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THE KIRCH SPACE IS TOPOLOGICALLY RIGID

TARAS BANAKH, YARYNA STELMAKH AND S LAWOMIR TUREK

Dedicated to Professor Jerzy Mioduszewski

Abstract. The Golomb space (resp. the Kirch space) is the set N of positive integers endowed with the
topology generated by the base consisting of arithmetic progressions a+ bN0 = {a+ bn : n ≥ 0} where a, b ∈ N

and b is a (square-free) number, coprime with a. It is known that the Golomb space (resp. the Kirch space)
is connected (and locally connected). By a recent result of Banakh, Spirito and Turek, the Golomb space has
trivial homeomorphism group and hence is topologically rigid. In this paper we prove the topological rigidity
of the Kirch space.

In the AMS Meeting announcement [4] M. Brown introduced an amusing topology τG on the set N of
positive integers turning it into a connected Hausdorff space. The topology is generated by the base consisting
of arithmetic progressions a+bN0 := {a+bn : n ∈ N0} with coprime parameters a, b ∈ N. Here by N0 = {0}∪N

we denote the set of non-negative integer numbers.

In [14] Brown’s topology is called the relatively prime integer topology. This topology was popularized by
Solomon Golomb [6], [7] who observed that the classical Dirichlet theorem on primes in arithmetic progressions
is equivalent to the density of the set Π of prime numbers in the topological space (N, τG). In honour of Golomb
the topological space G := (N, τG) is known in General Topology as the Golomb space, see [15], [16].

The problem of studying the topological structure of the Golomb space was posed to the first author (Banakh)
by the third author (Turek) in 2006. In his turn, Turek learned about this problem from Jerzy Mioduszewski
who listened to the lecture of Solomon Golomb on the first Toposym in 1961.

The topological structure of the Golomb space was studied by the first and third authors in [2] and [3]. In
particular, they proved that the Golomb space admits continuum many continuous self-maps but has only one
homeomorphism (the identity). Topological spaces having trivial homeomorphism group are called topologically

rigid. Therefore, the Golomb space is topologically rigid.

It is known that the Golomb space is connected but not locally connected. In [9] Kirch introduced a topology
τK ⊆ τG turning N into a connected and locally connected space. The Kirch topology τK on N is generated by
the subbase consisting of the arithmetic progressions a + pN0 were p is prime and a ∈ N is not divided by p.
The base of the Kirch topology consists of the arithmetic progressions a+ bN0 were a, b ∈ N are coprime and
b is square-free (i.e., b is not divisible by the square of a prime number).

The main result of this note is the following rigidity theorem.

Theorem 1. The Kirch space (N, τK) is topologically rigid.

The proof of Theorem 1 is long and technical. It is divided into 22 lemmas. A crucial role in the proof
belongs to the superconnectedness of the Kirch space and the superconnecting poset of the Kirch space, which
is defined in Section 2.

1. Four classical number-theoretic results

By Π we denote the set of prime numbers. For a number x ∈ N by Πx we denote the set of all prime divisors
of x. Two numbers x, y ∈ N are coprime iff Πx ∩ Πy = ∅.

In the proof of Theorem 1 we will exploit the following four known results of Number Theory. The first one
is the famous Chinese Remainder Theorem (see. e.g. [8, 3.12]).

Theorem 2 (Chinese Remainder Theorem). If b1, . . . , bn ∈ N are pairwise coprime numbers, then for any

numbers a1, . . . , an ∈ Z, the intersection
⋂n

i=1(ai + biN) is infinite.

The second classical result is not elementary and is due to Dirichlet [5, S.VI], see also [1, Ch.7].
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Theorem 3 (Dirichlet). For any coprime numbers a, b the arithmetic progression a + bN contains a prime

number.

The third classical result is a famous theorem of Mihăilescu [10], see also [13].

Theorem 4 (Mihăilescu). If a, b ∈
{

mn : n,m ∈ N \ {1}
}

, then |a− b| = 1 if and only if {a, b} = {23, 32}.

The fourth classical result we use is due to Karl Zsigmondy [17], see also [12, Theorem 3].

Theorem 5 (Zsigmondy). For integer numbers a, n ∈ N\ {1} the inclusion Πan−1 ⊆
⋃

0<k<n

Πak−1 holds if and

only if one of the following conditions is satisfied:

(1) n = 2 and a = 2k − 1 for some k ∈ N; then a2 − 1 = (a+ 1)(a− 1) = 2k(a− 1);
(2) n = 6 and a = 2; then an − 1 = 26 − 1 = 63 = 32 × 7 = (a2 − 1)2 × (a3 − 1).

2. Superconnected spaces and their superconnecting posets

In this section we discuss superconnected topological spaces and some order structures related to such spaces.

First let us introduce some notation and recall some notions.

For a set A and n ∈ ω let [A]n = {E ⊆ A : |A| = n} be the family of n-element subsets of A, and
[A]<ω =

⋃

n∈ω[A]
n be the family of all finite subsets of A. For a function f : X → Y and a subset A ⊆ X by

f [A] we denote the image {f(a) : a ∈ A} of the set A under the function f .

For a subset A of a topological space (X, τ) by A we denote the closure of A in X . For a point x ∈ X we
denote by τx := {U ∈ τ : x ∈ U} the family of all open neighborhoods of x in (X, τ). A poset is an abbreviation
for a partially ordered set.

A family F of subsets of a set X is called a filter if

• ∅ /∈ F ;
• for any A,B ∈ F we have A ∩B ∈ F ;
• for any sets F ⊆ E ⊆ X the inclusion F ∈ F implies E ∈ F .

A topological space (X, τ) is called superconnected if for any n ∈ N and non-empty open sets U1, . . . , Un the
intersection U1 ∩ · · · ∩ Un is non-empty. This allows us to define the filter

F∞ = {B ⊆ X : ∃U1, . . . , Un ∈ τ \ {∅} (U1 ∩ · · · ∩ Un ⊆ B)},

called the superconnecting filter of X .

For every finite subset E of X consider the subfilter

FE := {B ⊆ X : ∃(Ux)x∈E ∈
∏

x∈E τx (
⋂

x∈E Ux ⊆ B)}

of F∞. Here we assume that F∅ = {X}. It is clear that for any finite sets E ⊆ F in X we have FE ⊆ FF .

