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LATTICE EQUABLE PARALLELOGRAMS

CHRISTIAN AEBI AND GRANT CAIRNS∗

Abstract. This paper studies equable parallelograms whose vertices lie on
the integer lattice. Using Rosenberger’s Theorem on generalised Markov
equations, we show that the g.c.d. of the side lengths of such parallelograms
can only be 3, 4 or 5, and in each of these cases the set of parallelograms
naturally forms an infinite tree all of whose vertices have degree 4, bar the
root. The paper then focuses on what we call Pythagorean equable paral-
lelograms. These are lattice equable parallelograms whose complement in
a circumscribing rectangle consists of two Pythagorean triangles. We prove
that for these parallelograms the shortest side can only be 3, 4, 5, 6 or 10,
and there are five infinite families of such parallelograms, given by solutions
to corresponding Pell-like equations.

1. Introduction

A polygon with integer sides is said to be equable if its perimeter equals its area.
Equable polygons have fascinated recreational mathematical amateurs at least as
far back as Ozanam [7]:

Problème XXIII. Décrire un triangle rectangle dont l’aire en nombres soit égale
au contour.1

Problème XXVII. Décrire un parallélogramme rectangle dont l’aire en nombres
soit égale au contour.2

These exercises can easily be done in high school today, since they rely merely
on the ability of completing a rectangle, instead of the usual square.

(a) For the Pythagorean triangle with side lengths b < c <
√
b2 + c2 we have

1

2
bc = b+ c+

√

b2 + c2 =⇒ 0 = (bc− 2b− 2c)2 − 4(b2 + c2)

= bc(bc− 4b− 4c+ 8)

=⇒ (b − 4)(c− 4) = 8,

and hence (b, c) = (5, 12) and (6, 8) are the only two possibilities.
(b) For a rectangle with integer side lengths b, c with b ≤ c we have

bc = 2(b+ c) ⇐⇒ 0 = bc− 2b− 2c = (b− 2)(c− 2)− 4 ⇐⇒ (b− 2)(c− 2) = 4,

giving (b, c) = (4, 4) and (3, 6).

∗ corresponding author
1Determine which right triangles have the same area as perimeter.
2Determine which rectangles have the same area as perimeter.
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The striking feature of equable integer sided triangles is that apart from the
two Pythagorean triangles given above, there are only 3 other possibilities; see
the Appendix. In this paper we study equable parallelograms. Unlike equable
triangles, at first sight equable parallelograms are sadly disappointing, as they are
just far too common. Indeed, it is easier to itemise the non-equable cases.

Proposition 1. If b, c are positive integers with b ≤ c, then there is an equable
parallelogram with sides b, c unless one of the following holds:

(a) b = 1 or 2, and c arbitrary with b ≤ c.
(b) b = 3 and c = 3, 4 or 5.

Proof. Repeating the argument we used above for Ozanam’s Problème XXVII, the
area is less than the perimeter when

bc < 2(b+ c) ⇐⇒ 4 > (b− 2)(c− 2),

and this condition is satisfied for precisely for the values of b, c itemised in the
possible conditions of the proposition. So in these cases, there is no equable par-
allelogram with side lengths b, c. Conversely, if bc ≥ 2(b + c), start with the
rectangle with side lengths b, c, and hence area bc, and gradually push the paral-
lelogram over, while maintaining its side lengths, as in Figure 1. Ultimately, when
the parallelogram becomes flat, the area is zero. So by continuity, somewhere in
the process the area equals 2(b+ c) and the parallelogram is equable. �

b b b

c
c

c

Figure 1. Collapsing a parallelogram

Given the above, to make life interesting we restrict ourselves to considering
a subclass of equable parallelograms that has a wealth of interesting members,
without becoming mundane.

Definition 1. A lattice equable parallelogram (or LEP, for short) is a parallelo-
gram whose perimeter equals its area and whose vertices lie on the integer lattice
Z
2.

Notice that in the above definition, we don’t require that the side lengths be
integers. Indeed, as we show in Lemma 1 below, this fact can be deduced from
the other hypotheses. Throughout this paper we will denote the side lengths by
the symbols b and c (b for base and c for côté). Moreover, for brevity, we will at
times drop the word length and simply refer to b, c as the sides. Note that a LEP
is completely determined, up to a Euclidean motion, by its sides b, c. Indeed, if
θ denotes one of the angles between the sides, then the area is bc sin θ and so by
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equability, sin θ = 2(b + c)/bc is determined by b and c. So our main aim is this
paper in to study the values of b, c for which a LEP exists with sides b, c.

In Section 2 we use a result of Paul Yiu on Heronian triangles to prove the
following criteria.

Theorem 1. Given positive integers b, c, a lattice equable parallelogram with sides
b, c exists if and only if b2c2 − 4(b+ c)2 is a square.

In Section 3 we use Rosenberger’s Theorem on generalised Markov equations
to prove the following result.

Theorem 2. If a lattice equable parallelogram has sides b, c, then gcd(b, c) is 3, 4
or 5.

In Section 4 we describe how all LEPs can be derived from three fundamental
examples by successive applications of four functions. This gives the forest of LEPs,
consisting of three trees corresponding to the three possible values of gcd(b, c): see
Figures 6 and 7. We investigate various aspects and applications of these results in
Sections 5 and 6. Then in Section 7 we analyse a large natural family of LEPs that
we call Pythagorean equable parallelograms. These are LEPs whose complement in
a circumscribing rectangle consists of two Pythagorean triangles; see Definition 3.
We use Theorem 2 to prove the following:

Theorem 3. If a Pythagorean equable parallelogram has sides b, c with b ≤ c then
b = 3, 4, 5, 6 or 10. There are 5 infinite families of such parallelograms, which are
given by the solutions of corresponding Pell or Pell-like equations:

(F1) b = 3, c = 3(x2+y2)
2 , where y2 − 5x2 = 4.

(F2) b = 4, c = 4(x2 + y2), where y2 − 3x2 = 1.

(F3) b = 5, c = x2+y2

2 , where 3y2 − 7x2 = 20.

(F4) b = 6, c = 3(x2 + y2), where y2 − 2x2 = 1.
(F5) b = 10, c = x2 + y2, where 2y2 − 3x2 = 5.

At the end of Section 7 we locate the Pythagorean equable parallelograms on
certain branches of the trees of LEPs given in Figures 6 and 7.

The paper concludes with an appendix that revisits the classic theorem on
equable triangles that dates to 1904.

2. LEPs: general properties and special cases

Let us begin with a trivial remark that we will use on several occasions.

Remark 1. If the square root of an integer is rational, then it is an integer. Con-
sequently, if the distance d between two integer lattice points is rational, then d is
an integer.

Lemma 1. LEPs have integer side lengths.

Proof. Consider a LEP P with vertices O(0, 0), A(x, y), B(z, w), C(u, v), in anti-
clockwise order, where z = x+ u,w = y+ v. Let b denote the length of OA and c
the length of OC. The area of P is xv− yu, which is an integer. By the equability
hypothesis, 2(b+ c) is an integer. So, as b2, c2 are integers, b− c = (b2− c2)/(b+ c)
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is rational. Thus b = b+c
2 + b−c

2 is rational, and hence b is an integer, by Remark 1.
So c is also rational, and hence an integer. �

Proposition 2. No LEP can be partitioned into two congruent right triangles.

Proof. Suppose a LEP P can be partitioned into two congruent right triangles.
Then P can be cut in half and recombined to form an equable isosceles triangle
with integer sides, as in Figure 2. The proposition then follows from the fact
that the complete list of 5 equable triangles includes no isosceles triangles; see the
Appendix below.

b

h
c

b

h
c

Figure 2. A particular non-equable parallelogram

A simple and more direct proof of the proposition is as follows. The equability
hypothesis gives

hb = 2b+ 2
√

b2 + h2 =⇒ b2(h− 2)2 = 4(b2 + h2) ⇐⇒ 0 = b2h− 4b2 − 4h

⇐⇒ (b2 − 4)(h− 4) = 16.(1)

Consequently h is rational and so by Remark 1, h is an integer. Then by (1), b2−4
is a factor of 16. But there is obviously no such positive integer b. �

Lemma 2. Suppose a LEP P has sides b, c. Then the lengths of the diagonals of
P are given by the following formula:

d2 = (b2 + c2)± 2
√

b2c2 − 4(b+ c)2.

