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Abstract

In 1944, Freeman Dyson defined the concept of rank of an integer par-
tition and introduced without definition the term of crank of an integer
partition. A definition for the crank satisfying the properties hypothesized
for it by Dyson was discovered in 1988 by G. E. Andrews and F. G. Gar-
van. In this paper, we introduce truncated forms for two theta identities
involving the generating functions for partitions with non-negative rank
and non-negative crank. As corollaries we derive new infinite families of
linear inequalities for the partition function p(n). The number of Garden
of Eden partitions are also considered in this context in order to provide
other infinite families of linear inequalities for p(n).
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1 Introduction

A partition of a positive integer n is any non-increasing sequence of positive
integers whose sum is n [1]. Let p(n) denote the number of partitions of n with
the usual convention that p(0) = 1 and p(n) = 0 when n is not a non-negative
integer. Ramanujan proved that for every positive integer n, we have:

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

In order to explain the last two congruences combinatorially, Dyson [11] in-
troduced the rank of a partition. The rank of a partition is defined to be its
largest part minus the number of its parts. We denote by N(m,n) the number
of partitions of n with rank m. According to Atkin and Swinnerton-Dyer [7, eq.

1

http://arxiv.org/abs/2006.07705v1


(2.12)], the generating function for N(m,n) is given by

∞
∑

n=0

N(m,n)qn =
1

(q; q)∞

∞
∑

n=1

(−1)n−1qn(3n−1)/2+mn(1 − qn). (1)

Here and throughout this paper, we use the following customary q-series nota-
tion:

(a; q)n =

{

1, for n = 0,

(1 − a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n;

[

n
k

]

=







(q; q)n
(q; q)k(q; q)n−k

, if 0 6 k 6 n,

0, otherwise.

We sometimes use the following compressed notations:

(a1, a2, . . . , ar; q)n = (a1; q)n(a2, q)n · · · (ar; q)n,

(a1, a2, . . . , ar; q)∞ = (a1; q)n(a2, q)n · · · (ar; q)∞.

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever
(a; q)∞ appears in a formula, we shall assume |q| < 1.

By (1), we immediately deduce that

∞
∑

n=0

N(n)qn =
1

(q; q)∞

∞
∑

n=0

(−1)nqn(3n+1)/2 = 1 +

∞
∑

n=1

qn
[

2n− 1
n− 1

]

, (2)

and

∞
∑

n=0

R(n)qn =
1

(q; q)∞

∞
∑

n=1

(−1)n+1qn(3n+1)/2 =
∞
∑

n=1

qn+1

[

2n
n− 1

]

, (3)

where N(n) is the number of partitions of n with non-negative rank and R(n)
is the number of partitions of n with positive rank. We remark that the se-
quences {N(n)}n>0 and {R(n)}n>0 are known and can be seen in the On-Line
Encyclopedia of Integer Sequence [22, A064173,A064174].

Linear inequalities involving Eulers partition function p(n) have been the
subject of recent studies. In [4], Andrews and Merca considered Euler’s pentag-
onal number theorem

∞
∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞

and proved a truncated theorem on partitions.
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Theorem 1.1. For k > 1,

1

(q; q)∞

k−1
∑

j=0

(−1)jqj(3j+1)/2(1− q2j+1) = 1 + (−1)k−1
∞
∑

n=1

q(
k

2)+(k+1)n

(q; q)n

[

n− 1
k − 1

]

.

As a consequence of Theorem 1.1, Andrews and Merca derived the following
linear partition inequality: For n > 0, k > 1,

(−1)k−1
k−1
∑

j=0

(−1)j
(

p
(

n− j(3j + 1)/2
)

− p
(

n− j(3j + 5)/2− 1
)

)

> 0, (4)

with strict inequality if n > k(3k + 1)/2.
Theorem 1.1 has opened up a new study on truncated theta series and linear

partition inequalities. Other recent investigations involving truncated theta
series and linear partition inequalities can be found in several papers by Andrews
and Merca [5], Chan, Ho and Mao [10], Guo and Zeng [14], He, Ji and Zang
[15], Mao [17, 18], Merca [19], and Merca, Wang and Yee [20].

In this paper, motivated by these results, we shall provide a bisected version
of Theorem 1.1. The first result contains a truncated form of the identity (2).

