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DERIVATIVES, EULERIAN POLYNOMIALS AND THE g-INDEXES OF

YOUNG TABLEAUX

GUO-NIU HAN AND SHI-MEI MA∗

Abstract. In this paper we first present summation formulas for k-order Eulerian polynomials

and 1/k-Eulerian polynomials. We then present combinatorial expansions of (c(x)D)n in terms

of inversion sequences as well as k-Young tableaux, where c(x) is a differentiable function in

the indeterminate x and D is the derivative with respect to x. We define the g-indexes of

k-Young tableaux and Young tableaux, which have important applications in combinatorics.

By establishing some relations between k-Young tableaux and standard Young tableaux, we

express Eulerian polynomials, second-order Eulerian polynomials, André polynomials and the

generating polynomials of gamma coefficients of Eulerian polynomials in terms of standard

Young tableaux, which imply a deep connection among these polynomials.

1. Introduction

Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n}. Let π = π(1)π(2) · · · π(n) ∈ Sn.

A descent of π is an index i ∈ [n] such that π(i) > π(i+ 1) or i = n. Let des (π) be the number

of descents of π. The number
〈n
i

〉

= {π ∈ Sn : des (π) = i} is called the Eulerian number, and

the polynomial

An(x) =
∑

π∈Sn

xdes (π)

is called the Eulerian polynomial. The historical origin of Eulerian polynomial is the following

summation formula (see [29]):

(

x
d

dx

)n 1

1− x
=

∞
∑

k=0

knxk =
An(x)

(1− x)n+1
. (1)

In the past decades, there has been much work on Eulerian polynomial and its generalizations

(see [18, 21, 30, 37] for instance). For example, by using a kind of first-order differential equation,

Rza̧dkowski and Urlińska [30] considered a unified generalization of Eulerian polynomials and

second-order Eulerian polynomials. In the following we first recall the definitions of k-order

Eulerian polynomials and 1/k-Eulerian polynomials, and then we present summation formulas

for these polynomials.

A k-Stirling permutation of order n is a permutation of the multiset {1k, 2k, . . . , nk} such that

for each i, 1 ≤ i ≤ n, all entries between any two occurrences of i are at least i. When k = 2,

the k-Stirling permutation is reduced to the ordinary Stirling permutation ([19]). We say that
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an index i ∈ [kn] is a descent of σ if σi > σi+1 or i = kn. Let Qn(k) be the set of k-Stirling

permutations of order n. The k-order Eulerian polynomials are defined by

Cn(x; k) =
∑

σ∈Qn(k)

xdes (π), C0(x; k) = 1.

Following [14, Lemma 1], the polynomials Cn(x; k) satisfy the recurrence relation

Cn+1(x; k) = (kn + 1)xCn(x; k) + x(1− x)C ′
n(x; k), (2)

In particular, Cn(x; 1) = An(x). When k = 2, the polynomial Cn(x; k) is reduced to the

second-order Eulerian polynomial Cn(x), i.e., Cn(x; 2) = Cn(x). Stirling permutations and the

second-order Eulerian polynomial were defined by Gessel and Stanley [19], and they proved that

∞
∑

k=0

{

k + n

k

}

xk =
Cn(x)

(1− x)2n+1
,

where
{

n
k

}

is the Stirling number of the second kind, i.e., the number of ways to partition the

set [n] into k non-empty subsets. The second-order Eulerian polynomials have been extensively

studied in recent years, see [20, 21, 26] and references therein.

Let s = {si}i≥1 be a sequence of positive integers. A geometric interpretation of Eulerian

polynomials is obtained by considering the s-lecture hall polytope P(s)
n , which is defined by

P(s)
n =

{

(λ1, λ2, . . . , λn) ∈ Rn
∣

∣ 0 ≤ λ1
s1

≤ λ2
s2

≤ · · · ≤ λn
sn

≤ 1

}

.

Set e0 = 0 and s0 = 1. Let I
(s)
n = {e = (e1, . . . , en) ∈ Zn | 0 ≤ ei < si for 1 ≤ i ≤ n} be the set

of n-dimensional s-inversion sequences. The polynomial

E(s)
n (x) =

∑

e∈I
(s)
n

xasc (e)

is known as the s-Eulerian polynomial, where asc (e) = #
{

i ∈ {0, 1, 2, . . . , n− 1}
∣

∣

ei
si
< ei+1

si+1

}

.

In particular, we have

E(1,2,...,n)
n (x) = An(x)/x.

Let k be a fixed positive integer. The 1/k-Eulerian polynomials A
(k)
n (x) are defined by the

generating function
∞
∑

n=0

A(k)
n (x)

zn

n!
=

(

1− x

ekz(x−1) − x

)
1
k

.

Savage and Viswanathan [31] showed that

A(k)
n (x) = E(1,k+1,2k+1...,(n−1)k+1)

n (x).

For π ∈ Sn, an excedance of π is an index i ∈ [n] such that π(i) > i. Let exc (π) (resp. cyc (π))

be the number of excedances (resp. cycles) of π. It follows from [6, Proposition 7.3] that

A(k)
n (x) =

∑

π∈Sn

xexc (π)kn−cyc (π).
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Another combinatorial interpretation of A
(k)
n (x) is given as follows:

A(k)
n (x) =

∑

σ∈Qn(k)

xap (σ),

where ap (σ) is the number of the longest ascent plateaus of σ, i.e., the number of indexes

i ∈ {2, 3, . . . , nk− k + 1} such that σi−1 < σi = σi+1 = · · · = σi+k−1 (see [23, Theorem 2]). The

polynomials A
(k)
n (x) satisfy the recurrence relation

A
(k)
n+1(x) = (1 + knx)A(k)

n (x) + kx(1− x)
d

dx
A(k)

n (x), (3)

with the initial conditions A
(k)
0 (x) = A

(k)
1 (x) = 1 (see [23, Eq. (6)]). Set Mn(x) = A

(2)
n (x). Let

Nn(x) =
∑

σ∈Qn

xlap (σ)

be the left ascent plateau polynomial, where lap (σ) is the number of the left ascent plateaux of

σ, i.e., the number of indices i ∈ {1, 2, 3, . . . , 2n − 1} such that σi−1 < σi = σi+1 and σ(0) = 0

(see [23, Theorem 3]). From [25, p. 2], we see that Nn(x) = xnMn(1/x) = xnA
(2)
n (1/x). Let

Bn(x) be the type B Eulerian polynomial. According to [25, Proposition 1], we have

2nAn(x) =
n
∑

i=0

(

n

i

)

Ni(x)Nn−i(x), Bn(x) =
n
∑

i=0

(

n

i

)

Ni(x)Mn−i(x).

