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Abstract

A major ambition of systems science is to uncover the building blocks of any biological network

to decipher how cellular function emerges from their interactions. Here, we introduce a graph

representation of the information flow in these networks as a set of input trees, one for each node,

which contains all pathways along which information can be transmitted in the network. In this

representation, we find remarkable symmetries in the input trees that deconstruct the network

into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus

process equivalent dynamics and synchronize their activity. Each fiber can then be collapsed into a

single representative base node through an information-preserving transformation called ’symmetry

fibration’, introduced by Grothendieck in the context of algebraic geometry. We exemplify the

symmetry fibrations in gene regulatory networks and then show that they universally apply across

species and domains from biology to social and infrastructure networks. The building blocks are

classified into topological classes of input trees characterized by integer branching ratios and fractal

golden ratios of Fibonacci sequences representing cycles of information. Thus, symmetry fibrations

describe how complex networks are built from the bottom up to process information through the

synchronization of their constitutive building blocks.
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A central theme in systems science is to break down the system into its fundamental

building blocks to then uncover the principles by which complex collective behavior emerges

from their interactions [1–3]. In number theory, every natural number can be represented by

a unique product of primes. Thus, prime numbers are the building blocks of natural numbers.

This mathematical notion of building blocks is extended to the more abstract notion of group

theory since finite groups can also be factored into simple subgroups [4]. The latter example,

entirely abstract as it may be, has important implications for natural systems due to the

fundamental relationship between group theory and the notion of symmetry, that has led

to the discovery of the fundamental building blocks of matter, such as quarks and leptons

[3, 5]. Here we ask whether similar principles of symmetry can uncover the fundamental

building blocks of biological networks [1, 2, 6, 7]. Primary examples of these networks are

gene regulatory networks that control gene expression in cells [2, 8–10], as well as metabolic

networks, cellular processes and pathways, neural networks and ecosystems and, beyond

biology, to other information-processing networks like social and infrastructure networks [7].

Previous studies have identified building blocks or ‘network motifs’ [2, 6, 8] by looking for

patterns in the network that appear more often that they would by pure chance. The crux

of the matter is to test whether the building blocks of these networks obey a predictive

design principle that explains how the cell functions, and whether such a principle can be

expressed in the language of symmetries.

We introduce the use of symmetries in biological networks by analyzing the transcriptional

regulatory network of bacterium Escherichia coli [11], since this is a well-characterized

network. We find that this network exhibits fibration symmetries [12–14]; first introduced

by Grothendieck [12] in the context of algebraic geometry.

Symmetry fibrations are morphisms between networks that identify clusters of synchro-

nized genes (called fibers) with isomorphic input trees. Genes in a fiber are collapsed by a

symmetry fibration into a single representative gene called the base. The fibers are then the

synchronized building blocks of the genetic network and symmetry fibrations are transforma-

tions that preserve the dynamics of information flow in the network. We use this symmetry

principle to classify the building blocks into topological classes of input trees characterized

by integer branching ratios and complex topologies with golden ratios of Fibonacci sequences

representing cycles in the network. We then show that symmetry fibrations explain synchro-

nization patterns of gene co-expression in cells and universally apply to a range of complex
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networks across different species and domains beyond biology.

I. RESULTS

We search for symmetries in the E. coli transcriptional regulatory network (most updated

compilation at RegulonDB [11]) where nodes are genes and a directed link represents a

transcriptional regulation (see Supplementary Information Section III).

A directed link from a source gene i to a target gene j in a transcriptional regulatory

network represents a direct interaction where gene i encodes for a transcription factor that

binds to the binding site of gene j to regulate (activate or repress) its expression. Such a link

represents a regulatory ’message’ sent by the source to the target gene using the transcription

factor as a ‘messenger’. This process defines the ’information flow’ in the system which is

not restricted to two interacting genes, but it is transferred to different regions within the

network that are accessible through the connecting pathways. The information arriving to

a gene contains the entire history transmitted through all pathways that reach this gene.

We formalize this process of communication between genes with the notion of ’input tree’ of

the gene. In a network G = (NG, EG) with NG nodes and EG directed edges, for every gene

i ∈ NG there is a corresponding input tree, denoted as Ti, which is the tree of all pathways

of G ending at i. More precisely, Ti is a rooted tree with a selected node i at the root,

such that every other node j in the tree represents the initial node of a path in the network

ending at i.

Next, we analyze the input trees in the E. coli sub-circuit shown in Fig. 1a regulated

by gene cpxR which regulates its own expression (via an autoregulation activator loop)

and also regulates other genes as shown in the figure. Gene cpxR is not regulated by any

other transcription factor in the network, so, we say that this gene forms its own ‘strongly

connected component’, see below. Therefore, it is an ideal simple circuit to explain the

concept of fibration.

A. Input tree representation

In practice, the input tree of a gene is constructed as follows (SI Section IV A). Consider

the circuit in Fig. 1a. The input tree of gene spy depicted in Fig. 1b starts with spy at the
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root (first layer). Since this gene is upregulated by baeR and cpxR, then, the second layer

of the input tree contains these two pathways of length one starting at both genes. Gene

baeR is further upregulated by cpxR and by itself through the autoregulation loop and cpxR

is also autoregulated. Thus, the input tree continues to the third layer taking into account

these three possible pathways of length 2, one starting at baeR and two starting at cpxR.

The procedure now continues, and since there are loops in the circuit, the input tree has an

infinite number of layers.

The input tree formalism is a powerful framework to search for symmetries in information-

processing networks, in that it replaces the canonical notion of a single trajectory with the

set of all possible ‘histories’ from an initial to a final state of the network, and this makes,

in practice, reasonably straightforward to ‘guess’ a type of symmetry which is not apparent

in the classical network framework. Based on results from [13–16], we will show in Section

I C that if two input trees have the same ’shape’, then the genes at the root of the input

trees synchronize their activity [17–23], even though their input trees are made of different

genes. This informal notion of equivalence is formalized by isomorphisms. An isomorphism

between two input trees is a bijective map that preserves the topology of the input trees

including the type of links. Specifically, a map τ : T → T ′ is an isomorphism iff for any pair

of nodes a and b of T connected by a link, the pair of nodes τ(a) and τ(b) of T ′ is connected

by the same type of link (SI Section IV B). In practice, this means that isomorphic input

trees are ‘the same’ except for the labeling of the nodes. Genes with isomorphic input trees

are symmetric and synchronous. We quantify this result, next, by introducing the concept

of symmetry fibration [13].

B. Symmetry fibration of a network

The set of all input tree isomorphisms defines the symmetries of the network, which can be

described by a ’Grothendieck fibration’ [12]. The original Grothendieck definition of fibration

is between categories [12], so the passage to a definition of fibrations between graphs requires

to associate a category with a graph and rephrase Grothendieck’s definition in elementary

terms. Different categories may be associated with a graph, giving rise to different notions

of fibrations between graphs. The notion of fibration that we use henceforth has been

introduced in computer science as a ’surjective minimal graph fibration’ [13, 15].
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In general, a graph fibration G = (NG, EG) is any morphism

ψ : G→ B (1)

that maps G to a graph B = (NB, EB) (with NB nodes and EB edges) called the ’base’

of the graph fibration ψ (SI Section IV C). In this work we consider a surjective minimal

graph fibration [13] which is a graph fibration ψ that maps all nodes with isomorphic input

trees inside a fiber to a single node in B, thus producing the minimal base of the network.

In this case, the base B consists of a graph where all genes in a fiber have been collapsed

into one representative node by the minimal fibration. Thus, a surjective minimal graph

fibration, hereafter called symmetry fibration for the sake of lexical convenience, leads to a

dimensional reduction of the network into its irreducible components. Crucially, a symmetry

fibration is a dimensional reduction that preserves the dynamics in the network as we show

next.

C. Symmetry fibration leads to synchronization

Next, we explain the connection between fibration and synchrony in a generality that is

needed to justify our results following Ref. [15, 16]. In order to describe the dynamical state

of each gene in the transcriptional regulatory network, we first attach a phase space to each

node in G = (NG, EG) by considering a map P : NG →M that assigns each node i ∈ NG to

the phase space of the node denoted by the manifold M . For example, in a transcriptional

regulatory network we assign to each gene i ∈ NG the phase space of real numbers M = R.

Then, the state of each gene is described by xi(t) ∈ R, representing the expression level of

the gene i at time t, which is typically measured by mRNA concentration of gene product.

We then obtain the total phase space of G as the product PG =
∏

i∈NG
P (i).

The fibers partition the graph G into unique and non-overlapping sets Π = {Π1, . . . ,Πr},

such that Π1 ∪ · · · ∪ Πr = G and Πk ∩ Πl = ∅ if k 6= l [24]. We denote i ∼Π j when

the input-trees of i and j are isomorphic and belong to the same fiber Πk . That is,

∃k | i, j ∈ Πk and there exist a symmetry fibration that sends both nodes to the same

node in the base, ψ(i) = ψ(j). DeVille & Lerman [15] showed that symmetry fibrations

induce robust synchronization in the system (Theorem 4.3.1 in [15]). In particular, it was

shown that if ψ is a symmetry fibration then— by proposition 2.1.12 in Ref. [15]— there
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exist a map Pψ : PB → PG that maps the total phase space of the base B, named PB,

to the total phase space of the graph G. This map creates a polysynchronous subspace of

synchronized solutions in fibers: ∆Π = {x ∈ PG | xi(t) = xj(t) whenever ψ(i) = ψ(j)},

where each set of synchronous components of this subspace corresponds to a fiber in Π

(Lemma 5.1.1 in [15], see also [16]). In other words, ∆Π is a polysynchronous subspace of

PG, such that components xi, xj ∈ x synchronize (i.e., xi(t) = xj(t)) whenever the symmetry

fibration ψ sends them to the same node in B.

According to these results, we interpret synchronous genes to process the same informa-

tion received through isomorphic pathways in the network, and, accordingly, we interpret

a symmetry fibration as a transformation that preserves the dynamics of information flow

since it collapses synchronous nodes in fibers (redundant from the point of view of dynamics)

into a common base with identical dynamics as the fiber.