Theorem 1.2. For |q| < 1 and k > 1, there holds

1

(q; q)∞

k−1
∑

j=0

(−1)jqj(3j+1)/2

= 1+

∞
∑

j=1

qj
[

2j − 1
j − 1

]

+ (−1)k−1 qk(3k+1)/2

(q, q3; q3)∞

∞
∑

j=0

qj(3j+3k+2)

(q3; q3)j(q2; q3)k+j

and

1

(q; q)∞

k−1
∑

j=0

(−1)jqj(3j+5)/2+1

=

∞
∑

j=1

qj
[

2j − 1
j − 1

]

+ (−1)k−1 q
k(3k+5)/2+1

(q2, q3; q3)∞

∞
∑

j=0

qj(3j+3k+4)

(q3; q3)j(q; q3)k+j+1
.

An immediate consequence owing to the positivity of the sums on the right
hand side of the second identity is given by the following infinite family of linear
partition inequalities.

Corollary 1.3. For n > 0, k > 1,

(−1)k−1





k−1
∑

j=0

(−1)jp(n− j(3j + 5)/2− 1)−N(n)



 > 0.
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with strict inequality if n > k(3k + 5)/2 + 1. For example,

p(n− 1) > N(n),

p(n− 1)− p(n− 5) 6 N(n),

p(n− 1)− p(n− 5) + p(n− 12) > N(n), and

p(n− 1)− p(n− 5) + p(n− 12)− p(n− 22) 6 N(n).

Regarding the inequality (4), we recall the following partition theoretic in-
terpretation given by Andrews and Merca [4, Theorem 1]:

(−1)k−1
k−1
∑

j=0

(−1)j
(

p
(

n− j(3j + 1)/2
)

− p
(

n− j(3j + 5)/2− 1
)

)

= Mk(n),

where Mk(n) is the number of partitions of n in which k is the least integer that
is not a part and there are more parts > k than there are < k. In [24] has given
a combinatorial proof of this result. We can easily deduce that Corollary 1.3 is
equivalent to the following result.

Corollary 1.4. For n > 0, k > 1,

(−1)k−1





k−1
∑

j=0

(−1)jp(n− j(3j + 1)/2)−N(n)



 > Mk(n),

with strict inequality if n > k(3k + 5)/2 + 1.

The following theorem contains a truncated version of the identity (3).

Theorem 1.5. For |q| < 1 and k > 1, there holds

1

(q; q)∞

k−1
∑

j=1

(−1)j+1qj(3j+1)/2

=

∞
∑

j=1

qj+1

[

2j
j − 1

]

+ (−1)k
qk(3k+1)/2

(q, q3; q3)∞

∞
∑

j=0

qj(3j+3k+2)

(q3; q3)j(q2; q3)k+j

and

1

(q; q)∞



1−

k−1
∑

j=0

(−1)jqj(3j+5)/2+1





= 1 +

∞
∑

j=1

qj+1

[

2j
j − 1

]

+ (−1)k
qk(3k+5)/2+1

(q2, q3; q3)∞

∞
∑

j=0

qj(3j+3k+4)

(q3; q3)j(q; q3)k+j+1
.

Theorem 1.5 is not essentially a new result, it is an equivalent version of The-
orem 1.2. As a consequence of Theorem 1.5 we remark the following equivalent
form of Corollary 1.4.
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Corollary 1.6. For n > 0, k > 1,

(−1)k





k−1
∑

j=1

(−1)j+1p
(

n− j(3j + 1)/2
)

−R(n)



 > Mk(n),

with strict inequality if n > k(3k + 5)/2 + 1.

Theorems 1.2 and 1.5 are good reasons to look for new infinite families of
linear inequalities for the partition function p(n). The rest of this paper is
organized as follows. We will first prove Theorem 1.2 in Section 2. In Section
3, we consider the partitions with non-negative crank and provide a truncated
form of an identity of Auluck [8]. Section 4 is devoted the partitions with rank
−2 or less. Connections between partitions with rank −2 or less and partitions
with positive crank are given in this context.

