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PATTERNS IN SHI TABLEAUX AND DYCK PATHS

Myrto Kallipoliti, Robin Sulzgruber and Eleni Tzanaki

Abstract. Shi tableaux are special binary fillings of certain Young diagrams which arise in the study

of Shi hyperplane arrangements related to classical root systems. For type A, the set T of Shi tableaux

naturally coincides with the set of Dyck paths, for which various notions of patterns have been introduced

and studied over the years. In this paper we define a notion of pattern occurrence on T which, although it

can be regarded as a pattern on Dyck paths, it is motivated by the underlying geometric structure of the

tableaux. Our main goal in this work is to study the poset of Shi tableaux defined by pattern-containment.

More precisely, we determine explicit formulas for upper and lower covers for each T ∈ T, we consider

pattern avoidance for the smallest non-trivial tableaux (size 2) and generalize these results to certain

tableau of larger size. We conclude with open problems and possible future directions.

1. Introduction

The investigation of patterns in families of discrete objects is an active topic in Combinatorics, with
connections to various areas in Mathematics, as well as other fields such as Physics, Biology, Sociology and
Computer science [11,12,15]. Generally speaking, the notion of pattern occurrence or pattern avoidance

can be described as the presence or, respectively, absence of a substructure inside a larger structure.
Patterns were first considered for permutations: an occurrence of a pattern σ in a permutation π is a
subword of π whose letters appear in the same relative order as those in σ. For instance, the permutation

132 occurs as a pattern in 32514 since the subsequence 254 (among others) is ordered in the same way
as 132 (see Figure 1 for an illustration using matrix representations). The systematic investigation of
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Figure 1. An occurrence of the pattern σ = 132 in π = 32514. σ is obtained by deleting
the first and forth column, as well as the third and fifth row of π.

patterns in permutations and more generally in words began in the 70s with the work of Knuth on sorting
permutations using data structures [13], and later with the work of Simion and Schmidt [18]. In the last

decade the study of patterns in permutations and words has grown explosively (see [5,12]) and has been
extended in the context of various other structures such as set partitions, trees, lattice paths, fillings of
Young diagrams, just to name a few. For instance, in [21] Spiridonov considered a notion of pattern

occurrence for binary fillings of grid shapes, which naturally generalizes permutation pattern occurrence
as follows: an occurrence of a pattern in a filling of a grid shape T is a filling of a sub-shape (or minor
shape) S of T , obtained by removing some rows and columns of T (see Figure 2 for two such examples).

In a totally different context, Bacher et al. in [4] considered a notion of pattern occurrence for Dyck
paths, i.e., paths on the discrete plane from (0, 0) to (2n, 0), n ∈ N, consisting of up-steps U: (1, 1) and
down-steps D: (1,−1) never going below the x-axis. The pattern occurrence is defined by deleting U and
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T : : S

Figure 2. Two examples of pattern occurrence in binary fillings of grid shapes in the
sense of [21]. In both cases, S is obtained by deleting two columns and a row of T .

π′ : U DU U DU DU DD π : U DU DU U DD π′ : U DU U DU DU DD π : U U DD

Figure 3. Two instances of pattern occurrence in the context of [4]. In both examples,
π is a shorter Dyck path obtained from the original path π′ by deleting the steps in red.

D-steps so that the resulting path is again a Dyck path (with fewer steps). See Figure 3 for an example

of a Dyck path and a pattern occurrence.
Inspired by [4] and [21], we introduce a notion of patterns for the so called Shi tableaux, which are

structures defined in [7] to encode dominant regions of the (m-extended) Shi arrangement. For m = 1

Shi tableaux can easily be described as binary fillings of certain Young diagrams. More precisely, a Shi
tableau of size n is a binary filling with • or ◦ of a staircase Young diagram of shape (n, n − 1, . . . , 1),
satisfying the property that if a cell contains • then all cells above and to its left contain •. It is

straightforward to see (cf. Figure 4) that Shi tableaux of size n biject to Dyck paths of semilength n+1.

Figure 4. A Shi tableau T ∈ T4 and the corresponding Dyck path π ∈ D5.

In accordance with Spiridonov’s definition [21], the notion of pattern occurrence in Shi tableaux can
be defined by deleting columns and rows. However, in our pattern we impose a stronger condition;

we allow deletions of rows and columns after which the underlying Young diagram is again a staircase
Young diagram (see Section 2.2 for the precise definition). Part of the motivation of this work lies in
[4, §6], where Bacher et al. ask whether it is possible to transport the pattern order on Dyck paths

along some of the bijections between Dyck paths and other members of the Catalan family in order
to obtain interesting order structures on different combinatorial objects. So far, our intuition to work
on this subject has been affirmed by the enumerative results presented here, which hint at interesting

connections to the theory of pattern avoidance for permutations. This is perhaps not surprising in view
of the fact that one of the original problems of this area, the enumeration of 312-avoiding permutations,
is also related to Dyck paths. Furthermore, there are ties to algebraic objects that arise in connection

to crystallographic root systems. For example, ad-nilpotent ideals of a Borel subalgebra of the complex
simple Lie algebra of type A with a bounded class of nilpotence, studied in [2], can be described using
pattern avoidance for Shi tableaux.

This paper is organized as follows. In Section 2 the basic definitions and notation, including our
definition of pattern occurrence on Shi tableaux, are provided. In Section 3 we give explicit formulas for
the number of upper and lower covers for each Shi tableau, in the poset defined by pattern-containment.

In Section 4 we give precise characterizations of pattern avoidance for each Shi tableaux of size 2 and
generalize these results for certain tableaux of larger size. In the process we encounter ad-nilpotent ideals
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and the bijection on Dyck paths known as the zeta map. We complete the paper with a short discussion
of open problems in Section 5 including possible connections to permutations avoiding a pair of patterns.

2. Preliminaries

2.1. Dyck paths. A Dyck path of semilength n is a path on the plane, from (0, 0) to (2n, 0), consisting

of up-steps (1, 1) and down-steps (1,−1) that never go below the x-axis. It is well-known that the

cardinality of the set Dn of Dyck paths of semilength n, is given by the Catalan number 1
n+1

(2n
n

)

.
Replacing each up-step of a Dyck path π ∈ Dn with the letter U and each down-step with the letter D,
π can also be written as a word with 2n letters on the alphabet {U,D}. Clearly, a word w ∈ {U,D}n

corresponds to a Dyck path if and only if each initial subword of w contains at least as many letters U

as letters D. Another convenient way to encode paths in Dn is in terms of standard Young tableaux of
size 2× n, i.e., arrangements of the numbers 1, 2, . . . , 2n in a 2× n rectangle so that each row and each

column is increasing. The correspondence to Dyck paths is as follows: in the top (resp. bottom) row of
the 2×n tableau we register in increasing order the positions of the U -steps (resp. D-steps) of the Dyck
path (see Figure 5).

The height of a Dyck path is the highest y-coordinate attained in the path. A return step is a downstep
that returns the path to the ground level. Let H(n, k) denote the set of Dyck paths of semilength n and
height at most k. It is not hard to see that |H(n + 1, k)| =

∑n
i=0 |H(i, k)||H(n − i, k − 1)|, with initial

conditions |H(0, k)| = 1 for all k ≥ 0, and |H(n, 0)| = 0 for all n > 0 (see [6]).
The bounce path b(π) of a Dyck path π is described by the following algorithm: starting at (0, 0) we

travel along the up-steps of π until we encounter the beginning of a down-step. Then, we turn and travel

down until we hit the x-axis. Then, we travel up until we again encounter the beginning of a down-step
of π, we then turn down and travel to the x-axis, etc. We continue in this way until we arrive at (0, 2n).
For instance, if π = UDUUDUDUDD, then b(π) = UDUUDDUUDD. A peak at height k of a Dyck

path π is a point (x0, k) of π which is immediately preceded by an up-step and immediately succeeded
by a down-step. Similarly a valley at height k of π is a point (x0, k) ∈ π that is immediately preceded
by a down-step and immediately followed by an up-step. Viewing the path π as a word, a peak is an

occurrence of a UD and its height is the number of U ’s minus the number of D’s that precede the peak.
A valley is an occurrence of DU and its height is defined analogously.

2.2. Shi tableaux and our poset structure. In order to switch from Dyck paths of semilength n+1
to Shi tableaux of size n and vice versa, we make the convention that each Young diagram of shape

(n, . . . , 1) contains an additional empty row and empty column and we label rows from bottom to top
and columns from left to right (so that, for i = 1, . . . , n + 1, the i-th row has i − 1 boxes and the i-th
column has n + 1 − i boxes, as shown in Figure 5). In this way, the i-th D-step (U -step) of the Dyck

path π is the horizontal (vertical) unit step on the i-th row (column). We denote by Tn the set of all Shi
tableaux of size n and by T the set of all Shi tableaux of all sizes.