Let Fn := Fn(x;α, β, a, b, c) be the polynomials defined by the following relation:
(

a+ bx+ cx2

(1− x)α
d

dx

)n
1

(1− x)β
=

Fn

(1− x)n+nα+β
.

Then F0 = 1 and it is routine to verify that the polynomials Fn satisfy the recurrence relation

Fn+1 = (n+ nα+ β)(a+ bx+ cx2)Fn + (a+ bx+ cx2)(1 − x)F ′
n. (4)

Comparing (2) and (3) with (4), it is routine to verify the first main result of this paper.

Theorem 1. Let k be a positive integer. For n ≥ 1, we have
(

x

(1− x)k
d

dx

)n 1

1− x
=

Cn(x; k + 1)

(1− x)n+kn+1
,

(

kx
d

dx

)n 1

(1− x)1/k
=
xnA

(k)
n (1/x)

(1− x)n+
1
k

.

In particular, we have
(

x

1− x

d

dx

)n 1

1− x
=

Cn(x)

(1− x)2n+1
, (5)

(

2x
d

dx

)n 1√
1− x

=
Nn(x)

(1− x)n
√
1− x

.

Throughout this paper, we always let c := c(x) and f := f(x) be two differentiable functions

in the indeterminate x, and let D = d
dx . Motivated by Theorem 1, we shall consider expansions

of (cD)nf . The paper is organized as follows. In the next section, we collect the definitions,

notation and preliminary results. In Section 3, we express (cD)nf in terms of inversion sequences

as well as k-Young tableaux. In particular, we define the g-indexes of k-Young tableau and Young
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tableau, which have important applications. Also, several main results including Theorems 14

and 17 are stated in that section. In Sections 4, 5 and 6, we respectively prove three main

results, i.e., second-order Eulerian polynomials, Eulerian polynomials and André polynomials

can be expressed in terms of standard Young tableaux.

2. Preliminary

The expansions of (cD)nf have been studied as early as 1823 by Scherk [32]. An illustration

of the correspondence between Scherk’s expansion of (cD)nf and forests of trees can be found

in Appendix A of [2]. In particular, Scherk [32, p. 6] found that

(xD)n =
n
∑

k=0

{

n

k

}

xkDk. (6)

Many generalizations and variations of (6) frequently appeared in combinatorics and normal

ordering problems (see [7, 15, 27] for instance).

It will be convenient in the sequel to adopt the convention that fk = Dkf and ck = Dkc. In

particular, f0 = f and c0 = c. The first few (cD)nf are given as follows:

(cD)f = (c)f1,

(cD)2f = (cc1)f1 + (c2)f2,

(cD)3f = (cc21 + c2c2)f1 + (3c2c1)f2 + (c3)f3,

(cD)4f = (cc31 + 4c2c1c2 + c3c3)f1 + (7c2c21 + 4c3c2)f2 + (6c3c1)f3 + (c4)f4,

(cD)5f = (cc41 + 11c2c21c2 + 4c3c22 + 7c3c1c3 + c4c4)f1 + (15c2c31 + 30c3c1c2

+ 5c4c3)f2 + (25c3c21 + 10c4c2)f3 + (10c4c1)f4 + (c5)f5.

Table 1. Expansions of (cD)nf

For n ≥ 1, we define

(cD)nf =
n
∑

k=1

An,kfk. (7)

It is evident that An,k is a function of c, c1, . . . , cn−k. Thus we can write An,k as follows:

An,k := An,k(c, c1, c2, . . . , cn−k).

In particular, A1,1 = c, A2,1 = cc1 and A2,2 = c2. By induction, it is easy to verify that

An+1,1 = cDAn,1, An,n = cn and for 2 ≤ k ≤ n, we have

An+1,k = cAn,k−1 + cDAn,k. (8)

The numbers appearing in An,k as coefficients can be found in [33, A139605]. We refer the

reader to [4, 27, 28] for various results and examples on the expansions of (cD)n.

In 1973, Comtet obtained the following result.
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Proposition 2 ([12]). Let An,k be defined by (7). For 1 ≤ k ≤ n, we have

An,k =
c

k!

∑

(2− k1)(3− k1 − k2) · · · (n − k1 − k2 − · · · − kn−1)
ck1
k1!

· · · ckn−1

kn−1!
, (9)

where the summation is over all sequences (k1, k2, . . . , kn−1) of nonnegative integers such that

k1 + k2 + · · ·+ kn−1 = n− k and k1 + · · · + kj ≤ j for any 1 ≤ j ≤ n− 1.

The explicit formula (9) provides a method for calculating (cD)nf , see Table 1. However, to

obtain the explicit coefficients in Table 1, a further step is needed. In order to state the other

expansion formulas for An,k, we need to introduce several notations on partitions of integers.