The family

F = {FE : E ∈ [X ]<ω} ∪ {F∞}

is endowed with the inclusion partial order and is called the superconnecting poset of the superconnected space
X . The filters F∅ and F∞ are the smallest and largest elements of the poset F, respectively.

The following obvious lemma shows that the superconnecting poset F is a topological invariant of the
superconnected space.

Proposition 1. For any homeomorphism h of a superconnected topological space X, the map

h̃ : F → F, h̃ : F 7→ {h[A] : A ∈ F},

is an order isomorphism of the superconnecting poset F.

In the following sections we will study the order properties of the poset F for the Kirch space (N, τK) and
will exploit the obtained information in the proof of the topological rigidity of the Kirch space.

3. Proof of Theorem 1

We divide the proof of Theorem 1 into 22 lemmas. Our first lemma describes the closure of an arithmetic
progression in the Kirch topology.
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Lemma 1. For any a, b ∈ N the closure a+ bN0 of the arithmetic progression a + bN0 in the Kirch space

(N, τK) is equal to

N ∩
⋂

p∈Πb

(

{0, a}+ pZ
)

.

Proof. First we prove that a+ bN0 ⊆ {0, a}+ pZ for every p ∈ Πb. Take any point x ∈ a+ bN0 and assume
that x /∈ pZ. Then x+pN0 is a neighborhood of x and hence the intersection (x+pN0)∩(a+bN0) is not empty.
Then there exist u, v ∈ N0 such that x+ pu = a+ bv. Consequently, x− a = bv − pu ∈ pZ and x ∈ a+ pZ.

Next, take any point x ∈ N ∩
⋂

p∈Πb
({0, a}+ pZ). Given any neighborhood Ox of x in (N, τK), we should

prove that Ox ∩ (a+ bN0) 6= ∅. By the definition of the Kirch topology there exists a square-free number d ∈ N

such that d, x are coprime and x+ dN0 ⊆ Ox.

If Πb ⊆ Πx, then b, d are coprime and by Chinese Remainder Theorem ∅ 6= (x + dN0) ∩ (a + bN0) ⊆
Ox ∩ (a + bN0). So, we can assume Πb \ Πx 6= ∅. The choice of x ∈

⋂

p∈Πb
({0, a} + pZ) guarantees that

x ∈
⋂

p∈Πb\Πx
(a+pZ) = a+qZ where q =

∏

p∈Πb\Πx
p. Since the numbers x and d are coprime and d is square-

free, the greatest common divisor of b and d divides the number q. Since x−a ∈ qZ, the Euclides algorithm yields
two numbers u, v ∈ N0 such that x−a = bu−dv, which implies thatOx∩(a+bN0) ⊃ (x+dN0)∩(a+bN0) 6= ∅. �

Lemma 1 implies that the Kirch space (N, τK) is superconnected and hence possesses the superconnecting
filter

F∞ =
{

F ⊆ N : ∃U1, . . . , Un ∈ τK \ {∅}
(

n
⋂

i=1

Ui ⊆ F
)}

and the superconnecting poset

F = {FE : E ∈ [N]<ω} ∪ {F∞}

consisting of the filters

FE =
{

F ⊆ N : ∃(Ux)x∈E ∈
∏

x∈E τx
(
⋂

x∈E Ux ⊆ F
)}

.

Here for a point x ∈ N by τx := {U ∈ τK : x ∈ U} we denote the family of open neighborhoods of x in the
Kirch topology τK .

For a nonempty finite subset E ⊆ N, let ΠE =
⋂

x∈E Πx be the set of common prime divisors of numbers in
the set E. Also let

AE = {p ∈ Π : ∃k ∈ N (E ⊂ {0, k}+ pZ)}.

Observe that ΠE ⊆ AE and AE 6= ∅ because 2 ∈ AE . If E is a singleton, then AE = Π; if |E| ≥ 2, then
AE ⊆ {1, . . . ,maxE}.

Indeed, assuming that AE contains some prime number p > maxE, we can find a number k ∈ {1, . . . , p− 1}
such that E ⊆ {0, k}+ pZ. Then for any distinct numbers x, y ∈ E we get x, y ∈ k+ pZ and hence x− y ∈ pZ
which is not possible as p > maxE ≥ |x− y|.

Let αE : AE → ω be the unique function satisfying the following conditions:

(i) 0 ≤ αE(p) < p for all p ∈ AE ;
(ii) E ⊆ {0, αE(p)}+ pZ for all p ∈ AE ;
(iii) αE(2) = 1 and αE(p) = 0 for all p ∈ ΠE \ {2}.

Lemma 2. For any two-element set E = {x, y} ⊂ N we have AE = {2} ∪ Πx ∪ Πy ∪ Πx−y.

Proof. The number p = 2 belongs to AE because E ⊂ {0, 1}+Z. Each number p ∈ Πx (resp. p ∈ Πy) belongs
to AE because {x, y} ⊂ {0, y} + pZ (resp. {x, y} ⊂ {0, x} + pZ}). Each number p ∈ Πx−y belongs to AE

because {x, y} ⊂ x+ pZ ⊂ {0, x}+ pZ. This proves that {2} ∪Πx ∪ Πy ∪ Πx−y ⊆ AE .

Now take any prime number p ∈ AE and assume that p /∈ Πx ∪ Πy . It follows from {x, y} = E ⊂
{0, αE(p)}+ pZ that {x, y} ⊆ αE(p) + pZ and hence x− y ∈ pZ and p ∈ Πx−y. �

The following lemma yields an arithmetic description of the filters FE .