Our main goal in this paper is to introduce and study a new notion of patterns on the set T of Shi

tableaux. The pattern containment is described in terms of two types of deletions on Shi tableaux which
we call bounce deletions. For 2 ≤ i ≤ n+ 1, we denote by di,i−1 the action of deleting the i-th row and
the (i − 1)-st column of T , and for 1 ≤ i ≤ n+ 1 we denote by di,i the action of deleting the i-th row

and the i-th column of T (see Figure 5). The special cases di,i with i = 1 or n+ 1, can be thought of as
deleting the first column and top row respectively. Viewing the tableau T as a Dyck path π and indexing
its U and D-steps from 1 to n+1, it is immediate to see that di,i−1 deletes Ui,Di−1, whereas di,i deletes

Ui,Di from π. Another way to define the actions di,i−1, di,i is through the 2 × (n + 1) standard Young
tableaux S(T ) of π. The standard Young tableau of di,i(T ) is obtained by deleting the i-th column of
the standard 2× (n+1) tableau S(T ) of π and adjusting the larger entries. The standard Young tableau

of di,i−1(T ) is obtained by deleting the i-th entry of the first row and (i− 1)-st entry of the second row
of S(T ) and adjusting the larger entries (see Figure 5).
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Figure 5. The bounce deletions d3,2 and d3,3 on the Dyck path UUDUUDUDDUDD

results in UUDUUDDUDD and UUDUDUDUDD respectively.

T

d3,2 d5,5 d1,1

T ′

Figure 6

Using bounce deletions we can endow T with a poset structure. For any undefined terminology on

posets we refer the reader to [24, Section 3].

Definition 2.1. The set T of Shi tableaux becomes a poset by declaring that T covers T ′ if T ′ is obtained
from T after a bounce deletion. We say that T ′ occurs as a pattern in T if T ′ �T T , i.e., if T ′ can be
obtained from T after an iteration of bounce deletions.

See Figure 6 for an example of pattern occurrence in Shi tableaux. Notice that if the pattern T ′ occurs
in T then, in terms of Dyck paths, T ′ occurs as a pattern in T in the sense of [21]. Indeed, the actions

di,i−1, di,i delete pairs of U,D so that the resulting path is a again a Dyck path (which is precisely the
requirement of pattern occurrence in [21]). The reverse is not always true, since in our pattern definition
the deleted pair U,D should obey stronger restrictions. For example, the path π′ = UUDD occurs as a

pattern in π = UDUDUD in the sense of [21] but not in the sense of Definition 2.1.

Remark 2.2. Although we gave the definition of Dyck paths in terms of unit steps (1, 1) and (1,−1) and

endpoints on the x-axis, in the remainder of the paper we rotate the setting by 45 degrees (see Figure 4).
In other words, unless stated otherwise, we align all Dyck paths so that their unit steps are (1, 0), (0, 1)
and their endpoints lie on the main diagonal x = y.

2.3. Geometric interpretation of our poset structure. In what follows, we discuss the poset struc-
ture (T,�T) and more precisely the cover relations from the viewpoint of Shi arrangements.

A hyperplane arrangement A is a finite set of affine hyperplanes in some vector space V ∼= R
n. The

regions of A are the connected components defined by the complement of the hyperplanes in A. The
rank r(A) of a hyperplane arrangement A ⊆ R

n is the dimension of the space A spanned by the normals

to the hyperplanes in A. The intersection poset LA of A is the set of all intersections of subcollections of
hyperplanes in A, partially ordered by reverse inclusion. The poset LA is a lattice that captures all the
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T3

T2

T1

Figure 7. The first few levels of the poset (T,�T) of Shi tableau

combinatorial structure of A. We say that two hyperplane arrangements are combinatorially equivalent

if they have the same intersection lattice [23]. If the rank r(A) of a hyperplane arrangement A is smaller
than the dimension of the ambient space R

n, we can essentialize A, i.e., intersect A with a subspace W

of Rn without changing the combinatorial structure.

To do so, we chose a subspace Y complementary to A1 and we define

W := Y ⊥ = {x ∈ R
n : x · y = 0 for all y ∈ Y },

where x · y denotes the standard Euclidean inner product. The set AW = {H ∩ W : H ∈ A} is
an essentialization of A, i.e., a hyperplane arrangement in W combinatorially equivalent to A with
r(AW ) = dim(AW ) [23, Section 1.1]. Notice that, if we do the above steps with A being a proper rather

than the whole space spanned by the normals to the hyperplanes in A, we again obtain a hyperplane
arrangement AW which is combinatorially equivalent to A but with r(AW ) < dim(AW ).

The Shi arrangement of type An−1, denoted by Shi(n), is the hyperplane arrangement in R
n consisting

of the hyperplanes xi − xj = 0, 1 for all 1 ≤ i < j ≤ n. It is well known that the regions of Shi(n)
are in bijection with parking functions on [n], thus counted by (n + 1)n−1 [22, Section 5]. Here, we
focus on the set of dominant regions of Shi(n) which are those regions contained in the dominant cone

Cn : x1 > x2 > · · · > xn. The set of dominant regions is enumerated by the Catalan number 1
n+1

(2n
n

)

and can be encoded using Shi tableaux in Tn−1 [17]. More precisely, each T ∈ Tn−1 corresponds to the
dominant region R(T ) with defining inequalities

{

0 < xi − xj < 1 if the cell (n− i+ 1, n − j + 1) is empty

1 < xi − xj if the cell (n− i+ 1, n − j + 1) is full,
(1)

where, for the position of each cell, we keep our earlier numbering on rows and columns (see Figure 8).
Shi arrangements form an exponential sequence of arrangements (ESA), a family of hyperplane ar-

rangements which posses a strong combinatorial symmetry [23, Section 5.3]. More precisely, Shi(n) has

the property that, for each S ⊆ [n], its subarrangement Shi(S) consisting of the hyperplanes xi−xj = 0, 1
for i, j ∈ S, is combinatorially equivalent to Shi(|S|).

Let us apply the properties of ESA to Shi(n). If Sk := [n] \ {k} then Shi(Sk) is the subarrangement

of Shi(n) from which we have deleted all hyperplanes whose equation involves xk. It is immediate to see

1not necessarily the orthogonal complement
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Figure 8. The dominant regions in Shi(3) and their correspondence to Shi tableaux.

.................... For example, the tableau corresponds to the dominant region defined by the
inequalities x1 − x3 > 1, x2 − x3 > 1 and 0 < x1 − x2 < 1. .........

that the deleted hyperplanes are exactly the ones removed by the deletion di,i with i = n − k + 1 (see
Figure 9(a)). Therefore, the bounce deletions of type di,i capture such instances of pattern occurrence.

The other type of bounce deletions do not constitute an instance of ESA, however they behave likewise
if restricted to a certain hyperplane. To be more precise, let Shi(S′

k) be the subarrangement of Shi(n)
from which we have deleted all hyperplanes xi − xk+1 = 0, 1 (i ≤ k) or xk − xi = 0, 1 (i > k).

It is immediate to see that the deleted hyperplanes are exactly the ones removed by the deletion di,i−1

with i = n− k+1 (see Figure 9(b)). Although Shi(S′
k) is not combinatorially equivalent to Shi(n− 1), it

can be shown that it becomes so if we intersect with the hyperplane xk − xk+1 = 0. To see this denote

this hyperplane by W and let Y = R(ek − ek+1) be the span of its normal vector such that W = Y ⊥.
Since Y is not contained in the span of the normals to the hyperplanes in Shi(Sk) it follows from the
above discussion that Shi(Sk)W and Shi(n − 1) are combinatorially equivalent. But evidently Shi(Sk)W
is equal to the restriction {H ∩W : H ∈ Shi(S′

k)} of Shi(S′
k) to W .

x1−x5 x1−x4 x1−x3 x1−x2

x2−x5 x2−x4 x2−x3x2−x3

x3−x5 x3−x4

x4−x5

d3,3

(a)

x1−x5 x1−x4 x1−x2

x2−x5 x2−x4

x4−x5

x1−x5 x1−x4 x1−x3 x1−x2

x2−x5 x2−x4 x2−x3x2−x3

x3−x5 x3−x4

x4−x5

d3,2 ∩ {x3 = x4}

(b)

x1−x5 x1−x4 x1−x2

x2−x5 x2−x4

x4−x5

Figure 9

3. Cover relations

In this section we compute the number of upper and lower covers for each Shi tableau T in the poset

(T,�T). To do so, we define irreducible and strongly irreducible Shi tableaux and we find closed/recursive
formulas for their number of lower/upper covers. Then, we explain how each Shi tableau is decomposed
into its irreducible components and how the lower/upper covers are computed in terms of the upper/lower

covers of the decomposition.

