lighted at night with lamps, and some of them supplied with gas lights.

—The Treasury of Knowledge, and Library of Reference (1834)

ABSTRACT. We present a substantial generalization of the equinumeracy of grand Dyck
paths and Dyck-path prefixes, constrained within a band. The number of constrained paths
starting at level ¢ and ending in a window of size 2j + 2 is equal to the number starting
at level j and ending in a window of size 2i + 2 centered around the same point. A new
encoding of lattice paths provides a bijective proof.

1. INTRODUCTION

We are interested in enumerating lattice paths that remain within a band of height h,
sometimes called corridor paths [1]. Sort of like walking in Manhattan, sticking west of
Broadway (Figure 1).

Let z«'%\» ¢, or just i ~ ¢ (fixing h), denote the number of monotonic lattice paths from
(0,4) to (n, £) with n steps that stay within (but may touch) the boundaries y = 0 and y = h,
for some given (maximum) height h.' Let H = [0: h] be the ordinate bounds within which
steps are permissible. Steps are diagonal, NE (northeast, ~), taking (z,y) = (x + 1,y + 1),
and SE (southeast, \v), taking (z,y) = (z + 1,y — 1), both with the proviso that the new
ordinate position y + 1 € H, as the case may be. It is easy to see that one always has
n+i=/{ (mod 2), or else there are zero n-step paths starting at level ¢ and ending at £. See
Figure 2 for a sample path in 1 'v?w 3 (using the same notation for the set of paths as for its
cardinality).

Date: July 17, 2020.
L Height here is the maximum length of a unidirectional path (just NE or just SE). Some might prefer to
say that the width of the corridor is h + 1, since h + 1 ordinate values are allowed.
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FiGURE 1. Manhattan neighborhoods, with East-West streets and

North-South avenues, bounded by Broadway on the KEast and the
Hudson River on the West, with Union Square serving as ori-
gin.  (Image © Hagstrom Map Company, Inc., in the public domain
at https://www.maps-of-the-usa.com/usa/new-york/new-york/large-d
etailed-road-map-of-south-manhattan-nyc.)

The basic recurrence is

0 fi¢g Horl ¢ H
[i=/] ifn=0

(i 20— 1) + (i~ 0+ 1) otherwise

where the bracketed condition [i = ¢] is Iverson’s notation for a characteristic function (1

when true; 0 when false), and the conditions are taken in order.
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FIGURE 2. A diagonal path (counted by) 1 ~~ 3, which goes from i = 1 to
¢ = 3 in a dozen steps, and consisting of 7 NE-steps and 5 SE-steps, with
bound h = 4. The target region J is [2 £ 1] = [1:4]. Tts center is k = 2
(the dashed red line), and j = 1 determines its width (1 feasible endpoint at
or below k and 1 above).

oooooooooooooooooooooooooooooooooooooo o

0 1 2 4
FIGURE 3. A right-left version of the constrained path 1 «}fw 3, consisting of
7 right (+) steps (colored blue) and 5 left (=) steps (red) along a 5-vertex
point graph P5 (labeled 0,1,2,3,4), starting at vertex ¢ = 1. The path in this
representation is ++—++————+++, based at 1. It is an accordion fold of the
blue path in Figure 2. The green vertical line serves as a “center of attraction”
in Section 5 and Figure 5.

®
~ ——
3

The ends of the paths we are interested in fall within a range, J, not just a single point /.
For example, the window .J = [5:10] has 6 possible landing spots, but only half of them are
feasible, depending on whether n + i is odd or even. Only those ¢ € J with the same parity
as n + 1 are relevant. Our goal is to count

v =) intal = Y i
leJ leJ

¢=n+i (mod 2)

the number of paths constrained to any corridor H = [0: h] and ending at any (feasible)

ordinate in the window .J.

These constrained lattice paths are equivalent to walks along a path graph, forward and
backward. See Figure 3. When ¢ = 0 (at the bottom) and J = H (anywhere), walks for
h =0,1,2,3,4,5,6,7,8 are enumerated at A000007 (constant 0), A000012 (constant 1),
A016116 (2Ln/2j), A000045 (Fibonacci), A038754 ({1,2}3"), A028495, A030436, A061551,
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FIGURE 4. An orthogonal path, starting at the origin and ending at {a,b) =
(5,7), consisting of 7 N-steps and 5 E-steps, staying strictly within bounds
s =4 (below y = x +4) and t = 2 (above y = = — 2). This path and its
constraints are analogues of those in Figure 2; see Section 4.