A partition λ = (λ1, λ2, . . . , λℓ) is a weakly decreasing sequence of nonnegative integers. Each

λi is called a part of λ. The sum of the parts of a partition λ is denoted by |λ|. If |λ| = n,

then we say that λ is a partition of n, also written as λ ⊢ n. We denote by mi the number of

parts equal i. By using the multiplicities, we also denote λ by (1m12m2 · · ·nmn). The partition

with all parts equal to 0 is the empty partition. The length of λ, denoted ℓ(λ), is the maximum

subscript j such that λj > 0. The Ferrers diagram of λ is graphical representation of λ with

λi boxes in its ith row and the boxes are left-justified. For a Ferrers diagram λ ⊢ n (we will

often identify a partition with its Ferrers diagram), a (standard) Young tableau (SYT, for short)

of shape λ is a filling of the n boxes of λ with the integers 1, 2, . . . , n such that each number

is used, and all rows and columns are increasing (from left to right, and from bottom to top,

respectively). Given a Young tableau, we number its rows starting from the bottom and going

above. Let SYT(n) be the set of standard Young tableaux of size n.

For a partition λ = (λ1, λ2, . . . , λℓ), we define

cλ =

ℓ
∏

i=1

cλi
, c∅ = 1.

Let
[n
k

]

= #{π ∈ Sn : cyc (π) = k} be the Stirling numbers of the first kind. We now recall

another expansion formula for An,k.

Proposition 3 ([1, 4]). Let An,k be defined by (7). For n ≥ 1, there exist positive integers

a(n, λ) such that

An,k =
∑

λ⊢n−k

a(n, λ)cn−ℓ(λ)cλ, (10)

where λ runs over all partitions of n− k. In particular, we have

∑

λ⊢n−k

a(n, λ) =

[

n

k

]

, a(n, 1n−k) =

{

n

k

}

,
∑

ℓ(λ)=n−k

a(n, λ) =

〈

n

k

〉

.

Motivated by Proposition 3, in the next section we present the other main results of this

paper. More importantly, we define the g-indexes of k-Young tableau and Young tableau.

3. Inversion sequences and the g-index of Young tableau

3.1. Derivatives and inversion sequences.

An integer sequence e = (e1, e2, . . . , en) is an inversion sequence of length n if 0 ≤ ei < i for

all 1 ≤ i ≤ n. Let I n be the set of inversion sequences of length n. There is a natural bijection

ψ between I n and Sn defined by ψ(π) = e, where ei = #{j | 1 ≤ j < i and π(j) > π(i)}.
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Definition 4. For e ∈ I n, let |e|j = #{i | ei = j, 1 ≤ i ≤ n}. Then we define

φ(e) = c · c|e|1c|e|2 · · · c|e|n−1
· f|e|0 .

For example, take n = 9 and e = (0, 0, 1, 0, 4, 2, 4, 0, 1), then |e|0 = 4, |e|1 = 2, |e|2 = 1, |e|3 =

0, |e|4 = 2 and |e|j = 0 for 5 ≤ j ≤ 8. So that φ(e) = c · c2c1cc2cccc · f4 = c6c1c
2
2 · f4.

We now present the second main result of this paper.

Theorem 5. For n ≥ 1, we have

(cD)nf =
∑

e∈I n

φ(e). (11)

Proof. When n = 1, we have I 1 = {0} and φ(0) = cf1. When n = 2, we have I 2 = {00, 01}.
Note that φ(00) = c · c · f2 and φ(01) = c · c1 · f1. Hence (11) is valid for n = 1, 2. Assume

that (11) holds for n. Let I n,k = {e ∈ I n : |e|0 = k}. Then for any e ∈ I n,k, we have

φ(e) = c · c|e|1 · c|e|2 · · · c|e|n−1
· fk.

Let e′ be obtained from e = (e1, e2, . . . , en) by appending en+1. We distinguish three cases:

(i) If en+1 = 0, then φ(e′) = c · c|e|1 · c|e|2 · · · c|e|n−1
· c · fk+1;

(ii) If en+1 = i and 1 ≤ i ≤ n− 1, then φ(e′) = c · c|e|1 · c|e|2 · · · c|e|i+1 · · · c|e|n−1
· c · fk;

(iii) If en+1 = n, then φ(e′) = c · c|e|1 · c|e|2 · · · c|e|n−1
· c1 · fk.

It is routine to check that the first case accounts for the term cAn,k−1 and the last two cases

account for the term cDAn,k. Then
∑

e∈In+1,k
φ(e) = (cAn,k−1 + cDAn,k)fk = An+1,kfk, which

follows from (8). This completes the proof. �

Example 6. When n = 3, the correspondence between e ∈ I 3 and φ(e) is illustrated as follows:

e 000 001 002 010 011 012

|e|0 |e|1 |e|2 300 210 201 210 120 111

φ(e) cccf3 cc1cf2 ccc1f2 cc1cf2 cc2cf1 cc1c1f1

So that
∑

e∈I 3

φ(e) = (cc21 + c2c2)f1 + (3c2c1)f2 + c3f3.

Example 7. When c = x, we have c0 = x, c1 = Dx = 1 and ci = 0 for i ≥ 2. Then φ(e) 6= 0

unless |e|i = 0 or |e|i = 1 for all i ≥ 1. In this case, let k = |e|0, then

n− k = #{j : |e|j = 1, 1 ≤ j ≤ n− 1}, (n− 1)− (n− k) = #{j : |e|j = 0, 1 ≤ j ≤ n− 1}.

Thus φ(e) = cc|e|1 · · · c|e|n−1
f|e|0 = xkfk. It follows from (6) that (xD)nf =

∑n
k=0

{n
k

}

xkfk.

Hence
{

n

k

}

= #{e ∈ I n : |e|0 = k, |e|j = 0 or 1 for any 1 ≤ j ≤ n− 1}.

We can derive Comtet’s formula (9) by using Theorem 5. For e ∈ I n, let k = |e|0 and

ki = |e|n−i for 1 ≤ i ≤ n− 1. Note that

k1 + k2 + · · ·+ kn−1 = n− k
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and k1 + · · ·+ kj ≤ j for each j. Therefore, the number of such e is equal to
(

1

k1

)(

2− k1
k2

)(

3− k1 − k2
k3

)

· · ·
(

n− k1 − k2 − · · · − kn−1

k

)

=
(2− k1)(3− k1 − k2) · · · (n − k1 − k2 − · · · − kn−1)

k!k1!k2! · · · kn−1!
.