We start with notation and definitions that will be used throughout the section. In this section, we
find it more convenient to use the notation π for Dyck paths, rather than T for Shi tableaux, since most
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of the arguments use the realization of π as a word in {U,D}∗. However, the underlying tableau of π
and more precisely its columns and rows is present in all the proofs.

Let T be a Shi tableau of size n and denote by π ∈ Dn+1 the corresponding Dyck path. Let us denote
by Ck the k-th column of the underlying tableau of π ∈ Dn+1 and index the U -steps and D-steps of π
from 1 to n+ 1. The portion of the path π contained in column Ck consists of all the steps that satisfy

k − 1 ≤ x ≤ k. In other words π ∩ Ck is the subpath between (and not including) Dk−1 and Dk+1. An
ascent of a Dyck path π is a maximal string of consecutive U -steps and a descent is a maximal string of
consecutive D-steps of π. Each Dyck path π can be written as a concatenation of ascents and descents,

i.e. ,

π = Ua1Db1Ua2Db2 · · ·UaℓDbℓ for some 1 ≤ ℓ ≤ n+ 1 and ai, bi ≥ 1. (2)

For each ascent Uai of π we define a subpath πi of π as follows:

π1 = π ∩
(

a1
⋃

r=1

Cr

)

and πi = π ∩
(

ai
⋃

r=0

Ca1+···+ai−1+r

)

if i ≥ 2 (3)

(see Figure 11). As we will explain subsequently, the subpaths πi are involved in the computation of

the lower and uppers covers of π. For example, for the lower covers, πi is the range of possible D-step
deletions that correspond to the deletion of a U -step from the ascent Uai of π.

We say that π ∈ Dn+1 is irreducible if it does not touch the the line y = x except for the origin and

the final point and strongly irreducible if it does not touch the the line y = x + 1 except for the first
and last step. If π is irreducible then b1 + · · · + bi < a1 + · · · + ai and if π is strongly irreducible then
b1 + · · ·+ bi + 1 < a1 + · · · + ai for all i with 1 ≤ i < ℓ.

The situation where a Shi tableau T can be obtained from a tableau T ′ by two different bounce deletions

is rather restrictive. The lemma below describes the conditions when this is possible. Pictorially, the
following lemma implies that, if two bounce deletions produce the same lower cover, then they both
delete a U and a D-step from the same ascent and descent respectively. The only exception is the case

where π is symmetric, where deletion of first column or last row produce the same lower cover (see Figure
10). Given a word w ∈ {U,D}∗ let #U(w) denote the number of U -steps in w, and let #D(w) denote
the number of D-steps in w.

Lemma 3.1. Consider i, j ∈ [n] with i < j and let ki ∈ {i − 1, i} and kj ∈ {j − 1, j}. Let π be a Dyck

path with U and D-steps indexed by U1, . . . , Un,D1, . . . ,Dn, and let π′ be a Dyck path obtained from π

by deleting Ui and Dki and also by deleting Uj and Dkj . That is, π′ = di,ki(π) = dj,kj(π).

(i) If Dki occurs after Uj , then Ui and Uj belong to the same ascent of π. Furthermore Dki and Dkj

belong to the same descent of π.
(ii) If Dki occurs before Uj , then the segment of π connecting Ui and Dkj is of the form U r(UD)ℓDt

for some r, ℓ, t ∈ N with ℓ > 0. Furthermore this segment begins at height i − ki ∈ {0, 1} and ends
at height j − kj ∈ {0, 1}.

Proof. First assume that we are in case (i). Then there exist unique (possibly empty) words α, x, y, z, β ∈
{U,D}∗ such that

π′ = αxyzβ and π = αUxyDzβ = αxUyzDβ

such that α contains i− 1 U -steps, αx contains j− 1 U -steps, αUxy contains ki− 1 D-steps, and αxUyz

contains kj − 1 D-steps. In particular the two words

U x1 · · · xr−1 xr y1 · · · ys D z1 · · · zt−1 zt
x1 x2 · · · xr U y1 · · · ys z1 z2 · · · zt D

agree. Consequently x = U r and z = Dt for some r, t ∈ N.
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(i) (ii)

Figure 10. The two situations described in Lemma 3.1

Next assume we are in case (ii). Then there exist unique (possibly empty) words α, x, y, z, β ∈ {U,D}∗

such that

π′ = αxyzβ and π = αUxDyzβ = αxyUzDβ

such that α contains i− 1 U -steps, αUx contains ki− 1 D-steps, αxy contains j− 1 U -steps, and αxyUz

contains kj − 1 D-steps. In particular the two words

U x1 · · · xr−1 xr D y1 · · · ys−2 ys−1 ys z1 · · · zt−1 zt
x1 x2 · · · xr y1 y2 y3 · · · ys U z1 z2 · · · zt D

agree. It follows from

D = y2 = y4 = . . .

and

U = ys−1 = ys−3 = . . .

that s is even, say s = 2ℓ for some ℓ ∈ N, and y = (UD)ℓ. The assumption that the j-th D-step in π

occurs after the ki-th U -step implies ℓ > 0. Moreover x = U r and z = Dt for some r, t ∈ N. We have

i− ki = #U(α)−#D(αUx) = #U(α)−#D(α).

Thus α ends at height i− ki. Similarly

j − kj = #U(αxy)−#D(αxyUz) = #U(αxyUzD)−#D(αxyUzD).

Thus β starts at height j − kj . �

3.1. Lower covers. Our goal in this subsection is to describe and count the elements of the set LC(π)
of lower covers of π. To this end, we write ds,ks where ks ∈ {s, s − 1} and we group the lower covers of
π according to the ascent from which we delete a U -step. More precisely, for each ascent Uai we define
the set LCi(π) ⊆ Dn as follows:

LC1(π) :={ds,ks(π) for 1 ≤ s ≤ a1} if i = 1

LCi(π) :={ds,ks(π) for a1 + · · · + ai−1 + 1 ≤ s ≤ a1 + · · ·+ ai} if 2 ≤ i ≤ ℓ.
(4)

Clearly, the lower covers of π are all paths in the union

LC(π) =
ℓ
⋃

i=1

LCi(π). (5)

To describe the paths in each LCi(π) with respect to the original path π, notice that the range of s for
ds,ks(π) ∈ LCi(π) is the index of all U -steps Us in Uai . Since ds,ks(π) acts by deleting the pair Us,Dks
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π1
π2 π3 π4

Figure 11. The path π = U3DU2D2UDUD3 and the subpaths πi defined in (3).

T =

d1,
1
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1

d2,
2
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,2
d3,3 d4,3 d4,4

d
5,4 , d

5,5
d
6,5 , d

6,6

d
7,6 , d

7,7

Figure 12. The tableau T corresponding to the path π = UUUDUDUUDUDDDD and
its lower covers. Since π is irreducible and has four ascents, its lower covers are divided

into four pairwise disjoint sets LCi(π) as follows. The first tree lower covers belong to
LC1(π), the next two in LC2(π), the next in LC3(π) and the last one in LC4(π).

with ks ∈ {s, s − 1}, we deduce that all paths π′ ∈ LCi(π) are obtained from π by replacing Uai with

Uai−1 and deleting a D-step Ds′ where

1 ≤ s′ ≤ a1 if i = 1 or

a1 + · · ·+ ai−1 ≤ s′ ≤ a1 + · · ·+ ai if 2 ≤ i ≤ ℓ.
(6)

This means that the range of possible D-step deletions in LCi(π) is precisely the set of D-steps of the
subpath πi described in (3). In other words, LCi(π) is the set of paths obtained from π after deleting a
U -step from the i-th ascent Uai and a D-step from πi.

Lemma 3.2. Let π = Ua1Db1 . . . UaℓDbℓ be a Dyck path in Dn+1.

(i) If π is strongly irreducible with π 6= Ua(DU)n+1−aDa, the sets in the union (5) are pairwise disjoint.

(ii) If π = Ua(DU)n+1−aDa with 2 < a < n + 1 then the sets in the union (5) are pairwise disjoint
except for LC1(π) and LCℓ(π) which both contain the path Ua(UD)n−aDa.

Proof. Let i < j and suppose that π′ ∈ LCi(π)∩LCj(π). Then π′ can be obtained from π by two bounce
deletions dI,kI and dJ,kJ such that the I-th and J-th U -steps of π do not belong to the same acsent of π.

By Lemma 3.1 this implies that π is of the form π = αU r(DU)ℓDtβ for some words α, β ∈ {U,D}∗, and
r, ℓ, t ∈ N with ℓ > 0, such that α ends at height I − kI ∈ {0, 1}, and β starts at height J − kJ ∈ {0, 1}.
If π is strongly irreducible then the only possibilities for the words α, β are α = U if kI = I − 1 or α is
empty if kI = I. Similarly β = D if kJ = J − 1 and β is empty if kJ = J . The claims follow. �

Using the above lemma, we can prove the following proposition, which counts the number of lower

covers of all strongly irreducible Dyck paths.