A178381, respectively,” in Sloane’s Encyclopedia of Integer Sequences (OEIS) [16]. The
following sequence for h =9, n =1,2,3, ..., does not appear (yet!): 1, 2, 3, 6, 10, 20, 35, 70,
126, 251, 460, 911, 1690, 3327, 6225, 12190, 22950, 44744, 84626, 164407, .... But its odd
elements are enumerated at A216710, while its even ones are A224514.

Such paths in a path graph having h edges can also be viewed as prefixes of Dyck paths
of bounded height h, since they start at the bottom but may end anywhere above or on
the bottom line. Their number is known to be equal to that of grand Dyck paths, of the
same length, which start in the middle of the band, may go above or below that line — as
long as they stay within bounds, and which we allow to end up either in the middle or just
above [5].* So each of the above sequences also counts constrained grand Dyck paths.

More generally, walks can start anywhere in H (0 < ¢ < h), with the position along the
route always staying within the range [0 : h]. Table 1 lists values for the number of paths

2Compiled already by Jonathon Bryant [1].

3Usua11y, grand Dyck paths are defined to be of even length and to end up back on the starting line. To be
more inclusive, we allow odd-length grand Dyck paths that terminate one line above — as in [6], for instance
— adopting the same moniker in the odd case, too. Accordingly, we can say that the number of grand Dyck
paths for 2n and even h (with the up-down symmetry of the corridor) is always twice that for 2n — 1. See
the middle case of Table 1. The term “grand Dyck” is used in [15], for example; these lattice paths are also
referred to as “two-sided” or “bilateral” paths (e.g. [11]) on account of their shape, as “binomial” or “central
binomial” paths (e.g. [13]) on account of their number, and as free Dyck paths (e.g. [3]); they are classified
as “bridges” in [2].

4


http://oeis.org/A178381
http://oeis.org/A216710
http://oeis.org/A224514

through a corridor of height h = 4, with one subtable for each starting point (i = 0,1, 2, 3,4);
Table 2 exhibits h = 5. These may be viewed as constrained versions of Pascal’s triangle,
with each entry the sum of two prior entries. (Cf. [1].)

In addition to pointing to the formula enumerating these more general sets of corridor
paths ending in an arbitrary window, we explore a beautiful symmetry between such sets of
paths, those starting at level ¢ and ending in a window of size 2j + 2 and those starting at
level 5 and ending in a window of size 2¢ 4+ 2 centered around the same point. Three proofs
are then provided: by induction, by counting, and by bijection. The final section describes
prior work leading up to these results.

2. MAIN RESULTS

We use the notation [k + j] as shorthand for a range [k —j : k + j + 1], which we make of
even size, viz. 25 + 2, by stretching the upper end one spot, to include k£ + j + 1. Thus, the
window [k % j] covers j + 1 feasible endpoints — the odd ones or the even ones, as the case
may be — centered about k.

Our main result is the following intriguing equivalence:

Theorem 1. For alln,h € N, k€ [0:h], i,7 € [0:min{k + 1,h — k}]:
i Tt j] = it )
For example, 2 Nz,\,) [2+1]=162=1 ~z~> [2 £ 2]; see Table 1. The bounds on ¢ and j ensure
that the starting points are in H = [0 : h] and that the target windows [k + j] and [k % i]
do not extend beyond one row above or below the corridor H.
Were ¢ or j too big, k+ ¢ or k £ 7 could extend too far beyond H, and the equality would
not hold, as is the case for 2~§~> [3+1] =81 # 1-j~> [3+2] = 121. When k < h/2, the

theorem holds as long as 7,7 < k.
The largest ¢ and j can be (without being equal) is ¢ = | /2] and j = [h/2], which gives

Lh/2]~»H = [h[2]~~ H (2)

and is no surprise.

This theorem also holds for the degenerate case k = —1 since the constraints impose
1 =7 =0, in which case the equivalence is true trivially.

By up-down symmetry:

Lemma 2. For alln,h € N, i,5,k € [0:h],
i~ kxj] = (h=i)~m[h—k—-1%]] (3)
So, for instances when ¢ > h + 2, we can combine this lemma with our theorem to obtain:
Corollary 3. The equivalence
i~ ktjg] = jw[h—k—1xh—1]
holds for alln,h € N, k€ [0:h], i € [max{k,h—k —1}:h], 7 € [0:min{k + 1,h — k}].