In particular, b2c2 − 4(b+ c)2 is a square.

Proof. Consider a diagonal of length d. By Heron’s formula, the triangle with
sides b, c, d has area

1

4

√

(b+ c+ d)(−b+ c+ d)(b − c+ d)(b + c− d).

Hence the equability hypothesis is (b + c+ d)(−b+ c+ d)(b − c+ d)(b + c− d) =
16(b+ c)2. Rearranging, this gives d4 − 2(b2 + c2)d2 + (b2 − c2)2 + 16(b+ c)2 = 0,

so d2 = (b2 + c2)±
√

(b2 + c2)2 − (b2 − c2)2 − 16(b+ c)2. Simplifying, we have

d2 = (b2 + c2)±
√

4b2c2 − 16(b+ c)2,

as required. In particular, as b, c, d2 are integers, 4b2c2−16(b+c)2 is a square. �

Remark 2. Suppose a LEP P has sides b, c and diagonals d1, d2. Then the above
lemma gives d1d2 = (b+ c)

√

16 + (b − c)2.
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Proof of Theorem 1. The necessity of the condition was shown in Lemma 2. There-
fore, assume that b, c are positive integers such that 4b2c2 − 16(b+ c)2 is a square.

Consider a triangle T with sides b, c and d :=
√

b2 + c2 + 2
√

b2c2 − 4(b+ c)2. No-

tice that such a triangle exists because b, c < d < b+ c, where the latter inequality
holds as b2 + c2 +2

√

b2c2 − 4(b+ c)2 < (b+ c)2 since
√

b2c2 − 4(b+ c)2 < bc. Let
θ denote the angle between sides b, c and note that θ is obtuse since d2 ≥ b2 + c2.
So

d2 = b2 + c2 − 2bc cos θ = b2 + c2 + 2
√

b2c2 − b2c2 sin2 θ.

So, from the definition of d, we have bc sin θ = 2(b + c). Hence, since bc sin θ is
twice the area of T , the area of T is b+ c. Now consider the parallelogram P made
from two copies of T . From what we have just seen, P is equable. It remains to
show that P can be realised as a lattice parallelogram, or equivalently, that T can
be realised as a lattice triangle. But since b, c are integers, and d2 is an integer,
and the area of T is an integer, T is geodetic, in the the terminology of Paul Yiu.
Thus T can be realised as a lattice triangle; see the last paragraph of [12]. �

Remark 3. Observe that LEPs are not determined up to congruence by their area.
Indeed, by Theorem 1, there are LEPs with (b, c) = (3, 87), (5, 85), (25, 65) that
each have area 180. A larger example is given by (b, c) = (85, 1525) and (445, 1165).

Corollary 1.

(a) The only rhombi that are LEPs are the 4× 4 square and the rhombus with
side length 5 and area 20.

(b) If a LEP has sides b, c with c = 2b, then b = 3 or 5.

Proof. From Theorem 1, a rhombus with side length b is a LEP if and only if
b4 − 16b2 is a square, that is, if b2 − 16 is a square. But obviously this only occurs
when b is 4 or 5. The first case is the 4×4 square, while the second case is exhibited
in Figure 3. Similarly, if c = 2b, then 4b4 − 36b2 is a square and so b2 − 9 is a
square. Hence b = 3 or 5. �

−1 1 2 3 4 5 6 7 8

−1

1

2

3

4

Figure 3. Equable Rhombus

We conclude this section with an elementary result whose proof will hopefully
give the reader a better feel for the nature of LEPs.



6 CHRISTIAN AEBI AND GRANT CAIRNS∗

Theorem 4. There are only three LEPs lying in the first quadrant with one vertex
at the origin and a diagonal lying on the line x = y. They are the 4×4 square, the
LEP with vertices (0, 0), (3, 0), (12, 12), (9, 12), and its reflection in the line y = x.

Proof. Consider a parallelogram P with vertices O(0, 0), A(x, y), B(z, z), A′(z −
x, z−y), in clock-wise order, where x, y, z are non-negative integers and y < x ≤ z,
as in diagram on the left of Figure 4. Let us first calculate the area α of the triangle
OAB. The diagonal OB has length

√
2z and the distance of A to the diagonal is

(x− y)/
√
2. So α = 1

2z(x− y). The sum σ of the lengths OA and AB is

(2) σ =
√

x2 + y2 +
√

(z − x)2 + (z − y)2.

Moreover, σ is no greater than the sum of the lengths of the segments 0(z, 0) and
(z, 0)B. That is, σ ≤ 2z. Assume that P is a LEP. The equable hypothesis, α = σ,
gives

(3)
1

2
z(x− y) ≤ 2z,

and hence y < x ≤ y + 4. So we have 4 cases to consider:

(z, 0)
O(0, 0)

A(x, y)

B(z, z)

A′(z − x, z − y)

2 4 6 8 10 12

2

4

6

8

10

12

Figure 4. Parallelograms with diagonal on line y = x

Case x = y+4. Here (15) is an equality, from which we conclude that the given
parallelogram is a square, with side length z. So, by equability, z2 = 4z and hence
z = 4. So A = (4, 0), B = (4, 4).

Case x = y + 3. Substituting this in (2), equability gives

3

2
z =

√

x2 + (x− 3)2 +
√

(z − x)2 + (z − x+ 3)2.

Writing this as 3z − 2
√

x2 + (x− 3)2 = 2
√

(z − x)2 + (z − x+ 3)2 and squaring

both sides and simplifying gives 9z2 − 12z
√

x2 + (x− 3)2 = 4(2z2 − 2z(2x− 3)).

Rearranging and dividing by z gives z = 4(6−4x+3
√

x2 + (x− 3)2). In particular,
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x2 + (x− 3)2 is a square. Moreover, x ≤ z gives 4(6− 4x+ 3
√

x2 + (x− 3)2) ≥ x
and so 144(x2 + (x− 3)2) ≥ (17x− 24)2 and simplifying,

0 ≥ x2 + 48x− 720 = (x+ 60)(x− 12).

Thus x ≤ 12. Calculations show that the only such values for which x2 + (x− 3)2

is a square are x = 3 and x = 12. These values correspond to the parallelogram
(0, 0), (3, 0), (12, 12), (9, 12), and its reflection in the line y = x; see the diagram
on the right of Figure 4.

Cases x = y + 2 and x = y + 1. The area is respectively z and z/2 in these
cases, but the sum σ of the sides is greater than the length of the diagonal, so
σ >

√
2z. Thus equability is impossible in both cases. �

Remark 4. The above result does not hold without the assumption that the LEPs
lies in the first quadrant. For example, consider the following 6 LEPs with vertices
O(0, 0), A(x, y), B(z, z), A′(z − x, z − y), in clock-wise order:

A = (0,−3), B = (60, 60),

A = (0,−4), B = (12, 12),

A = (−12,−16), B = (68, 68),

A = (−9,−12), B = (348, 348),

A = (−60,−63), B = (2028, 2028),

A = (−80,−84), B = (396, 396).

Notice incidentally that in all these cases x − y ≤ 4, as in the proof of the above
theorem, even though in these cases the diagonal on y = x is the short diagonal
of the LEP. This is a general fact; see Theorem 5 below.

3. The LEP restriction: gcd(b, c) = 3, 4, 5

The main tool we use in this section is Rosenberger’s Theorem on generalised
Markov equations. Recall that in [9] Rosenberger considered equations of the form

(4) ax2 + by2 + cz2 = dxyz,

where a, b, c are pairwise relatively prime positive integers with a ≤ b ≤ c such
that a, b, c all divide d. We are only interested in positive integer solutions, that
is, x, y, z ∈ N, so we use the word solution to mean positive integer solution.
Rosenberger’s remarkable result is that only 6 such equations have a solution and
when such a solution exists, there are infinitely many solutions. We use the R1–R5
notation of [1].