Synchronous nodes in a fiber induced by symmetry fibrations correspond to the ’minimal

balanced coloring’ in [14]. A balanced coloring assigns two nodes the same color only if

their inputs, self-consistently, receives the same content of colored nodes, whence the term

‘balanced’. Thus, the flow of information arriving to genes in a fiber is analogous to a process

of assigning a color to each gene such that each gene ‘receives’ the colors from adjacent genes

via incoming links and ‘sends’ its color to the adjacent genes via its outgoing links. The

nodes in a fiber have the same color symbolizing the fact that they synchronize. The nodes

with the same color in the balanced coloring partition [14] correspond to fibers induced by

symmetry fibrations [15]. We use the minimal balanced coloring algorithm proposed in [25]

for the computation of minimal bases [24] to find fibers (SI Section V).

D. Strongly connected components of the E. coli network

The input trees in the E. coli cpxR circuit are displayed in Fig. 1b. The input trees of

baeR and spy are isomorphic and define the baeR-spy fiber (Fig. 1c). We call this circuit a

feed-forward fiber (FFF). The input tree of cpxR is not isomorphic to either baeR or spy,

and therefore cpxR is not symmetric with these genes, but it is isomorphic to bacA, slt and

yebE forming another fiber. Likewise, genes ung, tsr and psd are all isomorphic composing

another fiber (Fig. 1b). Figure 1d shows the symmetry fibration ψ : G→ B that collapses

the genes in the fibers to the base B. Figure 1e shows another example (out of many) of a
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single connected component, fadR, and its corresponding isomorphic input trees (Fig. 1f),

fibers and base.

The dynamical state of a gene is encoded in the topology of the input-tree. In turn, this

topology is encoded by a sequence, ai, defined as the number of genes in each i−th layer of

the input tree (Fig. 1b). The sequence ai represents the number of paths of length i − 1

that reach the gene at the root. This sequence is characterized by the branching ratio n

of the input tree defined as ai+1/ai −−−→
i→∞

n, which represents the multiplicative growth of

the number of paths across the network reaching the gene at the root. For instance, the

input trees of genes baeR-spy (Fig. 1b) encode a sequence ai = i with branching ratio n = 1

representing the single (n=1) autoregulation loop inside the fiber.

Beyond several single-gene strongly connected components like those shown in Fig. 1,

we find that the E. coli network has other strongly connected components [in a strongly

connected component, each gene is reachable from every other gene, SI Section VI], three

in total, which regulate more involved topologies of fibers. We find: (i) a two-gene strongly

connected component composed of master regulators crp-fis involved in a myriad of functions

like carbon utilization (Fig. 2a, top), (ii) a five-gene strongly connected component involved

in the stress response system (SI Fig. 7), and (iii) the largest strongly connected component

at the core of the network which is composed of genes involved in the pH-system that regulate

hydrogen concentration (Fig. 2b). Each of these three components regulate a rich variety

of fiber topologies which are collapsed into the base by the symmetry fibration ψ : G→ B,

as shown in the figure.

E. Fiber building blocks

We find that the transcriptional regulatory network of E. coli is organized in 91 different

fibers. The complete list of fibers in E. coli is shown in SI Section VII and SI-Table VI and

the statistics are shown in SI Table I. Plots of each fiber are shown in Supplementary File 1.

We find a rich variety of topologies of the input trees. Despite this diversity, the input trees

present common topological features that allow us to classify all fibers into concise classes

of fundamental ’fiber building blocks’ (Figs. 3a and 3b). We associate a building block to

a fiber by considering the genes in the fiber plus the external in-coming regulators of the

fiber plus the minimal number of their regulators in turn that are needed to establish the
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isomorphism in the fiber. When the fiber is connected to any external regulator, either via

a direct link or through a path in the strongly connected component forming a cycle, then

the genes in this cycle are considered part of the building block of the fiber, since such a

cycle is crucial to establish the dynamical syncronization state (when there is more than one

cycle, the shortest cycle is considered).

We find that the most basic input tree topologies can be classified by integer ’fiber num-

bers’ |n, `〉 reflecting two features: (a) infinite n-ary trees with branching ratio n representing

the infinite pathways going through n loops inside the base of the fiber, and (b) finite trees

representing finite pathways starting at ` external regulators of the fiber. The most basic

fibers in E. coli have three values of n = 0, 1, 2 (Fig. 3a): (i) fibers with n = 0 loops, called

Star Fibers (SF), (ii) fibers with n = 1 loop, called Chain Fibers (CF), and (iii) fibers

with n = 2 loops, called Binary-Tree Fibers (BTF). This classification does not take into

account the types of repressor or activator links in the building blocks, which lead to further

sub-classes of fibers that determine the type of synchronization (fixed point, limit cycles,

etc) and thus the functionality of the fibers.

Figure 3a shows a sample of dissimilar circuits that can be concisely classified by |n, `〉

(full list in Supplementary File 1). For instance the n = 0 SF class includes dissimilar

circuits like |arcZ-ydeA〉 = |0, 1〉, |dcuC-ackA〉 = |0, 2〉 which is a bi-fan network motif [2],

and generalizations with ` = 3 regulators like |dcuR-aspA〉 = |0, 3〉 (Fig. 3a, top). The main

feature of these building blocks is that they do not contain loops and therefore the input

trees are finite. The CF class contains n = 1 loop in the fiber, and therefore an infinite

chain in the input tree, like the autoregulated loop in the fiber |ttdR〉 = |1, 0〉. We note

that while the input tree is infinite, the topological class is characterized by a single number

n = 1 concisely represented in the base. Furthermore, a theorem proven by Norris [26]

demonstrates that it suffices to test NG − 1 layers of the input trees to prove isomorphism,

even though the input tree may contain an infinite number of layers. Adding one external

regulator (` = 1) to this circuit, converts it to the purine fiber |purR〉 = |1, 1〉 which is an

example of a FFF, like the baeR circuit in Fig. 1a. This circuit resembles a feed-forward

loop motif [2], but it differs in the crucial addition of the autoregulator loop at purR that

allows genes purR and pyrC to synchronize. When another external regulator is added, we

find the idonate fiber |idnR〉 = |1, 2〉. More elaborated circuits contain two autoregulated

loops and feed-back loops featuring trees with branching ratio n = 2.
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F. Fibonacci fibers

So far we have analyzed building blocks that receive information from the external regu-

lators in their respective strongly connected components, but do not send back information

to the external regulators. These topologies are characterized by integer branching ratios,

n = 0, 1, 2, as shown in Fig. 3a. We find, however, more interesting building blocks that also

send information back to their regulators. These circuits contain additional cycles in the

building blocks that transform the input trees into fractal trees characterized by non-integer

fractal branching ratios. Notably, the building block of the fiber uxuR-lgoR that is regulated

by the connected component crp-fis (Fig. 2) forms an intricate input tree (Fig. 3b, top)

where the number of paths of length i − 1 is encoded in a Fibonacci sequence: ai =1, 3,

4, 7, 11, 18, 29, ... characterized by the Fibonacci recurring relation: a1 = 1, a2 = 3, and

ai = ai−1 + ai−2 for i > 2. This sequence leads to the non-integer branching ratio known as

the golden ratio: ai+1/ai −−−→
i→∞

ϕ = (1 +
√

5)/2 = 1.6180...

This topology arises in the genetic network due to the combination of two cycles of

information flow. First, the autoregulation loop inside the fiber at uxuR creates a cycle

of length d = 1 which contributes to the input tree with an infinite chain with branching

ratio n = 1. This sequence is reflected in the Fibonacci series by the term ai = ai−1. The

important addition to the building block is a second cycle of length d = 2 between uxuR in

the fiber and its regulator exuR: uxuR → exuR → uxuR. This cycle sends information from

the fiber to the regulator and back to the fiber by traversing a path of length d = 2 that

creates a ’delay’ of d = 2 steps in the information that arrives back to the fiber (see Fig.

3b, top). This short-term ’memory’ effect is captured by the second term ai = ai−2 in the

Fibonacci sequence leading to ai = ai−1 + ai−2 and the golden ratio. We call this topology

a Fibonacci fiber (FF).

This argument implies that an autoregulated fiber that further regulates itself by con-

necting to its connected component via a cycle of length d encodes a generalized Fibonacci

sequence of order d defined as ai = ai−1 + ai−d with generalized golden ratio ϕd (Fig. 3b

fourth row). We find such a Fibonacci sequence in the evgA-nhaR fiber building block

linked to the pH strongly connected components shown in Fig. 2b. This fiber contains an

autoregulation cycle inside the fiber and also an external cycle of length d = 4 through

the pH strongly connected component: evgA → gad E → gadX → hns → evgA (Fig. 3b,
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third row). This topology forms a fractal input tree with sequence ai = ai−1 + ai−4 (se-

quence A123456 in [27]) and branching golden ratio ϕ4 = 1.38028... We call this topology

4-Fibonacci fiber, 4-FF. Generalized Fibonaccis appear inside strongly connected compo-

nents, like the rcsB-adiY 3-FF in the pH system (Fig. 3b, second row). Likewise, if the

network contains many cycles of varying length up to a maximum d, the Fibonacci sequence

generalizes to: ai = ai−1 + ai−2 + · · · + ai−1−d + ai−d, and the branching ratio satisfies:

d = − log(2−ϕd)
logϕd

[28].

G. Multi-layer composite fibers

Building blocks can also be combined to make composite fibers, like prime numbers

or quarks can be combined to form natural numbers or composite particles like protons

and neutrons, respectively. The ability to assemble fiber building blocks to make larger

composites is important in that it helps to understand systematically higher order functions

of biological systems composed of many genetic elements. We discover a particular type of

composite made up of two elementary building blocks, that we name multi-layer composite

fiber. For instance, the double layer add-oxyS fiber in the crp-fis connected component

(see Figs. 2a and 3b bottom, and ID# 7 in SI Table VI and Supplementary File 1) is a

composite |add − oxyS〉 = |0, 1〉 ⊕ |1, 1〉 made of a series of genes composing a single fiber

of type |0, 1〉 = |add , dsbG , gor , grxA, hemH , oxyS , trxC 〉 that are regulated by two different

transcription factors rbsR and oxyR that form another fiber of type |1, 1〉 = |rbsR, oxyR〉.

This composite is of importance since it allows for information to be shared between two

genes, for instance add and oxyS, which are not directly connected (in this case, separated

by a distant in the network of length two).

