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Classifying groups with a small number of subgroups
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Abstract

We provide lower bounds on the number of subgroups of a group G as a function of the primes
and exponents appearing in the prime factorization of |G|. Using these bounds, we classify all
abelian groups with 22 or fewer subgroups, and all non-abelian groups with 19 or fewer subgroups.
This allows us to extend the integer sequence A274847 [14] introduced by Slattery in [13].

It is a classic problem in a first course in group theory to show that a group G has exactly two
subgroups if and only if G ∼= Zp for a prime p. The main idea here is to observe that if | SubG| = 2 or
if G ∼= Zp, then every non-identity element x ∈ G must by necessity generate all of G, i.e. 〈x〉 = G for
all x ∈ G. Slightly less frequently, a course may follow up by considering groups G with exactly three
or four subgroups. In those cases, it turns out that we can again argue that G must be cyclic.

Indeed, if | SubG| = 3 and H ≤ G is the unique, non-trivial, proper subgroup of G, then observe
that for any x ∈ G \ H , we must have 〈x〉 = G as these elements are non-trivial, must generate a
subgroup of G, and cannot generate the trivial subgroup or H . Since G must be cyclic, the fact that
cyclic groups have exactly one subgroup for each positive divisor of |G| implies that |G| = p2 for some
prime p and thus G ∼= Zp2 as cyclic groups of order |G| are unique up to isomorphism.

Similarly, if | SubG| = 4 and H 6= K are the two non-trivial subgroups, then recall that H ∪K ≤ G

if and only if H ≤ K or K ≤ H . It follows that H∪K 6= G and thus, there exists some x ∈ G\ (H ∪K).
Once again, 〈x〉 = G and G is cyclic. As before, a cyclic group G must have exactly one subgroup for
each divisor of |G|, hence it follows that G ∼= Zpq or Zp3 for primes p and q. We summarize these classic
results below.

Classic Results.

1. If | SubG| = 2, then G ∼= Zp for some prime p.

2. If | SubG| = 3, then G ∼= Zp2 for some prime p.

3. If | SubG| = 4, then G ∼= Zpq or G ∼= Zp3 for some primes p and q.

These classic results beg the question: Which (necessarily finite) groups G have exactly k subgroups
when k ≥ 5? Fortunately this becomes much more interesting moving forward as G need not be cyclic
when | SubG| ≥ 5. Thus, from here on we will need a completely different approach.

Miller explored this topic previously in a series of obscure and terse papers [7, 8, 9, 10, 11] in which
he claims to classify the groups with 16 or fewer subgroups, but it is unclear to the authors exactly
how he arrives at his conclusions. Despite that, his results agree with ours, except in the case when
| SubG| = 14 where he seems to have skipped a case, causing him to miss S3 × Z3 and Z3 ⋊ Z32.
Given the assertions within, it is certainly clear that Miller is not applying the techniques we use here.
Recently, Slattery [13] explored this idea once more; reducing any group G by factoring out any cyclic
central Sylow p-subgroups of G first. Using this method, he worked to classify groups with 12 or fewer
subgroups up to similarity defined in the following sense:

Definition (From [13]). Let G and H be finite groups. Write G = P1 × P2 × · · · × Pc × G̃ and

H = Q1 × · · · × Qd × H̃ , where Pi (resp. Qj) are cyclic central Sylow subgroups within G (resp. H).
Then G is similar to H if and only if the following conditions hold:

• G̃ is isomorphic to H̃ .

• c = d
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• ni = mi for some reordering, where |Pi| = pni

i and |Qi| = qmi

i .

Using this definition of similarity, groups that are similar will always have the same number of
subgroups (see Theorem 1.1 below). Slattery was encouraged to submit a sequence (A274847 [14]) to
the Online Encyclopedia of Integer Sequences which counts the number of similarity classes of groups
with k subgroups. Unfortunately, while his results for groups with 9 or fewer subgroups agree with ours
and those of Miller in [7], he didn’t appear to know about Miller’s other papers and has a minor omission
in his final table of results. More specifically, he correctly identifies D8, the dihedral group of order
8, as a non-abelian p-group with 10 subgroups, but mistakenly omits it in his final tables causing him
to under count the groups with 10 subgroups. Thus, the 10th term in sequence A274847 should be 12
rather than 11. As a further point of clarification, in what follows, we stick with GAP1 notation for the
groups we list. As an example, for the extraspecial group of order 27, 〈x, y | x9 = y3 = e, yxy−1 = x4〉,
which Slattery lists as E27, we use the label M27 provided by GAP.

Our approach is significantly different from Slattery’s as well and takes us significantly further. In
Section 1 we first deal with the case when G is abelian by exploring the number of subgroups of abelian
p-groups and then considering products of these groups for different primes. In Section 2, we then
approach non-abelian groups using the Sylow Theorems and the Orbit-Stabilizer Theorem to place a
lower bound on the number of subgroups of G as a function of the primes and exponents in the prime
factorization of |G|. This allows us to greatly reduce the search space for non-abelian groups with 19 or
fewer subgroups. Using the complete lists of similarity classes of abelian and non-abelian groups with
19 or fewer subgroups we then give the first 19 terms in sequence A274847.