Lastly, the closed-form formula for the paths of interest is as follows:
5



Theorem 4. The number of corridor paths i ~ [k £ j] is
Ln/4] J

> > {([%MZ(}LM)H)_([M]H?mz)mﬂﬂ

=|-n/4 s=0 2
z=l=n/ JOSk—j+2sSh

for alln,h,j,k €N, i€ [0:h].

3. INDUCTIVE PROOF
One can prove Theorem 1, viz.
inpo [k £ ] = j~po [k £ 1]

by induction on the number of steps n, and with height h fixed throughout.
Recall that the bounds on 7 and j are

i,j=0 (4)
i,j<sk+1 (5)
i.j<h-k (6)

The cases where either is out of bounds are excluded from the theorem.
For n = 0, the starting and ending points must be the same. The two boundary conditions,
Viz.
i ktjl=[k-j<isk+j+1]
jawskti]l=[k—i<j<k+i+1]
are equivalent since we are given that 0 < 4,5 < k + 1.
In the general case (n > 0), we could argue inductively in the following fashion:

= (i =15 [k+4])+ (i + 15 [k +4]) basic recurrence
=(j55~1»[[kii—1]])+(j35\1»[[kii+1]]) induction
=(jRok-i—120]) +2(j~o[kti—1]) + (j > [k+i+1+0]) definition
= (o [k=14i]) + (5 [k+1+4]) definition
= j ~m [k £ 1] basic recurrence

But this only works if the two inductive cases also satisfy the theorem’s constraints.
The problematic cases, when the inductive hypothesis cannot be applied, are three:

(a) i = 0, since then i — 1 < 0 violates (4) for the left inductive case i — 1~ [k £ j];
(b) i = k + 1, since then ¢ + 1 > k£ + 1 in violation of (5) for the right inductive case
i+ 1~ [k + 4];
(¢) i = h — k, violating (6) for the right case.
6



Fortuitously, the exact same argument may be applied in the opposite direction, with the
roles of 7 and j exchanged, to prove the identical equivalence:

i~ [kt ] = (i [k 5 = 1) + (i~ [k £ +1]) (7)
=(j—1%5[k+i]) + (+ 150 [k +i])
= j~ [k £ 1]
The cases for which this version of the argument is problematic are analogous but different:
() j=0;
(b)) j=k+1;0r
(¢") j=h-k.

For the first exception (a), when ¢ = 0, all is well with just one induction:
O~ [kt j] =1~ [kx 5] = [kt 1] = j~ [k 0]

In the extreme case that k = h, and the induction is invalid, it must also be that j = 0, and
the equivalence holds immediately, sans induction. By the same token, case (a’) is also not
an issue.

Furthermore, whenever i = j, the theorem holds trivially, so the two combined cases (b,b’),
when i = j =k + 1, and (c,c’), when i = j = h — k, are fine, too.

So we only lack a proof for the following two combinations of the exceptions: (b,c’), when
i=k+1,j=h—-k, and (¢,b’), when j = k+ 1 and i = h — k. These are symmetric, so let’s
delve just into the second. Taking constraints (5,6) into account, we find that h = 2k+1, 7 =
k =|h/2], and j = [h/2]. So all we have to establish is the case | h/2]| ~» H = [h[2] ~ H,
which we’ve already seen (2).

4. COMBINATORIAL PROOF

One can derive the enumeration of Theorem 4 using a standard result for bounded lattice
paths. Our main theorem will then follow as a corollary.

The number M(a,b, s,t) of “monotonic” paths from (0,0) to {a,b), taking a steps to the
east (E, —) and b steps to the north (N, 1), while totally avoiding (not touching or crossing)
the boundaries y = z + s and y = z —t (s,t € Z", t < b—a < s) is known (by a reflection
argument) [8,12, p. 6] to be

a+b a+b
M(a,b,s,t) = Z|:<b+z(s+t))_<b+z(s+t)+t):| (8)

2€Z

with the (nonstandard) convention that (:1) = 0 whenever m ¢ N. See Figure 4.
There is a straightforward relationship between these constrained N/E paths (0,0) ~ (a, b)
and those NE/SE paths (0,i) ~ (n,f) that we have set out to study (as illustrated in