Rosenberger’s Theorem ([9]). Equation (4) only has a solution in the following
6 cases:

M: x2 + y2 + z2 = 3xyz (Markov’s equation),
R1: x2 + y2 + 2z2 = 4xyz,
R2: x2 + 2y2 + 3z2 = 6xyz,
R3: x2 + y2 + 5z2 = 5xyz,
R4: x2 + y2 + z2 = xyz,
R5: x2 + y2 + 2z2 = 2xyz,
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Remark 5. As mentioned in [9], it is easy to see by considering R4 modulo 3, that
if (x, y, z) is a solution to R4, then x, y, z are each divisible by 3, and (x, y, z)
is a solution to Markov’s equation if and only if (3x, 3y, 3z) is a solution to R4.
Similarly, by considering R5 modulo 4, if (x, y, z) is a solution to R5, then x, y, z
are each even, and (x, y, z) is a solution to R1 if and only if (2x, 2y, 2z) is a solution
to R5.

Returning to LEPs, suppose that b, c are positive integers such that b2c2−4(b+
c)2 is a square. Using the standard characterisation of Pythagorean triples we have
relatively prime positive integers m,n and a positive integer k such that either

(5) bc = k(m2 + n2), 2(b+ c) = 2kmn,
√

b2c2 − 4(b+ c)2 = k(n2 −m2),

or

(6) bc = k(m2 + n2),
√

b2c2 − 4(b+ c)2 = 2kmn, 2(b+ c) = k(n2 −m2).

We will show that the second possibility can be reduced to the first. Indeed, sup-
pose that (6) holds. Assume for the moment that k is odd. Since

√

b2c2 − 4(b+ c)2 =
2kmn, it follows that bc is even. Consider the equation bc = k(m2 + n2). As bc is
even and k is odd and m,n are relatively prime, m,n must both be odd. Thus,
from bc = k(m2+n2), we have bc ≡ 2 (mod 4). So exactly one of b, c is even. Thus
2(b+c) ≡ 2 (mod 4). But as m,n are all odd, n2−m2 ≡ 0 (mod 4), contradicting
2(b+ c) = k(n2 −m2). Thus k is even, k = 2κ say. Let y = m+ n, x = n−m, so
n = y+x

2 ,m = y−x
2 . Then (6) can be written

bc = k(m2+n2) = κ(x2+y2), 2(b+c) = k(n2−m2) = 2κxy, 2kmn = κ(y2−x2),
which has the same form as (5). Since m,n are relatively prime, gcd(x, y) = 1 or
2. In the later case we can replace x and y by x = x/2 and y = y/2 respectively,
and replace κ by κ = 4κ. We then have the same form as (5) again but now x, y
are relatively prime. We may therefore assume (5) for what follows.

Note that b, c are solutions to the equation

(7) x2 − kmnx+ k(m2 + n2) = 0.

In particular, we have

(8) km2 + kn2 + b2 = kbmn.

Let k = fs2, where f is square-free.

Lemma 3. k is either 5, 8 or 9.

Proof. From (8), f divides b2 and hence f divides b. Let b = fβ. Dividing (8) by
f gives

(9) s2m2 + s2n2 + fβ2 = fs2mnβ.

From (9), s2 divides fβ2 and hence s2 divides β2, and thus s divides β. Let β = sq.
Dividing (9) by s2 gives

(10) m2 + n2 + fq2 = fsmnq.

Thus by Rosenberger’s Theorem, using x = m, y = n, z = q, there are five possi-
bilities:
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(a) f = 1, s = 3 (corresponding to M),
(b) f = 2, s = 2 (corresponding to R1),
(c) f = 5, s = 1 (corresponding to R3),
(d) f = 1, s = 1 (corresponding to R4),
(e) f = 2, s = 1 (corresponding to R5).

Cases (a) to (e) give k = 9, 8, 5, 1, 2 respectively. It remains to eliminate the last
two cases.

If k = 1, then (10) is m2 +n2 + q2 = mnq. But then as noted in Remark 5, the
values m,n, q are all divisible by 3, which contradicts our assumption that m,n
are relatively prime. Similarly, if k = 2, then (10) is m2 + n2 + 2q2 = 2mnq. But
then as noted in Remark 5, the values m,n, q are all even, again contradicting our
assumption that m,n are relatively prime. �

Proof of Theorem 2. Suppose as before that

bc = k(m2 + n2), 2(b+ c) = 2kmn,
√

b2c2 − 4(b+ c)2 = k(n2 −m2),

so from the previous lemma, k is either 5, 8 or 9.

Lemma 4. The numbers k and gcd(b, c) have the same prime divisors.

Proof. From (7), b2 − kmnb + k(m2 + n2) = 0 and c2 − kmnc+ k(m2 + n2) = 0.
So if p is any prime divisor of k, then p divides b2 and c2, so p divides b and c.
Hence p divides gcd(b, c).

Conversely, let p be any prime divisor of gcd(b, c), and suppose that p doesn’t
divide k. Then p2 divides m2 + n2 and p divides mn so p divides (m + n)2 and
(m−n)2, so p divides m+n and m−n. Hence p divide 2m and 2n. If p were odd
we would have that p divides m and n, which is impossible as m,n are relatively
prime. So p = 2; that is, b, c are both even. Since p doesn’t divide k, we have that
k is odd and m2 + n2 is even. So, as m,n are relatively prime, m,n are both odd.
But then b+ c = kmn implies that k is even, a contradiction. So p divides k. �

Consider the case where k = 5. From Lemma 4, gcd(b, c) = 5i for some i ≥ 1.
Suppose that i > 1, so b, c are both divisible by 25. From bc = k(m2+n2) we have
that m2+n2 is divisible by 53. From b+ c = kmn we have that mn is divisible by
5, so exactly one ofm or n is divisible by 5 sincem,n are relatively prime. But this
is a contradiction since m2 + n2 would not be divisible by 5. Hence gcd(b, c) = 5.

Now suppose k = 9. From Lemma 4, gcd(b, c) = 3i for some i ≥ 1. Suppose
that i > 1, so b, c are both divisible by 9. From bc = k(m2 + n2) we have that
m2+n2 is divisible by 9. In Z9 the squares are 0,1,4,7. Because m,n are relatively
prime, they are not both congruent to 0 modulo 3. So modulo 9,

m2+n2 ∈ {0+1, 0+4, 0+7, 1+1, 1+4, 1+7, 4+4, 4+7, 7+7} ≡ {1, 4, 7, 2, 5, 8},
contradicting the fact that m2 + n2 is divisible by 9. Hence gcd(b, c) = 3.

Finally, suppose k = 8. From Lemma 4, gcd(b, c) = 2i for some i ≥ 1. As
26 divides (b + c)2 = k2m2n2 and 25 divides 4bc = 4k(m2 + n2), thus 25 divides
(b+ c)2 − 4bc = (b− c)2. Consequently, as (b− c)2 is a square, 26 divides (b− c)2.
Hence, 23 divides b− c. Thus, as 23 divides b− c and b + c = kmn, so 23 divides
both 2b and 2c. Hence 22 divides both b and c, and hence gcd(b, c) ≥ 22. Thus
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i ≥ 2. Now suppose i > 2. Thus 26 divides bc = 8(m2 + n2) and hence 8 divides
m2 + n2. In Z8 the squares are 0,1,4. Because m,n are relatively prime, they are
not both even. So modulo 8,

m2 + n2 ∈ {0 + 1, 1 + 1, 1 + 4} ≡ {1, 4, 2, 5},
contradicting the fact that m2 + n2 is divisible by 8. Hence gcd(b, c) = 22.