Theorem 3.3.
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= ⊕ ⊕ ⊕ ⊕ = ⊕2 ⊕0

Figure 13. The irreducible decomposition of a path. The second and fourth components
are connecting components while all others are irreducible components.

(i) If π ∈ Dn+1 is strongly irreducible, the number of its lower covers is

|LC(π)| = |peaks(π)| + |valleys(π)|

unless π = Ua(DU)n+1−aDa for some a > 2 in which case

|LC(π)| = |peaks(π)|+ |valleys(π)| − 1 = 2(n + 1− a).

(ii) If π = (UD)n+1 or π = Un+1Dn+1 then |LC(π)| = 1.

(iii) If π = U(UD)nD and n > 0 then |LC(π)| = n.

Proof. To prove (i), recall that all Dyck paths in LCi(π) are obtained from π by replacing Uai by Uai−1

and deleting a D-step from πi. The different ways to delete a D-step from πi are as many as the
ways to delete a D-step from a different descent of πi, which implies that |LCi(π)| = |descents(πi)|.

Therefore, in view of Lemma 3.2, we have that |LC(π)| =
∑ℓ

i=1 |LCi(π)| =
∑ℓ

i=1 |descents(πi)|. Next,
notice that for all pairs i, j we have πi ∩ πj = ∅ except for j = i + 1 where πi ∩ πi+1 = π ∩ Ca1+···+ai .

In other words, πi, πi+1 share a column and thus a descent. We can therefore rewrite the above sum as
|LC(π)| = |descents(π)|+ ℓ− 1 = 2ℓ− 1 = |peaks(π)|+ |valleys(π)|.

For (ii), it is immediate to see that the unique lower cover of (UD)n+1 and Un+1Dn+1 is (UD)n and

UnDn respectively. For (iii), we leave it to the reader to check that the lower covers of π = U(UD)nD are
the paths obtained from π by replacing a UDUD by DU , or the path U(UD)n−1D, which are altogether
n. �

An irreducible decomposition π = π1 ⊕ π2 ⊕ · · · ⊕ πk of a Dyck path π is the way to write π as a
concatenation of Dyck paths πi, where each πi is either an irreducible Dyck path or a, possibly empty,
sequence of peaks at height 12. In the first case we say that πi is an irreducible component and in the

latter a connecting component of π. If π1, π3 are irreducible Dyck paths and π2 is a sequence of k peaks
at height 1, we abbreviate π1⊕π2⊕π3 as π1⊕k π3 (see Figure 13). Next, we introduce the symbol ⊕′ to
denote concatenation of paths whose unique common point lies on y = x+ 1. More precisely, a strongly

irreducible decomposition of an irreducible Dyck path π is a way to write π = Uπ1 ⊕
′ π2 ⊕

′ · · · ⊕′ πkD as
a concatenation of paths πi, where each UπiD is either a strongly irreducible Dyck path or a non empty
sequence of peaks at height 2 (see Figure 14). We separate the components of a strongly irreducible

decomposition to strongly irreducible and connecting ones. We also abbreviate Uπ1 ⊕′ π2 ⊕′ π3D to
Uπ1 ⊕

′
k π3D in the case where Uπ2D is a sequence of k peaks at height 2.

Theorem 3.4. (i) If π is a Dyck path with irreducible decomposition π = π1 ⊕ π2 ⊕ · · · ⊕ πk then

|LC(π)| = k′ +
∑

πi irreducible
component

|LC(πi)|. (7)

2i.e., we count the common endpoint between two consecutive irreducible components as a component itself. We refer

to it as an empty component.
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= ⊕′ ⊕′ = ⊕′
3

Figure 14. Decomposition of an irreducible path into its strongly irreducible components.

where k′ is the number of connecting components of π, including the empty ones, i.e., those con-
sisting of a simple point.

(ii) If π is an irreducible Dyck path with strongly irreducible decomposition π = Uπ1 ⊕
′ · · · ⊕′ πkD then

|LC(π)| = k − 1 +

k
∑

i=1

|LC(UπiD)| (8)

= k − 1 +
∑

UπiD
strongly

irreducible

|LC(UπiD)|+
∑

UπiD=
U(UD)kiD

ki. (9)

Proof. For (i), it is easy to see that the lower covers of π are obtained either by applying a bounce deletion
on an irreducible component or on a nonempty connecting component. In other words, no bounce deletion

deletes steps from different components. From the first we get
∑k

i=1 |LC(UπiD)| possible lower covers
and from the latter we get one lower cover for each connecting component. This leads to (7).

For (ii), the lower covers of π belong to one of the following categories: either they occur from bounce
deletions on a single component UπiU (either strongly irreducible or of type U(UD)kiD) or they interact
between two consecutive components by deleting the last U -step of UπiD and the first D-step of Uπi+1D

(as the deletion shown in Figure 14 on the left). More precisely, if (a − 1, a) is the common endpoint
between the two consecutive components πi ⊕

′ πi+1 then da,a(π) is such a lower cover. The first case

contributes
∑k

i=1 |LC(UπiD)| and the second contributes k − 1, in the total number (8) of lower covers
of LC(π). We can further refine (8) to (9) by distinguishing the type of each component πi. �

3.2. Upper covers. Our next goal is the computation of the upper covers of a Dyck path π ∈ Dn+1.

To do so, we have to consider all the ways to insert a U and a D-step in π so that the resulting path π′

is a Dyck path in Dn+2 satisfying dj,kj(π
′) = π for some j = 1, . . . , n+ 2 and kj ∈ {j − 1, j}. In view of

the definition of dj,kj , if the inserted U is the j-th U -step of the new path π′ then the inserted D should

be either the j-th or the (j − 1)-st D-step of π′. Described more graphically, if p = (x, j − 1) is the
integer point (other than (0, 0) or (n + 1, n + 1)) where we insert the new U -step, the range of possible
insertions of the new D-step is the subpath π ∩ Cj−1 contained in the (j − 1)-th column of π. We can

describe the above as a bounce insertion: we draw a horizontal line starting at the point p at which we
want to insert U , until it hits the main diagonal and then we turn vertically up selecting the portion
of the path contained in the column at which the horizontal line terminated. The selected subpath is

the range of insertion of D, i.e., if we insert a U -step at p then we can insert a D-step at any integer
point of the above subpath (see Figure 15). If p = (i, i), 1 ≤ i ≤ n, is on the main diagonal, then the
bounce insertion described above reduces to selecting the portion of the path at column Ci, i.e., π ∩Ci.

Trivially, if p = (0, 0) or (n+ 1, n + 1) the only possibilities are to insert UD at p.

We next assume that π is strongly irreducible and we group all its upper covers according to the

x-coordinate of the integer point where we insert the new U -step. This can be further partitioned into
the case where we insert a new U -step at an ascent Uai or the case where we insert a new U -step between
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insert U
at (6, 6)

π ∩ C6 : range of
insertions of D

insert U
at (0, 3)

π ∩ C3 : range of
insertions of D

insert U
at (5, 8)

π ∩ C8 : range of
insertions of D

Figure 15. Bounce insertions: if we add a U -step at (x, j − 1) ∈ π and a D-step at any
integer point of π∩Cj−1, the resulting path π′ satisfies dj,kj(π

′) = π for some kj ∈ {j−1, j}.

insert D in
this subpath

insert U in
this ascent

Figure 16. The set UC3(π) contains all paths obtained by increasing the third ascent
from U2 to U3 and inserting a D-step at any integer point on the indicated subpath.

two consecutive D-steps of a descent Dbi of π. Altogether, we have the following possibilities for the
upper covers of π:

(i) UC1(π) is the set of upper covers of π obtained by inserting the new U -step at some integer point of

Ua1 . In this case, the range of possible insertions of the new D-step is the set of all integer points of the
subpath of π contained in the first a1 columns, i.e., the subpath π ∩ (∪ai

s=1Cs) = π1.
(ii) UCi(π), 2 ≤ i ≤ ℓ, is the set of upper covers of π obtained by inserting the new U -step at an

integer point of Uai . Since the endpoints of Uai have coordinates (b1 + · · · + bi−1, a1 + · · · + ai−1),
(b1 + · · · + bi−1, a1 + · · ·+ ai) the range of possible insertions of the new D-step is the set of all integer
points on the subpath π ∩ (∪ai

s=0Ca1+···+ai−1+s) = πi.