1 Abelian groups

Cyclic groups are a straightforward case to begin with as it is well-known that each cyclic group G has
exactly one subgroup for each divisor of |G|. Thus, given a cyclic group G of order |G| = pa1

1 pa2

2 · · · pan
n ,

it follows that | SubG| = (a1+1)(a2+1) . . . (an+1). For one, this implies immediately that there exists
at least one group with exactly k subgroups for each k ∈ N (namely the group Zpk−1). In addition, there
is exactly one cyclic group of order |G| up to isomorphism, thus we may work backwards to quickly find
all cyclic groups with a fixed number of subgroups.

More generally, by the Fundamental Theorem of Finite Abelian Groups, every such group can be
written as a direct product of cyclic groups of prime power orders. Moreover, for each prime p dividing
|G|, we may combine the cyclic p-groups in the product into a single component subgroup Hpa , where
pa is the highest power of p which divides |G|. In this way, we can think of any finite abelian group as a
direct product of abelian p-groups for different primes p. This is a useful perspective given the following
key result:

Theorem 1.1. Let G and H be groups. If (|G|, |H |) = 1 then | SubG×H | = | SubG| · | SubH |

Proof. Certainly G′×H ′ ≤ G×H for all G′ ≤ G and H ′ ≤ H , so it suffices to show that every subgroup
K ≤ G × H can be split as K = G′ ×H ′ for some G′ and H ′. Observe, since G ×H = {(g, h) | g ∈
G, h ∈ H}, if K ≤ G×H , then we may define

KG = {g ∈ G | (g, h) ∈ K for some h ∈ H}

KH = {h ∈ H | (g, h) ∈ K for some g ∈ G}.

Our goal is to show that K = KG × KH . By our assumption, and Lagrange’s Theorem, we know
o(g) | |G| and (o(g), o(h)) = 1 ∀g ∈ G, h ∈ H . Consider g ∈ KG with (g, hg) ∈ K. Since g and hg

have coprime orders, it follows that 〈(g, hg)〉 will be the cyclic group Zo(g)o(hg). Since 〈(g, hg)〉 ≤ K, it
follows that (g, eH) ∈ K ∀g ∈ KG. A similar argument will show that (eG, h) ∈ K ∀h ∈ KH as well.

Since K ≤ G×H , by closure we have (g, h) ∈ K ∀g ∈ KG, h ∈ KH . It follows that KG ×KH ⊆ K

and thus, since K ⊆ KG ×KH by definition, we have K = KG ×KH . The above argument also shows
that KG

∼= K ∩ (G× {eH}), thus KG ≤ G. Similarly, KH ≤ H , which completes the proof. ⊓⊔

1Groups, Algorithms, and Programming – see https://www.gap-system.org.
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Given this result and the perspective above, we may count the number of subgroups of any finite
abelian group as long as we know the number of subgroups of its abelian p-group components.

Corollary 1.2. If G is an abelian group as defined above with |G| = pa1

1 pa2

2 · · · pan
n then | SubG| =

| SubHp
a1

1

| · | SubHp
a2

2

| · · · | SubHp
an
n
|. Furthermore this implies that if an abelian group G has a prime

number of subgroups then G must be a p-group.

This leaves us to describe the number of subgroups in abelian p-groups. The case when an abelian
p-group has exactly two cyclic factors has been fully described by Ali and Al-Awami [1].2

Theorem 1.3 (Theorem 4.2.1 in [1]).
If G ∼= Zpa × Zpb where a ≤ b then the number of subgroups of G satisfies

| SubG| =
1

(p− 1)2
[
(b− a+ 1)pa+2 − (b− a− 1)pa+1 − (b+ a+ 3)p+ (b+ a+ 1)

]

In addition to this powerful result, we also wish to consider abelian p-groups with more than two
factors. We therefore address a few special cases which will be enough for our purposes.

Proposition 1.4. If G ∼= (Zp)
n = Zp × · · · × Zp, then

| SubG| =

n∑

i=0

(
n

i

)

p

, where

(
n

i

)

p

=
(1 − pn)(1− pn−1) · · · (1− pn−i+1)

(1− p)(1 − p2) · · · (1 − pi)
.

Proof. The group (Zp)
n is also an n-dimensional vector space over Zp and each subgroup of order pi

in G corresponds to an i-dimensional subspace. It is well-known that the Gaussian binomial coefficient(
n

i

)
p
counts the number of i-dimensional subspaces of an n-dimensional vector space over Zp. ⊓⊔

In addition to these specific cases, a recent paper by Aivazidis and Müller [2] gives more general
lower bounds on the number of subgroups in non-cyclic p-groups.3 For example, the results below imply
that any non-cyclic abelian p-group with fewer than 23 subgroups must have order pa for a ≤ 7.

Theorem 1.5 (Theorem A from [2]). Let G be a non-cyclic group with |G| = pa for a prime p ≥ 3.
Then | SubG| ≥ (a − 1)(p + 1) + 2, with equality if and only if G ∼= Zpa−1 × Zp or G ∼= Mpa = 〈x, y |

xpa−1

= yp = e, yxy−1 = x1+pa−2

.