Composite fibers satisfy a simple engineering ’sum-rule’: elementary fibers are composed

in series of fibers in a predefined order where the first layer is represented by an entry fiber

(carrying transcription factors), and the last layer is formed by a terminator fiber of output

genes (encoding enzymes), as shown in Fig. 3b, bottom. This multi-layer composite fiber is

biologically significant because genes in the output layer synchronize a genetic module that

implement the same function even though the genes in the module are not directly connected,

and, indeed, can be at far distances in the network. Such functionally related modules could

not be identified by modularity algorithms [29] which cluster nodes in modules of highly
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connected nodes.

We find that composite fibers are dominant in eukaryotes (yeast, mouse, human, see

Section I H). They resemble the building blocks of multilayered deep neural networks where

each subsequent gene in the layer synchronizes despite the fact that nodes can be distant in

the network. More generally, composite fibers with multiple layers streamline the construc-

tion of larger aggregates of fibration building blocks performing more complex function in a

coordinated fashion. These composite topologies complete the classification of input trees.

H. Fibration landscape across biological networks, species and system domains

To study the applicability of fibration symmetries across domains of complex net-

works we have analyzed 373 publically available datasets (SI Section VIII). Full details of

each network and results can be accessed at https://docs.google.com/spreadsheets/d/

1-RG5vR_EGNPqQcnJU8q3ky1OpWi3OjTh5Uo-Xa0PjOc. The codes to reproduce this analysis

are at github.com/makselab (SI Section V) and the full datasets at kcorelab.org. We

analyze biological networks spanning from transcriptional regulatory networks, metabolic

networks, cellular processes networks and signaling pathways, disease networks, and neural

networks. We span different species ranging from A. thaliana, E. coli, B. subtilis, S. enterica

(salmonella), M. tuberculosis, D. melanogaster, S. cerevisiae (yeast), M. musculus (mouse)

to H. sapiens (human). The topological fiber numbers |n, `〉 allow us to systematically clas-

sify fibers across the different domains in a unifying way. We find that fibration symmetries

are found across all biological processes and domains. The fiber distributions for each type

of biological network calculated by summing over the studied species are displayed in Fig.

4a and the fiber distributions for each species calculated over the type of biological net-

works are shown in Fig. 4b. Our analysis allows to investigate the specific attributes and

commonalities of the fiber building blocks inside and across biological domains. We find a

varied set of fibers that characterize the biological landscape. Certain features of the fiber

number distribution are visible in the transcriptional networks in Fig. 4a. For instance, a

tail with ` is seen in the n = 0 class as well as in the n = 1 class. Across species (Fig. 4b),

bacteria like E. coli or B. subtilus display a majority of n = 0 building blocks, while higher

level organisms like yeast, mouse and human display a majority of more complex building

blocks like multi-layers and Fibonaccis.
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To test the existence of symmetry fibrations across other domains we extend our studies

to complex networks beyond biology ranging from social, infrastructure, internet, software,

economic networks and ecosystems (details of datasets in SI Section VIII). Figure 4c shows

the obtained fiber distributions for each domain. A normalized comparison across domains

is visualized in Fig. 4d showing the cumulative number of fibers over all domains and

species per network size of 104 nodes. The results support the applicability of the concept

of symmetry fibration beyond biology to describe the building blocks of networks across all

domains.

I. Gene co-expression and synchronization via symmetry fibration

We have shown in Section I C that fibers in networks determine cluster synchronization

in the dynamical system. In a gene regulatory network, symmetric genes in a fiber synchro-

nize their activity to produce gene co-expression levels that sustain cellular functions. We

corroborate this result numerically in Fig. 1g in the particular example of the baeR-spy FFF

in E. coli, and this result applies to all fibers, irrespective of the dynamical system law.

To exemplify the synchronization in fibers, we consider the dynamics in the composite

fiber |add−oxyS〉 = |0, 1〉⊕|1, 1〉 depicted in Fig. 2a and Fig. 3b bottom, which is composed

of autoregulator 1 = crp, and two layers of fibers: 2 = rbsR, 3 = oxyR, and 4 = add,

5 = oxyS (we consider here a reduced fiber for simplicity, and we add the autoregulator

to crp to the building block for completeness). Graph G = {NG, EG} consists of NG =

{1, 2, 3, 4, 5}, EG = {1 → 1, 1 → 2, 1 → 3, 2 a 2, 3 a 3, 2 → 4, 3 → 5} (a refers to

repressor and → to activation) and a 5-dimensional total phase space PG = R5 with state

vector X(t) = {x1(t), x2(t), x3(t), x4(t), x5(t)} describing the expression levels of each gene’s

product (e.g., mRNA concentration).

The symmetry fibration ψ : G→ B collapses the graph G into the base B = {NB, GB},

where NB = {a, b, c} and EB = {a → a, a → b, b a b, b → c}. The symmetry fibration

acts on the nodes: ψ(1) = a, ψ(2) = ψ(3) = b, ψ(4) = ψ(5) = c, and on the edges:

ψ(1 → 1) = a → a, ψ(1 → 2) = ψ(1 → 3) = a → b, ψ(2 a 2) = ψ(3 a 3) = b a b, and

ψ(2→ 4) = ψ(3→ 5) = b→ c. Thus, the fibers partition the graph G as Π = {Πa,Πb,Πc},

where Πa = {1}, Πb = {2, 3} and Πc = {4, 5}.

We represent the dynamics by two functions k(x) and g(x) modeling degradation and
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synthesis of gene product, respectively [9, 10]. For example, k(x) can be modeled as a

linear degradation term and g(x) as a Hill function [9]. We consider that multiple inputs

are combined by multiplying functions g(x), but any other way of combining inputs can be

used. Then, the dynamics of the expression levels of the genes in the circuit are described

by:



dx1
dt

= −k(x1) + g(x1)

dx2
dt

= −k(x2) + g(x1) ∗ g(x2)

dx3
dt

= −k(x3) + g(x1) ∗ g(x3)

dx4
dt

= −k(x4) + g(x2)

dx5
dt

= −k(x5) + g(x3) .

(2)

The dynamics of the base are described by the state vector of the base: (ya(t), yb(t), yc(t))

with dynamical equations [16]:


dya
dt

= −k(ya) + g(ya)

dyb
dt

= −k(yb) + g(ya) ∗ g(yb)

dyc
dt

= −k(yc) + g(yb) .

(3)

If (ya(t), yb(t), yc(t)) is a solution for the base Eqs. (3), then the map Pψ sends the phase

space of this base to the phase space of the solutions in the graph G [16]:

(
x1(t), x2(t), x3(t), x4(t), x5(t)

)
= Pψ

[
ya(t), yb(t), yc(t)

]
=
(
ya(t), yb(t), yb(t), yc(t), yc(t)

)
.

(4)

Therefore, the graph G sustains a polysynchronous subspace (see for instance Motivating

example 1.4 in [15]):

∆Π = {(x1, x2, x3, x4, x5) ∈ R5 | x1(t), x2(t) = x3(t), x4(t) = x5(t)} . (5)

This result can be corroborated by simply plugging
(
x1(t), x2(t), x3(t) =

x2(t), x4(t), x5(t) = x4(t)
)

into Eqs. (2) to obtain a solution of the dynamics, implying

the synchrony x2(t) = x3(t) in fiber Πb and x4(t) = x5(t) in fiber Πc. We note that the con-
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cept of sheaves and stacks might be useful to generalize the symmetry fibration framework

to multiplex networks.

We test this gene synchronization with publically available transcription profile experi-

ments available from the literature. We use gene expression data profiles in E. coli compiled

at Ecomics http://prokaryomics.com [30]. This portal collects microarray and RNA-seq

experiments from different sources such as the NCBI Gene Expression Omnibus (GEO) pub-

lic database [31] and ArrayExpress [32] under different experimental growth conditions. The

data is also compiled at the Colombos web portal [33]. The database contains transcriptome

experiments measuring the expression level of 4,096 genes in E. coli strains over 3,579 exper-

imental conditions which are described as: strain, medium, stress, and perturbation. Raw

data is pre-processed to obtain expression levels by using noise reduction and bias correction

to normalize data across different platforms [30].

E. coli can adapt its growth to the different conditions that finds in the medium. This

adaptation is made by sensing extra and intracellular molecules and using them as effectors

to activate or repress transcription factors. This implies that the different fibers are activated

by specific experimental conditions. The Ecomics portal allows to obtain those experimental

conditions where a set of genes has been significantly expressed under a particular set of

conditions. We perform standard gene expression analysis (see colombos.net and Ref. [33])

of the expression levels in E. coli obtained under these conditions.

For a given set of genes in a fiber, we find the experimental conditions for which the

genes have been significantly expressed by comparing the expression samples over the 4,096

different growth conditions. Following [33], the experimental conditions are ranked with the

inverse coefficient of variation (ICV) defined as ICVk = |µk|/σk, where µk is the average

expression level of the genes in the condition k and σk is the standard deviation. Following

[33], we select those conditions with ICVk > 1, i.e., where the average expression levels in

the particular condition k are higher than the standard deviation. This score reflects the

fact that, in a relevant condition, the genes show an increment of their expression above

the individual variations caused by random noise. Details on the expression analysis can be

found at Ref. [33] and https://doi.org/10.1371/journal.pone.0020938.s001. Thus,

we obtain expression levels organized by the relevant experimental conditions which are

labeled according to the GEO database [31]. From these data, we calculate the co-expression

matrix using the Pearson correlation coefficient between the expression levels of two genes
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i and j in the relevant conditions for genes in a fiber. For off-diagonal correlations between

genes in different fibers, we use the combined sets of conditions of both genes.

Results for the correlation matrix are shown in Fig. 2a (bottom) for fibers regulated

by the crp-fis strongly connected component. Gene expression is obtained for every gene,

so we plot the correlation matrix calculated over each pair of genes. Genes that belong to

the same operon are transcribed as a single unit by the same mRNA molecule, so these

genes are expected to trivially synchronize (variations exist due to attenuators inside the

operon). Thus, we group together these genes as operons in the figure to indicate this

trivial synchronization. To test the existence of fiber synchronization we compare gene co-

expression belonging to different operons. Figure 2a (bottom) shows that expression levels

of the genes that belong to a fiber are highly correlated as predicted by the symmetry

fibration. Genes that belong to different fibers show no significant correlations among them.

In particular, there is no significant correlation between the expression of genes in a given

fiber and the two master regulators crp and fis. This result is consistent with the fibration

symmetry and occurs despite the fact that both, crp and fis, directly regulates all genes

in the studied fibers. We find some off-diagonal weak correlations between fibers (e.g.,

malI), probably indicating missing links or missing regulatory processes that produce extra

synchronizations. Some genes present weak correlations inside fibers (e.g., cirA), indicating

weak symmetry breaking probably from asymmetries in the strength of binding rate of

transcription factors or input functions; effects that are not considered in the topological

view of the input trees, and can lead to desynchronization inside the fiber.