(iii) UCi(π), 1 ≤ i ≤ ℓ, is the set of upper covers of π obtained by inserting a new U -step between a
double descent DD of Dbi . If Dbi consists of a single descent, i.e., bi = 1, then clearly UCi(π) = ∅. If
bi > 1, let (x◦, y◦) be the point between a double descent of Dbi . Clearly y◦ = a1+ · · ·+ai which further

implies that, when inserting a new U at (x◦, y◦), the range of all possible insertions of the new D-step is
the set of all integer points on the subpath π ∩Ca1+···+ai of π contained in the (a1 + · · ·+ ai)-th column
of the underlying tableau.

(iv) UCℓ+1(π) is the set containing the unique upper cover of π we obtain by inserting a U -step (and a
D-step) at the end of the path π. In other words, UCℓ+1(π) = {Ua1Db1 . . . UaℓDbℓUD}.

Finally, since π is strongly irreducible it is not hard to see that all paths in the sets UCi(π) and UCi(π)

are again Dyck paths. We, therefore, conclude that the upper covers of a strongly irreducible Dyck path
π are all paths in the union

UC (π) =

ℓ
⋃

i=1

UCi(π) ∪
ℓ+1
⋃

i=1

UCi(π). (10)

The following lemma is the analogous of Lemma 3.2 in the case of the upper covers.
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Lemma 3.5.

(i) If π′ 6= Ua(DU)n+1−aDa is strongly irreducible then the sets UCi(π
′),UCj(π

′) are pairwise disjoint.

(ii) If π′ = Ua(DU)n+1−aDa with a > 2 then the sets UCi(π
′),UCj(π

′) are pairwise disjoint except for
UC1(π

′) and UCℓ(π
′) which both contain the path Ua(DU)n+2−aDa.

Proof. Suppose that π lies in the intersection of two distinct sets among sets UCi(π
′) and UCj(π

′). Then
π′ can be obtained from π by two different bounce deletions dI,kI and dJ,kJ such that the I-th and J-th
U -steps of π do not belong to the same ascent of π. By Lemma 3.1 this implies that π is of the form

π = αU r(DU)ℓDtβ for some words α, β ∈ {U,D}∗, and r, ℓ, t ∈ N with ℓ > 0, such that α ends at height
I − kI , and β starts at height J − kJ . Moreover π′ = αU r(DU)ℓ−1Dtβ. If π′ is strongly irreducible we
obtain that α = U if kI = I − 1 and α is empty if kI = I. Similarly β = D if kJ = J − 1 and β is empty

if kJ = J . The claims follow. �

Using the fact that the sets in the union (10) are disjoint if π is strongly irreducible, we arrive at a
closed formula for |UC (π)|. In what follows, we use the notation #U(π) for the number of U -steps of
the path π.

Theorem 3.6. Let π = Ua1Db1 · · ·UaℓDbℓ be a Dyck path in Dn+1.

(i) If π ∈ Dn+1 is strongly irreducible with π 6= Ua(DU)n+1−aDa, the number of its upper covers is

|UC(π)| = 2n+ 3 +

ℓ−1
∑

i=1

bi ·
(

#U(π ∩ Ca1+···+ai)
)

. (11)

(ii) If π = UaDU · · ·DUDa with a ≥ 2, then |UC (π)| is given by (11) reduced by 1.

(iii) If π = (UD)n+1 or π = Un+1Dn+1 then |UC(π)| = 2(n+ 1).
(iv) If π = U(UD)nD then |UC (π)| = 4n− 5.

Proof. If π 6= UaDU · · ·DUDa is strongly irreducible then the sets in (10) are disjoint, hence we have

|UC (π)| =
ℓ

∑

i=1

|UCi(π)|+
ℓ+1
∑

i=1

|UCi(π)| = 1 +

ℓ
∑

i=1

|UCi(π)|+
ℓ

∑

i=1

|UCi(π)|. (12)

Each set UCi(π) has as many elements as there are ways to insert a D-step in πi. The different ways to
insert a D in any path are, either to insert a D in the beginning of the path or to insert a D immediately
after a U -step. This implies that |UCi(π)| = #U(πi) + 1. Likewise, by the definition of UCi(π) (see

(??)) since for each double descent DD in Dbi the range of possible ways to insert a new D-step is the
subpath π ∩ Ca1+···+ai , we conclude that the sum in (12) becomes:

|UC (π)| = 1 +

ℓ
∑

i=1

(

#U(πi) + 1
)

+

ℓ
∑

i=1

(bi − 1)
(

#U(π ∩ Ca1+···+ai) + 1
)

= 1 +
ℓ

∑

i=1

bi +
ℓ

∑

i=1

#U(πi) +
ℓ

∑

i=1

(bi − 1)
(

#U(π ∩ Ca1+···+ai)
)

= 1 + (n + 1) +

ℓ
∑

i=1

#U(πi) +

ℓ
∑

i=1

(bi − 1)
(

#U(π ∩ Ca1+···+ai)
)

. (13)

Counting the U -steps of each πi on each vertical line x = s and taking into account that the U -steps in
each πi ∩ πi+1 = π ∩ Ca1+···+ai are counted twice, we have

ℓ
∑

i=1

#U(πi) =

n+1
∑

s=0

(

#U(π ∩ {x = s})
)

+

ℓ−1
∑

i=1

(

#U(π ∩ Ca1+···+ai)
)

.
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(a) (b) π = π1 ⊕ π2

p

(c) π = Uπ1 ⊕
′
1 π2D (d) π = Uπ1 ⊕

′ π2D

Figure 17. (a) In view of Remark 3.7, the number of upper covers of the path on the
left is |UC (π)| = (2 · 10 + 3) + (2 · 2 + 1 · 1 + 3 · 2 + 1 · 0).

Thus, we continue from (13) as

n+ 2 +

n+1
∑

s=0

(

#U(π ∩ {x = s})
)

+

ℓ−1
∑

i=1

(

#U(π ∩ Ca1+···+ai)
)

+

ℓ
∑

i=1

(bi − 1)
(

#U(π ∩ Ca1+···+ai)
)

(14)

= 2n+ 3 +

ℓ−1
∑

i=1

bi
(

#U(π ∩ Ca1+···+ai)
)

, (15)

where, to go from (14) to (15), we used the fact that the total number of U -steps in the first sum of (14)
is n+ 1, and that the last column has no U -steps (i.e., #U(π ∩ Ca1+···+aℓ) = 0).

The claim in (ii) is straightforward from Lemma3.5(ii). For (iii), it is not hard to see that all the

upper covers of (UD)n+1 are obtained either by replacing a UD by U2D2, or a (UD)2 by U(UD)2D,
or (UD)n+2. In the case where π = Un+1Dn+1, the upper covers are either UkDUn+2−kDn+1 for
1 ≤ k ≤ n+ 2, or Un+1DkUDn+2−k for 2 ≤ k ≤ n+ 1.

Finally, for (iv), the upper covers π′ ∈ UC(π) of π = U(UD)nD fall in one of the following categories:

(i) π′ = U(UD)n+1D,
(ii) π′ is obtained from π by increasing a DU to D2U2,

(iii) π′ is obtained from π by increasing a UD to U2D2,
(iv) π′ is obtained from π by increasing a UDUD to U2DUD2,
(v) π′ is obtained from π by increasing a DUDU to U2UDU2.

All the above, sum up to 4n− 5 possible upper coves. �

Remark 3.7. The sum in (11) can be easily computed as follows. Extend each descent U bi of π until

it hits the line x = y and turn vertically up selecting the subpath in the column at which the extended
descent terminated. This is the subpath π∩Ca1+···+ai whose number of U -steps is multiplied by bi in (11)
(see, for example, 17(a)).

The computation of the number of upper covers of an arbitrary Dyck path π is recursive. Unlike the
case with the lower covers, we cannot have an explicit formula of |UC (π)| in terms of the upper covers

of the irreducible components of π, since there exist upper covers that occur by inserting a U -step in a
component of π and a D-step in the subsequent one. In the following proposition we use the notation
⊕,⊕′

1 without requiring that the components are irreducible. In other words, π1⊕π2 is the concatenation

of any two Dyck paths π1, π2. If Uπ1D,Uπ2D are Dyck paths then Uπ1 ⊕
′ π2D is the concatenation of

Uπ1, π2D, whereas Uπ1 ⊕
′
1 π2D is the concatenation of Uπ1U and Dπ2D.

Theorem 3.8.

(i) If π1, π2 are Dyck paths and π = π1 ⊕ π2 then

|UC (π)| = |UC (π1)|+ |UC (π2)| − 1 + b · a (16)
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where Db is the last descent of π1 and Ua is the first ascent of π2.
(ii) If π = Uπ1 ⊕

′
1 π2D then

|UC (π)| = |UC (Uπ1D)|+ |UC (Uπ2D)|+ (b+ 1)(a + 1) (17)

where Db+1 is the last descent of Uπ1D and Ua+1 is the first ascent of Uπ2D.