Lemma 3. Let A ⊂ Π be a finite set such that 2 ∈ A 6= {2} and α : A → N0 be a function such that α(2) = 1
and α(p) ∈ {0, . . . , p− 1} for all p ∈ A \ {2}. Let x be the product of odd prime numbers in the set A and y be

any number in the set N ∩
⋂

p∈A(α(p) + pZ). Then the set E = {y, x, 2x} has AE = A and αE = α.
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Proof. For every prime number p ∈ A we have E = {y, x, 2x} ⊂ {0, y} + pZ, which implies that p ∈ AE .
Assuming that AE \ A contains some prime number p, we conclude that x /∈ pZ and hence the inclusion
{y, x, 2x} = E ⊂ {0, αE(p)}+pZ implies {x, 2x} ⊂ αE(p)+pZ and x = 2x−x ∈ pZ. This contradiction shows
that AE = A. To show that αE = α, take any prime number p ∈ A = AE . If p = 2, then α(p) = 1 = αE(p). So,
we assume that p 6= 2. If α(p) = 0, then y ∈ α(p)+pZ = pZ and hence p ∈ ΠE . In this case αE(p) = 0 = α(p). If
α(p) 6= 0, then the number y ∈ α(p)+pZ is not divisible by p and then the inclusions {y, x, 2x} ⊆ {0, α(p)}+pZ
and {y, x, 2x} = E ⊂ {0, αE(p)} + pZ imply that α(p) = αE(p). �

Lemma 4. For any finite subset E ⊆ N with |E| ≥ 2 we have

FE =
{

B ⊆ N : ∃L ∈ [Π \AE ]
<ω

⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ) ⊆ B
}

.

Here we assume that
⋂

p∈∅ pN = N.

Proof. It suffices to verify two properties:

(1) for any (Ux)x∈E ∈
∏

x∈E τx there exists a finite set L ⊆ Π \AE such that
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ) ⊆
⋂

x∈E

Ux;

(2) for any finite set L ⊆ Π \AE there exists a sequence of neighborhoods (Ux)x∈E ∈
∏

x∈E τx such that
⋂

x∈E

Ux ⊆
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ).

1. Given a sequence of neighborhoods (Ux)x∈E ∈
∏

x∈E τx, for every x ∈ E find a square-free number qx > x
such that Πqx ∩Πx = ∅ and x+ qxN0 ⊆ Ux. We claim that the finite set L =

⋃

x∈E Πqx \AE has the required

property. Given any number z ∈
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ), we should prove that z ∈ Ux for every

x ∈ E. By Lemma 1,

N ∩
⋂

p∈Πqx

({0, x}+ pZ) = (x+ qxN0) ⊆ Ux.

So, it suffices to show that z ∈ {0, x} + pZ for any p ∈ Πqx . Since the numbers x and qx are coprime,
p /∈ Πx and hence p /∈ ΠE . If p /∈ AE , then p ∈ Πqx \ AE ⊆ L and hence z ∈ pN ⊆ {0, x} + pZ. If
p ∈ AE , then x ∈ E ⊆ {0, αE(p)} + pZ and x ∈ αE(p) + pZ (as p /∈ Πx). Then x + pZ = αE(p) + pZ and
z ∈ {0, αE(p)} + pZ = {0, x}+ pZ.

2. Fix any finite set L ⊆ Π \ AE . For every x ∈ E consider the neighborhood Ux =
⋂

p∈L∪AE\Πx
(x + pN0)

of x in the Kirch topology. By Lemma 1,

Ux = N ∩
⋂

p∈L∪AE\Πx

({0, x}+ pZ).

Given any number z ∈
⋂

x∈E Ux, we should show that z ∈
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ). This will

follow as soon as we check that z ∈ pN for all p ∈ L and z ∈ {0, αE(p)}+ pZ for all p ∈ AE \ΠE .

Given any p ∈ AE \ ΠE , we can find a point x ∈ E \ pZ and observe that x ∈ E ⊆ {0, αE(p)} + pZ. Then
z ∈ Ux ⊆ x+ pN0 ⊆ {0, x}+ pZ = {0, αE(p)} + pZ.

Now take any prime number p ∈ L. Since L ∩ AE = ∅, we conclude that E 6⊆ pZ. So, we can fix a number
x ∈ E \ pZ. Taking into account that p /∈ AE , we conclude that E 6⊆ {0, x} + pZ and hence there exists a
number y ∈ E such that pZ 6= y + pZ 6= x+ pZ. Then

z ∈ Ux ∩ Uy ⊆ ({0, x}+ pZ) ∩ ({0, y}+ pZ) = pZ.

�

We shall use Lemma 4 for an arithmetic characterization of the partial order of the superconnecting poset
F of the Kirch space.

Lemma 5. For two finite subsets E,F ⊆ N with min{|E|, |F |} ≥ 2 we have FE ⊆ FF if and only if

AF ⊆ AE , ΠF \ {2} ⊆ ΠE and αE↾AF \ΠE = αF ↾AF \ΠE .
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Proof. To prove the “only if” part, assume that FE ⊆ FF . By Lemma 4, the set
⋂

p∈AF \AE

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ)

belongs to the filter FE ⊆ FF . By Lemma 4, there exists a finite set L ⊆ Π \AF such that

(1)
⋂

p∈L

pN ∩
⋂

p∈AF \ΠF

({0, αF (p)} + pZ) ⊆
⋂

p∈AF \AE

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ).

This inclusion combined with the Chinese Remainder Theorem 2 implies

AF \AE ⊆ L ⊂ Π\AF , AE\(ΠE∪{2}) ⊆ L∪(AF \ΠF ) and αE(p) = αF (p) for any p ∈ (AF \ΠF ) ∩ (AE \ΠE),

and

(2) AF ⊆ AE , ΠF \ {2} ⊆ ΠE and αE↾AF \ΠE = αF ↾AF \ΠE .

To prove the “if” part, assume that the condition (2) holds. To prove that FE ⊆ FF , fix any set Ω ∈ FE

and using Lemma 4, find a finite set L ⊆ Π \AE such that
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)}+ pZ) ⊆ Ω.

Consider the finite set Λ = (L∪AE) \AF = L∪ (AE \AF ) ⊇ L and observe that the condition (2) implies the
inclusion

(3) FF ∋
⋂

p∈Λ

pN ∩
⋂

p∈AF \ΠF

({0, αF (p)}+ pZ) ⊆
⋂

p∈L

pN ∩
⋂

p∈AE\ΠE

({0, αE(p)} + pZ) ⊆ Ω,

yielding Ω ∈ FF . �

Lemma 6. For two nonempty subsets E,F ⊆ N with min{|E|, |F |} = 1 the relation FE ⊆ FF holds if and

only if |E| = 1 and E ⊆ F .