Theorem 1.6 (Theorem B from [2]). Let G be a non-cyclic group with |G| = 2a. If a = 3, then

| SubG| ≥ 6 with equality if and only if G ∼= Q8. And if a ≥ 4, then | SubG| ≥ 3a − 1 with equality if

and only if G ∼= Q16 or G ∼= Z2a−1 × Z2, or M2a = 〈x, y | x2a−1

= y2 = e, yxy−1 = x1+2a−2

〉.

Classifying abelian groups with exactly k subgroups is now a matter of finding all possible ways
to combine abelian p-groups for different primes so that the product of their individual numbers of
subgroups equals k. Recall also that, thanks to Theorem 1.1, an abelian group can only have a prime
number of subgroups if it is a p-group.

As an example to demonstrate, suppose we wish to find all abelian groups with exactly 10 subgroups.
We must consider abelian p-groups with exactly 10 subgroups themselves, or a product of an abelian
p-group with an abelian q-group such that one has 5 subgroups and the other has 2 subgroups. Applying
Theorem 1.3, we find that the only abelian groups (up to similarity) with 10 subgroups are Zp9 , Zp4q,
Z2 × Z2 × Zp (p 6= 2), Z7 × Z7, and Z9 × Z3. Continuing in this manner, Table 1 reports all similarity
classes of abelian groups with fewer than 23 subgroups. Note that, just as in the case of Z2 × Z2 × Zp,
arbitrary primes are always assumed to be relatively prime to any others appearing.

One could continue to extend this process quite a bit further without running into too much resis-
tance.4 The much more interesting and challenging case lies in discussion of non-abelian groups.

2Note: The statement of Theorem 4.2.1 in [1] has a typo, but their proof proves the statement given here and [15]
confirms this result.

3We thank Aivazidis for bringing this to our attention. In an earlier version we proved similar results directly.
4In fact, at the request of OEIS we have [3].
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| SubG| Similarity Classes of Groups # of Classes
1 {e} 1
2 Zp 1
3 Zp2 1
4 Zp3 , Zpq 2
5 Zp4 , Z2 × Z2 2
6 Zp5 , Zp2q, Z3 × Z3 3
7 Zp6 1
8 Zp7 , Zp3q, Zpqr , Z4 × Z2, Z5 × Z5 5
9 Zp8 , Zp2q2 2
10 Zp9 , Zp4q, Z2 × Z2 × Zp, Z9 × Z3, Z7 × Z7 5
11 Zp10 , Z8 × Z2 2
12 Zp11 , Zp5q, Zp3q2 , Zp2qr , Z3 × Z3 × Zp 5
13 Zp12 1
14 Zp13 , Zp6q, Z16 × Z2, Z27 × Z3, Z25 × Z5, Z11 × Z11 6
15 Zp14 , Zp4q2 , Z4 × Z4, Z2 × Z2 × Zp2 4

Zp15 , Zp7q, Zp3q3 , Zp3qr, Zpqrs, Z2 × Z2 × Z2,
16 Z4 × Z2 × Zp, Z5 × Z5 × Zp, Z13 × Z13 9
17 Zp16 , Z32 × Z2 2
18 Zp17 , Zp8q, Zp5q2 , Zp2q2r, Z81 × Z3, Z3 × Z3 × Zp2 , Z49 × Z7 7
19 Zp18 1

Zp19 , Zp9q, Zp4q3 , Zp4qr , Z64 × Z2, Z2 × Z2 × Zp3 , Z2 × Z2 × Zpq

20 Z9 × Z3 × Zp, Z125 × Z5, Z7 × Z7 × Zp, Z17 × Z17 11
21 Zp20 , Zp6q2 2
22 Zp21 , Zp10q, Z8 × Z4, Z8 × Z2 × Zp, Z243 × Z3, Z19 × Z19 6

Table 1: Similarity classes of abelian groups with fewer than 23 subgroups.

2 Non-abelian groups

For non-abelian groups, it would be nice if we could apply the same sorts of techniques to count the
number of subgroups by understanding smaller components. The best analog available for decomposing
a group into relatively prime p-group parts is the collection of Sylow Theorems.

The Sylow Theorems. Let G be a finite group, p a prime divisor of |G| and write |G| = pat where a

and t are positive integers, and p does not divide t. Let Sylp(G) = {P ≤ G | |P| = pa}.

I There exists a Sylow p-subgroup P ∈ Sylp(G).

II If P ,P ′ ∈ Sylp(G), then there exists a g ∈ G with P ′ = gPg−1.

III Let np = | Sylp(G)|. Then np | t and np = [G : N(P)] ≡ 1 (mod p), where N(P) is the normalizer.

These famous results give us some information regarding the number of p-subgroups within a group
G, but they do not directly tell us about how the different p-group components will interact with one
another. If G is especially nice – i.e. if each of its Sylow subgroups is unique and normal – then G

will decompose as a direct product of its Sylow subgroups (see e.g. Corollary 5.4.2 in [12]) and we may
apply Theorem 1.1 to count the number of subgroups directly. Unfortunately, this is frequently not the
case when G is non-abelian. In addition, the Sylow p-subgroups themselves need not be abelian, thus
we need a way to explore the subgroups of non-abelian p-groups as well.