(iii) If π = Uπ1 ⊕
′ π2D with Uπ1D,Uπ2D strongly irreducible Dyck paths then

|UC (π)| = |UC (Uπ1D)|+ |UC (Uπ2D)| − 2 + a′b+ ab+ ab′ (18)

where Db′UDb is the subpath in the last row of Uπ1D and UaDDa′ is the subpath in the first column
of Uπ2D.

Proof. For (i), first notice that all Dyck paths of the form π′ ⊕ π2 with π′ ∈ UC(π1) or the form π1 ⊕ π′

with π′ ∈ UC(π2) are upper covers of π. Since the upper cover π1UDπ2 occurs in both cases, we have
|UC (π1)| + |UC (π2)| − 1 such paths. We next need to count the upper covers that occur by inserting a
U -step in π1 and a D-step in π2 and are not encountered in the previous cases. Assume that p = (k, k)

is the intersection point of π1, π2 (see Figure 17(b)). Viewing these upper covers in terms of bounce
insertions, one can see that these are the paths we get by inserting a U -step at any integer point, other
than p, of the last descent of π1 (light blue, Figure 17(b)) and a D-step at any integer point, other than

p, of the first ascent of π2 (light gray, Figure 17(b)). This contributes the term b · a in (16).
For (ii), notice that all Dyck paths of the form Uπ′ ⊕′

1 π2D where Uπ′D ∈ UC (Uπ1D) or of the form
π1⊕

′
1 π

′ where Uπ′D ∈ UC(Uπ2D) are upper covers of π. This contributes |UC (π1)|+ |UC (π2)| in (17).

As before, we also have to count the upper covers that occur by inserting a U -step in π1 and a D-step
in π2. Viewing these upper covers in terms of bounce insertions, these are all paths we get by inserting
a U -step at any integer point of the last descent of π1 (light blue, Figure 17(c)) and a D-step at any

integer point of the first ascent of π2 (light gray, Figure 17(c)). This contributes (b+ 1)(a+ 1) in (17).
For (iii), in order to compute |UC (π)|, notice that all Dyck paths of the form Uπ′⊕′π2D with Uπ′D ∈

UC (Uπ1D) or of the form Uπ1 ⊕
′ π′D with Uπ′D ∈ UC(Uπ2D) are upper covers of π. Since the upper

covers Uπ1UDπ2D and Uπ1DUπ2D occur in both instances, we have a total of |UC (π1)|+ |UC (π2)| − 2
contributed in (18). We next count all upper covers that occur by inserting a U -step in π1 and a D-step
in π2. Viewing these upper covers in terms of bounce insertions, we have two categories:

a) we insert a U -step in one of the first b′ integer points of the last but one descent Db′ of π1 (i.e., points
in Figure 17(c)) and insert a D-step in one of the last a integer points of the first ascent Ua of π2 (i.e.,

points in Figure 17(c)). This contributes a · b′ upper covers in (18), or

b) we insert a U -step in one of the first b integer points of the last descent Db of π1 (i.e., points in
Figure 17(c)) and insert a D-step in one of the last a integer points of Ua or the last a′ integer points of

Ua′ (i.e., points or in Figure 17(c)). This contributes b · (a+ a′) upper covers in (18). �

Example 3.9. In Figure 17

(b) we depict the path π = π1 ⊕ π2 for π1 = U4D2UD3 and π2 = U4DUD4. Using Theorem 3.6

we compute |UC (π1)| = 11 and |UC (π2)| = 10. In view of Theorem 3.8(i), we have |UC (π)| =
11 + 10 + 3 · 4− 1 = 32.

(c) we depict the path π = Uπ1 ⊕
′
1 π2D for Uπ1D = U4D2UD3 and Uπ2D = U4DUD4. In view of

Theorem 3.8(ii) we have |UC (π)| = 11 + 10 + 3 · 4 = 33
(d) we depict the path π = Uπ1 ⊕

′ π2D for Uπ1D = U4D2UD3 and Uπ2D = U4DUD4. In view of
Theorem 3.8(iii) we have |UC (π)| = 11 + 10− 2 + 2 · 3 + 2 · 3 + 2 · 1 = 33.

4. Pattern avoidance in Shi tableaux

Recall from our definition in Section 2.2 that T ′ occurs as a pattern in T if T ′ can be obtained from

T after an iteration of bounce deletions. Otherwise, we say that T avoids T ′. We denote by Av(T ′) the
subset of Shi tableaux that avoid T ′, and by Avn(T

′) the subset of Shi tableaux in Tn that avoid T ′. If



PATTERNS IN SHI TABLEAUX AND DYCK PATHS 16

|Avn(T
′)| = |Avn(T )| for all n ∈ N, we say that T and T ′ are Wilf-equivalent. A fundamental problem on

patterns is related to Wilf-equivalence and more precisely to finding classes of Wilf equivalent objects.

We begin this section with an analysis of small patterns. More precisely, we present closed formulas
for |Avn(T )|, where T is any Shi tableau of size 2. We continue with analogous results for certain tableau
of size k, which can be considered as natural generalizations of the ones of size 2. Finally, we compare

the results we obtain with known results in the theory of permutation-patterns.

4.1. Shi tableaux of size 2. There are five Shi tableaux of size two

T = U3D3, T = U2DUD2, T = U2D2UD,T = UDU2D2 and T = (UD)3, (19)

which are divided into two Wilf-equivalence classes, as shown in the following proposition.

Proposition 4.1. For every n ≥ 2 we have

(i) |Avn(T )| = |Avn(T )| = 2n, and

(ii) |Avn(T )| = |Avn(T )| = |Avn(T )| =
(

n+1
2

)

+ 1.

To prove Proposition 4.1 we need the following lemma which provides us with precise characterizations
of pattern avoidance for each of the five tableau of size 2.

Lemma 4.2. (i) T ∈ Tn avoids T if and only if its bounce path b(T ) has at most two return points.
(ii) T ∈ Tn avoids T if and only if its height is at most 2.
(iii) T ∈ Tn avoids T if and only if it has at most one peak at height ≥ 2.
(iv) T ∈ Tn avoids T if and only if is T = Un+1Dn+1 or T = U rD · · ·D(UD)n−r with 1 ≤ r ≤ n.

Since T ∈ Tn, the subword between D · · ·D is a permutation of r − 1 D’s and a single U .
(iv ′) T ∈ Tn avoids T if and only if is T = Un+1Dn+1 or T = (UD)n−rU · · ·UDr with 1 ≤ r ≤ n.

Since T ∈ Tn, the subword between U · · ·U is a permutation of r − 1 U ’s and a single D.

Proof. For (i), notice that if the bounce path of T has at most two return points, say (k, k) with
1 ≤ k ≤ n+ 1 and (n + 1, n + 1), then the columns Ck+1, . . . , Cn+1 are empty (see Figure 18). Thus, if
we want to arrive at the pattern T we have to delete k− 1 among the k first rows of T . This eliminates

k− 1 among the first k columns of T , resulting in a tableau with at most one non-empty column which,
clearly, cannot contain the pattern T . For the reverse, we leave the reader to check that if T has more
than two return points, there exists an iteration of bounce deletions which leads to T .

For (ii), it is immediate to see that T has height at most 2 if all boxes, except possibly the last, in
each row are full. To prove the claim in (ii), notice that if T has height more than 2, then it has a row
ending with at least two empty boxes, from which we can obtain the pattern T . Reversely, if no row

has more than one empty boxes then T can be written as a concatenation of UD’s and U2D2’s, i.e.,
T = (UD)a1U2D2(UD)a2U2D2 · · · . Given such a path, each bounce deletion either deletes a peak at
height 1 or 2 (i.e., a consecutive UD) or a valley at height 0 (i.e., a consecutive DU). In both cases the

resulting path will again be of a similar form, i.e., a concatenation of UD’s and U2D2’s. Thus, it will
never contain the pattern T = U3D3.

For (iii) notice that if T has at most one peak at height ≥ 2, then it can be written as T =

(UD)a1Ua2Da2(UD)a3 with a1 + a2 + a3 = n + 1 (see Figure 19(a)). Arguing as in (ii), iteration of

any bounce deletions leads to a tableau of a similar form, i.e., (UD)a
′

1Ua′2Da′2(UD)a
′

3 with a′i ≤ ai. This
implies that we can never obtain the pattern T = U2DUD2. For the reverse, we leave the reader to
check that if T has more than one peaks at height ≥ 2, then T contains the pattern T .

The claim in (iv) is obvious for T = Un+1Dn+1. We next show that if T = U rD · · ·D(UD)n−r as
described in the statement then it avoids the pattern T = UDU2D2 (see Figure 20(a)). Indeed, in order
to obtain the pattern UDU2D2 we have to delete at least r − 1 among the first r U -steps. This deletes

at least r− 1 among the first r columns of T , resulting to one of the following tableaux: U2D2(UD)n−r,
UDUD(UD)n−r or UD(UD)n−r, none of which contains the pattern T = UDU2D2. For the reverse,
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we leave the reader to check that if there exists r + 2 ≤ i ≤ n + 1 such that the i-th row has an empty
box, then there is a sequence of bounce deletions leading to UDU2D2.