Proof. The “if” part is trivial. To prove the “only if” part, assume that FE ⊆ FF . First we prove that |E| = 1.
Assuming that |E| > 1 and taking into account that min{|E|, |F |} = 1, we conclude that |F | = 1. Choose a
prime number p > max(E ∪ F ). Since

⋂

y∈E y + pN0 ∈ FE ⊆ FF , for the unique number x in the set F , there

exists a square-free number d such that Πd ∩ Πx = ∅ and x+ dpN0 ⊆
⋂

y∈E y + pN0. By Lemma 1,

x+ qpN ⊆ x+ dpN0 ⊆
⋂

y∈E

y + pN0 =
⋂

y∈E

({0, y}+ pN0) = pN0.

The latter equality follows from p > maxE and |E| > 1. Then x + dpN ⊆ pN0 implies x ∈ pN0, which
contradicts the choice of p > max(E ∪ F ) ≥ x. This contradiction shows that |E| = 1. Let z be the unique
element of the set E.

It remains to prove that z ∈ F . To derive a contradiction, assume that z /∈ F . Take any odd prime number
p > max(E ∪ F ) and consider the set {0, z}+ pN0 = z + pN0 ∈ FE ⊆ FF . By the definition of the filter FF ,
for every x ∈ F there exists a square-free number dx such that Πdx

∩ Πx = ∅ and
⋂

x∈F

x+ dxN0 ⊆ z + pN0 = {0, z}+ pN0.

Consider the set P =
⋃

x∈F Πdx
. If p ∈ Πdx

for some x ∈ F , we can use the Chinese Remainder Theorem 2
and find a number

c ∈ (x + pN0) ∩
⋂

q∈P\{p}

qN ⊆
⋂

y∈F

y + dyN0 ⊆ {0, z}+ pN0.

Taking into account that x is not divisible by p, we conclude that c ∈ (x+pZ)∩ (z+pZ) and hence x− z ∈ pZ,
which contradicts the choice of p > max(E ∪ F ). This contradiction shows that p /∈ P . Since p ≥ 3, we can
find a number z′ /∈ {0, z}+ pZ and using the Chinese Remainder Theorem 2, find a number

u ∈ (z′ + pN0) ∩
⋂

q∈P

qN ⊆
⋂

x∈F

x+ dxN0 ⊆ {0, z}+ pZ,

which is a desired contradiction showing that E ⊆ F . �

As we know, the largest element of the superconnecting poset F is the superconnecting filter F∞. This filter
can be characterized as follows.
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Lemma 7. The superconnecting filter F∞ of the Kirch space is generated by the base consisting of the sets qN
for odd square-free numbers q ∈ N, i.e.

F∞ = {B ⊆ N : (∃q)(q is an odd square-free) ∧ qN ⊆ B}.

Proof. Lemma 1 implies that each element F ∈ F∞ contains the set qN for some odd square-free number q.
Conversely, let q be an odd square-free number. Then U1 = 1+ qN0, U2 = 2+ qN0 ∈ τK . By Lemma 1 we have

U1 ∩ U2 = N ∩
⋂

p∈Πq

({0, 1}+ pZ) ∩ ({0, 2}+ pZ) = N ∩
⋂

p∈Πq

pZ = qN.

Hence qN ∈ F∞. �

Lemma 8. For a nonempty subset E ⊆ N the following conditions are equivalent:

(1) FE = F∞;

(2) AE = {2}.

If |E| = 2, then the conditions (1), (2) are equivalent to

(3) E = {2n, 2n+1} for some n ∈ ω.

Proof. (1) ⇒ (2): Assume FE = F∞. Consider F = {1, 2}. It is clear that AF = {2} and ΠF = ∅. Thus
AF ⊆ AE , ΠF \{2} ⊆ ΠE and αF ↾AF \ΠE = αE↾AF \ΠE . Lemma 5 implies FE ⊆ FF . Since FE = F∞ is the
largest element of F we get FE = FF . By using again Lemma 5 we get AE ⊆ AF which implies that AE = {2}.

(2) ⇒ (1): If AE = {2}, then by the Lemma 4, the filter FE is generated by the base consisting of the sets
qN for an odd square-free number q ∈ N. Therefore FE = F∞ by the Lemma 7.

If |E| = 2, then the equivalence (2) ⇔ (3) follows from Lemma 2. �

Lemma 9. For every n ∈ ω, the number 2n is a fixed point of any homeomorphism h of the Kirch space.

Proof. Consider the graph Γ2 = (V2, E) with set of vertices V2 = {2n : n ∈ ω} and set of edges E =
{

{2n, 2n+1} :

n ∈ ω
}

.

By Lemma 8, for every edge E ∈ E of the graph E we have FE = F∞ and hence Fh[E] = h̃(FE) = h̃(F∞) =
F∞ by the topological invariance of the filter F∞. Applying Lemma 8 once more, we conclude that h[E] ∈ E .
The same argument applied to the homeomorphism h−1 ensures that h̃−1[E] ∈ E for any E ∈ E . This means

that h̃ induces an isomorphism of the graph Γ2. Now observe that the number 20 = 1 is a unique vertex of
the graph Γ2 that has order 1. This graph-theoretic property of the vertex 20 in Γ2 ensures that h(20) = 20.
Next, observe that 21 is a unique vertex of Γ2 that is connected with 20 and hence h(21) = 21. Proceeding by
induction, we can show that h(2n) = 2n for all n ∈ ω. �

In the following lemmas by F′ we denote the set of maximal elements of the poset F \ {F∞}.

Lemma 10. For a finite subset E ⊆ N the filter FE belongs to the family F′ if and only if there exists an odd

prime number p /∈ ΠE such that AE = {2, p}.

Proof. To prove the “if” part, assume that AE = {2, p} and p /∈ ΠE for some odd prime number p. By
Lemma 8, FE 6= F∞. To show that the filter FE is maximal in F \ {F∞}, take any finite set F ⊂ N such
that FE ⊆ FF 6= F∞. By Lemmas 5 and 8, {2} 6= AF ⊆ AE = {2, p}, ΠF ⊆ ΠE ∪ {2} = {2}, and
αF ↾AF \ΠE = αE↾AF \ΠE . It follows that AF = {2, p} = AE , ΠF ∪ {2} = ΠE ∪ {2} and αF = αE . Applying
Lemma 5, we conclude that FE = FF , which means that the filter FE is a maximal element of the poset
F \ {F∞}.