This completes the proof of Theorem 2. �

Remark 6. In the case gcd(b, c) = 3, we have k = 32 and b+ c = kmn, so b + c is
divisible by 32. Then neither b nor c is divisible by 32 since otherwise both b and
c would be divisible by 32, contradicting gcd(b, c) = 3. Similarly, if gcd(b, c) = 4,
then b + c is divisible by 23 but neither b nor c is divisible by 23. But a similar
result does not hold in the gcd(b, c) = 5 case. For example, for the LEP with
b = 85, c = 1525 one has b = 5 · 17, c = 52 · 61.

Let us summarise the results of this section. We have seen in the proof of
Theorem 2 that for LEPs with sides b, c, we have gcd(b, c) = 3, 4 or 5. The
possible values of b, c are determined by the corresponding Markov-Rosenberger
equations M,R1 and R3, as follows:

(a) gcd(b, c) = 3: m2 + n2 + q2 = 3mnq, where q = b/3,
(b) gcd(b, c) = 4: m2 + n2 + 2q2 = 4mnq, where q = b/4,
(c) gcd(b, c) = 5: m2 + n2 + 5q2 = 5mnq, where q = b/5,

and bc = k(m2 + n2), b + c = kmn and k = 9, 8, 5 respectively. If (m,n, q) is a
solution to one of the above equations, then by Rosenberger’s Theorem, the triple
m,n, q is pairwise relatively prime. In particular, m,n are relatively prime.

4. The forest of LEPs

For a given k (= 5, 8 or 9) consider the set Sk of solutions of the corresponding
Markov-Rosenberger equation. Let us briefly recall Rosenberger’s theory. For the
reader’s convenience, we recall (10):

m2 + n2 + fq2 = fsmnq.

Following the presentation given in [1], from a solution x = (m,n, q) to (10), one
can generate three new solutions by applying the involutions:

φ1(x) = (fsnq −m,n, q)

φ2(x) = (m, fsmq − n, q)

φ3(x) = (m,n, smn− q).

The group of transformations of Sk generated by the maps φi is the free product
of three copies of Z2, and this group acts transitively on Sk. Moreover, the maps
φi give the set Sk of solutions the structure of an infinite binary tree: each solution
is a vertex and two solutions are connected by an edge if one of the maps φi sends
one solution to the other. The fundamental solutions have the smallest values of
m+ n+ q; in M,R1,R3 they are (m,n, q) = (1, 1, 1), (1, 1, 1), (1, 2, 1) respectively.

Having recalled Rosenberger’s theory, we now describe how the solution trees
Sk of the Markov-Rosenberger equations determine the induced structure on the
set Tgcd of LEPs, where gcd = 3, 4, 5 for k = 9, 8, 5 respectively. We identify Tgcd
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as the set of ordered pairs (b, c) of possible side lengths with gcd(b, c) = gcd and
b ≤ c. A solution (m,n, q) to the corresponding Markov-Rosenberger equation
corresponds to a LEP if n ≥ m. Let τ denote the involution of Sk given by
τ : (m,n, q) 7→ (n,m, q). The map τ commutes with φ3, and conjugates φ1 to
φ2. We form the quotient tree S̄k = Sk/τ . The elements of S̄k can be regarded
as triples (m,n, q) with m ≤ n. The map φ3 induces an involution φ̄3 on S̄k.
Note that by definition φ3 leaves m and n unchanged and sends q to smn− q, or
equivalently, b to kmn−b = b+c−b = c. Thus (m,n, q) and φ3(m,n, q) correspond
to the same LEP. Consequently we form Tgcd by contracting each of the edges of
S̄k that are given by the map φ̄3; see Figure 5. Note that contraction of edges of a
tree produces another tree. So Tgcd is a tree for each gcd = 3, 4, 5. Notice also that
contraction turns vertices of degree 3 into vertices of degree 4. The trees T3 and T5
have the same form; they are shown in Figure 6. The tree T4 is shown in Figure 7.
The fundamental solutions are the solutions (b, c) for which b+ c is minimal. For
gcd(b, c) = 3, 4, 5, the fundamental solutions are (3, 6), (4, 4), (5, 5) respectively.
Apart from the fundamental solutions, the vertices of Tgcd all have degree 4. The
fundamental solutions of T3 and T5 have degree 2, while the fundamental solution
of T4 has degree 1.

φ̄3

Figure 5. Contraction of the φ̄3 edges

Let us look in more detail at the edges of the LEP solution trees Tgcd. Consider
a LEP (b, c). As we saw in the previous section, k is determined by gcd(b, c);
k = 9, 8, 5 for gcd(b, c) = 3, 4, 5 respectively. Writing bc = k(m2+n2), b+c = kmn
as before, and imposing n ≥ m, the valuesm,n are given by the following formulas:

kn2 =
bc+

√

b2c2 − 4(b+ c)2

2
(11)

km2 =
bc−

√

b2c2 − 4(b+ c)2

2
.(12)

For each i = 1, 2, let ϕi denote the function induced by φi on the set Tgcd of
LEP pairs (b, c). Note that in the above notation, as b + c = kmn, we have
(b, c) = (fsq, kmn − fsq). From the definition of φ1, the map ϕ1 leaves b and n
unchanged and m is changed to m′ = bn −m. Then under ϕ1, the value of c is
changed to

c′ = km′n− b = kbn2 − knm− b = kbn2 − (b+ c)− b

=
b2c+ b

√

b2c2 − 4(b+ c)2

2
− 2b− c. (from (11))
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Thus

ϕ1 : (b, c) 7→
(

b,
b2c+ b

√

b2c2 − 4(b+ c)2

2
− 2b− c

)

.

Similarly, one finds that

ϕ2 : (b, c) 7→
(

b,
b2c− b

√

b2c2 − 4(b+ c)2

2
− 2b− c

)

.

A calculation shows that ϕ2 ◦ ϕ1 = id. However it is not true that ϕ1 ◦ ϕ2(b, c) =
(b, c) for all (b, c). In fact, the function ϕ2 is not injective and the function ϕ1

is not surjective; there is no solution (b, c) with b < c for which ϕ1(b, c) is the
fundamental solution.

Similarly, analogous to ϕ1, ϕ2, interchanging the roles of b and c, we have two
further maps:

ψ1 : (b, c) 7→
(

bc2 + c
√

b2c2 − 4(b+ c)2

2
− 2c− b, c

)

,

ψ2 : (b, c) 7→
(

bc2 − c
√

b2c2 − 4(b+ c)2

2
− 2c− b, c

)

.

After applying the maps ϕi, ψi, one reverses the image (b′, c′) if necessary so that
b′ ≤ c′. The edges in the trees Tgcd are all obtained by applications of the four
maps ϕ1, ϕ2, ψ1, ψ2.

5. Recurrence relations in the branches of the LEP trees

The trees T3, T4, T5 contain a raft of interesting patterns that connect with
phenomena that have been observed in other areas. We will give some simple
examples. First we require a technical lemma concerning recurrence relations.
Consider the real function

f(x) = ux+ v +
√

(u2 − 1)x2 + 2(u+ 1)vx+ w,

where u, v, w are reals with u > 1. Notice that for large x the function f(x) is

asymptotic to the linear function (u +
√

(u2 − 1))x + v, which is monotonically
increasing as u > 1. If necessary, we restrict the domain of f(x) to a maximal
half-infinite interval [a,∞) on which f(x) is defined, and has a well defined inverse.

Lemma 5. Consider the function f(x) = ux+v+
√

(u2 − 1)x2 + 2(u+ 1)vx+ w
with the u > 1. Choose a0 in the domain of f(x) as described above and define ai
recursively by ai = f(ai−1). Then ai satisfies the 3rd order recurrence relation

ai = (2u+ 1)ai−1 − (2u+ 1)ai−2 + ai−3.