3.2. Derivatives and k-Young tableaux.

Since the ck1 , ck2 , . . . , ckn−1 are commutative, we have to group the terms in (9) which produce

the same product ck1ck2 · · · ckn−1 . We say that the type of n is a pair (k, µ), denoted by (k, µ) ⊢ n,
where k ∈ [n] and µ = (µ1, . . . , µn−1) is a partition of n− k, i.e., µ is written up to n− 1 terms

by appending 0’s at the end. Let (k, µ) be a type of n. We define

Set (µ) = {µj | 1 ≤ j ≤ n− 1}, |µ|j = #{i | µi = j, 1 ≤ i ≤ n− 1}.

Let (|e|0, µ(e)) be the type of e ∈ I n, where µ(e) is the decreasing order of |e|1, . . . , |e|n−1.

For each type (k, µ) of n, let pk,µ be the number of inversion sequences of type (k, µ). It follows

from Theorem 5 that

(cD)nf =
∑

(k,µ)⊢n

pk,µccµ1cµ2 · · · cµn−1fk, (12)

where the summation is taken over all types (k, µ) of n.

Example 8. For 1 ≤ n = k + |µ| ≤ 3, the numbers pk,µ are p1,(0) = 1, p2,(0) = 1, p1,(1) = 1,

p3,(0,0) = 1, p2,(1,0) = 3, p1,(2,0) = 1 and p1,(1,1) = 1.

Lemma 9. By convention, set p0,µ = 0. If (k, µ) = (1, (1, 1, . . . , 1)), then let pk,µ = 1. For

other type (k, µ) of n, we have

pk,µ =
∑

j∈Set (µ)\{0}

(|µ|j−1 + 1)pk,µ(j) + pk−1,µ(0) , (13)

where µ(j) is obtained from µ by replacing the last occurrences of the part j by j − 1 and by

deleting the last 0 and µ(0) is obtained from µ by deleting the last 0. Thus (k, µ(j)) ⊢ (n−1) and

(k − 1, µ(0)) ⊢ (n− 1).

Proof. Take an inversion sequence e ∈ I n of type (k, µ). Let e′ = (e1, e2, . . . , en−1) ∈ I n−1 be

obtained from e by deleting the last en. If en = 0, then, the type of e′ is (k − 1, µ(0)). This

operation is reversible. If en = i (1 ≤ i ≤ n − 1) and |e|i = j ∈ Set (µ) \ {0}, then the type of

e′ is (k, µ(j)). In this case, the operation is not reversible. We have exactly (|µ|j−1 + 1) ways

to do the inverses. In fact we can append en = i′ 6= i at the end of e′ with the condition of

|e|i − 1 = j − 1 = |e|i′ to obtain an inversion sequence in I n of type (k, µ). �

As an illustration of (13), in order to get inversion sequences of type (k, µ) = (3, (2, 1, 1, 0, 0, 0)),

we distinguish three cases:

(i) For each e ∈ I 6 that counted by p2,(2,1,1,0,0), we can get exactly one inversion sequence

of type (k, µ) by appending e7 = 0 at the end of e;

(ii) Let e ∈ I 6 be an inversion sequence counted by p3,(1,1,1,0,0). If |e|i = 1 then we can append

e7 = i at the end of e. As we have three choices for i, we get the term 3p3,(1,1,1,0,0);
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7

6

5

4

3

2

1 1 5

4 6

2 3 7

Figure 1. (k = 2, µ = (3, 2, 0, 0, 0, 0))-diagram and k-Young tableau of shape (k, µ)

(iii) Let e ∈ I 6 be an inversion sequence counted by p3,(2,1,0,0,0). If |e|i = 0 or i = 6 then

we can append e7 = i at the end of e. As we have four choices for i, we get the term

4p3,(2,1,0,0,0).

Repeatedly, it is routine to verify that

p3,(2,1,1,0,0,0) = 4p3,(2,1,0,0,0) + 3p3,(1,1,1,0,0) + p2,(2,1,1,0,0) = 4× 120 + 3× 90 + 146 = 896.

Each type (k, µ) of n can be represented by a picture which contains k boxes in the bottom

row, and the Young diagram of the partition µ in the top. Such picture is called a (k, µ)-diagram.

See Figure 1 (left diagram).

Definition 10. Let (k, µ) be a type of n. A k-Young tableau Z of shape (k, µ) is a filling of the

n boxes of the (k, µ)-diagram by the integers 1, 2, . . . , n such that (i) each number is used, (ii) all

rows and columns in the top Young diagram are increasing (from left to right, and from bottom

to top, respectively), (iii) the bottom row becomes an increasing sequence of lenght k, starting

with 1.

The filling of the top Young diagram of the partition µ is called the top Young tableau of

the k-Young tableau. Unlike the ordinary Young tableau, there is no condition between the

bottom row and the top Young tableau. We always put a special column of n boxes at the left

of k-Young tableaux, and labelled by the integers 1, 2, . . . , n from bottom to top. See Figure 1

(right diagram) for an example.

Definition 11. Let Z be a k-Young tableau of shape (k, µ), where k+ |µ| = n. For each v ∈ [n],

suppose that v is in the box (i, j) of the top Young diagram, we define the g-index of v, denoted

by gZ(v), to be the number of boxes (i − 1, j′) such that j′ ≥ j and the letter in this box is

less than or equal to v (see Figure 3, right diagram). If v is in the bottom row, then we define

gZ(v) = 1. The g-index of Z is given by GZ = gZ(1)gZ(2) · · · gZ(n).

For the k-Young tableau given in Figure 1 (right diagram), we have

gZ(1) = 1, gZ(2) = 1, gZ(3) = 1, gZ(4) = 2, gZ(5) = 1, gZ(6) = 1, gZ(7) = 2.

The third main result of this paper is given as follows.
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Theorem 12. If (k, µ) ⊢ n, then we have

pk,µ =
∑

Z

GZ (14)

where the summation is taken over all k-Young tableaux of shape (k, µ).