To prove the “only if” part, assume that FE ∈ F′. By Lemma 8, AE 6= {2} and hence there exists an odd
prime number p ∈ AE . We claim that p /∈ ΠE . To derive a contradiction, assume that p ∈ ΠE and consider
the sets F = {p, 2p} and G = {1, p, 2p}. By Lemma 2, AF = AG = {2, p}, ΠF = {p}, and ΠG = ∅. Taking into
account that F ⊂ G, AF = {2, p} ⊆ AE , ΠF \ {2} = {p} ⊆ ΠE and AF \ ΠE ⊆ {2}, we can apply Lemmas 5,
8 and conclude that FE ⊆ FF ⊆ FG 6= F∞. The maximality of FE implies FE = FF = FG. By Lemma 5, the
equality FG = FF implies p ∈ ΠF \ {2} ⊆ ΠG = ∅, which is a contradiction showing that p /∈ ΠE .

Now consider the set H = {αE(p), p, 2p} and observe that AH = {2, p}, ΠH = ∅ and αH(p) = αE(p).
Lemmas 5 and 8 guarantee that FE ⊆ FH 6= F∞. By the maximality of FE, we have FE = FH . Applying
Lemma 5 once more, we conclude that AE = AH = {2, p}. �

Lemma 10 implies the following description of the set F′.
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Lemma 11. F′ = {F{a,p,2p} : p ∈ Π \ {2}, a ∈ {1, . . . , p− 1}}.

Let F′′ be the set of maximal elements of the poset F \ (F′ ∪ {F∞})

Lemma 12. For a finite set E ⊂ N, the filter FE belongs to the family F′′ if and only if one of the following

conditions holds:

(1) there exists an odd prime number p such that p ∈ ΠE and AE = {2, p};
(2) there are two distinct odd prime numbers p, q such that AE = {2, p, q} and ΠE ⊆ {2}.

Proof. To prove the “only if” part, assume that FE ∈ F′′. By Lemma 8, there is an odd prime number p ∈ AE .
If AE = {2, p}, then p ∈ ΠE by Lemma 10, and condition (1) is satisfied. So, we assume that {2, p} 6= AE

and find an odd prime number q ∈ AE \ {2, p}. By Lemma 3, there is a number x ∈ N such that for the set
F = {x, pq, 2pq} we have AF = {2, p, q}, ΠF = ∅, αF (p) = a and αF (q) = b. Then FE ⊆ FF by Lemma 5, and
FF ∈ F \ (F′ ∪ {F∞}) by Lemma 10. Now the maximality of the filter FE implies that FE = FF and hence
AE = AF = {2, p, q} and ΠE ⊂ ΠF ∪ {2} = {2}, see Lemma 5.

To prove the “if” part, we consider two cases. First we assume that AE = {2, p} for some p ∈ ΠE . By
Lemmas 8 and 10, FE ∈ F \ ({F∞}∪F′). To prove that FE is a maximal element of F \ ({F∞}∪ F′), take any
finite set F ⊆ N such that FE ⊆ FF ∈ F \ ({F∞} ∪ F′). Lemma 6 implies that min{|E|, |F |} ≥ 2 and then by
Lemmas 5 and 10, we have AF = {2, p}, ΠF \ {2} ⊆ {p} and αE↾AF \ {p} = αF ↾AF \ {p}. Now notice that
p ∈ ΠF since otherwise FF ∈ F′ by Lemma 10. By using again Lemma 5 we get FF = FE which means that
FE ∈ F′′.

Now assume that there are two distinct odd prime numbers p, q such that AE = {2, p, q} and ΠE ⊆ {2}.
By Lemmas 8 and 10, FE ∈ F \ ({F∞} ∪ F′). To prove that FE is a maximal element of F \ ({F∞} ∪ F′), take
any finite set F ⊆ N such that FE ⊆ FF ∈ F \ ({F∞} ∪ F′). Lemma 5 implies that AF ⊆ {2, p, q}, ΠF ⊆ {2}
and αE↾AF \ ΠE = αF ↾AF \ ΠE . Taking into account that FF /∈ F′ ∪ {F∞} and ΠF ⊆ {2}, we can apply
Lemmas 10, 8 and conclude that AF = {2, p, q}. We therefore know that AF = AE , ΠE ∪ {2} = ΠF ∪ {2} and
αF ↾AE \ΠF = αE↾AE \ΠF . By Lemma 5, FE = FF and hence FE ∈ F′′. �

Lemma 13. For any homeomorphism h of the Kirch space and any odd prime number p we have

h̃(F{p,2p}) = F{p,2p}.

Proof. By Proposition 1, the homeomorphism h induces an order isomorphism h̃ of the superconnecting poset
F on the Kirch space. Then h̃[F′] = F′ and h̃[F′′] = F′′.

By Lemmas 12 and 3, F′′ = F′′
2 ∪ F′′

3 where

F′′
2 =

{

F{p,2p} : p ∈ Π \ {2}
}

and

F′′
3 =

{

F{x,pq,2pq} : p, q ∈ Π \ {3}, p 6= q, x ∈ {0, . . . , pq − 1} \ (pZ ∪ qZ)
}

.

By Lemmas 5 and 10, for every filter F{p,2p} ∈ F′′
2 the set ↑F{p,2p} = {F ∈ F′ : F{p,2p} ⊂ FE} coincides with

the set {F{a,p,2p} : a ∈ {1, . . . , p− 1}} and hence has cardinality p− 1.

On the other hand, for any filter F{x,pq,2pq} ∈ F′′
3 , the set ↑F{x,pq,2pq} = {F ∈ F′ : F{x,pq,2pq} ⊂ F} coincides

with the doubleton {F{x,p,2p},F{x,q,2q}}.

These order properties uniquely determine the filters F{p,2p} for p ∈ Π \ {3} and ensure that h̃(F{p,2p}) =
F{p,2p} for every p ∈ Π \ {3}.

