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Stuttering Conway Sequences Are Still Conway Sequences
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Abstract. A look-and-say sequence is obtained iteratively by reading off the digits of the current value, group-
ing identical digits together: starting with 1, the sequence reads: 1, 11, 21, 1211, 111221, 312211, etc. (OEIS

A005150). Starting with any digit d 6= 1 gives Conway’s sequence: d, 1d, 111d, 311d, 13211d, etc. (OEIS

A006715). Conway popularised these sequences and studied some of their properties [Con87].
In this paper we consider a variant subbed “look-and-say again” where digits are repeated twice. We prove that
the “look-and-say again” sequence contains only the digits 1,2,4,6,d, where d represents the starting digit.
Such sequences decompose and the ratio of successive lengths converges to Conway’s constant.
In fact, these properties result from a commuting diagram between look-and-say again sequences and “classical”
look-and-say sequences. Similar results apply to the “look-and-say three times” sequence.

1 Introduction

The look-and-say (LS) sequence [CG12], also known as the Morris or the Conway sequence [Con87,
Hil96, EZ97] is a recreational integer sequence having very intriguing properties.

A LS sequence is obtained iteratively by reading off the digits of the current value, and counting the
number of digits in groups of the identical digit.

Starting with 1, the sequence reads (OEIS A005150): 1, 11, 21, 1211, 111221, 312211, etc. Starting
with any digit d 6= 1 gives Conway’s sequence (OEIS A006715): d, 1d, 111d, 311d, 13211d, etc. Conway
popularised these sequences and studied some of their properties. For example, an LS sequence contains
only the digits 1,2,3, and satisfies a so-called cosmological decay [EZ97], if Ln denotes the number of
digits of the nth term of the sequence, then

lim
n→∞

Ln+1

Ln

= λ ≃ 1.303577

where λ is the only real root of a degree-71 polynomial [Fin03, §6.12]. Conway showed that ∃N ∈ N
∗

such that every term of the LS term decays in at most N rounds to a compound of “common” and
“transuranic” terms.

Following Conway’s work, numerous variants of LS sequences were proposed and studied. For in-
stance, Pea Pattern sequences [Mul12], Sloane’s sequences [Slo09] or Kolakoski sequences [Kol66,Ü66].
In this paper we consider a new LS sequence and study some of its properties. The concerned variant,
called “look-and-say again” sequence, consists in repeating each LS digit twice. We prove that the such
sequences contain only the digits 1,2,4,6,d, where d is the starting digit.

2 Notations and definitions

In this paper we assume that numbers are written in base 10. Any integer T can thus be written T =
t1t2 · · · tk with t1, . . . , tk ∈ {0,1, . . . ,9}. To avoid any ambiguity, ab will denote the concatenation of the
numbers a and b; accordingly ab indicates that a digit a is repeated b times. If we want to emphasise
concatenation we use a‖b instead of ab.
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Definition 1 (Run-length representation). Let T ∈N
∗, we can write

T = a1 . . .a1
︸ ︷︷ ︸

n1

a2 . . .a2
︸ ︷︷ ︸

n2

. . .ak . . .ak
︸ ︷︷ ︸

nk

with a1 6= a2,a2 6= a3, . . . ,ak−1 6= ak. The run-length representation of T is the sequence RunL(T ) =
a

n1
1 a

n2
2 · · ·ank

k . Conversely, any finite sequence of couples (ai,bi)i where a ∈N
∗ and 0≤ bi ≤ 9 is such that

bi−1 6= bi 6= bi+1, corresponds to an integer with run-length representation (abi

i )i.

Note that the run-length representation of an integer is unique.

Definition 2 (Pieces). If N = (abi

i ) is a run-length encoded integer, we call each a
bi

i a piece of N.

Definition 3 (Look-and-say-again sequence). Let T0 be a decimal digit, and for each Tn define

Tn+1 = n1n1a1a1n2n2a2a2 · · ·nknkakak.

where (ani

i )i = RunL(Tn). We call the sequence (Tk)k∈N the look-and-say-again sequence of seed T0, and

denote it by LSA(T0).

Example 1.

LSA(1) = 1→ 1111→ 4411 → 22442211 → 2222224422222211 → 6622224466222211 → . . .
LSA(2) = 2→ 1122→ 22112222 → 222222114422 → 6622221122442222 → 226644222211222222444422 → . . .

3 The look-and-say-again sequence

Theorem 1 (Digits of LSA). Only the digits 1,2,3,4,6,d appear in LSA(d).

Proof. Let n ∈ N and (ani

i )i = RunL(n), we write

P(n) := {∀i, ai ∈ {1,2,4,6} and ni ∈ {2,4,6}}

(the matter of d will be settled further down). Assume that P(Tn) is true, and let a
ni

i ∈RunL(Tn). We have
four situations:

Case 1: RunL(Tn) = a
ni

i , in other terms Tn = aiai · · ·ai and there is no other digit. Then the next term
in the sequence is Tn+1 = niniaiai, which clearly satisfies P(Tn+1) since ai ∈ {1,2,4,6} and
ni ∈ {2,4,6}.