As the Sylow Theorems lend themselves to breaking a group into p-group components, they do not
give us much information in the case when G is itself a p-group (in which case G = P and np = 1).
Thankfully there is a generalization of Sylow (III) due to Wielandt [16] which places conditions on the
number of p-subgroups for each power of p.
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Theorem 2.1 (From [16]5). Let G be a group with |G| = pa for a prime p. Then the number of

subgroups of order pi (i ≤ a) is equivalent to 1 (mod p).

In addition, Theorem 1.5 and Theorem 1.6 also provide lower bounds on the number of subgroups
of non-abelian p-groups. With these in hand, we move to non-abelian groups whose orders are divisible
by multiple primes.

2.1 Non-abelian groups with |G| divisible by multiple primes

When |G| is divisible by multiple primes, the Sylow Theorems allow us to explore the p-group com-
ponents for each prime p in the prime factorization of |G|, however it is unclear exactly how those
components will interact with one another. In the nicest situation, when G is nilpotent, then G can be
written as a direct product of its Sylow subgroups6 and we may apply Theorem 1.1 to directly count
the number of subgroups. Slightly more generally, whenever G can be expressed as a direct product of
subgroups with coprime orders then this avenue will be available to us – i.e. we can find all such groups
with exactly k subgroups by exploring the ways to factor k (having already understood groups with
fewer than k subgroups).

When this is not the case, we need a different way to count subgroups. The Sylow Theorems and
Theorem 2.1 provide some information about the number of p-subgroups within G, but we need to be
able to count subgroups of composite orders as well. Thankfully (see e.g. Proposition 4.2.11 in [12]),
whenever N � G and H ≤ G, then the set product NH ≤ G and in fact, NH � G if H � G too.
Moreover, if N and H have relatively prime orders, then we must have N ∩H = {e} and it follows that
|NH | = |N | · |H |.

This will allow us to use normal p-subgroups, together with q-subgroups, to create subgroups of
composite orders. To demonstrate the effectiveness of this idea through an example, we need to set up
some notation. Given a fixed group G, in what follows we will use Hn for n ∈ N to denote a subgroup
of order n in G. Now suppose that pa and qb are highest powers of primes p 6= q which divide |G|.
There must exist at least one subgroup Hpi ≤ G for each 1 ≤ i ≤ a and similarly, we have at least one
Hqj ≤ G for each 0 ≤ j ≤ b (this second collection includes the trivial subgroup {e}) . Now, for each
such prime power pi, observe that Theorem 2.1 implies that either Hpi is unique – in which case we can
create at least b + 1 distinct product subgroups HpiHqj for each 0 ≤ j ≤ b (including Hpi itself) – or
Hpi is not unique, in which case there must be at least p + 1 subgroups of order pi. Running through
the a different prime powers, we have demonstrated the existence of at least a ·min(b+1, p+1) distinct
subgroups in G (possibly including G itself). Note that, in some situations it will be helpful to treat
the Sylow subgroups themselves separately (i.e. not allowing i = a or j = b).

In what follows, we consider different cases based on the number of distinct primes which divide
|G|. In each case, we demonstrate a lower bound on the number of subgroups of non-nilpotent G as
a function of the primes and exponents in the prime factorization of |G| thereby reducing the search
space to a small finite number of cases.

Beginning with |G| being divisible by only two primes p < q, it is helpful to recall (see e.g. [12])
that there exists a non-nilpotent group G of order pq if and only if q ≡ 1 (mod p). Moreover, since
subgroups of index p, where p is the smallest prime dividing |G| must be normal (see Theorem 1 in [6]),
it follows that Q must be normal and thus Sylow (III) implies that | SubG| = q + 3 for such a group.
For the more general situation, we recall a classic result of Burnside:

Lemma 2.2 (From [4]). Let G be a group and let p be the smallest prime dividing |G|. If P ∈ Sylp(G)
is cyclic, then P has a normal complement.

It follows immediately that if |G| is divisible by exactly two primes p < q and P ∈ Sylp(G) is cyclic,
then nq = 1 as the complement of P is a Sylow q-subgroup. In addition, it is well-known that G is
nilpotent if and only if every maximal subgroup of G is normal Thus, if G is non-nilpotent it follows
that np 6= 1 and G must contain at least one non-normal maximal subgroup. When G has cyclic Sylow
subgroups though, the maximal subgroups of G have prime index.

5For a more modern treatment in English, see https://people.bath.ac.uk/dmjc20/GpThy/wiel.pdf .
6Note that this situation exactly corresponds to G having only normal Sylow subgroups.
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Indeed, let |G| = paqb with 〈x〉 = P ∈ Sylp(G) and 〈y〉 = Q ∈ Sylq(G) both cyclic and let H ≤ G

be a subgroup with |H | = piqj for i < a and j < b. Since Q � G, then HQ is a proper subgroup which
contains H and has order piqb, hence H cannot be maximal. Similarly, if |H | = paqj for j < b− 1, then

H = P〈yq
b−j

〉 for some Sylow p-subgroup. It follows that the product of H with the unique normal
subgroup < yq > of order qb−1 will create a proper subgroup containing H – again implying that H

cannot be normal. Thus, maximal subgroups of G must have order pa−1qb or paqb−1.
Since subgroups of index pmust be normal, it follows that if G is non-nilpotent then it must contain a

non-normal subgroup of order paqb−1. Hence, it contains exactly q such subgroups. Moreover, applying
the Orbit-Stabilizer Theorem, this implies that G must also contain (at least q) non-normal subgroups
of order paqj for each 1 ≤ j < b. With these observations, we are now ready to describe bounds on
| SubG| when |G| is divisible by exactly two distinct primes.