Figure 2):
n=a+b (—i=b-a
t=1+1 s+t=h+2



Plugging the solution

_n+z—€ - —i+/
“=7 D)
s=h—i+1 t=4i+1

into (8), we get (cf. [1]):
Zimz"égzZEZZK"‘TM+z(h+2))_(”‘T”Z+z(h+2)+z'+1ﬂ (9)

as long as 0 < ¢,/ < h. For those ¢ for which "_TM is not a whole number, the binomial
coefficients are all 0.
Letting ¢ move along the window from k — j to k + j + 1, we get from (9) that

i~ [kt ] =
min{k+j+1,h} i

Z z n—i+¢ n—i+{ .
£=max{0,k— ]}Z€Z|:< +Z(h+2)) ( 2 +Z(h+2)+2+1):|

The sum for z can be restricted to the range | —n/4]:|n/4]. Skipping over the impossible
odd or even values (for which the denominators of the binomial coefficients are fractional),
we arrive at the stated formula of Theorem 4:

i~ [ £ ] = (10)

[n/4] J n n
z=l—zn/4J05 SZO [([%’w] +2(h+2) + s) - ([%’“"] +2(h+2)+s+ 1)}

k—j+2s<h

Consider now only the cases considered in Theorem 1, which guarantee that £k —j = —1
and that k + j < h+ 1, so s may run from 0 to j without exception — bearing in mind (as
shown above) that any instances when k — j + 2s = 0,h + 1 have no impact on the sum.
Reversing the order of the second sum in (10), replacing s with j — s, we get

i~ [k 4] =

ZEZZSZOKV i+k— J-|+z(h+2)+s)_([%’Hj-l+z(h+2)—s+1):|

When j > i, the inner sums overlap (for s > i) and cancel each other. So the above sum is
always equal to

min{i,j}
n n
Zi ZO: (r+z(h+2)+s)_<r+z(h+2)+z'+j—s+1)}
ZE S=

where r = [(n + k —i — j)/2]. This is symmetric in ¢ and j; hence Theorem 1.
8
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FIGURE 5. The 12-step blue path from level ¢ = 1 to level ¢ = 5 belongs to
the class enumerated by 1~ [3 £ 2]. Since k = 3, steps are labeled T when
they start out towards the “attractor” y = 3.5 (the dashed line), and A
when they head away in the opposite direction. So the blue path is labeled
ATATATTTTATA. The target window size is j = 2, so we are in the (<) case
of the bijection. After seven (solid blue) steps ATATATT, the path touches
y = 2, so the remaining 5 (dotted blue) steps, TTATA, are copied as is and
placed with (0, 2) as their initial point (dotted purple) , followed by the seven
in reverse (solid purple), that is, TTATATA, to obtain the corresponding path.
The result is TTATATTATATA, one of those counted by 2~ [3 + 1], which
all start from j = 2 and end in [2:5]. Because of the unusual encoding, the
reversed (solid) path segments do not actually resemble each other visually.
The counterpart of the latter (purple) path is again the former (in blue), and is
obtained by proceeding from the end towards the beginning until the window
size becomes 2, per case (>). See Section 5 for details.

5. BIJECTIVE PROOF

A bijection can be inferred from the inductive proof of Section 3 for the equivalence of the

enumerations:
i [k 2] = j~o [k ]
We use a novel representation for paths, which simplifies matters greatly.

Draw a line y = k+1/2. Each step starting out towards that line is labeled T; each heading
away is labeled A. From any given point, exactly one outgoing step (» or \) will be T and
one A. We call this the TA representation of a lattice path (relative to k). See Figure 5.

Suppose the height of a point along the path is in the window [k—j : k+ 7+ 1]. If we take
an A step from there, then the next point is in the wider window [k—j—1: k+7+2]; so j has
been incremented. Conversely, a T step brings it into the narrower range [k — 7+ 1: k + j],

with decremented j. Naturally, going backwards alongs the path has the opposite effect.
9



If we take this point of view and go through the cases of the inductive proof, we find that
the correspondence simply reverses the order of steps, either moving the last step to the
beginning or vice versa. When i = j, there is no need to do anything, since the two sides of
the equivalence are identical. We are led to the following bijection between a path P starting
at y = i and ending in the range [k — j : k + j + 1] and its counterpart path P* starting at
y = j and ending in the range [k —i : k+ 7+ 1]:

(=) If i = j, then P* = P.

(<) If i < 7, follow the path from the start at level ¢ until it reaches j, if ever. At that
pomt we have P = QQR, where y = j first transpires at the end of prefix (). Then
P* = RQ, where Q is the reverse sequence of () in its TA representation. If level j is
never attained, then R is empty, and P* Q.