II. DISCUSSION

Fibration symmetries make sure that genes are turned on and off at the right amount

to assure the synchronization of expression levels in the fiber needed to execute cellular

functions. In the fibration framework, network function can be pictured as an orchestra in

which each instrument is a gene in the network. When the instruments play coherently, with

structured temporal patterns, the network is functional. Here we have concentrated on the

simplest temporal organization, one in which some units (instruments) act synchronously

in time, a ubiquitous pattern observed in all biological networks. Our findings identify the

symmetries that predict this synchronization and give rise to functionally related genes from
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the fibrations of the genetic network.

Unlike network motifs which are identified by statistical overrepresentation [2], fibers

in biology arise from principles of symmetries following the tradition of how the building

blocks of elementary particles have being discovered in physics and geometry [5]. Our

first principle approach to identify building blocks is based on the circuit’s theoretical and

practical (rather than statistical) significance to serve minimal forms of coherent function

and logic computation.

Further results shown in [34] indicate that symmetries also describe the structure of

neural connectomes and these symmetries factorize according to function. Thus, symme-

tries can be used to systematically organize biological diversity into building blocks using

invariances in the information flow encoded in the topologies of the input trees. Genes re-

lated by symmetries are co-expressed, thus providing a functional rationale for the biological

existence of these symmetries.
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FIG. 1. Definition of input tree, symmetry fibration, fiber and base. a, The

circuit controlled by the cpxR gene regulates a series of fibers as shown by the different

colored genes. The circuit regulates more genes represented by the dotted lines which are

not displayed for simplicity. The full lists of genes and operons in this circuit are in SI

Table VI, ID=27, 28 and 54. b, The input tree of representative genes involved in the cpxR

circuit showing the isomorphisms that define the fibers. For each fiber, we show the number

of paths of length i − 1 at every layer of the input tree, ai, and its branching ratio n. c,

Isomorphism between the input trees of baeR and spy. The input trees are composed of an

infinite number of layers due to the autoregulation loop at baeR and cpxR. How to prove

the equivalence of two input trees when they have an infinite number of levels? A theorem

proven by Norris [26] demonstrates that it suffices to find an isomorphism up to N−1 levels,

where N is the number of nodes in the circuit. Thus, in this case, 2 levels are sufficient to

prove the isomorphism. d, Symmetry fibration ψ transforms the cpxR circuit G into its

base B by collapsing the genes in the fibers into one. e, Symmetry fibration of the fadR

circuit and f, its isomorphic input trees. Full list of genes in this circuit appears in SI Table

VI, ID=3, 4, and 58. g, Symmetric genes in the fiber synchronize their activity to produce

same activity levels. We use the mathematical model of gene regulatory kinetics from Ref.

[8] (sigmoidal interactions lead to qualitatively similar results) to show the synchronization

inside the fiber baeR-spy when the fiber is activated by its regulator cpxR. Notice that cpxR

does not synchronize with the fiber.

FIG. 2. Strongly connected components of the genetic network and synchro-

nization of gene co-expression in the fibers in E. coli. a, Top, Two-gene connected

component of crp-fis. This component controls a rich set of fibers as shown. We also show the

symmetry fibration collapsing the graph to the base. We highlight the fiber uxuR-lgoR which

sends information to its regulator exuR and forms a 2-Fibonacci fiber |ϕ2 = 1.6180.., ` = 2〉,

as well as the double-layer composite |add − oxyS〉 = |0, 1〉 ⊕ |1, 1〉. a, Bottom. Co-

expression correlation matrix calculated from the Pearson coefficient between the expression

levels of each pair of genes in Fig. 2a. Synchronization of the genes in the respective fibers

is corroborated as the block structure of the matrix. b, The core of the E. coli network is

the strongly connected component formed by genes involved in the pH system as shown.

This component supports two Fibonacci fibers: 3-FF and 4-FF and fibers as shown. Hollow

colored circles indicate genes that are in fibers and also belong to the pH component.
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FIG. 3. Classification of building blocks in E. coli. a, Basic fiber building blocks.

These building blocks are characterized by a fiber that does not send back information to

its regulator. They are characterized by two integer fiber numbers: |n, `〉. We show selected

examples of circuits and input trees and bases. The full list of fibers appears in SI Table

VI and Supplementary File 1. The statistical count of every class is in SI Table I. The last

example shows a generic building block for a general n-ary tree |n, `〉 with ` regulators. b,

Complex Fibonacci and multilayer building blocks. These building blocks are more

complex and characterized by an autoregulated fiber that sends back information to its

regulator. This creates a fractal input tree that encodes a Fibonacci sequence with golden

branching ratio in the number of paths ai versus path length, i− 1. When the information

is sent to the connected component that includes the regulator, then a cycle of length d is

formed and the topology is a generalized Fibonacci block with golden ratio ϕd as indicated.

We find three such building blocks: 2-FF, 3-FF and 4-FF. Last panel shows a multilayer

composite fiber with a feed-forward structure.

FIG. 4. Fibration landscape across domains and species. a, Fibration landscape

for biological networks. Total number of fiber building blocks across 5 types of biological

networks analyzed in the present work. The count includes the total number of fibers in

the networks of each biological type considering all species analyzed for each type (see SI

Table IV). b, Fibration landscape across species. Count of fibers across each analyzed

species. Each panel shows the count over the different type of biological networks (E. coli

contains only the transcriptional network, see SI Table IV). c, Fibration landscape across

domains. Count of fibers across the major domains studied. The biological domain panel

is calculated over all networks and species in a and b. d, Global fibration landscape.

Cumulative count of fibers in all domains in c. The cumulative count represents the total

number of fibers per network of 104 nodes. Specifically, the quantity is calculated as the

total number of fibers divided by the total number of nodes in all networks per domain

multiplied by 104.
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III. TRANSCRIPTIONAL REGULATORY NETWORK OF E. COLI

To define the transcriptional regulatory network (TRN) we use the transcription factor-

gene target bi-partite network of Escherichia coli K-12 obtained from the RegulonDB data

source (http://regulondb.ccg.unam.mx). RegulonDB manually curates all transcriptional

regulations from literature searches [11]. We download all transcriptional regulatory inter-

actions catalogued in RegulonDB version 9.0 from http://regulondb.ccg.unam.mx/menu/

download/datasets/files/network_tf_gene.txt, last accessed September 15, 2018.

The database downloaded from RegulonDB is composed of a bipartite transcription factor

- gene target network. In this bi-partite dataset, a directed link between a source transcrip-

tion factor (TF) and a target gene means that the TF binds to the DNA sequence at the

binding site of the target gene to regulate its rate of transcription. In E. coli, each gene

expresses a single TF (this is not the case in eukaryotic genes that contains introns and

splicing of protein-coding RNA can produce many proteins from a single gene). Therefore, a

gene-gene regulatory network can be constructed from the bipartite transcription factor-gene

target network by associating each TF to the gene that expresses the TF. Then, a directed

link in the TRN from gene i → gene j implies that gene i encodes for a TF that controls

the rate of transcription of gene j. Thus, a directed link encodes the combined processes of

transcription, translation and TF binding to a target gene. We denote genes in bacteria in

italics, e.g., gadX and its protein as GadX. Thus, we say that gene i sends a genetic ’message’

to gene j and the ’messenger’ is the TF. The history of all messages passing in the network

defines the information flow in the network. A TF can either be an activator, repressor or

can have a dual function. For the purpose of calculating isomorphisms between input trees,

the dual interactions are treated as distinct interactions. Thus, these three interactions are

treated as three different types.

For the purpose of building the TRN it is important to distinguish the gene’s products

between genes encoding for TFs and the rest of the genes encoding for the rest of the proteins

(enzymes, kinases, transport proteins, etc). A TF is a regulatory protein that regulates a

gene by binding, and therefore will always have an out-going link in the network. There

are other regulatory proteins (like kinases, histones, coactivators, etc) that regulate gene

expression but they do not have a DNA-binding domain and they regulate gene expression

without binding. In our TRN, genes that encode for a protein that is not a TF do not have
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out-going links in the network. They only have in-going links and therefore are dangling

ends in the network. In E. coli most of these proteins are enzymes that catalyze biochemical

reactions in the metabolic network. Other proteins are involved in transport and signaling

processes (kinase) in the cell.

TF are also activated by effector molecules (metabolites) that bind non-covalently to an

allosteric site of the TF to alter the conformation of the TF to activate it or deactivated by

controlling the binding/unbinding of the TF to DNA. Effectors can also produce covalent

activation of the TF like for instance during phosphorylation mediated by kinases in the two

component TFs.

We treat these effector activities as external parameters, determined by the growth con-

ditions in the surrounding system (the cell in its changing environment) or by the metabolic

network, which is considered external to the TRN. These external perturbations are consid-

ered as the external growth conditions when we analyze the co-expression profiles in Section

I I. In the present study, the metabolic network is considered external to the TRN, so we do

not consider feedback loops from the TRN to the metabolic network and back to the TRN

mediated by effector metabolites. This extended network is treated in a follow up.

In E. coli, genes are also grouped by operons. An operon is a set of contiguous genes

that are transcribed as a single unit from the same mRNA molecule and the same promoter

site upstream of all genes and a terminator downstream [11]. An operon can contain genes

encoding for TF or non-TF proteins, and more than two TFs can be part of the operon.

Since the operons are transcribed by the same RNA molecule, then we group these genes

into a single node in the network. This is certainly the case when the operon has a single

promoter transcribing the full operon. However, there is some ambiguity in the construction

of the network using the definition of operon in RegulonDB when there are promoters in

the middle of the operon and these promoters transcribe more than one TF in the operon,

forming different transcription units. For instance, the operon in the gad system, gadAXW

which is important in the pH strongly connected component in Fig. 2b. This operon

expressed two TFs, GadX and GadW, and one enzyme GadA. Here, each gene has its own

promoter and terminator and thus are different nodes in the network. Moreover, each TF

is regulated by different TFs as well as each TF regulates different genes. As seen in Fig.