Remark 7. It is not difficult to see that if a function f(x) is of the form required by
Lemma 5, then for any affine change of variable, X = rx+ s, the function induced
by f on X also has the same form, with the same value of u, while v changes to
rv − us + s. In particular, as u > 1, one can choose s = rv/(u − 1) to make v
become 0.
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(3, 6)
(5, 5)

(3, 15)
(5, 85)

(6, 39)
(5, 10)

(3, 87)
(5, 1930)

(3, 582)
(5, 44285)

(6, 1299)
(5, 205)

(15, 507)
(85, 34250)

(15, 102)
(85, 1525)

(87, 19398)
(1930, 17838985)

(87, 2955)
(1930, 777785)

(39, 8691)
(10, 425)

(39, 267)
(10, 25)

(6, 44103)
(5, 4685)

(1299, 9829527)
(205, 200485)

(1299, 289671)
(205, 8810)

Figure 6. The two trees of LEPs with gcd(b, c) = 3 and 5 respectively

Proof of Lemma 5. The required recurrence relation is clearly invariant under
affine transformations. So, by the above remark, we may suppose that v = 0.
Thus

f(x) = ux+
√

(u2 − 1)x2 + w.

We start by showing that f−1(x) = ux −
√

(u2 − 1)x2 + w. Indeed, if f(y) = x,

then uy+
√

(u2 − 1)y2 + w = x. Rearranging and squaring gives y2−2uxy+x2−
w = 0, and solving for y gives y = ux ±

√

(u2 − 1)x2 + w. As u > 1, we have
f(x) > x for sufficiently large x, so f−1(x) < x and we take the negative root in
the formula for y. So f−1(x) is as claimed.

Let E := f(f(x))− ((2u+1)f(x)− (2u+1)x+ f−1(x)). We claim that E = 0.
Indeed, let D = (u2 − 1)x2 + w and note that

f(f(x)) = u2x+ u
√
D +

√

(u2 − 1)(ux+
√
D)2 + w

and

(2u+ 1)f(x)− (2u+ 1)x+ f−1(x) = (2u2 − 1)x+ 2u
√
D.
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(4, 4) (4, 20) (4, 260) (4, 3604)

(20, 1396)

(20, 116)

(260, 251156)

(260, 18196)

Figure 7. The tree of LEPs with gcd(b, c) = 4

So E simplifies to

−[(u2 − 1)x+ u
√
D] +

√

(u2 − 1)(ux+
√
D)2 + w.

Note that as u > 1, we have (u2 − 1)x+ u
√
D > 0. Hence to show that E = 0 we

need to see that

[(u2 − 1)x+ u
√
D]2 − [(u2 − 1)(ux+

√
D)2 + w] = 0.

Expanding and simplifying the left-hand-side we are left with

−(u2 − 1)x2 +D − w,

which is 0, as claimed, by the definition of D.
As E = 0 we have f(f(x)) = (2u+1)f(x)− (2u+1)x+ f−1(x), for all x in the

appropriate domain. Replacing x by f(x) gives

f(f(f(x))) = (2u+ 1)f(f(x))− (2u+ 1)f(x) + x.

Applying this equation to x = a0 gives the required recurrence relation. �
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For the function ϕ1(b, c) = (b,
b2c+b

√
b2c2−4(b+c)2

2 −2b−c) defined in the previous
section, let us fix b and look at the resulting function of c:

(13) f : c 7→ b2c+ b
√

b2c2 − 4(b+ c)2

2
− 2b− c.

One readily verifies that this function f has the form required by Lemma 5, with

u = b2−2
2 , v = −2b, w = −b4. Then Lemma 5 gives the recurrence relation

(14) ci = (b2 − 1)ci−1 − (b2 − 1)ci−2 + ci−3.

Remark 8. While the function f of (13) is useful in its own right, we now briefly
outline a proof of the recurrence relation (14) that doesn’t require Lemma 5. As we
saw in the previous Section, the map ϕ1 leaves b and n unchanged andm is changed
to m′ = bn−m. But this gives m′ > n so we have to then interchange m′ and n.
Thus we can write n′ = bn−m and m′ = n. It follows that under two applications,
we have m′′ = n′ = bn −m = bm′ −m. Consequently, the value m satisfies the
second order recurrence relation mi+1 = bmi−mi−1. Similarly, ni+1 = bni−ni−1.
According to a well known theorem of E. S. Selmer (see [2]) if one has a second order
recurrence relation ai+1 = Aai+Bai−1 and x

2−Ax−B = (x−α)(x−β) with α 6= β,
then a2i satisfies the third order recurrence relation a2i+1 = Ca2i +Da2i−1 +Ea2i−2,

where x3 − Cx2 −Dx − E = (x − α2)(x − β2)(x − αβ). In particular, if ai+1 =
bai−ai−1 with b ≥ 3, then a2i+1 = (b2−1)a2i −(b2−1)a2i−1+a

2
i−2. So the sequences

for m2 and n2 both satisfy this third order recurrence relation, and hence so too
does c = k(m2 + n2)/b.

We now examine the horizontal branches of the trees T3, T4, T5 that start at the
fundamental solutions and head towards the right. These solutions have constant
b and are defined by repeated applications of the map ϕ1, or equivalently, repeated
applications of the function f defined in (13).

Example 1. For b = 3, with the above notation, (13) gives

f : c 7→ 7

2
c− 6 +

√

45

4
c2 − 54c− 81.

Setting c0 = 6, corresponding to the fundamental LEP b = 3, c = 6, the first few
terms of the sequence are 6, 15, 87, 582, 3975. The first 4 of these are visible in
Figure 6; they lie on the central horizontal branch to the right of the fundamental
solution (3, 6). We employ Lemma 5 with u = 7

2 , v = −6, w = −81. Thus

ci = 8ci−1 − 8ci−2 + ci−3, for i ≥ 3.

By Remark 6, the area of the LEP, 2(b + c), is divisible by 9, and it is obviously
even. Let A = 2(b+ c)/18 = (3+ c)/9. This is an affine transformation of c, so by
Remark 7, the function induced by f on the variable A also has the form required
by Lemma 5 with the same value of u. So by Lemma 5,

Ai = 8Ai−1 − 8Ai−2 +Ai−3, for i ≥ 3.

Setting A0 = 2, corresponding to the fundamental LEP b = 3, c = 6, the first few
terms of the sequence are 1, 2, 10, 65, 442. This sequence is related to the sequence
A064170, in OEIS [10], which is conjectured to satisfy the same recurrence relation.
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Example 2. For b = 4, (13) gives

f : c 7→ 7c− 8 + 4
√

3c2 − 8c− 16.

Setting c0 = 4, corresponding to the fundamental LEP b = 4, c = 4, the first few
terms of the sequence are 4, 20, 260, 3604, 50180. The first 4 of these are visible in
Figure 7; they lie on the central horizontal branch to the right of the fundamental
solution (4, 4).

We use Lemma 5 with u = 7, v = −8, w = −256. Thus

ci = 15ci−1 − 15ci−2 + ci−3, for i ≥ 3.

Dividing the c-values by 4 we have the sequence 1, 5, 65, 901, 12545, . . . . This is the
sequence A103974 in OEIS [10]; it is the sequence of smaller sides a in (a, a, a+1)-
integer triangles with integer area.

Further, by Remark 6, the area, 2(b+ c) is divisible by 16. Let A = (b+ c)/8 =
(4 + c)/8. As in the previous example, this is an affine transformation of c, so by
Remark 7, the function induced by f on the variable A also has the form required
by Lemma 5 with the same value of u. Thus

Ai = 15Ai−1 − 15Ai−2 +Ai−3, for i ≥ 3.

Setting A0 = 1, corresponding to the fundamental LEP b = 4, c = 4, the first few
terms of the sequence are 1, 3, 33, 451, 6273. This is the sequence A011922 in OEIS
[10].

Example 3. For b = 5, (13) gives

f : c 7→ 23

2
c− 10 +

√

21 · 25
4

c2 − 250c− 625.

Setting c0 = 5, corresponding to the fundamental LEP b = 5, c = 5, the first
few terms of the sequence are 5, 85, 1930, 44285, 1016605. The first 4 of these are
visible in Figure 6; they lie on the central horizontal branch to the right of the
fundamental solution (5, 5).