Theorem 2.3. Let G be non-nilpotent with |G| = paqb for primes p < q , then

| SubG| ≥ min{bq + ab+ a+ 1, b(q + 1) + 2a+ (a− 1)min(p, b), b+ q + 1 + (b− 1)min(a, q) +mp},

where we only consider the second term if b > 1, and we only consider the third term if a > 1, in which

case m2 = 5 if a = 2, m2 = 6 if a = 3, and mp = (a− 1)(p+ 1) + 2 if p 6= 2 or a ≥ 4.

Proof. We consider two main cases based on whether P ∈ Sylp(G) is cyclic or not.
(1) If P is cyclic, then P6�G and Q ∈ Sylq(G) is normal as we saw above. (i) If Q ∈ Sylq(G) is

cyclic too, then by the previous discussion we have at least bq subgroups of orders paqj (0 ≤ j < b) –
including the at least q Sylow p-subgroups. Moreover, every q-subgroup is unique and normal, thus we
also have at least ab subgroups of orders piqj (0 ≤ i < a, 1 ≤ j ≤ b). Finally, we also have at least a− 1
distinct p-subgroups of lower orders. Together with G and {e}, this shows | SubG| ≥ bq + ab+ a+ 1.

(ii) If instead, Q is not cyclic, then b > 1 and by Theorem 1.5, Q must have at least (b−1)(q+1)+2
subgroups (including {e}). Since Q � G, we still have at least a subgroups of orders piqb (1 ≤ i ≤
a) including G itself. In addition to the at least q Sylow p-subgroups, we must also have at least
(a − 1)min(p + 1, b + 1) subgroups of orders piqj (1 ≤ i < a, 0 ≤ j < b). All together, this shows
| SubG| ≥ (b − 1)(q + 1) + 2 + a+ q + (a− 1)min(p+ 1, b+ 1) = b(q + 1) + 2a+ (a− 1)min(p, b).

(2) If P is not cyclic, then a > 1 and we may apply Theorem 1.6 or Theorem 1.3 (subtracting 1) to
count the proper subgroups of P . Since G is non-nilpotent, we must have at least one non-normal Sylow
subgroup. Observe that if Q�G, then there must be at least q+1 total Sylow subgroups, together with
at least one product Hpqb (since a > 1) – and if Q6�G, then there must be at least q+2 Sylow subgroups
total. Moreover, for each of the q-subgroups of lower order, either they are unique and we may create
product subgroups with subgroups of P , or there are at least q + 1 of them by Theorem 2.1. It follows
that there must be at least (b − 1)min(a + 1, q + 1) subgroups of orders piqj (0 ≤ i ≤ a, 1 ≤ j < b).
Counting G makes up for the 1 we subtracted from the subgroups of P , thus we have demonstrated
that | SubG| ≥ q + 2 + (b− 1)min(a+ 1, q + 1) +mp = b+ q + 1+ (b− 1)min(a, q) +mp, where mp is
the number of subgroups of P coming from Theorem 1.6 or Theorem 1.3 as applicable. ⊓⊔

Note that the above bound is sharp when b = 1. Next, consider the situation when |G| is divisible
by three primes p < q < r. Recall that whenever G can be decomposed as a non-trivial direct product
of subgroups with coprime orders, then we can apply Theorem 1.1, thus we again consider only the
groups which cannot be decomposed in this way.

Theorem 2.4. Let G be a non-nilpotent group that cannot be decomposed as a non-trivial direct product

of two groups with coprime orders. If |G| = paqbrc with p < q < r then,

| SubG| ≥ a+ b+ c+ (a− 1)min(b + 1, p) + (b− 1)min(c+ 1, q) + (c− 1)min(a+ 1, r)+

min{p+ q + r + 2, q + 2 +min(pi + 1, qj, 2r + 1), min(r + 1, 2q + 2) + min(r + 1, 2q)},
(1)

where i and j are minimal such that pi, qj ≥ r + 1.

Proof. Recall that since G is non-nilpotent, there must be at least one non-normal Sylow subgroup.
First we explore the Sylow subgroups of G and their potential products by considering the number
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of Sylow subgroups which are normal in G. The most straightforward situation is when all three are
non-normal, in which case, by Sylow (III), there must be at least 2q + r + 2 distinct Sylow subgroups
in G (and potentially no product subgroups involving two different Sylows).