Proof. Identity (14) is obtained from Lemma 9 by induction on n. The maximum letter n in the

k-Young tableaux Z can be at the end of the bottom row, or a corner in the top Young tableau

of Z. In the first case, gZ(n) = 1, and removing the letter n yields a (k − 1)-Young tableau

of shape (k − 1, µ). In the second case, gZ(n) = |µ|j−1 + 1, and removing the letter n yields a

k-Young tableaux of shape (k, µ(j)), where j is the length of the row contained n. We recover

all terms in (13). �

The Stirling numbers of the first kind
[n
k

]

can be defined as follows:

n
∑

k=1

[

n

k

]

xk = x(x+ 1) · · · (x+ n− 1).

According to [2, Proposition A. 2], we have (exD)nf = enx
∑n

k=1

[n
k

]

fk. We replace c = ex and

cj = ex in (12). By Theorem 12, we obtain

(exD)nf = enx
∑

(k,µ)⊢n

∑

Z

GZfk,

Hence
∑

(k,µ)⊢n

∑

Z

GZx
k = x(x+ 1)(x+ 2) · · · (x+ n− 1), (15)

where the first summation is taken over all type (k, µ) of n, and the second summation is taken

over all k-Young tableaux of shape (k, µ). For example, when n = 4, the k-Young tableaux with

their g-indexes are listed in Figure 2.

As an application of Theorem 12, we give the following result.

Proposition 13. Let
{n
k

}

be the Stirling numbers of the second kind. Then we have
{

n

k

}

=
∑

Z

GZ ,

where the summation is taken over all k-Young tableaux of shape (k, (1n−k0k−1)).

Proof. Let c = x and f = 1/(1 − x). Then c1 = 1 and cj = 0 for j ≥ 2, and fk = k!/(1 − x)k+1.

It follows from (12) that

(xD)n
1

1− x
=

∑

(k,µ)⊢n

pk,µccµ1cµ2 · · · cµn−1fk

=
∑

(k,µ=(1n−k0k−1))⊢n

pk,µ ·
k!xk

(1− x)k+1

=
1

(1− x)n+1

∑

(k,µ=(1n−k0k−1))⊢n

pk,µ · k!xk(1− x)n−k.
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k = 1

∑

G = 6 G=1·1·1·1

4
3
2
1

4
3
2
1

G=1·1·1·2

4
3
2
1

4
2 3
1

G=1·1·1·2

4
3
2
1

3
2 4
1

G=1·1·1·1

4
3
2
1

2 3 4
1

k = 2

∑

G = 11 G=1·1·2·2

4
3
2
1

4
3
1 2

G=1·1·2·1

4
3
2
1

3 4
1 2

G=1·1·1·2

4
3
2
1

4
2
1 3

G=1·1·1·1

4
3
2
1

2 4
1 3

G=1·1·1·1

4
3
2
1

3
2
1 4

G=1·1·1·1

4
3
2
1

2 3
1 4

k = 3

∑

G = 6 G=1·1·1·3

4
3
2
1

4
1 2 3

G=1·1·2·1

4
3
2
1

3
1 2 4

G=1·1·1·1

4
3
2
1

2
1 3 4

k = 4

∑

G = 1 G=1·1·1·1

4
3
2
1 1 2 3 4

Figure 2. All k-Young tableaux of size 4 and their g-indexes

By Theorem 12, we have

An(x) =

n
∑

k=0

pk,(1n−k0k−1) · k!xk(1− x)n−k

=
n
∑

k=0

∑

Z

GZ · k!xk(1− x)n−k, (16)

where the second summation is taken over all k-Young tableaux of shape (k, (1n−k0k−1)). Recall

that the Frobenius formula for Eulerian polynomials is given as follows (see [10] for instance):

An(x) =
n
∑

k=0

k!

{

n

k

}

xk(1− x)n−k.

By comparing with (16), we get the desired result. �

3.3. The g-index of Young tableaux.

Let T be a standard Young tableau of shape λ. We always put a special column of n boxes

at the left of T , and labelled by 1, 2, 3, . . . , n from bottom to top. For each v ∈ [n], suppose that

v is in the box (i, j), we define the g-index of v, denoted by gT (v), to be the number of boxes

(i−1, j′) such that j′ ≥ j and the letter in this box is less than or equal to v (see Figure 3, right

diagram). The g-index of T is defined by

GT = gT (1)gT (2) · · · gT (n).

For the Young tableau given in Figure 3 (left diagram), we have

gT (1) = 1, gT (2) = 1, gT (3) = 2, gT (4) = 1, gT (5) = 1, gT (6) = 4, gT (7) = 1.
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7

6

5

4

3

2

1

6

2 5

1 3 4 7

y

v

x
x
x
x

x ≤ v < y

gT (v) = #x

Figure 3. Young tableaux and g-index

Let λ(T ) be the corresponding partition of the Young tableau T . If λ(T ) = (λ1, λ2, . . . , λℓ),

then let λ(T )! = λ1!λ2! · · ·λℓ!.
We now present the fourth main result of this paper.

Theorem 14. Let Cn(x) be the second-order Eulerian polynomials. Then we have

Cn(x) =
∑

T∈SYT (n)

GT λ(T )! xn+1−ℓ(λ(T )). (17)

Take x = 1 in (17), we obtain the following corollary.

Corollary 15. We have

(2n − 1)!! =
∑

T∈SYT (n)

GT λ(T )!.

Example 16. For n = 4, the 10 standard Young tableaux and their g-indexes are listed in

Figure 4. We verify that C4(x) = 24x4 + 58x3 + 22x2 + x.

We now present the fifth main result of this paper.

Theorem 17. Let An(x) be the Eulerian polynomials. Then we have

An(x) =
∑

T∈SYT (n)

GT xn+1−ℓ(λ(T )). (18)

So the following corollary is immediate.

Corollary 18. We have

n! =
∑

T∈SYT (n)

GT .