2 Proof of Theorem 1.2

To prove the theorem, we consider the second identity by Heine’s transformation
of 2φ1 series [13, (III.2)], namely

2φ1

(

a, b
c

; q, z

)

=
(c/b, bz; q)∞
(c, z; q)∞

2φ1

(

abz/c, b
bz

; q, c/b

)

. (5)

Rewriting (2) as

1

(q; q)∞

k−1
∑

n=0

(−1)nqn(3n+1)/2 = 1+

∞
∑

n=1

qn
[

2n− 1
n− 1

]

−
1

(q; q)∞

∞
∑

n=k

(−1)nqn(3n+1)/2,

we get

1

(q; q)∞

∞
∑

n=k

(−1)nqn(3n+1)/2

= (−1)k
qk(3k+1)/2

(q; q)∞

∞
∑

n=0

(−1)nqn(6k+1)/2+3n2/2

= (−1)k
qk(3k+1)/2

(q; q)∞
lim
z→0

∞
∑

n=0

(q3k+2/z; q3)n
(z; q3)n

zn

= (−1)k
qk(3k+1)/2

(q; q)∞
lim
z→0

2φ1

(

q3, q3k+2/z
z

; q3, z

)

= (−1)k
qk(3k+1)/2

(q; q)∞

× lim
z→0

(z2/q3k+2, q3k+2; q3)∞
(z; q3)2∞

2φ1

(

q3k+5/z, q3k+2/z
q3k+2 ; q3, z2/q3k+2

)
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= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(q3k+5/z, q3k+2/z; q3)n
(q3, q3k+2; q3)n

(

z2

q3k+2

)n

= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(−1)nq3n(n+1)/2(q3k+2/z; q3)nz
n

(q3, q3k+2; q3)n

= (−1)kqk(3k+1)/2 (q
3k+2; q3)∞
(q; q)∞

∞
∑

n=0

qn(3n+3k+2)

(q3, q3k+2; q3)n

= (−1)kqk(3k+1)/2 (q
2; q3)∞
(q; q)∞

∞
∑

n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
.

The first identity is proved.
Considering Euler’s pentagonal number theorem, the identity (2) becomes

1

(q; q)∞

k−1
∑

n=0

(−1)nqn(3n+5)/2+1 =
∞
∑

n=1

qn
[

2n− 1
n− 1

]

−
1

(q; q)∞

∞
∑

n=k

(−1)nqn(3n+5)/2+1.

The proof of the second identity is quite similar to the proof of the first one.
We can write

1

(q; q)∞

∞
∑

n=k

(−1)nqn(3n+5)/2+1

= (−1)k
qk(3k+5)/2+1

(q; q)∞

∞
∑

n=0

(−1)nqn(6k+5)/2+3n2/2

= (−1)k
qk(3k+5)/2+1

(q; q)∞
lim
z→0

∞
∑

n=0

(q3k+4/z; q3)n
(z; q3)n

zn

= (−1)k
qk(3k+5)/2+1

(q; q)∞
lim
z→0

2φ1

(

q3, q3k+4/z
z

; q3, z

)

= (−1)k
qk(3k+5)/2+1

(q; q)∞

× lim
z→0

(z2/q3k+4, q3k+4; q3)∞
(z; q3)2∞

2φ1

(

q3k+7/z, q3k+4/z
q3k+4 ; q3, z2/q3k+4

)

= (−1)kqk(3k+5)/2+1 (q
3k+4; q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(q3k+7/z, q3k+4/z; q3)n
(q3, q3k+4; q3)n

(

z2

q3k+4

)n

= (−1)kqk(3k+5)/2+1 (q
3k+4; q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(−1)nq3n(n+1)/2(q3k+4/z; q3)nz
n

(q3, q3k+4; q3)n

= (−1)kqk(3k+5)/2+1 (q
3k+4; q3)∞
(q; q)∞

∞
∑

n=0

qn(3n+3k+4)

(q3, q3k+4; q3)n

= (−1)kqk(3k+5)/2+1 (q; q
3)∞

(q; q)∞

∞
∑

n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
.
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This concludes the proof.

3 Truncated identity of Auluck

In 1988, Andrews and Garvan [3] defined the crank of an integer partition as
follows. The crank of a partition is the largest part of the partition if there are
no ones as parts and otherwise is the number of parts larger than the number
of ones minus the number of ones. If M(m,n) denotes the number of partitions
of n with crank m, then [3]:

∞
∑

n=0

∞
∑

m=−∞

M(m,n)zmqn =
(q; q)∞

(zq; q)∞(q/z; q)∞
. (6)

In this section we denote by C(n) the number of partition of n with non-negative
crank. Recently, Uncu [23] proved that the number of partitions into even
number of distinct parts whose odd-indexed parts sum is n is equal to the
number of partitions of n with non-negative crank. In this context he provided
the following result.