(>) If i > j, follow the path from the end backwards, starting with a target window of
size 7, moving leftwards until it grows to be i, if ever. A T step enlarges the window,
while A shrinks it. If R is shortest suffix such that the window size is ¢ at its onset,
so that we have P = QR, then we let P* = EQ.

It is not hard to verify that the transpositions involved keep the path within the bounded
corridor, given that the original path satisfied 0 < 4, j < min{k + 1, h — k}.

The path in Figure 2 is its own counterpart, as this is an instance of case (=) withi = j = 1.
For a worked-out nontrivial example, see Figure 5

The inductive proof allows for alternate bijections depending on the preferred order in
which the different cases are to be considered.

6. HISTORICAL DISCUSSION

Theorem 1, our main result, is a significant generalization of the equality due to Johann
Cigler [5], namely,

0~ [0:R] = h~dw[hih+1] (11)

for all heights h, where fi = h + 2 for short. Paths (counted by) i~ [A:F + 1] start in
the middle of the swath and end either in the middle — when the number of steps is even,
or just above — when odd. As noted earlier, these are called “grand Dyck” paths. Dyck
path prefixes 0 ~ [0 : h] start at the bottom and end anywhere within the swath. Cigler’s
(11) asserts the equality of cardinality of these two sets of paths. As such, it is a particular
instance of our more general result (1) with ¢ = 0 and j = k = A. Phrased in our notation,
Cigler proved:

0~ [Ath] = A~ [h£0]
Cigler solicited alternative proofs of his result. More specifically, he asked in [4] for a
bijective proof of the height h = 3 case,
0~ [0:3] = 1~ [1:2]

which gives rise to the Fibonacci numbers. The wished-for bijective solution to this very
particular case was discovered shortly thereafter by Thomas Prellberg [4, Answer], followed

by another due to Helmut Prodinger [14]. Most recently, Nancy Gu and Prodinger [10]
10



constructed a bijection for Cigler’s full case (11) by extending the idea in [14]. When there
are no upper and lower bounds on paths, there are long-standing well-known bijections
between grand Dyck paths and Dyck path prefixes [7,9].

The bijection of the previous section supplies an alternative proof of Cigler’s (11). In
that special case, the bijection amounts to simply reversing the order of steps in the TA
representation. This works as is for even n in the grand Dyck (i = £ = A and j = 0) to
Dick-prefix (i = 0 and j = k = h) case of Cigler, as this is the (i > j) case of the bijection
and the window never grows too big (it may get to be fi, the maximum excess of T moves
over A moves, but no larger) to continue all way the beginning. Unfortunately, it doesn’t
do the trick when n is odd and h is even (because proceeding only backwards can lead to a
window wider than £ = 4). For the odd n case, it is possible to modify the bijection by first
reversing the grand Dyck path left to right (so it ends on y = # but begins at ¢ = A + 1)
before converting to the TA representation and reversing. This now covers all cases of (11).
The second bijection also works for even h and even n. For odd h, regardless of the parity of
n, the first bijection actually succeeds for all 7, j meeting the requirements of the theorem.
So, when n and h have the same parity, both bijections work. In the more general cases,
when k # h, neither applies, and we resort to the slightly more complicated bijection of the
previous section, wherein only part of the TA path is reversed.

We began our investigation seeking a bijective proof of (11). The simple bijection employ-
ing the TA path encoding didn’t work in all cases. This led us to a sequence of generalizations,
commencing from Cigler’s (11):

0~ [0:h]=h~o[hih+1]
i~ [0th]=h~o[h—ith+i+1]
i [h—jih+j+1l]=j~w[h—ith+i+1]
i [k—jik+j+1]=j~w[k—itk+i+1]
First we let ¢ be anywhere (not just 0), then we let j be any size (not just £), and finally
allowed it to be centered at any k (not just ). Concurrently, we programmed various
enumerations and potential bijections to lend support to — or refute — conjectures as they
arose. Casting the equivalence in a fashion that highlights its symmetry also contributed to
finding the generalizations and proofs.