Case 2: i = 1, i.e., Tn starts with the repeated digits ai. In this case

Tn+1 = n1n1a1a1n2n2a2a2 · · ·

with ak 6= ak+1 for all k. It is clear that no ak can be contained in a piece that also contains ak+1,
therefore the possible pieces that n1 and a1 can take part to are either n1n1a1a1n2n2 (in the case
n1 = a1 = n2), or n1n1a1a1 (in the case n1 = a1 6= n2), or n1n1 and a1a1 / a1a1n2n2 (respectively
in the cases n1 6= a1 6= n2 and n1 6= a1 = n2).
In conclusion a1 and n1 generate pieces made of digits in {1,2,4,6} with multiplicity either 2,
4, or 6.

Case 3: Tn ends with ai; this is analogous to case 2 above.
Case 4: The piece a

ni

i is neither at the end nor at the beginning of Tn. The next term in the sequence is:

Tn+1 = · · ·ai−2ni−1ni−1ai−1ai−1niniaiaini+1ni+1ai+1ai+1 · · ·

By definition of the run-length representation, ai−2,ai−1,ai,ai+1 contains no consecutive values,
hence the possible pieces resulting for ni and ai are:
(a) ni−1ni−1ai−1ai−1nini, and either aiai or aiaini+1ni+1
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(b) ai−1ai−1nini, and either aiai or aiaini+1ni+1

(c) nini, and either aiai or aiaini+1ni+1

(d) niniaiai or niniaiaini+1ni+1

(e) nini and aiai

In each case, since ∀k, ak ∈ {1,2,4,6} and nk ∈ {2,4,6}, we see that ni and ai can appear only
in pieces that are of multiplicity 2, 4, or 6, and which contain numbers ∈ {1,2,4,6}.

If T0 = d ∈ {1,2,4,6}, then P(T0) holds and by the above case exhaustion argument P(Tn) hold for all n.
It remains to discuss the case T0 = d /∈{1,2,4,6}. Writing the first few terms of the resulting sequence

shows that this is easily dealt with:

T0 = d T1 = 11dd T2 = 221122dd T3 = 22222211222222dd · · ·

Indeed, save for the first term, the digit d only appears as dd at the end of Tn. The rest of Tn satisfies
P(Tn) discussed previously.

To prove this, assume that Tn = k‖dd, which means that Tn starts with an integer k and ends with the
two digits dd, and further assume that P(k) is true and k’s last piece is 2k, with k ∈ {2,4,6}. Then the
next term in the sequence is Tn+1 = k′‖22dd, where k′ is an integer that ends with the digit 2 and such
that P(k′) is true (thanks to what we have proved in the first part of the theorem). Let S = k′‖22. Consider
three cases, as a function of the last piece of k, denoted 2ω :

ω = 2 ⇒ k′ ends with 2222 ⇒ S ends with 222222 ⇒ P(S) holds
ω = 4 ⇒ k′ ends with 4422 ⇒ S ends with 2222 ⇒ P(S) holds
ω = 6 ⇒ k′ ends with 6622 ⇒ S ends with 2222 ⇒ P(S) holds

Since P(k′) holds, the only problem in S was at the interface between the ending 2’s of k′ and the couple
22 at the end of S. With the exhaustion argument above we have shown that in each possible case P(S)
holds. Finally the number S‖dd is such that d only appears as a couple dd at the end, whereas S is made
of digits belonging to {1,2,4,6} with multiplicities in {2,4,6}.

T0 and T1 contain only digits ∈ {1,2,4,6,d}. Since T2 is of the form k‖dd with P(k) true and k’s last
digit being 2, the above argument shows that all subsequent terms in the sequence can be written in this
way, and the proof is completed. ⊓⊔

Corollary 1. If T0 = d 6= 1,2 then LSA(T0) gives the same sequence, save for the two last digits of each

term which are dd.

Remark 1. The length sequences for T0 = 1,2,d are respectively:

1,4,4,8,16,16,24,40,48,56,88,104,120,176,224,280,392,520,648,864,1168

1,4,8,12,16,24,32,40,48,72,92,112,156,204,264,352,464,592,784,1036,1320

1,4,8,16,16,24,40,48,56,88,104,120,176,224,280,392,520,648,864,1168,1432

Remark 2. For all seeds s, LSA(d) grows to infinity, namely the ratio of lengths λn = ℓn+1/ℓn for two con-
secutive terms of sequence (which is between 1 and 2) tends towards Conway’s constant λ ≃ 1.303577,
regardless of the seed T0. The following numerical simulation backs up this intuition:

100 101

1

1.5

2

n

ℓ n
+

1
/ℓ

n

T0 = 1
T0 = 2
T0 = d

3



This is in fact a consequence of the following result:

Theorem 2. Consider the following operations on pieces:

C : ab 7→ ba L : ab 7→ b2a2 η : ab 7→ κ(a)2b

with κ : a 7→ 2a for a ∈ {1,2,3} and κ(a) = 1 otherwise. Then L◦η = η ◦C.

Proof. Let ab be a piece,

(η ◦C)(ab) = η(b1a1) = η(b1)η(a1) = κ(b)2κ(a)2

(L◦η)(ab) = L(κ(a)κ(b)) = κ(b)2κ(a)2.

⊓⊔

A result of this theorem is that LSA is equivalent to Conway’s sequence, where κ and η allow us to
translate from one to the other. Then LSA inherits many of the properties that are known of Conway’s
sequence: decomposition into “elements”, convergence to λ , and so forth.

Remark 3. This would also work with L(ab) = b3a3 and κ(a) = 3a for a ∈ {1,2,3} (i.e. an LSA variant
where elements are repeated three times instead of two). However the argument breaks down for a “look-
and-say four times” sequence. We leave this sequence and the study of its properties open for further
research.
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