Theorem 3.1. The generating function for partitions with non-negative crank
is

∞
∑

n=0

C(n)qn =
1

(q; q)∞

∞
∑

n=0

(−1)nqn(n+1)/2.

We remark that this result was proved independently by Ballantine and
Merca [9] in a paper that investigate connections between least r-gaps in par-
titions and partitions with non-negative rank and non-negative crank. In this
paper they proved that the number of partitions of n with nonnegative crank
is even except when n is twice a generalized pentagonal number. Very recently,
Andrews and Newman [6] considered (6) and provided a different proof for The-
orem 3.1. In 2011, Andrews [2] remarked that the following theta identity

1

(q; q)∞

∞
∑

n=0

(−1)nqn(n+1)/2 =

∞
∑

n=0

qn(n+1)

(q; q)2n
(7)

is effectively equivalent to an identity of Auluck [8, eq. (10)] published in 1951.
We have the following truncated form of the identity (7).

Theorem 3.2. For k > 1,

1

(q; q)∞

k−1
∑

n=0

(−1)nqn(n+1)/2 =

∞
∑

n=0

qn(n+1)

(q; q)2n
+(−1)k−1qk(k+1)/2

∞
∑

n=0

qn(n+k+1)

(q; q)n(q; q)n+k
.

Proof. The proof of this theorem is quite similar to the proof of Theorem 1.2.
The identity (7) can be written as:

1

(q; q)∞

k−1
∑

n=0

(−1)nqn(n+1)/2 =

∞
∑

n=0

qn(n+1)

(q; q)2n
−

1

(q; q)∞

∞
∑

n=k

(−1)nqn(n+1)/2.

7



We have

1

(q; q)∞

∞
∑

n=k

(−1)nqn(n+1)/2

= (−1)k
qk(k+1)/2

(q; q)∞

∞
∑

n=0

(−1)nqn(2k+1)/2+n2/2

= (−1)k
qk(k+1)/2

(q; q)∞
lim
z→0

∞
∑

n=0

(qk+1/z; q)n
(z; q)n

= (−1)k
qk(k+1)/2

(q; q)∞
lim
z→0

(z2/qk+1, qk+1; q)∞
(z; q)2∞

∞
∑

n=0

(qk+2/z, qk+1/z; q)n
(q; q)n(qk+1; q)n

(

z2

qk+1

)n

(By Heine’s transformation (5))

= (−1)kqk(k+1)/2 (q
k+1; q)∞
(q; q)∞

∞
∑

n=0

qn(n+k+1)

(q, qk+1; q)n

= (−1)kqk(k+1)/2
∞
∑

n=0

qn(n+k+1)

(q; q)n(q; q)n+k
.

This concludes the proof.

In analogy with Corollary 1.4, we derive a new infinite family of linear in-
equalities for p(n).

Corollary 3.3. For n > 0, k > 1,

(−1)k−1





k−1
∑

j=0

(−1)jp
(

n− j(j + 1)/2
)

− C(n)



 > 0,

with strict inequality if n > k(k + 1)/2. For example,

p(n) > C(n),

p(n)− p(n− 1) 6 C(n),

p(n)− p(n− 1) + p(n− 3) > C(n), and

p(n)− p(n− 1) + p(n− 3)− p(n− 6) 6 C(n).

4 Garden of Eden partitions

In 2007, B. Hopkins and J. A. Sellers [16] provided a formula that counts the
number of partitions of n that have rank −2 or less. Following the terminology
of cellular automata and combinatorial game theory, they call these Garden of
Eden partitions. These partitions arise naturally in analyzing the game Bulgar-
ian solitaire which was popularized by Gardner [12] in 1983. By (1), Hopkins

8



and Sellers obtained

∞
∑

n=0

ge(n)qn =
1

(q; q)∞

∞
∑

n=1

(−1)n−1q3n(n+1)/2, (8)

where ge(n) counts the Garden of Eden partitions of n. We remark the following
theta identity.

Theorem 4.1. For |q| < 1,

1

(q; q)∞

∞
∑

n=1

(−1)n−1q3n(n+1)/2 =
1

(q, q2; q3)∞

∞
∑

n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1
.