The statement in (iv ′) is completely analogous by symmetry. �

Proof of Proposition 4.1. For (i) we need to enumerate the tableaux described in Lemma 4.2(i),(ii). We
first count the tableaux having at most two return points. Since the second return point is always
the endpoint (n + 1, n + 1), let us assume that the first return point of the bounce path is (k, k) with

1 ≤ k ≤ n+ 1. To count the tableau whose bounce path has first return point (k, k) it suffices to count
the paths within the rectangle defined by (1, k), (k, k), (k, n), (1, n) (see Figure 18a). The latter are

(

n
k−1

)

,

from which we deduce that |Avn(T )| =
∑n+1

k=1

(

n
k−1

)

= 2n. Next, notice that the tableaux with height at
most 2 are just those all whose boxes are full, except possibly the last box of each row. This immediately

implies that |Avn(T )| = 2n.

(0, 0)

(k, k)

(n+ 1, n+ 1)

UkD

Dk

(a) Size 2: a tableau avoids T iff its bounce

path has at most two return points.

.

(b) Generalization: a tableau avoids T 5 iff its

bounce path has at most 5 return points.

Figure 18

For (ii), we need to enumerate the tableaux described in Lemma 4.2(iii),(iv). Recall from the proof
of Lemma 4.2(iii) that if a tableau T has at most one peak at height ≥ 2, then it can be written as

T = (UD)a1Ua2Da2(UD)a3 with a1 + a2 + a3 = n+ 1 and a2 ≥ 2 (see Figure 19(a)). Thus, we have to

count the non-negative integer solutions of a1 + a2 + a3 = n+1 with a2 ≥ 2. These are
(

n+1
2

)

. Including

also the tableau T n, all whose peaks are at height 1, we conclude that |Avn(T )| =
(

n+1
2

)

+ 1. Finally,

in view of the characterisation in Lemma 4.2(iv), for each 1 ≤ r ≤ n we count the words with r − 1 D’s

and a single U . Including T = T n, we have that |Avn(T )| = 1 +
∑n

r=1 r = 1 +
(

n+1
2

)

. �

4.2. Generalizations. In this subsection we generalize the five cases in (19) to the following Shi tableaux
of size k ≥ 3:

T k = Uk+1Dk+1, T k = UkDUDk, T k = UkDkUD, T k = UDUkDk and T k = (UD)k+1. (20)

It turns out that for fixed k ≥ 3 the tableaux in (20) fall into two Wilf-equivalence classes.

Proposition 4.3. For every 3 ≤ k ≤ n we have

(i) |Avn(T
k)| = |Avn(T

k)| = |Avn(T
k)| = |H(n+ 1, k)|,

(ii) |Avn(T
k)| = |Avn(T

k)| =
k−1
∑

ℓ=0

n−ℓ+1
n+1

(

n+ℓ
ℓ

)

+ |F(n, n, k − 1)|+
n−1
∑

ℓ=k

k−1
∑

h=0

(

n−ℓ+h−1
h

)

|F(ℓ− h, ℓ, k − 1)|,

where |H(n, k)| is the number of Dyck paths in Dn with height at most k and |F(m,n, k)| is the number

of lattice paths from (0, 0) to (n,m) with steps (1, 0) and (0, 1) such that all points (x, y) visited by the
path satisfy x ≤ y ≤ x+ k.
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he
ig
ht
1
−→

he
ig
ht
4
−→

(a) Size 2: a tableau avoids T iff it has at most

one peak at height ≥ 2.

he
ig
ht
3
−→

.

(b) Generalization: a tableau avoids T 4 iff it has no valley

at height ≥ 3.

Figure 19

row 1

row 2

...

row r

(a) Size 2: Tableaux avoiding T . Gray bullets can

be either full or empty boxes.

non-empty rows

C
n
+
2
−
ℓ

C
n
+
3
−
ℓ

· · ·

(b) Generalization: If T has ℓ non-empty rows then,

T avoids T k iff the tableau in colums Cn+2−ℓ, . . . , Cn+1

(shaded) avoids T k−1. Gray bullets can be either full or

empty boxes.

Figure 20

Remark 4.4. The numbers |F(m,n, k)| can be computed efficiently using the following formula, which
is a consequence of the iterated reflection principle [16, Chap. 1.3, Thm. 2].

|F(m,n, k)| =
∞
∑

i=0

n−m+2i(k+2)+1
n+i(k+2)+1

(

m+n
m−i(k+2)

)

+

∞
∑

i=1

n−m−2i(k+2)+1
m+i(k+2)

(

m+n
m+i(k+2)

)

.

To prove Proposition 4.3 we need the following lemma.

Lemma 4.5. Let k ≥ 3 and T ∈ Tn. Then

(i) T avoids T k if and only if its bounce path has at most k return points,

(ii) T avoids T k if and only if its height is at most k,
(iii) T avoids T k if and only if it has no valley at height ≥ k − 1.
(iv) Let ℓ denote the number of the non-empty rows of T . Then T ∈ Avn(T

k) if and only if the tableau

T ′ ∈ Tℓ−1 obtained by deleting the first n+ 1− ℓ columns of T avoids T k−1.

Proof. To prove (i) we use induction on k, the base case k = 2 being Lemma 4.2(i). Thus assume that
the claim holds for k and consider the case k+1. Suppose on the contrary that there exists some T ∈ Tn
containing T k+1 and whose bounce path has k+1 return points. Then n > k+1 and there there exist a

non-empty sequence di1,∗, . . . , diℓ,∗ of bounce deletions such that di1,∗ · · · diℓ,∗(T ) = T k+1. Applying one
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more bounce deletion we have di0,∗ di1,∗ · · · diℓ,∗(T ) = T k. In particular the tableau diℓ,∗(T ) contains T
k.

However, the deletion diℓ,∗ can only possibly reduce the number of return points of the bounce path by

one. Thus the bounce path of diℓ,∗(T ) has at least k return points and, by the induction hypothesis,

diℓ,∗(T ) avoids T
k. This is a contradiction.

For the other direction, we show that any T whose bounce path has at least k+1 return points must
contain T k. Indeed, this can be done by applying di,i on each row i > 0 that does not contain a bounce

step (see Figure 18b).
For (ii), we use the fact that T has height at most k if and only if no row has more than k − 1 empty

boxes. In view of this, it is immediate to see that if a row of T has more than k − 1 empty boxes, then

T contains T k. Reversely, if all rows of T have at most k− 2 empty boxes, then no iteration of bounce
deletions can lead to a tableau having a row with k or more empty boxes, and thus to T k.

To prove (iii), we use the fact that T has no valley at height ≥ k − 1 if and only if each initial subword

of the form wUD satisfies #U(wDU) −#D(wDU) ≤ k. Next, notice that each bounce deletion either
deletes a U,D or a single U(the corresponding D being on a subsequent position) from each such initial
subword wDU . Thus, the above inequality still holds after any bounce deletion, which futher implies

that T cannot contain the pattern T k. Reversely, if T has a valley at height ≥ k − 1 then, deleting all
rows and columns above and to the left of this valley we get a tableau T κ with κ ≥ k which, clearly,
contains T k.

Finally, notice that (iv) is trivially true for ℓ < k since both assumptions that T avoids T k and T ′

avoids T k−1 are satisfied (by size restrictions). If ℓ ≥ k, assume first that T ′ contains T k−1. Then, it is

easy to see that there exist bounce deletions on T leading to a Shi tableau T ′′ which is T ′ with a full
column adjoint on its left. Since T ′ contains T k−1 we conclude that T ′′ contains T k and consequently

that T contains T k. Next, assume that ℓ ≥ k and T ′ avoids T k−1. In order to answer the existence (or

not) of the pattern T k = UDUkDk in T and since T begins with Un−ℓ+1D, we have to delete n − ℓ

among the first n− ℓ+1 U -steps of T in a way that the resulting tableaux T ′′ has a full first column, i.e.,
begins with UD. This will delete n − ℓ among the first n − ℓ + 1 columns of T so that T ′′ is T ′ with a

full column adjoint on its left. Then, it is clear that since the pattern T k−1 does not occur in T ′, the
pattern T k = UDUkDk does not occur in T ′′ and hence in T .