Example 19. For n = 4, the 10 standard Young tableaux and their g-indexes are listed in

Figure 4. We verify that A4(x) = x4 + 11x3 + 11x2 + x.
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x GT = 1
λ(T )! = 1

g = 1, 1, 1, 14
3
2
1

4
3
2
1

x2
GT = 3
λ(T )! = 2

g = 1, 1, 1, 34
3
2
1

3
2
1 4

GT = 4
λ(T )! = 2

g = 1, 1, 2, 24
3
2
1

4
2
1 3

GT = 4
λ(T )! = 2

g = 1, 1, 2, 24
3
2
1

4
3
1 2

x3
GT = 2
λ(T )! = 4

g = 1, 1, 2, 14
3
2
1

3 4
1 2

GT = 2
λ(T )! = 4

g = 1, 1, 2, 14
3
2
1

2 4
1 3

x3
GT = 3
λ(T )! = 6

g = 1, 1, 1, 34
3
2
1

4
1 2 3

GT = 2
λ(T )! = 6

g = 1, 1, 2, 14
3
2
1

3
1 2 4

GT = 2
λ(T )! = 6

g = 1, 1, 2, 14
3
2
1

2
1 3 4

x4
GT = 1

λ(T )! = 24

g = 1, 1, 1, 14
3
2
1 1 2 3 4

Figure 4. SYT (4) and g-indexes

Let π ∈ Sn. We say that π has no double descents if there is no index i ∈ [n − 2] such

that π(i) > π(i + 1) > π(i + 2). The permutation π is called simsun if for each k ∈ [n], the

subword of π restricted to [k] (in the order they appear in π) contains no double descents.

Simsun permutations are useful in describing the action of the symmetric group on the maximal

chains of the partition lattice (see [35, 36]). There has been much recent work devoted to simsun

permutation and its variations, see [11, 24] and references therein.

Denote by RSn the set of simsun permutations in Sn. Let

Sn(x) =
∑

π∈RSn

xdes (π) =

⌊(n+2)/2⌋
∑

i=1

S(n, i)xi

be the descent polynomial of simsum permutations. It follows from [11, Theorem 1] that the

polynomials Sn(x) satisfy the recurrence relation

Sn(x) = (n+ 1)xSn−1(x) + x(1− 2x)S′
n−1(x)

for n ≥ 2, with the initial conditions S1(x) = x, S2(x) = x+ x2 and S3(x) = x+ 4x2.

An increasing tree on [n] is a rooted tree with vertex set {0, 1, 2, . . . , n} in which the labels of

the vertices are increasing along any path from the root 0. The degree of a vertex in a rooted

tree is the number of its children. A 0-1-2 increasing tree is an increasing tree in which the

degree of any vertex is at most two. It should be noted that the number S(n, i) counts 0-1-2

increasing trees on [n] with i leaves (see [33, A094503]), and the polynomial Sn(x) is also known

as the André polynomial (see [9, 17]).
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Now we present the sixth main result of this paper.

Theorem 20. Let Sn(x) be the André polynomials. For n ≥ 1, we have

Sn(x) =
∑

T

GT xn+1−ℓ(λ(T )), (19)

where the summation is taken over all Young tableaux in SYT (n) with at most two columns.

We say that π ∈ Sn is alternating if π(1) > π(2) < π(3) > · · · π(n). In other words,

π(i) < π(i+ 1) if i is even and π(i) > π(i+ 1) if i is odd. The Euler number En is the number

of alternating permutations in Sn (see [34]). A remarkable property of simsun permutations is

that #RSn = En+1 (see [35, p. 267]). So we get the following corollary.

Corollary 21. Let En be the nth Euler number. Then we have

En+1 =
∑

T

GT ,

where the summation is taken over all Young tableaux in SYT (n) with at most two columns.

An index i ∈ [n] is a peak (resp. exterior double descent) of π if π(i − 1) < π(i) > π(i + 1)

(resp. π(i − 1) > π(i) > π(i + 1)), where π(0) = π(n + 1) = 0. Let a(n, i) be the number of

permutations in Sn with i peaks and without exterior double descents. The following gamma

expansion of Eulerian polynomials was first given by Foata and Schützenberger [16]:

An(x) =

⌊(n+1)/2⌋
∑

i=1

a(n, i)xi(1 + x)n+1−2i,

which implies that Eulerian polynomials are symmetric and unimodal. In recent years there has

been much interest in studying gamma expansions of combinatorial polynomials, see [22, 26]

and the references therein. Combining [3, Corollary 3.2] and [24, Proposition 1], we get another

gamma expansion of Eulerian polynomials:

An+1(x) =

⌊(n+2)/2⌋
∑

i=1

2i−1S(n, i)xi(1 + x)n+2−2i.

Let T be a Young tableau in SYT (n) with at most two columns. If λ(T ) = (1n−2i+22i−1),

then n + 1 − ℓ(λ(T )) = i, where 1 ≤ i ≤ ⌊(n + 2)/2⌋. Then by using (19), we immediately get

the following result.

Theorem 22. Let S(n, i) be the number of 0-1-2 increasing trees on [n] with i leaves. Then

⌊(n+2)/2⌋
∑

i=1

2i−1S(n, i)xi =
∑

T

GTλ(T )! x
n+1−ℓ(λ(T )),

where the summation is taken over all Young tableaux in SYT (n) with at most two columns.



14 G.-N. HAN AND S.-M. MA

4. Proof of Theorem 14

Setting c = x/(1 − x) and f = 1/(1− x), then we have

cj =
j!

(1− x)j+1
(j ≥ 1); fk =

k!

(1− x)k+1
(k ≥ 0).

By using (12), we obtain
(

x

1− x
D

)n 1

1− x
=

∑

(k,µ)⊢n

pk,µ · ccµ1cµ2 · · · cµn−1fk

=
∑

(k,µ)⊢n

pk,µ · x
|µ|0+1

1− x

µ1!

(1− x)µ1+1
· · · µn−1!

(1− x)µn−1+1

k!