Proof. We can write

1

(q; q)∞

∞
∑

n=1

(−1)n−1q3n(n+1)/2

=
q3

(q; q)∞

∞
∑

n=0

(−1)nq3n
2/2+9n/2

=
q3

(q; q)∞
lim
z→0

∞
∑

n=0

(q6/z; q3)n
(z; q3)n

zn

=
q3

(q; q)∞
lim
z→0

(z2/q6, q6; q3)∞
(z; q3)2∞

∞
∑

n=0

(qn/z, q6/z; q3)n
(q3, q6; q3)n

(

z2

q6

)n

(By Heine’s transformation (5))

=
q3(q6; q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(−1)nq3n(n+1)/2(q6/z; q3)n
(q3, q6; q3)n

zn

=
q3(q6; q3)∞
(q; q)∞

∞
∑

n=0

q3n(n+2)

(q3, q6; q3)n

=
(q3; q3)∞
(q; q)∞

∞
∑

n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1
.

Relating to Theorem 4.1, we remark that

∞
∑

n=0

D(n)qn =
1

(q; q)∞

∞
∑

n=1

(−1)n−1qn(n+1)/2 =

∞
∑

n=0

q(n+1)2

(q; q)n(q; q)n+1
(9)

is the generating function for the partitions with positive crank. It is an easy
exercise to deduce Theorem 4.1 from (9) and vice versa. Connections between
Garden of Eden partitions and partitions with positive crank can be easily
derived considering Theorem 4.1.
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Corollary 4.2. For n > 0,

ge(n) =

⌊n/3⌋
∑

k=0

D(j)p3(n− 3j),

where p3(n) counts partitions of n in which no parts are multiples of 3.

We have the following truncated form of Theorem 4.1.

Theorem 4.3. For |q| < 1, k > 1,

1

(q; q)∞

k
∑

n=1

(−1)n−1q3n(n+1)/2 =
1

(q, q2; q3)∞

∞
∑

n=0

q3(n+1)2

(q3; q3)n(q3; q3)n+1

+ (−1)k−1 q
3(k+1)(k+2)/2

(q, q2; q3)∞

∞
∑

n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1
.

Proof. The identity (8) can be written as:

1

(q; q)∞

k
∑

n=1

(−1)n−1q3n(n+1)/2 =

∞
∑

n=0

ge(n)qn −
q3

(q; q)∞

∞
∑

n=k

(−1)nq3n(n+3)/2.

We have

q3

(q; q)∞

∞
∑

n=k

(−1)nq3n(n+3)/2

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞

∞
∑

n=0

(−1)nq3n(2k+3)/2+3n2/2

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞
lim
z→0

∞
∑

n=0

(q3(k+2)/2/z; q3)n
(z; q3)n

zn

= (−1)k
q3(k+1)(k+2)/2

(q; q)∞

× lim
z→0

(z2/q3(k+2), q3(k+2); q3)∞
(z; q3)2∞

∞
∑

n=0

(q3(k+3)/z, q3(k+2)/z; q3)n
(q3, q3(k+2); q3)n

(

z2

q3(k+2)

)n

(By Heine’s transformation (5))

= (−1)kq3(k+1)(k+2)/2 (q
3(k+2); q3)∞
(q; q)∞

lim
z→0

∞
∑

n=0

(−1)n
q3n(n+1)/2(q3(k+2)/z; q3)n

(q3, q3(k+2); q3)n
zn

= (−1)kq3(k+1)(k+2)/2 (q
3(k+2); q3)∞
(q; q)∞

∞
∑

n=0

q3n(n+k+2)

(q3, q3(k+2); q)n

= (−1)kq3(k+1)(k+2)/2 (q
3; q3)∞
(q; q)∞

∞
∑

n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1
.

The proof follows easily considering Theorem 4.1.
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On the one hand, as a consequence of Theorem 4.3, we remark a new infinite
family of linear inequalities for the partition function p(n).

Corollary 4.4. For n > 0, k > 1,

(−1)k−1





k
∑

j=1

(−1)j−1p
(

n− 3j(j + 1)/2
)

− ge(n)



 > 0,

with strict inequality if n > 3(k + 1)(k + 2)/2. For example,

p(n− 3) > ge(n),

p(n− 3)− p(n− 9) 6 ge(n),

p(n− 3)− p(n− 9) + p(n− 18) > ge(n), and

p(n− 3)− p(n− 9) + p(n− 18)− p(n− 30) 6 ge(n).