2b, for instance, GadX binds to hns but not GadW. Also, GadW is regulated by ydeO but

ydeO does not regulate gadX. Thus, putting together these two genes in the same operon
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gadAXW would miss all these links. Thus, when two TF with different promoters are part

of the operon, we consider the TF as different genes. On the other hand, the non-TF

genes in operons are always put together with other genes in the operon. For instance, the

gadAXW operon from RegulonDB is considered as two nodes: gadW and gadAX. To simplify

notation, when there is an operon that contains one TF and several non-TF proteins, then

for simplicity, we call this operon by the name of the TF. For instance, gadAX is simply

called gadX or the operon rbsDACBKR is called rbsR and therefore the TF rsbR represents

the entire operon rbsDACBKR. Finally, when all the genes in the operon are non-TF, then

we call the operon with all the genes names, as for instance, lsrACDBFG-tam.

In the RegulonDB database there are a total of 4690 genes. Out of these genes, Regulon

DB provides a bipartite network consisting of 1843 genes with interactions from or to other

genes, the remaining genes are not considered in the analysis. There are 192 genes that

encode for TFs. We cluster the genes into 313 operons as explained above. Full names of

operons and genes appear in SI Table VI. After grouping the genes into operons, the network

is reduced to 879 nodes. There are 1835 directed edges with an average in-degree (or out-

degree) of 2.1. In this network we find 91 different fibers that encompass 416 different nodes.

We find that 28 nodes are involved in 7 strongly connected components of size larger than

one node, and the rest are single node connected components.

IV. SYMMETRY FIBRATIONS

Below we provide formal definitions of the main concepts using in the paper: (a) input

trees and isomorphisms, (b) from fibrations → surjective minimal graph fibrations called

here symmetry fibrations, (c) fibers and minimal bases, and (d) minimal balance coloring

algorithm. We start with a review of the literature (not exhaustive).

The literature on fibrations and groupoids crosses the fields of mathematics, computer

science and dynamical systems theory. The notion of fibration was first introduced by

Grothendieck as fibrations between categories in algebraic geometry [12]. The original pa-

per of Grothendieck has been published as a part of the Séminaire N. Bourbaki in 1958

and can be found at http://www.numdam.org/article/SB_1958-1960__5__299_0.pdf.

A mathematical account of Grothendieck fibrations in the context of category theory ap-

pears in https://ncatlab.org/nlab/show/Grothendieck+fibration. For a review of
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FIG. 5: Group symmetries and fibrations with their input tree. a, Example of a network

with a symmetry group. The automorphism shown maps the network into another network leaving

invariant the connectivity of every nodes in the network [4, 14, 17, 18]. b, A network without

automorphisms but with a fibration. The addition of a single out-link from 3→ 7 breaks the whole

group symmetry. However, since fibrations are defined according only to the input tree, then the

network still have a symmetry, a fibration arising from the fact that the input trees of nodes 2 and

3 are isomorphic, as well as between the input trees of nodes 4 and 5 as shown in (c). There are

no more isomorphisms as shown by the rest of the input trees. Therefore, nodes 2 and 3 form a

fiber. Nodes 4 and 5 also form another fiber, yet independently of the other fiber. The fibration is

a morphism that maps the network into a base which is formed by collapsing the isomorphic nodes

into one, i.e., collapsing node 2 and 3 together, and node 4 and 5 together. The resulting base is

also called a quotient graph.

the history of fibrations from Grothendieck to modern studies, see the blog of Vigna at

http://vigna.di.unimi.it/fibrations/. The formulation of Grothendieck is highly ab-

stract and differs from our present work which refers to the notion of surjective mini-

mal graph fibration which is a fibration between graphs. The work of Boldi & Vigna
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[13] and DeVille & Lerman [15] on graph fibrations are the closest to our formulation,

see http://vigna.di.unimi.it/ftp/papers/FibrationsOfGraphs.pdf. Graph fibra-

tions have been applied in computer science to understand PageRank [35], and the state

of synchrony of processors in computing distributed systems [36, 37], where fibrations are

the key concept in the computation of identical states in distributed system. The relation

between surjective minimal graph fibrations and synchronous subspaces is elaborated in

DeVille & Lerman [15] and Nijholt, Rink & Sanders [16]. It should be noted that all these

works on fibrations pertain to a highly abstract mathematical level which, in turn, provides

the concept of fibration with a quite broad applicability. For a more accessible reading

on fibrations within the particular context application to biological networks, the reader is

recommended to follow our paper and supplementary sections.

In parallel, the work of Golubitsky and Stewart [14, 20] and others in dynamical sys-

tems theory consider the equivalent formalism of symmetry groupoids, equitable partition

of balanced colored nodes and its relation with synchronization [21–23]. A review of the

groupoid formalism and its application to synchronization in dynamical systems appears

in [14]. DeVille and Lerman [15] also discuss the relation between graph fibrations and the

groupoid formalism.

Synchronization arises also as a consequence of permutation symmetries in the network,

called automorphisms [4], which form symmetry groups and are different from symmetry

fibrations and symmetry groupoids. There is a large literature in the dynamical system

community dealing with cluster synchronization from automorphisms, since synchronization

is an ubiquitous phenomenon across all sciences [21–23]. Reviews can be found in the work of

Golubitsky and Stewart [14, 20] to recent work in [17–19] and references therein. Symmetry

groups are the cornerstone of physical phenomena appearing in all physical systems [5].

Below, to elaborate on the definition of symmetry fibrations, we first compare fibrations

to automorphisms which form symmetry groups [4, 14, 17–19] using the example networks of

Figs. 5a and 5b. An automorphism is a transformation that preserves the full connectivity of

the network. That is, an automorphism preserves not only the inputs but also the outputs

of each node in the network, and therefore, it presents more stringent conditions on the

connectivity than symmetry fibrations which preserve only the input trees. For example,
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the network of Fig. 5a is invariant under the automorphism defined by the permutation:

σ =


1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

1 3 2 5 4 6

 , (6)

because the nodes are connected exactly to the same nodes before and after the application

of the permutation σ, which is a global mirror symmetry.

Next, consider the slightly modified network depicted in Fig. 5b left, which differs from

the network in Fig. 5a by one extra out-going link from node 3 to 7. In this network, the

permutation of nodes 2↔ 3 and 4↔ 5, Eq. (6), is not an automorphism anymore, because

it does not preserve the in and out connectivities of all nodes, e.g., node 3 is connected with

7 but loses this connection after the permutation (Fig. 5b right). It is interesting to see how

fragile group symmetries are: if we connect just one extra node to the network as shown

in Fig. 5b, the symmetry (i.e. the network automorphism group) is broken. This occurs

because automorphisms require very strict arrangements of nodes and links to preserve,

rigidly, the global structure of the network. Fibration symmetries, with their emphasis in

the preservation of the input trees only, is less restrictive. This might explain why fibration

symmetries emerged in living systems as opposed to the more restrictive automorphisms

which describe all aspects of matter, from elementary particles to atoms, molecules and

phases of matter.

This example raises the following question: are there extra symmetries in the network

shown in Fig. 5b beyond its automorphisms? The answer to this question is, indeed, yes:

there are extra symmetries in the network of Fig. 5b, the fibration symmetries [12, 13],

which do not form a group [4] but groupoids [14]. A groupoid is a set of transformations

satisfying the axioms of invertibility, identity and associativity but not the composition law

(closure) [14], while in a group, transformations satisfy the four axioms. For this reason,

groupoids are fundamentally different algebraic structures compared with traditional group

symmetries.

A. Input tree

Roughly speaking, symmetry fibrations take into account only the input trees of the

nodes, but not the output-trees (this is not true though when the input and output trees
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are connected). Thus, node 3 in Fig. 5b is connected to node 7 via an out-going link, and

this link destroys the symmetry group, but node 3 is still symmetric with 2 via a symmetry

fibration, since the input trees of nodes 2 and 3 are isomorphic, even though node 3 is

connected with 7. This is because the connection 3→ 7 is an out-going link of node 3 and,

therefore, is not part of its input tree. Simply put, symmetry fibrations preserve input trees

only, while automorphisms preserve both input and output-trees, since they preserve the

full connectivity of the network, and thus, they represent more stringent symmetries than

fibrations. We formalize this idea next after introducing some definitions.

The basic ingredient to define a new symmetry beyond automorphisms is the input tree,

which contains the full information received by a given node through the totality of all the

possible paths ending in that node and starting from every other node in the network. Thus,

for every node i in the network G there is a corresponding input tree, called Ti, which is

defined as a tree with a selected node ri, called the root, and such that every other node is

a path Pj→i of G starting from j and ending in i [16]. A link from node Pj→i to node Pk→i
exists if Pj→i = ej→kPk→i =, where ej→k is an edge of G.

The concept of input tree has appeared in the literature as the universal total space in

traditional categorical or topological terminology [12], the universal total graph from [13], the

view in the theory of distributed systems, or the unfolding of a nondeterministic automaton

in concurrency theory [13].

For example, let us construct the input tree T2 of node 2 in the network on the left of

Fig. 5b. The root is the node r2 at the uppermost level of the tree. Every other node of the

input tree of node 2 is a path Pj→2 ending in 2. There are two paths of length 1: P(1)
3→2 and

P(1)
4→2; three paths of length 2: P(2)

2→2, P(2)
5→2, and P(2)

6→2; and so on. Since P(2)
2→2 = e2→3P(1)

3→2,

we put a link in the input tree from P(2)
2→2 to P(1)

3→2 because P(2)
2→2 = e2→3P(1)

3→2. We then

add all other links in the input tree using the same criterion. The resulting input tree T2 is

shown in Fig. 5c, together with the input trees of all other nodes in the network in Fig. 5b.

To simplify, we label each node of Ti using the starting point of the corresponding path

Pj→i. For example, in T2 nodes P(1)
3→2 and P(1)

4→2 are labeled 3 and 4 respectively, and the

length of the path is equal to the depth of the node in the input tree.

Thus, in practice, we arrive at the following way to construct the input tree: we start

with the node at the root, lets say node 2. We label every node Pj→2 in the input tree by

37



node j where the path starts. The first layer of the input tree consists of all the nodes that

are at a distance one from the root. In this case, nodes 3 and 4. Thus we add two links to

2 from 3 and 4 in the input tree.

The second layer of the input tree is obtained applying the same procedure to each node

in the first layer, 3 and 4. For instance, node 3 receives a link from 2 and 5. Therefore

the second layer of the input tree contains nodes 2 and 5 connected to node 3. We repeat

the procedure with the other node in layer 2: node 4. Node 4 receives a link only from

node 6, and node 6 from no one. So, we add a link from 6 to 4 and this path does not

propagate further. The third layer of the input tree is obtained iteratively applying the

same procedure, and so on.