(1− x)k+1

=
1

(1− x)2n+1

∑

(k,µ)⊢n

pk,µ · k!µ1! · · ·µn−1!x
|µ|0+1,

where the summation is taken over all types (k, µ) of n. Combining (5) and Theorem 12, we

have

Cn(x) =
∑

(k,µ)⊢n

pk,µ · k!µ1! · · ·µn−1!x
|µ|0+1

=
∑

(k,µ)⊢n

∑

Z

GZ · k!µ1! · · ·µn−1!x
|µ|0+1. (20)

In view of (17) and (20), we need to establish some relations between k-Young tableaux and

standard Young tableaux. Let Z be a k-Young tableau of shape (k, µ). We define T = ρ(Z) to

be the unique standard Young tableau such that the sets of the letters in the j-th column in Z

and T are the same for all j. Let us list some basic facts of this map Z 7→ T = ρ(Z):

(i) We can obtain T from Z by ordering the letters in each column in increasing order. One

can check that if T is obtained in this way, then T is a standard Young tableau;

(ii) The partition λ(T ) is the decreasing ordering of the sequence (k, µ1, . . . , µn−1), removing

the 0’s at the end. Hence, λ(T )! = k!µ1!µ2! · · · µn−1!;

(iii) We have n− ℓ(λ(T )) = |µ|0;
(iv) In general GZ 6= GT .

For example, take the k-Young tableau given in Figure 1, we obtain the standard Young

tableau given in Figure 5. However the map ρ is not bijective. Let

ρ−1(T ) = {(k, µ, Z) | ρ(Z) = T}.

By the above properties of ρ and (20), we have

Cn(x) =
∑

T∈SYT(n)

∑

(k,µ,Z)∈ρ−1(T )

GZ · k!µ1! · · · µn−1!x
|µ|0+1

=
∑

T∈SYT(n)

λ(T )!xn+1−ℓ(λ(T ))
∑

(k,µ,Z)∈ρ−1(T )

GZ . (21)

The following lemma is fundamental.
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7

6

5

4

3

2

1

4 6

2 5

1 3 7

Figure 5. T = ρ(Z) for Z given in Figure 1

Lemma 23. For each standard Young tableau T , we have

∑

Z∈ρ−1(T )

GZ = GT , (22)

where we write Z ∈ ρ−1(T ) instead of (k, µ, Z) ∈ ρ−1(T ) since we can recover (k, µ) from Z.

Proof. We will proof (22) by induction on the size of T . Suppose that (22) is true for all standard

Young tableau T of size n− 1. Given a T ∈ SYT (n). Let T ′ is a standard Young tableau of size

n − 1 obtained from T by removing the letter n. This operation is reversible if λ(T ) is known.

By the hypothesis of induction, we have

∑

Z′∈ρ−1(T ′)

GZ′ = GT ′ , (23)

It should be noted that

GT = GT ′ × gT (n).

On the other hand, for a k-Young tableau Z ∈ ρ−1(T ) of size n, if we remove the letter n,

we obtain a k′-Young tableau Z ′ ∈ ρ−1(T ′) of sie n − 1. However, unlike Young tableau, this

operation is not always reversible. Let us analyse in detail. Let β be the length of the row

containing the letter n in k-Young tableau Z ∈ ρ−1(T ) with shape (k, µ) if n is in the top Young

tableau of Z. The set ρ−1(T ) can be divided into four subsets: ρ−1(T ) = Γ1 + Γ2 + Γ3 + Γ4,

where Γ1,Γ2,Γ3 and Γ4 are respectively defined as follows:

Γ1 = {Z ∈ ρ−1(T ) : n is in the top Young tableau and k = β − 1},
Γ2 = {Z ∈ ρ−1(T ) : n is in the bottom row and k − 1 ∈ µ},
Γ3 = {Z ∈ ρ−1(T ) : n is in the top Young tableau and k 6= β − 1},
Γ4 = {Z ∈ ρ−1(T ) : n is in the bottom row and k − 1 6∈ µ}.

See Figure 6 for two examples. It should be noted that some of the Γi may be empty according

to T . We claim that the set Γ1 and Γ2 have the same carnality. Moreover, for each Z1 ∈ Γ1,

there exists Z2 ∈ Γ2 in a unique manner, such that Z ′
1 = Z ′

2 ∈ ρ−1(T ′), See Figure 7. Moreover,

we have the relations for the g-indexes (see Figure 7): gZ1(n) = gT (n)− 1 and gZ2(n) = 1. For
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4
2
1 3 5 6

G = 4

ρ−1 4
2 3 5 6
1

G = 2

Γ3 4
2
1 3 5 6

G = 2

Γ4

4
2 5
1 3 6

G = 16

ρ−1 4
2 5 6
1 3

G = 4

Γ1 4
2 3 6
1 5

G = 2

Γ1 4
2 5
1 3 6

G = 4

Γ2 4
2 3
1 5 6

G = 2

Γ2 4 5
2 3 6
1

G = 4

Γ3

Figure 6. Decomposition of ρ−1(T ) into Γ1,Γ2,Γ3,Γ4

n

Z1

n

Z2 Z ′

n

T T ′

ρ ρ

del n

del n

Figure 7. Z1, Z2 ∈ ρ−1(T ) are mapped to the same Z ′ ∈ ρ−1(T ′) by removing

the letter n

Z3 ∈ Γ3 and Z4 ∈ Γ4 we have gZ3(n) = gT (n) and gZ4(n) = gT (n). By all these observations,

we have

∑

Z∈ρ−1(T )

GZ =
∑

Z1∈Γ1,Z2∈Γ2

(GZ1 +GZ2) +
∑

Z3∈Γ3

GZ3 +
∑

Z4∈Γ4

GZ4

=
∑

Z1∈Γ1,Z2∈Γ2

(gZ1(n)GZ′ + gZ2(n)GZ′) +
∑

Z3∈Γ3

gT (n)GZ′

3
+

∑

Z4∈Γ4

gT (n)GZ′

4

= gT (n)
∑

Z′∈ρ−1(T ′)

GZ′

= gT (n)GT ′

= GT .