�

Now we are ready to prove Proposition 4.3

Proof of Proposition 4.3. (i) The fact that T k, T k are Wilf-equivalent is a consequence of the well-known

zeta map [2, 8]. Consider a Dyck path π ∈ Dn+1 with area vector a(π) = (a1, a2, . . . , an+1). That is, ai
denotes the number of empty boxes in row i of the corresponding Shi tableau. For each j = 0, . . . , n we
define wj as a word in the alphabet {U,D} obtained as follows: reading a(π) from left to right, we draw

a down-step whenever we encounter an entry ai = j − 1 and a up-step whenever we encounter an entry
ai = j. Finally, we set ζ(π) = w0w1 · · ·wn. It is easy to see that ζ(π) ∈ Dn+1 since every entry of a(π)
contributes twice: an up-step first and a down-step later. The map ζ : Dn+1 → Dn+1 is a bijection with

surprising properties. The following are equivalent:

(a) The area vector a(π) satisfies ai ≤ k − 1 for all i.
(b) The word wj is empty for all j > k.
(c) The bounce path of ζ(π) has at most k return points.

Notice that a Dyck path has height at most k if and only if all entries of its area vector are less than k.

The equality |Avn(T
k)| = |Avn(T

k)| = |H(n+1, k)| therefore follows from the characterization of the Shi
tableaux in Avn(T

k) and Avn(T
k) in Lemma 4.5 (i) and (ii) and the equivalence of (a) and (c) above.

It remains to prove that |Avn(T
k)| = |H(n+1, k)|. In view of Lemma 4.5 (iii) suppose that π is a Dyck

path with no valleys at height greater or equal to k− 1. Then the steps of π above the line y = x+ k− 1
form a (possibly empty) set of disconnected peaks. Replacing each such peak of the form U ℓDℓ by a
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sequence (UD)ℓ we obtain a Dyck path of height at most k. This yields a bijection between T k-avoiding
and T k-avoiding Shi tableaux.

To prove (ii), let T ∈ Avn(T
k) with ℓ non-empty rows. By Lemma 4.5 (iv) the tableau T falls in

one of three categories: (a) ℓ < k, (b) ℓ = n and the tableau T ′ ∈ Tn−1 obtained by deleting the first

column of T avoids T k−1, or (c) k ≤ ℓ < n and the tableau T ′ ∈ Tℓ−1 obtained by deleting the first

n+ 1− ℓ columns of T avoids T k−1. The set of Shi tableaux that satisfy ℓ < k corresponds naturally to
ballot paths with n U -steps and ℓ D-steps, that is, lattice paths from (0, 0) to (ℓ, n) with steps (1, 0) and

(0, 1) that never go below the line x = y. Such ballot paths are known to be counted by n−ℓ+1
n+1

(

n+ℓ
ℓ

)

.

The second category contains |H(n, k − 1)| = |F(n, n, k − 1)| elements by part (i) of the proposition. It

remains to count the tableaux that fall into the third category. To this end write T = Un+1−ℓDπDπ′,
where π contains n − ℓ − 1 D-steps, and let h denote the number of U -steps of π. Thus the tableau
T ′ corresponds to the path Uhπ′. In order for T ′ to avoid T k−1 we must have h ≤ k − 1 and π′ must

correspond to a ballot path from (0, 0) to (ℓ− h, ℓ) of height at most k− 1. There are |F(ℓ− h, ℓ, k− 1)|
such ballot paths. The fact that T ′ avoids T k−1 imposes no restriction on the path π. Thus there are
(

n−ℓ+h−1
h

)

possible choices for π. �

Remark 4.6. The zeta map and the bounce path of a Dyck path were first defined by Andrews et al. in [2]

in order to enumerate ad-nilpotent ideals in a borel subalgebra of the complex simple Lie algebra of type A

with class of nilpotence less than k. These ideals are in bijection with certain Dyck paths ([2, Thm. 4.1]),
which correspond precisely to the Shi tableaux that avoid T k. The zeta map provides a bijection to Dyck

paths of height at most k (see [2, §5]), which of course coincide with T k-avoiding tableaux. Thus our
use of the zeta map in the proof of 4.3 (i) really agrees with its original purpose. The combinatorial
description of ad-nilpotent ideals with bounded class of nilpotence in terms of pattern avoidance is, in

the opinion of the authors, quite intriguing.
We further remark that the zeta map also ties to different problems in algebraic combinatorics such

as the Hilbert series of diagonal harmonics [8,9]. The zeta map and the bounce path have also previously

been considered in conjuction with the Shi arrangement, for example, in [3].

5. Open Problems

Once a notion of pattern avoidance for a class of combinatorial objects has been defined there are
plenty of interesting questions which have been studied for permutation patterns and can be transferred
to the new setting. We mention here only two such (potentially difficult) problems and conclude the

paper with two more possible further directions that are more particular to the case of Shi tableaux.

Problem 5.1. Does the poset T of Shi tableaux contain infinite antichains?

The analogous question can be answered affirmatively for permutations ordered by pattern contain-
ment [20]. On the other hand the poset of finite words over a finite alphabet is an example of a poset

with no infinite antichains [10].

Problem 5.2. Let T ∈ T be a Shi tableau (or a collection of Shi tableaux). What can be said about

the generating function
∑

n∈N Avn(T )x
n? Are all formal power series obtained in this way rational,

algebraic, D-finite,. . . ?

We have no strong intuition as to what the correct answer should be. Pattern avoidance in permuta-
tions gives rise to (conjecturally) very complicated generating functions [1]. However, there is at least a
chance that the poset of Shi tableaux is sufficiently simpler such some results can be obtained.

5.1. Connections to pattern-avoiding permutations. Considering our first enumerative results on
pattern avoidance in Shi tableaux, we observe that the sequences in Proposition 4.1 and Proposition 4.3 (i)
have already appeared in the literature in the context of permutation-patterns. The following table

summarizes these results.
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Shi tableaux of type A Sequence OEIS [19] Pairs of permutations

|Avn(T )|, |Avn(T )| 2n A000079 |Avn+1(132, 123)|

|Avn(T )|, |Avn(T )|, |Avn(T )|
(

n
2

)

+ n+ 1 A000124 |Avn+1(132, 321)|

|Avn(T
k)|, |Avn(T

k)|, |Avn(T
k)| |H(n+ 1, k)| A080934 |Avn+1(132, 12 . . . k)|

Using Proposition 4.3 (ii) we compute the first few values of |Avn(T
k)|. For k = 2 we find the sequence

of {132, 321}-avoiding permutations [19, A000124]. For k = 3 the numbers seem to match the sequence
of {123, 3241}-avoiding permutations [19, A116702]. For k = 4 we apparently obtain the sequence of
{123, 51432}-avoiding permutations [19, A116847]. The first few values for k = 5 and k = 6 are as

follows:

k = 5 : 1, 2, 5, 14, 42, 131, 413, 1294, 4007, 12272, 37277, 112622, 339152, 1019457, . . .

k = 6 : 1, 2, 5, 14, 42, 132, 428, 1411, 4675, 15463, 50928, 166999, 545682, 1778631, . . . ,

and are not part of the oeis yet. The above data might lead to the guess that there should exist also
patterns σ and τ of lengths three and k + 1 respectively such that |Avn(T

k)| equals the number of

{σ, τ}-avoiding permutations.

Problem 5.3. Find an explanation for (or quantify) the above phenomenon linking pattern avoidance
in Shi tableaux of type A to permutations avoiding a pair of patterns.

Considering the fact that Shi tableaux of are counted by Catalan numbers and are hence in bijection
with σ-avoiding permutations for any pattern σ of length three, one might hope to explain this enumer-

ative parallel by finding a bijection that translates the bounce deletions into pattern containment on the
permutation side. Unfortunately such an attempt is bound to fail: There is no choice of pattern σ of
length three for which the poset of Shi tableaux is isomorphic to the poset of σ-avoiding permutations.

This can be seen quickly for example from the number of cover relations in Figure 7.

5.2. ad-nilpotent ideals. A Shi arrangement can be attached to any crystallographic root system. In

each case the dominant regions are indexed by Shi tableaux – binary fillings whose shape is determined
by the root poset. In types B and C this shape is a doubled staircase as opposed to the staircase shape
in type A. In type D the root poset is no longer planar but with some adjustments the combinatorics

can still be made to work.

Problem 5.4. Find and investigate the cover relations that define patterns in Shi tableaux for other
classical types.

There are two facts that should serve as guidelines as well as encouragement in this endeavor. First,
the Shi arrangement is an exponential sequence of arrangements for the classical types. Hence there is

geometric motivation for (at least some of) the bounce deletions.
Secondly, there are enumerative results on ad-nilpotent ideals in a Borel subalgebra of the complex

simple Lie algebra of classical type with bounded class of nilpotence [14]. In type C the ideals of class

of nilpotence k are counted by formulas depending on the parity of k. At least in one of the two cases
there seems to be an immediate connection between such ideals and the Shi tableaux avoiding a full Shi
tableau.
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