Next, observe that F{3,6} is a unique element F of F′′ such that ↑F∩
⋃

p∈Π\{3} ↑F{p,2p} = ∅. This uniqueness

order property of F{3,6} ensures that h̃(F{3,6}) = F{3,6}. �

Lemmas 9 and 13 imply

Lemma 14. For any homeomorphism h of the Kirch space and any odd prime number p we have

h̃(F{1,p,2p}) = F{1,p,2p} and h̃(F{2,p,2p}) = F{2,p,2p}.

Lemma 15. For an integer number x ≥ 3 and an odd prime p, the following conditions are equivalent:

(1) p ∈ Πx;

(2) F{1,x} ⊆ F{1,p,2p} and F{2,x} ⊆ F{2,p,2p}.
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Proof. If p ∈ Πx, then A{1,p,2p} = {2, p} ⊆ A{1,x}, Π{1,x} = ∅ = Π{1,p,2p} and α{1,x}(p) = 1 = α{1,p,2p}(p). By
Lemma 5, F{1,x} ⊆ F{1,p,2p}. By analogy we can prove that F{2,x} ⊆ F{2,p,2p}.

Conversely, assume F{1,x} ⊆ F{1,p,2p} and F{2,x} ⊆ F{2,p,2p}. By Lemmas 5 and 2, we have

{2, p} = A{1,p,2p} ⊆ A{1,x} = Πx ∪ Πx−1 and {2, p} = A{2,p,2p} ⊆ A{2,x} = {2} ∪ Πx ∪ Πx−2

and hence p ∈ (Πx ∪Πx−1) ∩ (Πx ∩ Πx−2) \ {2} ⊆ Πx. �

Proposition 1 and Lemmas 9, 14, 15 imply

Lemma 16. For every homeomorphism h of the Kirch space and any number x ∈ N we have

Πx ∪ {2} = Πh(x) ∪ {2}.

For every prime number p consider the set

Vp = {2n−1pm : n,m ∈ N}

of numbers x ∈ N such that p ∈ Πx ⊆ {2, p}. Lemmas 9 and 16 imply that h[Vp] = Vp for every homeomorphism
h of the Kirch space.

Consider the graph Γp = (Vp, Ep) on the set Vp with the set of edges

Ep :=
{

E ∈ [Vp]
2 : AE = {2, p}

}

.

Lemma 17. For every prime number p and every homeomorphism h of the Kirch space, the restriction of h
to Vp is an isomorphism of the graph Γp.

Proof. Let E ∈ Ep. Since p ∈ ΠE , we can apply Lemma 12 and conclude that FE ∈ F′′. Using fact that h̃ is

an order isomorphism of F we get Fh[E] = h̃(FE) ∈ F′′. Since h[E] ⊆ h[Vp] = Vp, we obtain p ∈ Πh[E]. Using
Lemma 12 once more, we obtain that Ah[E] = {2, p}, which means that h[E] ∈ Ep. By analogical reasoning we

can prove that h−1[E] ∈ Ep for every E ∈ Ep. This means that h↾Vp is isomorphism of the graph Γp. �

The structure of the graph Γp depends on properties of the prime number p.

A prime number p is called

• Fermat prime if p = 2n + 1 for some n ∈ N;
• Mersenne prime if p = 2n − 1 for some n ∈ N;
• Fermat–Mersenne if p is Fermat prime or Mersenne prime.

It is known (and easy to see) that for any Fermat prime number p = 2n+1 the exponent n is a power of 2, and
for any Mersenne prime number p = 2n − 1 the power n is a prime number. It is not known whether there are
infinitely many Fermat–Mersenne prime numbers. All known Fermat prime numbers are the numbers 22n

+ 1
for 0 ≤ n ≤ 4 (see oeis.org/A019434 in [11]). At the moment only 51 Mersenne prime numbers are known,
see the sequence oeis.org/A000043 in [11].

Lemma 18. Let p be an odd prime number.

(1) If p = 3, then the set Ep of edges of the graph Γp coincides with the set of doubletons

{2a−13b, 2a−13b+1}, {2a−13b, 2a−13b+2}, {2a−13b, 2a3b}, {2a−13b, 2a+13b}, {2a−13b+1, 2a+13b},
{2a+13b, 2a3b+1}, {2a+33b, 2a3b+2} for some a, b ∈ N.

(2) If p = 2m + 1 > 3 is Fermat prime, then

Ep =
{

{2a−1pb, 2a−1pb+1}, {2a−1pb, 2apb}, {2m+a−1pb, 2a−1pb+1} : a, b ∈ N
}

.

(3) If p = 2m − 1 > 3 is Mersenne prime, then

Ep =
{

{2a−1pb, 2apb}, {2a−1pb, 2m+a−1pb}, {2a−1pb+1, 2m+a−1pb} : a, b ∈ N
}

.

(4) If p is not Fermat–Mersenne, then Ep =
{

{2apb, 2a−1pb} : a, b ∈ N
}

.

Proof. Proof of Lemma 18 in each of cases (1)–(4) will be similar. Edges of the graph Γp are 2-element subsets
of the set Vp such that AE = {2, p}. Since vertices of the graph Γp are numbers of the form 2n−1pm, where
n,m ∈ N, we can apply Lemma 2 and conclude that a doubleton {x, y} ⊂ Vp belongs to Ep if and only if
{2, p} = {2} ∪Πx ∪Πy ∪Πx−y. In subsequent proofs, we will intensively use the Mihăilescu Theorem 4 saying
that 23, 32 is a unique pair of consecutive powers.

1. First we consider the case of p = 3. It is easy to see that the doubletons {x, y} written in the statement
(1) have Πx ∪ Πy ∪ Πx−y ⊆ {2, 3}, which implies that {x, y} ∈ E3. It remains to show that every doubleton
{x, y} ∈ E3 is of the form indicated in the statement (1). Write {x, y} as {2a−13b, 2c−13d} for some a, b, c, d ∈ N

such that 2a−13b < 2c−13d.
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If a = c, then b < d and the inclusion Πx−y ⊆ {2, 3} implies that Π3d−b−1 ⊆ {2, 3} and hence 3d−b − 1 is a
power of 2. By the Mihăilescu Theorem 4, d−b ∈ {1, 2}, which means that {x, y} is equal to {2a−13b, 2a−13b+1}
or {2a−13b, 2a−13b+2}.