We note that the input trees of nodes 1, 2, 3 and 7 are infinite since the network contains

a cycle (or loop) between nodes 2 � 3. For instance, T1 is infinite because there are paths

crossing the loop infinite times. On the other hand, the input trees of nodes 4, 5 and 6 are

finite since they do not cross the loop.

B. Isomorphic input trees

The input tree Ti at node i can be interpreted as the collection of all possible ‘histories’

starting at some node and ending in node i. As shown in Section I C, if two input trees

Ti and Tj are isomorphic, then the corresponding nodes i and j in network G have the

same dynamical state [15, 16]. This equivalence is understood in terms of a local in-

isomorphism that maps nodes to nodes and links to links, so it formalizes the fact that the

dynamical interactions represented by a directed link from gene to gene could be in principle

different across genes, as long as the links are the same (or similar, in case that the produced

synchronization is approximate) inside the fiber.

An isomorphism between Ti and Tj is defined as a bijective map τ : Ti → Tj, which maps

one-to-one the nodes and edges of Ti to nodes and edges of Tj.

A minimal condition for the existence of an isomorphism between the input trees is that

the two input trees have the same number of nodes (we could also add a condition of the

same degree sequence). Thus, it is clear that there could be no isomorphism between the

input trees of nodes 2 and 4, since the former contains an infinite number of nodes and the

later just two. Thus, a minimal condition for an isomorphism to exist is that it should be a
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mapping between two input trees with the same number of nodes, since the mapping needs to

be bijective, i.e., with an inverse. By inspection it is then clear that there is an isomorphism

between the input trees of nodes 4 and 5. This isomorphism is the map τ4→5 : T4 → T5, and

it is written as a transformation following the notation:

τ4→5 =


4 : 6

↓ ↓

5 : 6

 , (isomorphism between input trees of nodes 4 and 5). (7)

which maps the root of T4 to the root of T5 as τ4→5(4) = 5, and node 6 ∈ T4 to node 6 ∈ T5

as τ4→5(6) = 6. The notation starts with the root of the tree and then we write nodes in

each level from top to bottom starting from left to right in each level. In this particular

example the links are of the same type, so there is no need to specify the mapping between

links in the isomorphism, but in general the local equivalence require that nodes are map to

nodes and also links are mapped to the same type of link by the isomorphism.

The map in Eq. (7) is one of the simplest isomorphism since the input tree contains only

one level. In this particular case, to see that nodes T4 and T5 are isomorphic, it is thus

enough to see that both nodes 4 and 5 connect to one and the same node, which is node

6 in this case. That is, both input trees of nodes 4 and 5 are isomorphic because they are

made up of just two nodes and one edge, and this isomorphism implies that 4 and 5 receive

the same information. This is the simplest form of an isomorphism between input trees. In

this case, we say that node 4 and 5 have the same input-set, which is an input tree of only

one level, that is the set of incoming links. The input-set is used in the groupoid formalism

in Ref. [14].

Next, we consider the input trees of nodes 2 and 3. By visual inspection, both input

trees have the same ‘shape’. However, these trees are infinite in the number of levels. How

do we decide if two input trees are isomorphic when they have an infinite number of levels?

Remarkably, to determine if two input trees are isomorphic, it suffices to check that they

are isomorphic up to the N − 1 level, thanks to a theorem by Norris [26], where N is the

total number of nodes in the network G. This is an important result that allows us to avoid

to check an infinite number of equivalences. Since G has |NG| = 7, we use six levels in the

input trees to determine that there is an isomorphism between T2 and T3 which corresponds
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to the following map:

τ2→3 =


2 : 3 4 2 5 6 3 4 6 . . .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

3 : 2 5 3 4 6 2 5 6 . . .

 , (isomorphism between input trees of 2 and 3).

(8)

There are no other isomorphism between the other input trees. Notice that T7 is not iso-

morphic to T3 and T2 by just one link to the root.

The existence of an isomorphism τ from the input tree of node i to the input tree of node

j implies the synchronization of xi and xj [15]. In the groupoid formalism of Golubitsky

and Stewart, it is said that two nodes are synchronized if their input-set are synchronized,

too [14]. Analogous work in dynamical systems shows that automorphisms in networks lead

to synchronized nodes in orbits, see [17–20] and references therein. The orbit of a given

node is obtained by applying all automorphisms of a network to the node and the nodes

in the orbit are synchronous. The synchronized orbits obtained from automorphisms are

analogous to the synchronized fibers obtained from symmetry fibrations. In general, every

orbit is also a fiber, but the opposite is not true, since a fiber is not necessarily an orbit.

In our analysis of the E. coli network, we find some automorphisms. Some of the star

fibers with n = 0 are also orbits of the networks since they are invariant under permutation

symmetries of the symmetric group of order n, Sn. But this is only when the genes in

the star have no out-going links. As shown in the example of Fig. 5, an out-going link in

any of the star genes, will destroy the automorphism, but not the fiber. For this reason,

automorphisms are somehow more prevalent in undirected networks. For instance, we have

found that automorphisms describe the symmetries of the gap junction connectome of C.

elegans, which is composed all of undirected links [34]. In the case of directed biological

networks treated here, while automorphisms could be of use to discover some synchronized

nodes, the majority of synchronization is due to symmetry fibrations, which are not described

by automorphisms.
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C. From fibrations to symmetry fibrations via isomorphic input trees and minimal

bases

A fibration is any morphism from a network G = (NG, EG) to a base G = (NG, EG):

ψ : G→ B [12]. If a network G = (NG, EG) has at least one pair of isomorphic input trees,

then there exists a network B = (NB, EB), called the base of G, such that G can be ‘fibered’

over B by the graph fibration. The base B is defined as follows:

• a node I ∈ NB is a representative of the set of nodes {i ∈ NG} whose input trees are

isomorphic;

• an edge eI→J where I, J ∈ EB is defined as eI→J =
∑

i∈I ei→j, where ei→j ∈ EG.

Having defined the base network B, we say that G is fibered over B if there exists a surjective

morphism ψ : G → B, called surjective graph fibration [13], that maps nodes and edges of

G to nodes and edges of B as: ψ(i) = I for all i ∈ NG, and ψ(ei→j) = eI→J . A surjective

morphism is a map between two sets (the domain and codomain) where each element of the

codomain (in this case B) is mapped to, at least, by one element of the domain (in this case

G). The set of nodes i ∈ NG that are mapped to the same node I ∈ NB, and denoted by

ψ−1(I), is called the fiber of G over node I. We notice that all input trees of nodes which

belong to the same fiber are pairwise isomorphic.

In general a surjective graph fibration ψ can map nodes with isomorphic input trees to

different bases, thus, the number of fibers is not minimal.

A surjective graph fibration that maps all genes with isomorphic input trees to a single

common node in B is called a surjective minimal graph fibration in the sense of [13]. Such a

minimal fibration will generate then the minimal bases of the network and will produce the

largest collapse of nodes in fibers. In this work we only deal with surjective minimal graph

fibrations and we call them symmetry fibrations for short.

In practice, a symmetry fibration maps G to the minimal base B (analogous to the

quotient), that consists of the following steps: (i) consider all the nodes in a fiber (which

have isomorphic input trees) and choose one as the representative I, (ii) collapse the nodes

in the fiber into one single node in B and call it by the name of the representative node I,

(iii) for every link of a node j in G directed to the node I in G, add a link in B from j to

I. If the node j belongs to the fiber, then the corresponding link in B is an autoregulation
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loop in B, (iv) repeat for every fiber in G. When fibers belong to disjoint components of

the network, then they are considered as distinct fibers.

V. ALGORITHM TO FIND FIBERS WITH MINIMAL BALANCE COLORING

The algorithm to partition the network into fibers is based on the ’minimal balanced

coloring’ algorithm developed by Cardon & Crochemore in Ref. [24]. Here we follow a version

developed by Kamei & Cock [25] to construct a minimal balanced coloring of a network,

namely a coloring that employs the least possible number of colors, which is associated

with minimal graph fibrations. The algorithm’s runtime scales as O(|EG| log2 |NG|), which

implies that it is essentially linear with the network size, specially for sparse networks, and

can be applied to very large networks.

The theory of balance coloring is explained in Ref. [14]. A balance coloring creates a

partition of nodes of G into disjoint sets (corresponding to synchronous fibers) such that each

node in one set receives the same number of colors from nodes within other sets [14, 20]. A

coloring of G with this property is the balanced coloring and represents an equitable partition

of the network, see [14, 20]. The sets identified by a minimal balanced coloring partitions

the network with minimal colors and corresponds to the fibers of G identified by minimal

graph fibrations ψ [13–15].

Thus, we color nodes such that synchronous nodes in a fiber receive the same colors from

their synchronous nodes. As example, the genes baeR and spy (Fig. 1a) have the same color

and are in the same fiber since they receive the same colors from their neighbors: both baeR

and spy receive one red color via the activator link from one red node (baeR from itself and

spy from baeR) and one green activator link each from the green node cpxR.

The algorithm constructs a coloring of the nodes that is balanced. A coloring is balanced

if two identically colored nodes are connected to identically colored nodes via their inbound

links. Each balanced colored cluster is a fiber in the network. The fibers also corresponds to

the orbits in a network when the symmetries are automorphisms rather than isomorphisms

in the input trees. The flow of the algorithm is exemplified with the example network of

Fig. 6.

• Step 1 - We start by assigning the same color to all nodes. In Fig. 6a all nodes are

initially colored in blue. In addition, we assign to each link the same color of the
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FIG. 6: Algorithm to find the fibers of a network through a minimal balanced coloring.

The goal of the algorithm is to find a minimal balanced coloring of the network, so that two nodes

have the same color only if they are connected to the same number of identically colored nodes via

inbound links. The colors represent the fibers in the network.

node from where it emanates. To update the coloring (or, equivalently, to generate a

new partition) of nodes, we construct the table shown in the right panel of Fig. 6a, as

explained next. In the top row of this table we put the network nodes colored with

their current color. In the leftmost column we put each type of colored link. In this

initial stage of the algorithm we only have a blue link for all the nodes. Then, we

fill the entries of the table with the number of colored links of this blue type that are

received by the corresponding node. For example, node 1 receives two 2 blue links as

well as nodes 2 and 3. Nodes 4, 5 and 7 receive one blue link each, and node 6 nothing.