We use Lemma 5 with u = 23
2 , v = −10, w = −625. Thus

ci = 24ci−1 − 24ci−2 + ci−3, for i ≥ 3.

The area 2(b+ c) is divisible by 5. Let A = 2(b+ c)/5. We employ Lemma 5 with
the same value of u. Thus

Ai = 24Ai−1 − 24Ai−2 +Ai−3, for i ≥ 3.

Setting A0 = 4, corresponding to the fundamental LEP b = 5, c = 5, the first few
terms of the sequence are 4, 36, 774, 17716, 406644.

6. Diagonals, heights and altitudes

Let us first fix some terminology and notation; see Figure 8.

Definition 2. Consider a non-square LEP P . We denote the length of its long
(resp. short) diagonal dl (resp. ds). The heights of P are the distances between
opposite sides; we denote the long (resp. short) height hl (resp. hs). Each diagonal
d partitions P into two congruent triangles T . We will call the distance from d to
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the third vertex of T an altitude of P . We call the altitude from ds (resp. dl) the
long (resp. short) altitude and denote it ηl (resp. ηs).

Remark 9. Our notion of altitude is not universal. Some authors use the term
altitude for the concept we have called height.

b

c

hl

hs

dl

ds ηl

ηs

Figure 8. Diagonals, heights and altitudes

Lemma 6. Suppose a LEP P has sides b, c with b ≤ c. Then

(a) hl =
2(b+ c)

b
, hs =

2(b+ c)

c
.

(b) ηl =
2(b+ c)

ds
, ηs =

2(b+ c)

dl
.

Proof. By equability, the area of P is 2(b + c), but the area is obviously also
bhl and chs. This gives (a). But the area of P is also twice the area of the
triangle determined by each diagonal. So the area of P is both ηlds and ηsdl. This
gives (b). �

Remark 10. If hs is an integer, then hs = 2 + 2b
c

by Lemma 6(a), and so either
c = b or c = 2b. These cases were treated in Corollary 1. Note also that the above
lemma also gives (hs − 2)(hl − 2) = 4. So hs, hl are both integers only in the cases
hs = hl = 4 and hs = 3, hl = 6. The first is the 4 × 4 square. The second case is
the 3× 6 rectangle.

Equable parallelograms tend to be very thin in form. The following result gives
a sharp statement of this thinness.

Theorem 5. For every LEP the altitudes satisfy 2 < ηl ≤ 2
√
5 and 2 < ηs ≤ 2

√
2.

Proof. Suppose a LEP P has sides b, c with b ≤ c. With the notation used in
Section 3, we have bc = k(m2+n2), b+ c = kmn,

√

b2c2 − 4(b+ c)2 = k(n2−m2),
for some positive integer k and relatively prime integers m,n with m ≤ n. From
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Lemma 2, the diagonals are given by

d2l = (b2 + c2) +
√

4b2c2 − 16(b+ c)2

= k2m2n2 − 2k(m2 + n2) + 2k(n2 −m2) = m2(k2n2 − 4k),

d2s = (b2 + c2)−
√

4b2c2 − 16(b+ c)2

= k2m2n2 − 2k(m2 + n2)− 2k(n2 −m2) = n2(k2m2 − 4k).

The long altitude is

ηl =
2(b+ c)

ds
=

2knm

n
√
k2m2 − 4k

.

Squaring and rearranging gives km2 =
4η2

l

η2

l
−4

. As m ≥ 1 and k ≥ 5 by Lemma 3,

we have
4η2

l

η2

l
−4

≥ 5 and so 20 ≥ η2l , that is ηl ≤ 2
√
5. Furthermore,

ηl =
2knm

n
√
k2m2 − 4k

>
2knm

n
√
k2m2

= 2.

Arguing in the same manner one finds ηs > 2 and kn2 =
4η2

s

η2
s
−4 . As we saw in

Section 4, for k = 9 (resp. 8, resp. 5), the fundamental solution has (m,n) = (1, 1)

(resp. (1,1), resp. (1,2)). So the minimum value of kn2 is 8. Rearranging 8 ≤ 4η2

s

η2
s
−4

gives η2s ≤ 8, that is ηs ≤ 2
√
2. �

Remark 11. The bound ηl = 2
√
5 is attained by the rhombus of Figure 3, and the

bound ηs = 2
√
2 is attained by the 4× 4 square.

We complete this section with some results that use either the above theorem,
or ideas from its proof.

Proposition 3. For every LEP, the two diagonals and the two altitudes are irra-
tional.

Proof. As we saw in the above proof, d2l = m2(k2n2 − 4k). So the longer diagonal
has integer length only when k2n2−4k is a square. But k = 5, 8 or 9, by Lemma 3.
For k = 5 (resp. 8), the expression k2n2 − 4k is divisible by 5 (resp. 4k = 25) but
not by 52 (resp. 26) and is hence never a square. For k = 9, one has k2n2 − 4k =
32(9n2 − 4), and 9n2 − 4 is not a square for any integer n. Thus the long diagonal
is never an integer, and hence by Remark 1, the long diagonal is irrational for
every LEP. Similarly, the short diagonal is always irrational as k2m2 − 4k is never
a square. Consequently, by Lemma 6(b), the altitudes ηl, ηs are also irrational for
every LEP. �

The following immediate corollaries of Proposition 3 are each generalisations of
Proposition 2.

Corollary 2. No LEP can be partitioned into the union of two Heronian triangles.

Corollary 3. There exists no LEP having a pair of opposite vertices with the
same x-coordinate, or the same y-coordinate.
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Figure 9. A parallelogram that isn’t a LEP

Proposition 4. If a LEP P contains the origin O and vertices O,A,B,C in
cyclic order with long diagonal OB = dl belonging to the 1st quadrant, then all
four vertices belong to the first quadrant.

dl

ηsO

A(x, y)

B

C

Figure 10. A LEP configuration that can’t exist

Proof. By applying if necessary a symmetry along the x = y axis we suppose that
A lies in the 4th quadrant as in Figure 10. Since the diagonals are irrational the
vertex B can’t be on the x-axis. Moreover, as P has an acute angle at O, the
foot of the altitude from A to dl also lies in the first quadrant. Hence, letting
A = (x, y), the distance from A to dl is greater than |y|. Thus, by Theorem 5,

|y| < ηs ≤ 2
√
2. Hence, as y is an integer, |y| is 1 or 2. Let OA have length b.

Then b2 is x2 + 1 or x2 + 2. But this is impossible for x > 0. �

Corollary 4. Every LEP is congruent to a LEP in the 1st quadrant with a vertex
at the origin.

7. Pythagorean Equable Parallelograms

In general there are two ways in which parallelograms can be circumscribed
by a rectangle so that the rectangle and parallelogram share a common diagonal;
the rectangle may have sides extending the long sides of the parallelogram, or the
short sides of the parallelogram; see Figure 11.
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Figure 11. Rectangles circumscribing a parallelogram

Definition 3. A LEP is said to be Pythagorean if it is circumscribed by a rectangle
having integer side lengths so that the rectangle and parallelogram share a common
diagonal as in Figure 11.

This terminology is justified by the equivalent condition (b) in the following
result.

Proposition 5. Consider a LEP P having sides b, c with b ≤ c. The following
conditions are equivalent:

(a) P is Pythagorean,
(b) P is circumscribed by a rectangle R such that the complement of P in R

is the union of two Pythagorean triangles,
(c) b divides 2c,
(d) P can be drawn as a LEP with a horizontal pairs of sides.

hl

a

c

b

Figure 12. Integer hl =⇒ integer a

Proof of Proposition 5. Suppose that P is a LEP with vertices O,A,B,C, in cyclic
order, and that P has sides b, c with b ≤ c.