If instead exactly two of the Sylow subgroups are normal, then there exist product subgroups Hpaqb ,
Hparc , and Hqbrc . The two constructed as products with the lone non-normal Sylow subgroup cannot
be normal themselves however, as that would imply that G could be decomposed into a direct product
of groups with coprime orders. Since those product subgroups are self-stabilizing, the Orbit-Stabilizer
Theorem implies that the size of their orbits under conjugation must divide whatever prime power is
missing in their order. For example, if R ∈ Sylr(G) is the non-normal one, then we have at least p+ q

subgroups of orders parc or qbrc in addition to r + 3 total Sylow subgroups for at least p + q + r + 3
subgroups. Similarly, if Q ∈ Sylq(G) is non-normal, this count becomes p + r + (q + 3), while if
P ∈ Sylp(G) is non-normal, it is q + r + (q + 2) (which is ≥ p+ q + r + 3 for all primes p < q < r).

The most delicate case is when only one Sylow subgroup is normal, and we proceed based on whether
R�G or not. (i) If R is not normal, then nr ≥ r+1 by Sylow (III). Moreover, if P �G (resp. Q�G),
then np + nq ≥ q + 2 (resp. q + 1). In addition, we have product subgroups Hpaqb and Hparc (resp.
Hqbrc). However, if any subgroup of order parc (resp. qbrc) contains multiple Sylow r-subgroups, then
nr ≥ pi for some i (resp. nr ≥ qj for some j) as well. And if none of those subgroups contain multiple
Sylow r-subgroups, then there must be at least nr ≥ r+1 of them. Thus, counting all Sylow subgroups
and products of them, we must have at least q+min(pi+4, qj+3, 2r+4) = q+3+min(pi+1, qj, 2r+1),
where i and j are minimal such that pi, qj ≥ r + 1.

(ii) If R is normal, then there exist product subgroups Hparc and Hqbrc . As in the previous case,
if any subgroup of order parc contains multiple Sylow p-subgroups, then np ≥ r, and if none do,
then there must be exactly np ≥ q subgroups of order parc. Summarizing, for subgroups of order
pa or parc, there must be at least min(r + 1, 2q). Repeating the argument, if any subgroup of order
qbrc contains multiple Sylow q-subgroups, then nq ≥ r, and if not, then there must be exactly nq ≥
q + 1 subgroups of order qbrc. Summarizing, there must be least min(r + 1, 2q + 2) subgroups of
orders qb or qbrc. In total, if exactly one Sylow subgroup is normal, then G must contain at least
min{q + 3+min(pi + 1, qj , 2r + 1), min(r + 1, 2q+ 2) +min(r + 1, 2q) + 1} subgroups of orders pa, qb,
rc, paqb, parc, or qbrc.

For the rest of the subgroups, starting with the prime powers pi, 1 ≤ i < a, as before these account
for at least (a−1)min(b+2, p+1) subgroups (by pairing them up with the q-subgroups andR). Similarly,
each prime power qj , 1 ≤ j < b accounts for at least (b− 1)min(c+2, q+1) subgroups (by pairing them
up with the r-subgroups and P) and each power rℓ, 1 ≤ ℓ < c accounts for (c − 1)min(a + 2, r + 1)
subgroups (by pairing them up with the p-subgroups and Q). Together with G and {e}, this is at least
(a− 1)min(b+ 2, p+ 1) + (b− 1)min(c+ 2, q + 1) + (c− 1)min(a+ 2, r + 1) + 2 additional subgroups.

Furthermore, since p+ q + r + 3 ≤ 2q + r + 2 for all primes p < q < r, with some minor arithmetic
simplifications we have shown that the inequality in (1) holds. ⊓⊔

Remark. Note, we could have taken multiple perspectives when counting the subgroups of lower orders
(i.e. by pairing them up in different ways). Since all of these perspectives would be valid, the lower
bound would be the maximum of each. However, for our purposes, this particular choice (which exhibits
some level of symmetry in a, b, and c) was good enough. Indeed, as soon as at least one of a, b, or c is
greater than 1, our bound shows that | SubG| ≥ 18 when r = 5 and | SubG| ≥ 20 when r ≥ 7.

We now consider the special case when |G| = pqr so that we may improve our bound slightly.

Theorem 2.5. Let G be non-nilpotent with |G| = pqr (p < q < r) that cannot be decomposed as a

non-trivial product of subgroups with coprime orders. Then | SubG| ≥ r + 4 +min(r + 1, 2q).

Proof. It is known (see e.g. [5]) in a group of order pqr with p < q < r, that R ∈ Sylr(G) must be
a normal subgroup. Hence there exist product subgroups Hpr and Hqr, the latter of which must be
normal as it has index p (again, see Theorem 1 in [6]). Since G cannot be decomposed into co-prime
parts, it follows that P ∈ Sylp(G) cannot be normal, as otherwise G ∼= P × Hqr . From here, we will
consider two cases based on whether Q ∈ Sylq(G) is normal.

(1) If Q is normal, then there exists a product subgroup Hpq which cannot be normal (otherwise
G could be decomposed), thus there must be r such subgroups by the Orbit-Stabilizer Theorem. Note
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however, that with Q unique, there can only be r subgroups of order pq when np ≥ r. In addition, the
subgroup Hpr cannot be normal either, thus there must be q subgroups of order pr. Together with Q,
R, Hqr, G, and {e} this shows that | SubG| ≥ q + 2r + 5.