The structure of this table determines the new coloring as explained in the next step.
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• Step 2 - Using the table in Fig. 6a we update the coloring of nodes as follows. We

assign the same color to all nodes that receive the same number of colored links of each

type. Specifically, nodes 1, 2 and 3 receive two blue links, so we assign them the same

(blue) color. Analogously, nodes 4, 5 and 7 receive one blue link, so we assign them

the same color, but different from blue. We assign them a purple color. Similarly, we

assign another color to node 6 (green). We then obtain the colored network in the

left of Fig. 6b. Applying the counting of receiving coloring links to this network, we

obtain the new coloring table shown in Fig. 6b, where each link has the color of the

node from where it emanates. Thus, we update the table to generate the new coloring,

as shown in the right panel of Fig. 6b.

• Step 3 - Using the same criterion as in Step 2, we update the coloring of nodes,

comprising now five different colors, and then we generate the new table, as shown

in Fig. 6c. At this point the algorithm stops, because we do not need to introduce

more colors, since each color is balanced. Each color corresponds to a fiber, and each

node in each colored fiber receives the same colors from other fibers or from nodes in

the same fiber. Therefore, the coloring shown in the network of Fig. 6c is the minimal

balanced coloring of the network, and the colors indicate the fibers in the network.

As far as only minimal fibrations are considered, the algorithm will return always the same

fibers containing the same nodes, for any initial condition and realization. Below we provide

the pseudo-code to clarify the algorithm. More detailed instructions and methodology for

obtaining fiber building blocks will be given in a follow-up paper. We start by assigning all

nodes to the same fiber and then continue to refine the partition basing on the input set of

the node until no further refinement can be obtained.
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Algorithm 1 Finding fibers following Kamei & Cock Ref. [25]

Input: Graph G = {NG, EG}, where NG are vertices and EG are edges of the analyzed

network

| NG | - number of vertices, NG = {v1 . . . v|NG|}

Output: C = {ci}, where ci - color of node i and i = 1 · · · | V |

Notation: Ii = {I1
i . . . I

N
i }, where N = current number of colors

1: N0 = 1

2: for i = 1 · · · | NG | do

3: ci = 1

4: end for

5: j = 0

6: repeat

7: for i = 1 · · · | NG |, k = 1...Nj do

8: Iki = number of nodes of color k in the input set of vi

9: end for

10: H = set of all unique {Ii}

11: // assign each unique vector a color and color the graph accordingly

12: for i = 1 · · · | NG | do

13: ci = index of Ii in H, e.g. if two nodes have the same Ii and Ij → ci = cj

14: end for

15: j = j + 1

16: Nj = | H |

17: until Nj 6= Nj−1

18: return {ci}
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VI. STRONGLY CONNECTED COMPONENT

In a directed network, the strongly connected component is composed of nodes that are

reachable from every other node in the component. That is, there is a directed path from

every node to any other node in the strongly connected component. A weakly connected

component is obtained when we ignore the directionality of the links. Strongly connected

components are relevant to genetic fibers since they contain loops that control the state of

the genes. We find four types of strongly connected components. Single-gene components

composed of autoregulator loops like cpxR and fadR in Figs. 1a and 1e. The other type

of components are those in Fig. 2a and Fig. 2b and also a five-gene connected component

shown in SI Fig. 7. We note that most of the fibers regulated by these components do

not belong to the connected component. This is because they receive information but do

not send information back to the connected component. These fibers are characterized by

integer fiber numbers. When the fiber receives and sends back information, that is, when

the fiber belongs to the strongly connected component, then it becomes a Fibonacci fiber.

The largest strongly connected component in the E. coli network controls the pH system

shown in Fig. 2b.

VII. STATISTICS OF FIBERS IN THE TRN OF E. COLI

A. Fibers statistics in E. coli

SI Table I shows the counts in the E. coli network of each building block. For instance

the most abundant building blocks are the following:

|n = 0, ` = 1〉: 45

|n = 1, ` = 0〉: 13

|n = 0, ` = 2〉: 13

|n = 1, ` = 1〉: 8

The list is completed with the fractal building blocks of Fibonacci sequences which are

less numerous but more complex in their structure:

|ϕ2 = 1.6180.., ` = 2〉: 1
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FIG. 7: A five-gene connected component of soxR, soxS, fnr, fur, and arcA with its regulated

fibers.
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|ϕ3 = 1.4655.., ` = 1〉: 1

|ϕ4 = 1.3802..., ` = 1〉: 1

Structure type Amount in E-coli

|n = 0, l = 1〉 45

|n = 0, l = 2〉 13

|n = 0, l = 3〉 3

|n = 1, l = 0〉 13

|n = 1, l = 1〉 8

|n = 1, l = 2〉 3

|n = 2, l = 0〉 1

|n = 2, l = 1〉 1

|ϕd = 1.3802.., l = 1〉 1

|ϕd = 1.4655.., l = 1〉 1

|ϕd = 1.6180.., l = 2〉 1

Composite Fiber 1

Total number of building blocks 91

TABLE I: Building block statistics. We show the count of every building block defined by the fiber

numbers.

B. Full list of fibers in E. coli

SI Table VI shows the complete list of the 91 fibers building blocks found in the genetic

network of E. coli. We list the genes in the fiber plus their external regulators. If a gene

or operon is not in this list, for instance lacZYA, it means that the gene or operon is not

in a fiber. Supplementary File 1 shows the plot of the circuit of every fiber and the fiber

building block.

The first column in SI Table VI is the ID of the fiber. This ID refers to the plot of the

fiber building block in Supplementary File 1. The second column lists the genes in the fiber,

the third column lists the external regulators. The last column specifies the fiber number
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associated with each fiber as |n, `〉 or |ϕd, `〉.

VIII. DATASETS OF BIOLOGICAL AND NON-BIOLOGICAL NETWORKS

To investigate the applicability of fibrations in a broader context, we performed an ex-

tensive analysis of different complex networks from diverse domains in systems science.

Full details of each network analyzed can be accessed at https://docs.google.com/

spreadsheets/d/1-RG5vR_EGNPqQcnJU8q3ky1OpWi3OjTh5Uo-Xa0PjOc. The codes to re-

produce this analysis are at github.com/makselab and the full datasets appear at

kcorelab.org. See also tables below with information about the networks.

We first show the symmetry fibrations in biological networks and species. See Section

I H. We characterize biological networks spanning from:

• Biological networks: transcriptional regulatory networks, metabolic net-

works, cellular processes networks and pathways, disease networks, neural

networks.

We study the following species:

• Species: A. thaliana, E. coli, B. subtilis, S. enterica (salmonella), M. tuber-

culosis, D. melanogaster, S. cerevisiae (yeast), M. musculus (mouse), and

H. sapiens (human).

We then study non-biological networks in Section I H:

• Social Networks: online social networks, Facebook, Twitter, Wikipedia,

Youtube, email networks, communication networks, citation networks, col-

laboration networks, bloggers

• Internet: routers, autonomous systems, web graphs, hyperlinks, peer-to-

peer

• Infrastructure Networks: power grid, airport, roads, flights

• Economic Networks

• Software Networks: Linux, jdk

• Ecosystems
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Network Domain Total No. of nodes Total No. of edges No. of networks

Biological 287390 4211856 289

Economic 1752 108639 5

Ecosystems 1879 5378 14

Infrastructure 24511 82534 16

Internet 244634 835565 27

Social 104909 1261009 15

Software 43391 503645 3

TABLE II: Features of the networks across domains. We report the total numbers for each domain

summed over all the networks in the domain.

Species Total No. of nodes Total No. of edges No. networks

Yeast 55932 1392926 11

Arabidopsis Thaliana 790 1431 1

Bacillus subtilis 5602 11417 3

Drosophila 39549 321734 5

Escherichia coli 879 1835 1

Human 72587 1198712 248

Micobacterium Tuberculosis 1624 3212 1

Mouse 64709 987424 7

Salmonella 8293 15589 6

TABLE III: Number of networks per species.
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Arabidopsis Bacillus Caenorhabditis Cat Drosophila Escherichia Human Micobacterium Mouse Rat Salmonella Yeast

Thaliana subtilis elegans coli Tuberculosis

TF 1 2 2 0 4 1 4 1 4 0 2 11

Neuron 0 0 0 1 1 0 0 0 3 3 0 0

Metabolic 0 0 0 0 0 0 48 0 0 0 2 0

Disease 0 0 0 0 0 0 66 0 0 0 0 0

Kinase 0 0 0 0 0 0 2 0 0 0 0 0

Pathway 0 0 0 0 0 0 127 0 0 0 0 0

Protein 0 1 0 0 0 0 1 0 0 0 2 0

TABLE IV: Table with the count of networks per type of biological network and species. These

networks are used to calculate the distributions of fiber across species and biological types in Figs.