Hence (22) holds. This completes the proof. �
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Proof of Theorem 14. Combining (21) and Lemma 23, we get that

Cn(x) =
∑

T∈SYT(n)

λ(T )!xn+1−ℓ(λ(T ))
∑

(k,µ,Z)∈ρ−1(T )

GZ

=
∑

T∈SYT(n)

GTλ(T )!x
n+1−ℓ(λ(T )),

as desired. This completes the proof. �

5. Proof of Theorem 17

We shall prove Theorem 17 by using context-free grammars. For an alphabet V , let Q[[V ]]

be the ring of the rational commutative ring of formal power series in monomials formed from

letters in V . Following Chen [8], a context-free grammar over V is a function G : V → Q[[V ]]

that replaces each letter in V with an element of Q[[V ]]. The formal derivative DG is a linear

operator defined with respect to the grammar G. In other words, DG is the unique derivation

satisfying DG(x) = G(x) for x ∈ V . For example, if V = {x, y} and G = {x → xy, y → y},
then DG(x) = xy,D2

G(x) = DG(xy) = xy2 + xy. For two formal functions u and v, we have

DG(u + v) = DG(u) + DG(v) and DG(uv) = DG(u)v + uDG(v). For a constant c, we have

DG(c) = 0. It follows from Leibniz’s rule that

Dn
G(uv) =

n
∑

k=0

(

n

k

)

Dk
G(u)D

n−k
G (v).

We refer the reader to [9, 26] for the recent progress on context-free grammars.

Setting ui = Di
G(u), it follows from (12) and (14) that

(uDG)
n =

∑

(k,µ)⊢n

∑

Z

GZuuµ1uµ2 · · · uµn−1D
k
G, (24)

where the first summation is taken over all types (k, µ) of n and the second summation is

taken over all k-Young tableaux of shape (k, µ). It is well-known that Eulerian polynomials are

symmetric, i.e., A0(x) = 1 and

An(x) =
n
∑

i=1

〈

n

i

〉

xi =
n
∑

i=1

〈

n

i

〉

xn+1−i for n ≥ 1.

There is a grammatical interpretation of Eulerian numbers due to Dumont [13], which can be

restated as follows.

Proposition 24. If G = {x→ y, y → y}, then we have

(xDG)
n(y) =

n
∑

i=1

〈

n

i

〉

xn+1−iyi for n ≥ 1.

Proof of Theorem 17. Let G = {x→ y, y → y}. From (24), we have

(xDG)
n (y) =

∑

(k,µ)⊢n

∑

Z

GZxxµ1xµ2 · · · xµn−1D
k
G(y),
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where x0 = x and xi = Di
G(x) = y for i ≥ 1 and Dk

G(y) = y for k ≥ 0. Hence

(xDG)
n (y) =

∑

(k,µ)⊢n

∑

Z

GZy
n−|µ|0x|µ|0+1.

Comparing this with Proposition 24, we get

An(x) =
n
∑

i=1

〈

n

i

〉

xn+1−i = (xDG)
n(y)|y=1 =

∑

(k,µ)⊢n

∑

Z

GZx
|µ|0+1, (25)

where the first summation is taken over all types (k, µ) of n and the second summation is taken

over all k-Young tableaux of shape (k, µ). In the same way as the proof of Theorem 14, by using

Lemma 23, we get (18). �

6. Proof of Theorem 20

We now recall a grammatical interpretation of Sn(x).

Proposition 25 ([9, 13]). Let G1 = {x→ xy, y → x}. For n ≥ 1, we have

Dn
G1

(x) =

⌊(n+2)/2⌋
∑

i=1

S(n, i)xiyn+2−2i.

Thus Sn(x) = Dn
G1

(x)|y=1.

It is routine to verify that Proposition 25 can be restated as follows.

Proposition 26. Let G2 = {x→ y, y → 1}. For n ≥ 1, we have

(xDG2)
n(x) =

⌊(n+2)/2⌋
∑

i=1

S(n, i)xiyn+2−2i.

Proof of Theorem 20. Let G2 = {x→ y, y → 1}. From (24), we have

(xDG2)
n (x) =

∑

(k,µ)⊢n

∑

Z

GZxxµ1xµ2 · · · xµn−1D
k
G2

(x). (26)

Note that

x0 = D0
G2

(x) = x, x1 = DG2(x) = y, x2 = D2
G2

(x) = 1, xi = Di
G2

(x) = 0 for i ≥ 3.

Recall that for (k, µ) ⊢ n, we have k ∈ [n]. Then xµ1xµ2 · · · xµn−1D
k
G2

(x) 6= 0 if and only if

0 ≤ µj ≤ 2 for all j ∈ [n− 1] and 1 ≤ k ≤ 2. Thus

µ = (1m12m20n−1−m1−m2), (27)

where m1 and m2 are nonnegative integers. Let Z be a k-Young tableau of shape (k, µ), where

µ is given by (27). As in the proof of Theorem 14, we define T = ρ(Z) to be the unique standard

Young tableau such that the sets of the letters in the j-th column in Z and T are the same for

all j. Then Z has at most two columns. Therefore, by using Proposition 26, we get

Sn(x) = (xDG2)
n(x)|y=1 =

∑

(k,µ)⊢n

∑

Z

GZx
|µ|0+1, (28)
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where the first summation is taken over all types (k, µ) of n, the second summation is taken

over all k-Young tableaux of shape (k, µ) and the partitions µ have the form (27). In the same

way as the proof of Theorem 14, by using Lemma 23, we get (19). �

7. Concluding remarks

In this paper, we present combinatorial expansions of (c(x)D)n in terms of inversion sequences

as well as k-Young tableaux. By introducing the g-index of Young tableau, we find that Eulerian

polynomials, second-order Eulerian polynomials, André polynomials and the generating poly-

nomials of gamma coefficients of Eulerian polynomials can be expressed in terms of standard

Young tableaux, which imply a deep connection among these polynomials.
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