(2) If instead, Q is not normal, then the normal subgroup Hqr must contain all of them – hence
nq = r by Sylow (III). In addition, since the product of any Sylow p-subgroup with R will result in a
group of order pr, it follows that either Hpr contains all of the Sylow p-subgroups – meaning np = r –
or there must be q subgroups of order pr by the Orbit-Stabilizer Theorem. Together with R, G, and
{e} this shows that | SubG| ≥ r + 4+min(r + 1, 2q). Note that this is strictly less than the expression
given in case (1). ⊓⊔

Together, Theorem 2.4 and Theorem 2.5 imply that if there exists a non-nilpotent group G, with
|G| divisible by three primes, which cannot be decomposed as a direct product of subgroups with
coprime orders, and fewer than 20 subgroups, then |G| = 30, 42, 60, 90, or 150. Next, we rule out all
non-nilpotent groups whose orders are divisible by four or more primes. The argument is much more
elementary than in the three prime case as there are many more products involving only the Sylow
subgroups themselves

Theorem 2.6. Let G be a non-nilpotent group with |G| = paqbrcsdt for primes p < q < r < s, where

t ∈ N is relatively prime to pqrs. Then | SubG| ≥ 20.

Proof. We will break this up into 5 cases corresponding to the number of normal Sylow subgroups from
within the collection of only P ∈ Sylp(G), Q ∈ Sylq(G), R ∈ Sylr(G), and S ∈ Syls(G).

(1) Suppose all four Sylow subgroups are normal. Since the product of normal subgroups is again
normal, we can actually create 10 product subgroups Hpaqb , Hparc , Hpasd , Hqbrc , Hqbsd , Hrcsd , Hpaqbrc ,
Hpaqbsd , Hparcsd , and Hqbrcsd . In addition, we have the four Sylow subgroups themselves and G and
{e} for at least 16 subgroups. However, the fact that G is not nilpotent implies that t 6= 1 and thus,
there must exist at least one other Sylow subgroup for a prime dividing t and at least 10 additional
product subgroups.

(2) Suppose that there exists one non-normal Sylow subgroup. The 10 product subgroups described
in case (1) must all still exist, as well as three normal Sylow subgroups, G, and {e}. If S6�G, then
ns ≥ s+1 – already giving us 16+s ≥ 23 subgroups. If instead R6�G, then nr ≥ r+1 – already giving us
16+r ≥ 21. If Q6�G, then either a single product Hqbsd contains multiple Sylow q-subgroups and nq ≥ s,
or there are at least p subgroups of order qbsd – this already gives us at least 15+min(s+1, p+q+1) ≥ 21.
Finally, if P6�G, then either a single product Hpasd contains multiple Sylow p-subgroups and np ≥ s,
or there are at least q subgroups of order pasd – already giving us 15 + min(s+ 1, 2q) ≥ 21.

(3) Suppose two of them are not normal, say P and Q. Then the 7 product subgroups that do not
involve both p and q must still exist. Note however, that either Hparc is normal – and we can also create
Hpaqbrc – or it is not normal, in which case there are multiple of them. Thus, the product parc must
account for at least two subgroups. A similar argument shows that pasd must also account for at least
two subgroups. In addition, to the two unique Sylow subgroups, we must also have at least 2q+1 of the
other two types. Together with the at least 9 product subgroups, G, and {e}, this is already 2q+14 ≥ 20
subgroups. A similar argument assuming a different pair are normal will be identical except that there
will be strictly more than 2q + 1 total Sylow subgroups.

(4) Suppose that three of them are not normal. If S6�G, then there are at least 2q + s + 2 Sylow
subgroups. Together with the three products involving the lone normal Sylow subgroup and G and
{e} this is already 2q + s + 7 ≥ 20 subgroups. If instead, S � G, then for each product subgroup
Hpasd , Hqbsd , and Hrcsd , observe that either a single product subgroup contains all of the non-normal
Sylow subgroups for the associated prime (implying that np, nq, or nr ≥ s), or there must be multiple
subgroups of that order (at least q, p, or p respectively). Together with G and {e} this is already at
least 2q + r + 10 ≥ 21 subgroups.

(5) Finally, if all four of those Sylow subgroups are not normal, then we must have at least 2q+r+s+3
of them in total. Together with G and {e} this is already 2q + r + s+ 5 ≥ 23 subgroups. ⊓⊔
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2.2 Classifying non-abelian groups with | SubG| = k for k ≤ 19

Theorems 2.3, 2.4, 2.5, and 2.6 together reduce the search space for non-abelian groups with 19 or
fewer subgroups. Specifically, any non-abelian group G with k ≤ 19 subgroups must either be a direct
product of groups with coprime orders (whose individual subgroup counts multiply to k), or G must be
non-nilpotent with |G| satisfying one of the options listed in Table 2.

p7q with q = 3 p2q4 with q = 3 2i with i ≤ 6
p6q with q ≤ 5 p2q3 with q ≤ 5 3i with i ≤ 5

p5q or p4q with q ≤ 7 p3q2 with p = 2 and q ≤ 7 5i with i ≤ 3
p3q with q ≤ 11 p2q2 with p = 2, 3 and q ≤ 7 7i with i ≤ 3

p2q or pq with q ≤ 13 p3q3 with q = 3
pq4 or pq3 with q ≤ 3 pqr with r ≤ 7

pq2 with q ≤ 7 p2qr or pq2r or pqr2 with r = 5

Table 2: Potential values for |G| if | SubG| ≤ 19.