(a) =⇒ (d). Suppose that P is Pythagorean and that the distance between
sides OA and BC is an integer, h say. Rotate and translate P so that it has the
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side OA along the positive x-axis, with the vertex O at the origin. We want to
verify that moved in this way, P is still a LEP. Since P has integer side lengths,
A has integer coordinates. By assumption, B,C have integer y-coordinate, equal
to h. From the Pythagorean hypothesis, B has integer x-coordinate, z say. Then
x-coordinate of C is z minus the x-coordinate of A. So P is a LEP.

(d) =⇒ (c). If a LEP P has a horizontal pairs of sides, then the fact that
the coordinates of the vertices are integers implies that the distance h between the
horizontal sides is an integer. So either hl or hs is an integer. If hs is an integer,
then as hs = 2+ 2b

c
by Lemma 6(a), and b ≤ c, we have either c = b or c = 2b. In

either case, by Lemma 6(a) again, hl = 2 + 2c
b

is also an integer. Thus b divides
2c.

(c) =⇒ (b). Since hl = 2 + 2c
b
, hence hl is an integer. Consider the rectangle

R that circumscribes P , sharing a common diagonal with P and having sides that
are extensions of the sides of P of length b, as in Figure 12 (but not necessarily
with the sides b horizontal). So R has sides hl and b + a, for some a, and we are
required to show that a is an integer. By Lemma 6(a), we have

a2 = c2 − h2l = c2 − 4(b+ c)2

b2
=
b2c2 − 4(b+ c)2

b2
,

so a =

√
b2c2−4(b+c)2

b
, which is a rational by Theorem 1. Since hl = 2 + 2c

b
is an

integer, 2c = bi for some integer i. Then

a2 =
b2c2 − 4(b+ c)2

b2
= c2 − (2 + i)2,

which is an integer. So a is rational and the square root of an integer. Hence a is
an integer.

(b) =⇒ (a). This is immediate. �

Remark 12. The smallest non-Pythagorean LEP has area 180 and sides 25 and 65;
it can be constructed in the first quadrant with vertices (0, 0), (25, 60), (32, 84), (7, 24).

Proof of Theorem 3. Consider a Pythagorean LEP P with sides b, c. By Propo-
sition 5, b divides 2c, and by Theorem 2, gcd(b, c) = 3, 4 or 5. If b is odd, then
b divides c, so b = gcd(b, c) and b is 3 or 5. If b is even, say b = 2b′, then b′

divides c so b′ divides gcd(b, c). Thus b′ is 2, 3, 4 or 5 and thus b is 4, 6, 8 or 10.
But as observed in Remark 6, if gcd(b, c) = 4 neither b nor c is divisible by 8. So
b is 3,4,5,6 or 10, as claim in Theorem 3. In remains to exhibit a family of such
Pythagorean LEPs in each case.

In the notation of previous sections, bc = k(m2 + n2), b+ c = kmn for positive
integers k,m, n where m,n are relatively prime with m < n. For convenience, let
us restate (8):

km2 + kn2 + b2 = kbmn.

Moreover, by Lemma 3, k is either 5, 8 or 9, corresponding to gcd(b, c) = 3, 4, 5
respectively.

Note that for b = 3 we have k = 9 and (8) gives m2 + n2 + 1 = 3mn. Setting
x = n−m, y = m+ n we obtain the Pell-like equation y2 − 5x2 = 4. Conversely,
note that if (x, y) is a solution to this equation, then x, y necessarily have the same
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parity and we can set m = y−x
2 , n = y+x

2 to obtain an integer solution (m,n) to

m2 + n2 + 1 = 3mn. Then c = k
b
(m2 + n2) = 3(x2+y2)

2 .

For b = 4 we have k = 8 and (8) gives m2 + n2 + 2 = 4mn. Note then that
m, n must have same parity. Setting 2x = n − m, 2y = n + m we obtain the
Pell equation y2 − 3x2 = 1. Conversely, note that if (x, y) is a solution to this
equation, then we can set m = y−x, n = y+x to obtain an integer solution (m,n)
to m2 + n2 + 2 = 4mn. Then c = k

b
(m2 + n2) = 4(x2 + y2).

For b = 5 we have k = 5 and (8) gives m2 + n2 + 5 = 5mn. Setting x =
n −m, y = m + n we obtain the Pell-like equation 3y2 − 7x2 = 20. Conversely,
note that if (x, y) is a solution to this equation, then x, y necessarily have the same
parity and we can set m = y−x

2 , n = y+x
2 to obtain an integer solution (m,n) to

m2 + n2 + 5 = 5mn. Then c = k
b
(m2 + n2) = x2+y2

2 .
Similarly, for b = 6 (resp. b = 10), we have k = 9 (resp. k = 5) and (8) gives

m2+n2+4 = 6mn (resp. m2+n2+20 = 10mn). Note that m,n necessarily have
the same parity and we can set x = n−m

2 , y = m+n
2 . This gives the Pell (resp. Pell-

like) equation y2 − 2x2 = 1 (resp. 2y2 − 3x2 = 5). Conversely, note that if (x, y)
is a solution to this equation, then we can set m = y − x, n = y + x to obtain
an integer solution (m,n) to m2 + n2 + 4 = 6mn (resp. m2 + n2 + 20 = 10mn).
Using c = k

b
(m2 + n2), for b = 6 we have c = 3(x2 + y2) and for b = 10 we have

c = x2 + y2. �

We complete this section by connecting the above solution families F1-F5 to the
material in the earlier Sections. In particular, we locate the Pythagorean equable
parallelograms in the trees of LEPs of Figure 6 and 7.

F1: b = 3. The solutions (x, y) to the Pell-like equation y2 − 5x2 = 4 are well
known to be (L2i, F2i), starting at (F0, L0) = (0, 2), (F2, L2) = (1, 3), where F
stands for the Fibonacci numbers and L for the Lucas numbers. Both L2i and F2i

satisfy the recurrence relation ai = 3ai−1 − ai−2, with different initial conditions.
So the first few solutions of equation y2 − 5x2 = 4 are: (0, 2), (1, 3), (3, 7), (8, 18),

(21, 47). The resulting c-values, given by c = 3(x2+y2)
2 , are: 6, 15, 87, 582, 3975.

We saw the corresponding LEPs (3, c) previously in Example 1; in Figure 6 they
lie on the central horizontal branch to the right of the fundamental solution (3, 6).
As we saw, these c-values are generated recursively by the formula f(c) = 7

2c −
6 +

√

45
4 c

2 − 54c− 81, or alternatively, using the recurrence relation ci = 8ci−1 −
8ci−2+ci−3. Notice that by Theorem 1, these c values are precisely those numbers
c = 3i for which 5i2 − 8i− 4 is a square.

F2: b = 4. The solutions (x, y) to Pell’s equation y2 − 3x2 = 1 are well
known to be given by the recurrence relation ai = 4ai−1 − ai−2. See OEIS en-
tries A001075 and A001353 [10]. The first few solutions of y2 − 3x2 = 1 are:
(0, 1), (1, 2), (4, 7), (15, 26), (56, 97). The resulting c-values, given by c = 4(x2+y2),
are: 4, 20, 260, 3604, 50180. We saw the corresponding LEPs (4, c) in Example 2;
in Figure 7 they lie on the central horizontal branch to the right of the fundamental
solution (4, 4). The c-values can be generated recursively by the formula f(c) =

7c−8+4
√
3c2 − 8c− 16, or by the recurrence relation ci = 15ci−1−15ci−2+ci−3.



LATTICE EQUABLE PARALLELOGRAMS 23

Notice that by Theorem 1, these c values are precisely those numbers c = 4i for
which 3i2 − 2i− 1 is a square.