If b = d, then a < c and the inclusion Πx−y ⊆ {2, 3} implies that Π2c−a−1 ⊆ {2, 3} and hence 2c−a − 1 is a
power of 3. By the Mihăilescu Theorem 4, c − a ∈ {1, 2}, which means that {x, y} is equal to {2a−13b, 2a3b}
or {2a−13b, 2a+13b}.

So, we assume that a 6= c and b 6= d. In this case we should consider four subcases.

If a < c and b < d, then Πx−y ⊆ {2, 3} implies that each prime divisor of 2c−a3d−b − 1 is equal to 2 or 3,
which is not possible.

If a < c and b > d, then Πx−y ⊆ {2, 3} and 2a−13b < 2c−13d imply that 2c−a− 3b−d = 1 and hence c−a = 2
and b− d = 1 by the Mihăilescu Theorem 4. In this case {x, y} = {2a−13d+1, 2a+13d}.

If a > c and b < d, then Πx−y ⊆ {2, 3} and 2a−13b < 2c−13d imply that 3d−b − 2a−c = 1 and hence
(d − b, a− c) ∈ {(1, 1), (2, 3)} by the Mihăilescu Theorem 4. In this case {x, y} is equal to {2c+13b, 2c3b+1} or
{2c+33b, 2c3b+2}.

The subcase a > c and b > d is forbidden by the inequality 2a−13b < 2c−13d.

2. Assume that p = 2m + 1 > 3 is a Fermat prime. In this case m > 1. It is easy to check that
every doubleton {x, y} ∈

{

{2a−1pb, 2a−1pb+1}, {2a−1pb, 2apb}, {2m+a−1pb, 2a−1pb+1} : a, b ∈ N
}

has A{x,y} =
{2} ∪ Πx ∪ Πy ∪ Πx−y = {2, p} and hence {x, y} ∈ Ep.

Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then {2}∪Πx ∪Πy ∪Πx−y = A{x,y} = {2, p} and

{x, y} can be written as {2a−1pb, 2c−1pd} for some a, b, c, d ∈ N with 2a−1pb < 2c−1pd.

If a = c, then b < d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−1 ⊆ {2, p} and hence pd−b − 1 is a

power of 2. By the Mihăilescu Theorem 4, d− b = 1, which means that {x, y} is equal to {2a−1pb, 2a−1pb+1}.

If b = d, then a < c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−1 ⊆ {2, p} and hence 2c−a − 1 is a
power of p. By the Mihăilescu Theorem 4, 2c−a − 1 ∈ {1, p} = {1, 2m + 1} and hence c− a = 1, which means
that {x, y} is equal to {2a−1pb, 2apb}.

So, we assume that a 6= c and b 6= d. By analogy with the case of p = 3, we can show that the subcases
(a < c and b < d) and (a > c and b > d) are impossible.

If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − pb−d = 1. In this case the Mihăilescu Theorem 4
ensures that b− d = 1 and hence 2c−a = p+ 1 = 2m + 2 which is not possible (as m > 1).

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−a − 2a−c = 1. In this case the Mihăilescu Theorem 4
implies that d− b = 1 and hence 2a−c = p− 1 = 2m and a− c = m. In this case {x, y} = {2c+m2b, 2cpb+1}.

3. Assume that p = 2m − 1 > 3 is a Mersenne prime. In this case m > 2. It is easy to check that
every doubleton {x, y} ∈

{

{2apb, 2a−1pb}, {2a−1pb, 2m+a−1pb}, {2a−1pb+1, 2m+a−1pb} : a, b ∈ N
}

has A{x,y} =
{2} ∪ Πx ∪ Πy ∪ Πx−y = {2, p} and hence {x, y} ∈ Ep.

Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then {2}∪Πx ∪Πy ∪Πx−y = A{x,y} = {2, p} and

{x, y} can be written as {2a−1pb, 2c−1pd} for some a, b, c, d ∈ N with 2a−1pb < 2c−1pd.

If a = c, then b < d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−1 ⊆ {2, p} and hence pd−b − 1 is a
power of 2. By the Mihăilescu Theorem 4, d − b = 1 and hence 2m − 2 = p − 1 is a power of 2, which is not
true as m > 2.

If b = d, then a < c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−1 ⊆ {2, p} and hence 2c−a − 1 is a
power of p. By the Mihăilescu Theorem 4, 2c−a − 1 ∈ {1, p} = {1, 2m − 1} and hence c − a ∈ {1,m}, which
means that {x, y} is equal to {2a−1pb, 2apb} or {2a−1pb, 2m+a−1pb}.

So, we assume that a 6= c and b 6= d. By analogy with the case of p = 3, we can show that the subcases
(a < c and b < d) and (a > c and b > d) are impossible.

If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − pb−d = 1. In this case the Mihăilescu Theorem 4
ensures that b−d = 1 and hence 2c−a = p+1 = 2m and c−a = m. In this case {x, y} = {2a−1pd+1, 2m+a−1pd}.

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−a − 2a−c = 1. In this case the Mihăilescu Theorem 4
implies that d− b = 1 and hence 2a−c = p− 1 = 2m − 2, which is not possible as m > 2.

4. Assume that p is not Fermat-Mersennne. It is easy to check that every doubleton {x, y} ∈
{

{2a−1pb, 2a−1pb+1} :

a, b ∈ N
}

has A{x,y} = {2} ∪ Πx ∪ Πy ∪ Πx−y = {2, p} and hence {x, y} ∈ Ep.

Now assume that {x, y} ∈ Ep is an edge of the graph Γp. Then {2}∪Πx ∪Πy ∪Πx−y = A{x,y} = {2, p} and

{x, y} can be written as {2a−1pb, 2c−1pd} for some a, b, c, d ∈ N with 2a−1pb < 2c−1pd.
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If a = c, then b < d and the inclusion Πx−y ⊆ {2, p} implies that Πpd−b−1 ⊆ {2, p} and hence pd−b − 1 is a
power of 2. By the Mihăilescu Theorem 4, d− b = 1 and hence p is a Fermat prime, which is not true.