All the above variants share the basic idea that, as the starting point of one set of paths

moves from the edge of the corridor towards the middle, the target range of the corresponding

equinumerous set of paths grows wider and wider. This behavior is what suggested the TA
encoding in the first place.
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lif[n=0] 1] 23] 4] 6 | 7] s | o] s]|a]is] 6] oms |
4| 1 1 2 5 14 11 122 365 1094/|4{| A007051
3 14 11 122 365 1094 3|| A007051
2 1 3 9 27 81 243 729 2187 ||2 || A000244
1 13 10 121 364 1003 1||A003462
0 1 4 13 10 121 364 10930 || A003462
4 14 1 122 365 1004 4{| A007051
3| 1 2 5 14 11 122 365 1004 3281 [ 3]| A007051
2 27 81 243 729 2187 2(| A000244
1 1 4 13 10 121 364 1003 3280||1{| AD03462
0 13 10 121 364 1003 0{| A003462
1 1 3 9 27 81 243 729 2187 ||4|| A000244
3 27 81 243 729 2187 3|| A000244
o 1 2 6 18 54 162 486 1458 4374||2||A025102
1 27 81 243 729 2187 1| A000244
0 1 3 9 27 81 243 729 2187 ||0 || A000244
1 13 10 121 364 1003 4/| A003462
3 13 10 121 364 1003 3280 || 3|| AD03462
2 27 81 243 729 2187 2(| A000244
1| 1 2 5 14 41 122 365 1004 3281|[1(| A007051
0 14 41 122 365 1004 0{| A007051
4 1 4 13 10 121 364 1003 |4 | A003462
3 13 10 121 364 1003 3(| A003462
2 1 3 9 27 81 243 729 2187 ||2 || A000244
1 14 11 122 365 1094 1|[ A007051
of 1 1 2 5 14 11 122 365 1094/|0{| A007051
TABLE 1. The number of paths i~ ¢ for 4,0 € [0:4], n € [0:16]. For

example, 2~ 2 = 0~ [0:4] = 4374 and 3~ 3 = 4~ [2:4] = 3281.
Like for a bishop on a chessboard, half the squares are unreachable from any
given starting point. The few squares that require backward steps are like-
wise inaccessible. The particular path of Figures 2—4 is highlighted in blue
boldface. Sloane numbers of the sequences are provided in the last column.
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ifln=o] [ 2 5] a |5 6|7 |80 w]u|e]m|uls]|el]l oms |
5 1 1 2 5 14 42 131 417 13411|5|| A080937
4 5 14 42 131 417 1341 4 (| A080937
3 1 3 9 28 89 286 924 2993 (|3 || A094790
2 4 14 47 155 507 1652 21| A006053
1 1 5 19 66 221 728 23801|1{| A005021
0 1 5 19 66 221 728 0| A005021
5 5 14 42 131 417 1341 5| A080937
4 1 2 5 14 42 131 417 1341 4334114 || A080937
3 9 28 89 286 924 2993 3| A094790
2 1 4 14 47 155 507 1652 5373112 (| A006053
1 5 19 66 221 728 2380 1| A005021
0 1 5 19 66 221 728 2380 (|0 || A005021
5 1 3 9 28 89 286 924 2993 (|5 | A094790
4 9 28 89 286 924 2993 4 (| A094790
3 1 2 6 19 61 197 638 2069 6714 (|3 || A052975
2 10 33 108 352 1145 3721 2| A060557
1 1 4 14 47 155 507 1652 5373 1| 1{| A006053
0 4 14 47 155 507 1652 01| A006053
5 4 14 47 155 507 1652 5| A006053
4 1 4 14 47 155 507 1652 5373114 (| A006053
3 10 33 108 352 1145 3721 3||A060557
2 1 2 6 19 61 197 638 2069 67141|2(| A052975
1 9 28 89 286 924 2993 1{{ A094790
0 1 3 9 28 89 286 924 2993 (|0 || A094790
5 1 5 19 66 221 728 2380 |5 || A005021
4 5 19 66 221 728 2380 4| A005021
3 1 4 14 47 155 507 1652 5373 |3 || A006053
2 9 28 89 286 924 2993 21| A094790
1 1 2 5 14 42 131 417 1341 4334 (| 1{| A080937
0 5 14 42 131 417 1341 0| A080937
5 1 5 19 66 221 728 5| A005021
4 1 5 19 66 221 728 23801|4 || A005021
3 4 14 47 155 507 1652 3 || A006053
2 1 3 9 28 89 286 924 299311 2(| A094790
1 5 14 42 131 417 1341 1{| A080937
0 1 1 2 5 14 42 131 417 13411(|0|| A080937

TABLE 2. Paths i ~ ( constrained to height 5, n € [0:16]. Sloane numbers
of the sequences are provided in the lagt column.
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