4a, b, and c. For each type of biological network in Fig. 4a, b, we calculate the count over the

total number of networks as indicates at the end of each row for each biological type. The same

occurs with the number of networks at the end of each column for each species. Figure 4c shows

the counts over all the network shown in the last row/column.
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Network Subdomain Total No. of nodes Total No. of edges No. of networks

Autonomous systems graphs 141842 481415 14

Bitcoin 9664 59777 2

Collaboration networks 50260 504897 4

Disease 4309 15254 66

Facebook 4039 88234 1

Youtube subscriptions 13723 76765 1

Internet peer-to-peer networks 31978 110154 4

Jazz 198 5484 1

Linux 30837 213954 1

Metabolic 4273 33829 50

Networks with ground-truth communities 1005 25571 1

Neural networks 3694 129812 8

Cellular processes and Pathways 9825 54712 127

Plant-Pollinator 1631 2719 11

Plant-Seed-Disperser 65 165 2

Power grid 4941 6594 1

Sentiment 99 278 2

Transcriptional regulatory 260258 3908769 32

TABLE V: Subtypes of networks belonging to the different domains.
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Id Fiber Regulators Fiber Number

1 aaeR, ampDE, azuC, comR, cyaA, narQ, sohB, speC,

spf, trxA, yaeP-rof, yaeQ-arfB-nlpE, yjeF-tsaE-amiB-mutL-

miaA-hfq-hflXKC

crp |n = 0, l = 1〉

2 aaeXAB, agp, cpdB, cstA, glgS, glpR, grpE, hofMNOP,

ivbL-ilvBN-uhpABC, lacI, mcaS, mhpR, nadC, ompA,

ppdD-hofBC, preTA, raiA, rmf, rpsF-priB-rpsR-rplI, sfsA-

dksA-gluQ, sxy, ubiG, ychH, yeiP, yeiW, yfiP-patZ, yibN-

grxC-secB-gpsA, ykgR

crp |n = 0, l = 1〉

3 accA, accD, fabI, fadR, yceD-rpmF-plsX-fabHDG-acpP-

fabF

|n = 1, l = 0〉

4 accB, iclR fadR |n = 1, l = 1〉

5 ackA-pta, dcuC arcA, fnr |n = 0, l = 2〉

6 acrZ, inaA, nfo, nfsB marA, rob,

soxS

|n = 0, l = 3〉

7 add, dsbG, gor, grxA, hemH, oxyS, trxC crp, oxyR,

rbsR

|n = 0, l = 1〉⊕|n =

1, l = 1〉

8 adeD, adiY, chiA, gspAB, hchA, hdfR, mdtJI, rcsB, yjjP hns |ϕd = 1.4655.., l = 1〉

9 agaR, agaS-kbaY-agaBCDI |n = 1, l = 0〉

10 alaA-yfbR, avtA, leuE, livJ, livKHMGF, lysU, sdaA lrp |n = 0, l = 1〉

11 alaE, kbl-tdh, yojI lrp |n = 0, l = 1〉

12 alaWX, argU, argW, argX-hisR-leuT-proM, aspV, flxA,

glyU, leuQPV, leuX, lptD-surA-pdxA-rsmA-apaGH, lysT-

valT-lysW, metT-leuW-glnUW-metU-glnVX, pheU, pheV,

proK, proL, queA, serT, serX, thrU-tyrU-glyT-thrT-tufB,

thrW, trmA, tyrTV-tpr, valUXY-lysV

fis |n = 0, l = 1〉

13 aldB, hupB crp, fis |n = 0, l = 2〉

14 allA, allS, gcl-hyi-glxR-ybbW-allB-ybbY-glxK allR |n = 0, l = 1〉

15 alsR, rpiB |n = 1, l = 0〉

16 amiA-hemF, cmk-rpsA-ihfB, uspB IHF |n = 0, l = 1〉
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17 amn, mipA, phnCDE 1E 2FGHIJKLMNOP, phoA-psiF,

phoB, phoE, phoH, ydfH, yegH, yhjC, ytfK

|n = 1, l = 0〉

18 ampC, dacC bolA |n = 0, l = 1〉

19 araE-ygeA, araFGH araC, crp |n = 0, l = 2〉

20 arcZ, ydeA arcA |n = 0, l = 1〉

21 argA, argCBH, argE, argF, argI, argR, artJ, artPIQM, lysO |n = 1, l = 0〉

22 argO, lysP argP, lrp |n = 0, l = 2〉

23 aroF-tyrA, tyrB tyrR |n = 0, l = 1〉

24 aroH, trpLEDCBA, trpR |n = 1, l = 0〉

25 asnB, clpPX-lon, glsA-ybaT, uspE gadX |n = 0, l = 1〉

26 aspA-dcuA, dcuR crp, fnr,

narL

|n = 0, l = 3〉

27 bacA, cpxPQ, cpxR, ftnB, ldtC, ldtD, ppiD, sbmA-yaiW,

slt, srkA-dsbA, xerD-dsbC-recJ-prfB-lysS, yccA, yebE,

yidQ, yqaE-kbp, yqjA-mzrA

|n = 1, l = 0〉

28 baeR, spy cpxR |n = 1, l = 1〉

29 bcsABZC, fnrS, pdeF, pepT, pitA, ravA-viaA, tar-tap-

cheRBYZ, upp-uraA, xdhABC, ydeJ, ytiCD-idlP-iraD

fnr |n = 0, l = 1〉

30 bdcA, dkgB, grxD, mepH, mhpT, pgpC-tadA, rfe-wzzE-

wecBC-rffGHC-wecE-wzxE-rffT-wzyE-rffM, rybB, tehAB,

tsgA, ydbD, yeaE

nsrR |n = 0, l = 1〉

31 betI, betT arcA, cra |n = 1, l = 2〉

32 bioA, bioBFCD birA |n = 0, l = 1〉

33 bluF, ydeI rcdA |n = 0, l = 1〉

34 borD, envY-ompT, mgrB, mgrR, mgtLA, mgtS, pagP, rstA,

ybjG

phoP |n = 0, l = 1〉

35 cbpAM, gltX, gyrB, msrA fis |n = 0, l = 1〉

36 cdaR, garD, gudPXD |n = 1, l = 0〉
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37 cho, dinB-yafNOP, dinD, ding-ybib, dinQ, ftsK, hokE, insK,

lexA, polB, ptrA-recBD, recAX, recN, recQ, rpsU-dnaG-

rpoD, ruvAB, symE, tisB, umuDC, uvrB, uvrD, uvrY, ybfE,

ybgA-phr, ydjM, yebG

|n = 1, l = 0〉

38 cirA, entCEBAH, fepA-entD, fiu crp, fur |n = 0, l = 2〉

39 copA, cueO cueR |n = 0, l = 1〉

40 cra, pitB, sbcDC phoB |n = 0, l = 1〉

41 crl 1, exbBD, fepDGC, fhuACDB, fhuE, gpmA, metJ, nohA-

ydfN-tfaQ, ryhB, ygaC, yhhY, yjjZ

fur |n = 0, l = 1〉

42 cusCFBA, cusR, yedX hprR, phoB |n = 1, l = 2〉

43 cvpA-purF-ubiX, glrR-glnB, hflD-purB, lolB-ispE-prs,

purC, purEK, purL, speAB

purR |n = 0, l = 1〉

44 cysDNC, cysK, tcyP, yciW, ygeH, yoaC cysB |n = 0, l = 1〉

45 cytR, nagC, nagE, ycdZ crp |n = 1, l = 1〉

46 dapB, lysC argP |n = 0, l = 1〉

47 ddpXABCDF, patA, potFGHI, yeaGH, yhdWXYZ ntrC |n = 0, l = 1〉

48 decR, mlaFEDCB, yncE marA |n = 0, l = 1〉

49 dgcC, iraP, nlpA, wrbA-yccJ, yccT csgD |n = 0, l = 1〉

50 dicB-ydfDE-insD-7-intQ, dicC-ydfXW dicA |n = 0, l = 1〉

51 dsdC, norR nsrR |n = 1, l = 1〉

52 dtpA, omrA, omrB ompR |n = 0, l = 1〉

53 ecpA, ecpR matA |n = 0, l = 1〉

54 efeU 1U 2, motAB-cheAW, psd-mscM, tsr, ung cpxR |n = 0, l = 1〉

55 epd-pgk-fbaA, gapA-yeaD, mpl cra, crp |n = 0, l = 2〉

56 erpA, iscR, rnlAB |n = 1, l = 0〉

57 evgA, nhaR hns |ϕd = 1.3802.., l = 1〉

58 fabA, fabB fabR, fadR |n = 0, l = 2〉

59 fadE, fadIJ arcA, fadR |n = 0, l = 2〉

60 fbaB, fruBKA, glk, gpmM-envC-yibQ, pfkA, ppc, pykF,

pyrG-eno, tpiA

cra |n = 0, l = 1〉
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61 fldB, pgi, ribA, ydbK-ompN soxS |n = 0, l = 1〉

62 folE-yeiB, metA, metC, metF metJ |n = 0, l = 1〉

63 fpr, pqiABC, rirA-waaQGPSBOJYZU marA, soxS |n = 0, l = 2〉

64 fucAO, fucR, zraR crp |n = 1, l = 1〉

65 gfcA, ybhL, yfiR-dgcN-yfiB, ymiA-yciX yjjQ |n = 0, l = 1〉

66 hupA, trg crp, fis |n = 0, l = 2〉

67 ibaG-murA, rplU-rpmA-yhbE-obgE mlrA |n = 0, l = 1〉

68 ibpAB, yadV-htrE IHF |n = 0, l = 1〉

69 idnK, idnR crp, gntR |n = 1, l = 2〉

70 isrC-flu, pth-ychF oxyR |n = 0, l = 1〉

71 lgoR, uxuR crp, exuR |ϕd = 1.6180.., l = 2〉

72 lolA-rarA, osmB rcsB |n = 0, l = 1〉

73 lsrACDBFG-tam, lsrR, oxyR, rbsR crp |n = 1, l = 1〉

74 malI, mlc crp |n = 1, l = 1〉

75 manA, yhfA crp |n = 0, l = 1〉

76 mngAB, mngR |n = 1, l = 0〉

77 nadA-pnuC, nadB nadR |n = 0, l = 1〉

78 nimR, nimT |n = 1, l = 0〉

79 ompX, rpsP-rimM-trmD-rplS, ychO, ysgA fnr |n = 0, l = 1〉

80 pepD, yhbTS csgD |n = 0, l = 1〉

81 phoP, slyB |n = 2, l = 0〉

82 pspABCDE, pspG IHF, pspF |n = 0, l = 2〉

83 purR, pyrC fur |n = 1, l = 1〉

84 rhaR, rhaS crp |n = 2, l = 1〉

85 rrsA-ileT-alaT-rrlA-rrfA, rrsE-gltV-rrlE-rrfE fis, lrp |n = 0, l = 2〉

86 rrsB-gltT-rrlB-rrfB, rrsC-gltU-rrlC-rrfC, rrsD-ileU-alaU-

rrlD-rrfD-thrV-rrfF, rrsG-gltW-rrlG-rrfG, rrsH-ileV-alaV-

rrlH-rrfH

fis, hns, lrp |n = 0, l = 3〉

87 ssb, uvrA arcA, lexA |n = 0, l = 2〉

88 ttdABT, ttdR |n = 1, l = 0〉
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89 ycjG, ycjY-ymjDC-mpaA pgrR |n = 0, l = 1〉

90 yegRZ, yfdX-frc-oxc-yfdVE evgA |n = 0, l = 1〉

91 ykgMO, znuA, znuCB zur |n = 0, l = 1〉

TABLE VI: List of fiber building blocks with ID, genes in

the fiber, external regulators of the fiber and fiber numbers.

We provide Supplementary File 1 which plots every building

block using the same IDs.
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