With this reduced search space, we can use GAP to search systematically beginning with smaller
numbers of subgroups working up. Of course, when k is smaller than 19, we need not consider the entire
search space, but we can avoid duplicating effort in this way. Table 3 lists the similarity classes of all
non-abelian groups with 19 or fewer subgroups. Note we omit empty rows and, as before, any arbitrary
primes that appear are assumed to be coprime to the others.

| SubG| Similarity Classes # of
of Non-abelian Groups Classes

6 Q8, S3 2
8 Dic12, D10 2
10 Z7 ⋊ Z3, Z3 ⋊ Z8, D8, D14, M27, Dic20,A4 7
11 Q16, M16 2
12 Q8 × Zp, S3 × Zp, Z3 ⋊ Z16, Dic28, Z7 ⋊ Z9, Z5 ⋊ Z8 6
14 M32, S3 × Z3, Z3 ⋊ Z32, Z5 ⋊ Z16, GA(1, 5), Z7 ⋊ Z8, D22, 11

Z27 ⋊ Z3, Z7 ⋊ Z27, Z11 ⋊ Z5, Z25 ⋊ Z5

15 SL(2, 3), SD16, Z4 ⋊ Z4, (Z2 × Z2)⋊ Z9 4
16 Dic12 ×Zp, D10 × Zp, D18, D12, Z5 ⋊ Z8, Z5 ⋊ Z32, Z3 ⋊ Z64 13

Z7 ⋊ Z16, Dic44, D26, Z13 ⋊ Z3, Z7 ⋊ Z81, Z11 ⋊ Z25

17 Z32 ⋊ Z2 1
18 Q8 × Zp2 , S3 × Zp2 , Z8.Z4, Z3 ⋊ Z128, Dic18, Z5 ⋊ Z16, Z81 ⋊ Z3, Z7 ⋊ Z243 15

Z49 ⋊ Z7, Z13 ⋊ Z9, Dic52, Z11 ⋊ Z125, Z11 ⋊ Z8, Z7 ⋊ Z32, Z5 ⋊ Z64

19 Z2 ×Q8, D16, (Z3 × Z3)⋊ Z3, Dic36 4

Table 3: Non-Abelian Groups with 19 or fewer Subgroups

To further clarify, Dicn represents the dicyclic group of order n, and we now describe the specific
semi-direct products and non-split extensions listed above in terms of generators and relations – but only
when they are not unique. With 12 subgroups, Z5 ⋊ Z8 = 〈x, y | x5 = y8 = e, yxy−1 = x−1〉. With 14
subgroups, Z5 ⋊ Z16 = 〈x, y | x5 = y16 = e, yxy−1 = x−1〉 and Z25 ⋊ Z5 = 〈x, y | x25 = y5 = e, yxy−1 =
x6〉. With 16 subgroups, Z5 ⋊ Z8 = 〈x, y | x5 = y8 = e, yxy−1 = x3〉 and Z5 ⋊ Z32 = 〈x, y | x5 = y32 =
e, yxy−1 = x−1〉. With 17 subgroups Z32 ⋊Z2 = 〈x, y | x32 = y2 = e, yxy−1 = x17〉. With 18 subgroups
Z8.Z4 = 〈x, y | x8 = e, x4 = y4, yxy−1 = x−1〉, Z3 ⋊ Z128 = 〈x, y | x3 = y128 = e, yxy−1 = x−1〉,
Z5 ⋊ Z16 = 〈x, y | x5 = y16 = e, yxy−1 = x3〉, and Z5 ⋊ Z64 = 〈x, y | x5 = y64 = e, yxy−1 = x−1〉.

Remark (| SubG| prime). At first, the authors suspected that a non-abelian group with a prime number
of subgroups would have to be a p-group (as is true for abelian groups). Discovering the counterexample
of A5 – which has 59 subgroups – we adjusted this conjecture to perhaps solvable non-abelian groups.
However, as seen above, Z9 ⋊ Z4 has 19 subgroups despite being solvable and not a p-group.
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Given the classification of both abelian and non-abelian groups with 19 or fewer subgroups, we can
combine these results to give the first 19 terms in sequence A274847 [14]. Those terms are 1, 1, 1, 2, 2,
5, 1, 7, 2, 12, 4, 11, 1, 17, 8, 22, 3, 22, 5. (Once again, the 10th term should be 12, not 11.) Further
exploration using these techniques is possible, however, as we are already running into the limits of
what GAP can check, it would require improving some of the bounding arguments made above. One
place ripe for improvement is the case of paqb with a, b ≥ 2. There are no such non-nilpotent groups
with fewer than 20 subgroups when q > 3 even though our bounds did not rule some of those cases out.
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