On the other hand, by Theorem 4.3, we deduce the following truncated
version of (9).

Corollary 4.5. For |q| < 1, k > 1,

1

(q; q)∞

k
∑

n=1

(−1)n−1qn(n+1)/2

=

∞
∑

n=0

q(n+1)2

(q; q)n(q; q)n+1
+ (−1)k−1q(k+1)(k+2)/2

∞
∑

n=0

qn(n+k+2)

(q; q)n(q; q)n+k+1
.

This result allows us to deduce the following infinite family of linear inequal-
ities for the partition function p(n).

Corollary 4.6. For n > 0, k > 1,

(−1)k−1





k
∑

j=1

(−1)j−1p
(

n− j(j + 1)/2
)

−D(n)



 > 0,

with strict inequality if n > (k + 1)(k + 2)/2. For example,

p(n− 1) > D(n),

p(n− 1)− p(n− 3) 6 D(n),

p(n− 1)− p(n− 3) + p(n− 6) > D(n), and

p(n− 1)− p(n− 3) + p(n− 6)− p(n− 10) 6 D(n).

5 Concluding remarks

New infinite families of linear inequalities for the partition function p(n) have
been introduced in this paper considering two theta identities involving the
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generating functions for partitions with non-negative rank and non-negative
crank. Inspired by these results, in Section 4 we considered the partitions with
rank 6 −2 (Garden of Eden partitions) and obtained another infinite families
of linear inequalities for p(n).

Theorems 1.1 and 1.2 allow us to derive the following theta identity.

Corollary 5.1. For |q| < 1 and k > 1, there holds

∞
∑

n=1

q(
k

2)+(k+1)n

(q; q)n

[

n− 1
k − 1

]

=
qk(3k+1)/2

(q, q3; q3)∞

∞
∑

n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
−

qk(3k+5)/2+1

(q2, q3; q3)∞

∞
∑

n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
.

A similar theta identity can be derived if we consider another truncated form
of Euler’s pentagonal number theorem given by D. Shanks [21] in 1951:

1 +

k
∑

n=1

(−1)n
(

qn(3n+1)/2 + qn(3n−1)/2
)

=

k
∑

n=0

(−1)n
q(

n+1

2 )+kn(q; q)k
(q; q)n

. (10)

Corollary 5.2. For |q| < 1 and k > 0, there holds

(−1)k

(q; q)∞

k
∑

n=0

(−1)n
q(

n+1

2 )+kn(q; q)k
(q; q)n

− (−1)k

=
qk(3k+7)/2+2

(q, q3; q3)∞

∞
∑

n=0

qn(3n+3k+5)

(q3; q3)n(q2; q3)n+k+1
+

qk(3k+5)/2+1

(q2, q3; q3)∞

∞
∑

n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
.

The Shanks identity (10) and Corollary 5.2 allow us to obtain the following
infinite family of linear inequalities: For n > 0, k > 1,

(−1)k



p(n) +

k
∑

j=1

(−1)j
(

p
(

n− j(3j + 1)/2
)

− p
(

n− j(3j − 1)/2
)

)



 > 0,

with strict inequality if n > k(3k + 5)/2. We remark that this inequality is
weaker than the inequality (4). However, a partition theoretic interpretation
for it would be very interesting.

Relevant to Theorem 1.2 and Corollaries 5.1 and 5.2, it would be very ap-
pealing to have combinatorial interpretations for

qk(3k+1)/2

(q, q3; q3)∞

∞
∑

n=0

qn(3n+3k+2)

(q3; q3)n(q2; q3)n+k
,

qk(3k+5)/2+1

(q2, q3; q3)∞

∞
∑

n=0

qn(3n+3k+4)

(q3; q3)n(q; q3)n+k+1
,
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and
qk(3k+7)/2+2

(q, q3; q3)∞

∞
∑

n=0

qn(3n+3k+5)

(q3; q3)n(q2; q3)n+k+1
.

Finally, with regard to Theorems 3.2 and 4.4, partition theoretic interpretation
for

qk(k+1)/2
∞
∑

n=0

qn(n+k+1)

(q; q)n(q; q)n+k

and
q3(k+1)(k+2)/2

(q, q2; q3)∞

∞
∑

n=0

q3n(n+k+2)

(q3; q3)n(q3; q3)n+k+1

would be very interesting.
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