F3: b = 5. The Pell-like equation 3y2−7x2 = 20 is less common. Its solutions
(x, y) are given by the recurrence relation ai = 5ai−2 − ai−4. The first few so-
lutions are: (1, 3), (2, 4), (7, 11), (11, 17), (34, 52), (53, 81), (163, 249). The resulting

c-values, given by c = x2+y2

2 , are: 5, 10, 85, 205, 1930, 4685, 44285. The position
of the corresponding LEPs (5, c) is more complicated than what we saw for b = 3
and b = 4. Every second solution, starting at (5, 5), appeared in Example 3; in
Figure 6 they lie on the central horizontal branch to the right of the fundamental
solution (5, 5). These c-values can be generated recursively by the formula

f(c) =
23

2
c− 10 +

√

21 · 25
4

c2 − 250c− 625,

or by the recurrence relation ci = 24ci−1 − 24ci−2 + ci−3. The other solutions
are on the central horizontal branch of Figure 6 to the left of the fundamental
solution (5, 5). These c-values are generated recursively by the same formula (and
recurrence relation) but starting at c = 10.

Note that in the proof of Theorem 3 the equation 3y2 − 7x2 = 20 was derived
from m2 + n2 + 5 = 5mn. This latter equation is well known; indeed, it is easy
to see that for the solutions m,n, the first component comprise those numbers m
for which 21m2 − 20 is a square. See entry A237254 in [10]. By Theorem 1, the
c values for b = 5 are precisely those numbers c = 5i for which 21i2 − 8i − 4 is a
square.

F4: b = 6. The solutions (x, y) to Pell’s equation y2− 2x2 = 1 are well known
to be given by the recurrence relation ai = 6ai−1−ai−2. See OEIS entries A001541,
A001542 [10]. The first few solutions are: (0, 1), (2, 3), (12, 17), (70, 99), (408, 577).
The resulting c-values, given by c = 3(x2 + y2), are: 3, 39, 1299, 44103, 1498179.
The corresponding LEPs (6, c) occur on the central horizontal branch of Figure
6, to the left of the fundamental solution (3, 6). To generate the c-values of the
solutions on this branch we can use Equation 13 with b = 6. These c-values can
be generated recursively by the formula

f(c) = 17c− 12 + 6
√

9c2 − (6 + c)2,

and by the recurrence relation ci = 35ci−1 − 35ci−2 + ci−3. By Theorem 1, these
c values are precisely those numbers c = 3i for which 2i2 − i− 1 is a square.

F5: b = 10. Like the b = 5 case, the Pell-like equation 2y2 − 3x2 = 5 is not
very common. Its solutions (x, y) are given by the recurrence relation ai = 10ai−2−
ai−4. The first few solutions are: (1, 2), (3, 4), (13, 16), (31, 38), (129, 158), (307, 376).
The resulting c-values, given by c = x2 + y2, are: 5, 25, 425, 2405, 41605, 235625.
The corresponding LEPs (10, c) occur on the first vertical branch to the left of the
fundamental solution (5, 5) in Figure 6. Every second solution, starting at (10, 5)
appears above the central horizontal axis. To generate these c-values we can use
Equation 13 with b = 10. This gives the equation

f(c) = 49c− 20 + 10
√

25c2 − (10 + c)2,
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and by (14), the recurrence relation ci = 99ci−1−99ci−2+ci−3. The other solutions
appears below the central horizontal axis. Their c-values are generated recursively
by the same formula (and recurrence relation) but starting at c = 25.

Note that in the proof of Theorem 3 the equation 2y2 − 3x2 = 5 was derived
from m2 + n2 + 20 = 10mn. This latter equation is well known; indeed, it is easy
to see that for the solutions m,n, the first component comprise those numbers m
for which 6m2 − 5 is a square. See entry A080806 in [10]. By Theorem 1, the c
values for b = 10 are precisely those numbers c = 5i for which 6i2 − i − 1 is a
square.

Remark 13. The Pell-like equations in families F1 – F5 can all be put in the
following form:

(15) ay2 − (a+ 4)x2 = d,

where a, d are integers and d is even if a is odd. Table 1 gives the values of a, d
for the five families.

A direct calculation shows that if (x, y) is a solution to (15), then another
solution is given by

(

x′

y′

)

=
1

2

(

a+ 2 a
a+ 4 a+ 2

)(

x
y

)

=

(

x+ a(x+y)
2

2x+ y + a(x+y)
2

)

.

This was proved by Réalis for d = ±4 [8] (see also [3, p. 407]), but it holds in the
general case. (Note that if a is odd, then from (15), as d is even, the numbers x, y
must have the same parity, so x′, y′ are integers). Furthermore, provided (15) has
one solution, (x0, y0) say, this process gives a sequence of solutions (xi, yi), and it
is easy to verify that it satisfies the following recurrence relation:

(xi, yi) = (a+ 2)(xi−1, yi−1)− (xi−2, yi−2).

Note that (15) does not have a solution for all a and d. For example, for a =
3, d = 4, the equation is 3y2 − 7x2 = 4. Modulo 3 this is −x2 ≡ 1, which has no
solution.

Family F1 F2 F3 F4 F5
a 1 2 3 4 8
d 4 2 20 4 20

Table 1.

Appendix: The Equable Triangles Theorem

The Equable Triangles Theorem says that there are only 5 equable triangles.
For the early history of the theorem, Dickson [3, pp. 195, 199] cites Whitworth and
Briddle in Math. Quest. Educational Times 5, 1904, 54–56, 62–63, but we have
been unable to locate this/these works. Equable triangles have been investigated
in several works [5, 6, 11, 13]. However the only proof of the Equable Triangles
Theorem we have seen in the literature is by Arthur H. Foss [4]. In this appendix
we supply a different proof.
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b
=
5k

3k

4k

a

c

B C

A

D

Figure 13. Equable triangles

For equable triangles with sides a, b, c, Heron’s formula gives

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c) = 16(a+ b+ c).

Let u = −a+b+c, v = a−b+c, w = a+b−c, so that a = v+w
2 , b = u+w

2 , c = u+v
2 .

Then our equation is

(16) uvw = 16(u+ v + w),

and we look for solutions u, v, w, all of the same parity. Further, we may assume
u ≤ v ≤ w. Note that, since u, v, w, have the same parity, so from (16), u, v, w are
necessarily even. Let u = 2x, v = 2y, w = 2z, so a = y + z, b = x + z, c = x + y.
Then xyz = 4(x+ y + z). Thus

y ≤ z =
4(x+ y)

xy − 4
,

so xy2 − 8y − 4x ≤ 0. Hence

x ≤ y ≤ 4 + 2
√
4 + x2

x

so x2 ≤ 4 + 2
√
4 + x2. Hence (x2 − 4)2 ≤ 4(4 + x2). Thus x4 − 12x2 ≤ 0, which

gives x ≤ 3. Then

y ≤ 4 + 2
√
4 + x2

x
≤ 4 + 2

√
4 + 1,

since the function 4+2
√
4+x2

x
is decreasing for positive x. So, as y is an integer,

y ≤ 8. Then, considering the values x ≤ 3, y ≤ 8 and z = 4(x+y)
xy−4 , we find the

following integer values for x, y, z:

1, 5, 24 1, 6, 14 1, 8, 9 2, 3, 10 2, 4, 6,

which give the values for a, b, c:

6, 25, 29 7, 15, 20 9, 10, 17 5, 12, 13 6, 8, 10.

This completes the proof. Note that the last two are Pythagorean triples, while
intriguingly, for the other three cases, the corresponding triangle is the complement
of a Pythagorean triangle of the form 3k, 4k, 5k in a larger Pythagorean triangle;
see Figure 13. The three cases correspond to the values k = 2, 3, 5.
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Collège Calvin, Geneva, Switzerland 1211

E-mail address: christian.aebi@edu.ge.ch

Department of Mathematics, La Trobe University, Melbourne, Australia 3086

E-mail address: G.Cairns@latrobe.edu.au

https://oeis.org

	1. Introduction
	2. LEPs: general properties and special cases
	3. The LEP restriction: gcd(b,c)=3,4,5
	4. The forest of LEPs
	5. Recurrence relations in the branches of the LEP trees
	6. Diagonals, heights and altitudes
	7. Pythagorean Equable Parallelograms
	Appendix: The Equable Triangles Theorem
	References