If b = d, then a < c and the inclusion Πx−y ⊆ {2, p} implies that Π2c−a−1 ⊆ {2, p} and hence 2c−a − 1 is
a power of p. By the Mihăilescu Theorem 4, 2c−a − 1 ∈ {1, p}. Taking into account that p is not Mersenne
prime, we conclude that 2c−a − 1 = 1 and hence c− a = 1. Then {x, y} = {2a−1pb, 2apb}.

So, we assume that a 6= c and b 6= d. By analogy with the case of p = 3, we can show that the subcases
(a < c and b < d) and (a > c and b > d) are impossible.

If a < c and b > d, then Πx−y ⊆ {2, p} implies that 2c−a − pb−d = 1. In this case the Mihăilescu Theorem 4
ensures that b− d = 1 and hence p = 2c−a − 1 is a Mersenne prime, which is not true.

If a > c and b < d, then Πx−y ⊆ {2, p} implies that pd−a − 2a−c = 1. In this case the Mihăilescu Theorem 4
implies that d− b = 1 and hence p = 1 + 2a−c is a Fermat prime, which is not true. �

In the following diagrams we draw the graphs Γp for p equal to 3, 5, 7, 11. Observe that 3 is both Fermat
and Mersenne prime, 5 is Fermat prime, 7 is Mersenne prime and 11 is not Fermat–Mersenne.
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✠
✠
✠
✠
✠
✠
✠
✠

. . .

22·5 22·52

☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

22·53

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

22·54

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡

. . .

23·5 23·52 23·53 23·54 . . .

...
...

...
...

7 72

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

73

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

74

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

. . .

✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒

2·7 2·72

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

2·73

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

2·74

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

. . .

✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒

22·7 22·72

✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒

22·73

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

22·74

✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑
✑

. . .

✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒

23·7 23·72 23·73 23·74 . . .

24·7 24·72 24·73 24·74 . . .

...
...

...
...

11 112 113 114 · · ·

2·11 2·112 2·113 2·114 · · ·

22·11 22·112 22·113 22·114 · · ·

23·11 23·112 23·113 23·114 · · ·

24·11 24·112 24·113 24·114 · · ·

...
...

...
...

Lemma 19. Let p be an odd prime number and h be a homeomorphism of the Kirch space.

(1) If p is Fermat-Mersenne, then h(p) = p;
(2) If p is not Fermai-Mersenne, then h[pN] = pN.

Proof. Given an odd prime number p, consider the graph Γp = (Vp, Ep).
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First we consider the case p = 3. In this case Lemma 18(1) ensures that the degree of the vertex 3 in the
graph Γ3 is equal to 4 but the other vertices have degree at least 5. Hence h(3) = 3.

Next, we assume that p > 3 is Fermat–Mersenne prime. In this case Lemma 18(2,3) implies that the degree
of the vertex p in the graph Γp is 2 but the other vertices have degree at least 3. Hence h(p) = p.

Finally, assume that p is not Fermat-Mersenne. Then Lemma 18(4) ensures that the set pN coincides with
the set of vertices of order 1 in the graph Γp. Taking into account that h↾Vp is an isomorphism of the graph
Γp, we conclude that h[pN] = pN. �

To prove that h(p) = p for any prime number p, we will need the following lemma.

Lemma 20. For any integer number x ∈ N \ {1} the filter F{1,x} is the greatest element of the subset

Fx = {F{1,xn} : n ∈ N}

of the poset F. If x /∈ {2m : m ∈ N} ∪ {2m − 1 : m ∈ N}, then {n ∈ N : F{1,xn} = F{1,x}} = {1}.

Proof. Observe that for every n ∈ N the number x− 1 divides xn − 1, which implies

A{1,x} = {2} ∪ Πx ∪ Πx−1 ⊆ {2} ∪ Πxn ∪ Πxn−1 = A{1,xn}.

Observe also that Π{1,x} = ∅ = Π{1,xn} and α{1,x}(p) = 1 = α{1,xn}(p) for every p ∈ A{1,x}. By Lemma 5,
F{1,xn} ⊆ F{1,x}, which means that F{1,x} is the largest element of the poset Fx.

Now assume that x /∈ {2m : m ∈ N}∪{2m− 1 : n ∈ N} and F{1,x} = F{1,xn} for some number n. We should
prove that n = 1. To derive a contradiction, assume that n ≥ 2. By Lemmas 5 and 2,

{2} ∪ Πx ∪Πxn−1 = A{1,xn} = A{1,x} = {2} ∪Πx ∪ Πx−1

and hence Πxn−1 ⊆ {2} ∪Πx−1 = Πx−1 ⊆
⋃

0<k<n Πxk−1. By Zsigmondy Theorem 5, x ∈ {2} ∪ {2m − 1}m∈N,
which contradicts our assumption. �

Lemma 21. For any homeomorphism h of the Kirch space and any prime number p we have h(p) = p.

Proof. If p = 2, then h(p) = p by Lemma 9. If p is Fermat–Mersenne, then h(p) = p by Lemma 19. So, we

assume p is not Fermat-Mersenne. By Lemma 19, h[pN] = pN, which implies h̃[Fp] = Fp where

Fp = {F{1,pn} : n ∈ N}.

By Proposition 1, h̃ induces an order isomorphism of the poset Fp (endowed with the inclusion order, inherited
from the poset F).

By Lemma 20, n = 1 is a unique number such that F{1,pn} coincides with the greatest element F{1,p} of the
poset Fx. This order characterization of the filter F{1,p} implies that h(p) = p. �

Our final lemma completes the proof of Theorem 1.

Lemma 22. The homeomorphism group of the Kirch space is trivial.

Proof. To derive a contradiction, assume that the Kirch space admits a homeomorphism h such that h(x) 6= x
for some number x. By the Hausdorff property of the Kirch space and the continuity of h, there exists a
neighborhood Ox of x in the Kirch topology such that h[Ox] ∩Ox = ∅. By the Dirichlet Theorem 3, the open
set Ox contains some prime number p. Then h[Ox]∩Ox = ∅ implies h(p) 6= p, which contradicts Lemma 21. �
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