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Abstract. In 1980, the first and third authors proposed a probabilistic primality test
that has become known as the Baillie-PSW (BPSW) primality test. Its power to distin-
guish between primes and composites comes from combining a Fermat probable prime test
with a Lucas probable prime test. No odd composite integers have been reported to pass
this combination of primality tests if the parameters are chosen in an appropriate way.
Here, we describe a significant strengthening of this test that comes at almost no addi-
tional computational cost. This is achieved by including in the test what we call Lucas-V
pseudoprimes, of which there are only five less than 1015.

1. Introduction

A (Fermat) base-a pseudoprime, or psp(a), is a composite positive integer n that satisfies
the conclusion of Fermat’s little theorem, that is

an−1 ≡ 1 (mod n) .

For each integer base a > 1, there are infinitely many pseudoprimes, but they are sparser
than primes. In [5], the first and third authors studied analogues of pseudoprimes in which
an−1 − 1 is replaced by a Lucas sequence.

Let D, P and Q be integers with P > 0 and D = P 2 − 4Q 6= 0. Define U0 = 0, U1 = 1,
V0 = 2 and V1 = P . The Lucas sequences Uk and Vk with parameters P and Q are defined
for k ≥ 2 by

Uk = PUk−1 −QUk−2 and Vk = PVk−1 −QVk−2 .
Let n > 1 be an odd positive integer. Choose D, P , and Q so that the Jacobi symbol

(D/n) = −1. It is well known [5], [6] that if n is prime and (n,Q) = 1, then

Un+1 ≡ 0 (mod n) , (1)

Vn+1 ≡ 2Q (mod n) . (2)

In [5], we defined a Lucas pseudoprime with parameters P and Q to be a composite
integer n satisfying (1). We proposed a fast probable prime test by combining the Lucas
primality criterion in (1) with a (Fermat) probable prime test.

In this paper, we emphasize the importance of the primality criterion in Congruence (2).
We found that, using a standard method of choosing D, P , and Q, among the composite n
under 1015, there are over two million that satisfy (1), but only five that satisfy (2).
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Layout of this paper.

• Section 2: we give details on Fermat and Lucas pseudoprimes and describe how to
efficiently compute terms in the Lucas sequences;
• Section 3: we define the original Baillie-PSW primality test, we list applications

that use this test, and we summarize calculations that have been performed over
the past 40 years;
• Section 4: we summarize the data on pseudoprimes up to 1015;
• Section 5: we discuss whether the scarcity of composite solutions to (2) is due to

the particular method for choosing P and Q;
• Section 6: we propose a strengthened primality test that includes Congruence (2)

and offer a reward for a counterexample;
• Section 7: discusses the importance of choosing Q to be neither +1 nor −1 (mod n);
• Section 8: we reprise Pomerance’s heuristic argument that there are infinitely many

counterexamples to the enhanced test;
• Appendix A: we prove that two popular methods for choosing P and Q produce

exactly the same Lucas pseudoprimes.

The authors thank Carl Pomerance for suggesting the proof of Theorem 2 in Section 8.

2. Background

2.1. Fermat probable primes and pseudoprimes. A (Fermat) base-a probable prime,
or prp(a), is a positive integer n that satisfies the conclusion of Fermat’s little theorem.
That is, if n is prime and (a, n) = 1, then

an−1 ≡ 1 (mod n) . (3)

The converse of Fermat’s little theorem is not true, but if (3) is true for a given a > 1,
then n is likely to be prime.

A base-a pseudoprime, or psp(a), is a composite n that satisfies (3).
Base-2 pseudoprimes up to 25 · 109 were studied in detail in [20]. The first ten base-2

pseudoprimes are 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, and 2701.
Since [20] appeared in 1980, Feitsma [9] has computed the psp(2) < 264 ≈ 1.8 · 1019.

There are 118968378 of them.
There are π(264)− 1 = 425656284035217742 odd primes < 264 [23]. Therefore, up to 264,

congruence (3) with a = 2 holds for 425656284035217742 + 118968378 values of n, of which
99.9999999721 percent are prime. This is why, if 2n−1 ≡ 1 (mod n), it is legitimate to call n
a probable prime, and why this congruence is sometimes used as part of a test for primality.

Euler’s criterion states that if n is an odd prime and (a, n) = 1, then

a(n−1)/2 ≡
(a
n

)
(mod n) , (4)

where
(
a
n

)
is the Jacobi symbol. A composite number that satisfies this congruence is called

a base-a Euler pseudoprime (epsp(a)). The first ten epsp(2) are 561, 1105, 1729, 1905, 2047,
2465, 3277, 4033, 4681, and 6601. The epsp(a) are a proper subset of the psp(a). About
half of the psp(a) are epsp(a) [20, p. 1005], so (4) is a slightly stronger primality test than
(3).
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2.2. Strong probable primes and pseudoprimes. We now describe an even stronger,
and more widely-used primality test, also based on Fermat’s little theorem. [20] defines
strong probable primes and strong pseudoprimes. If n is odd, then we can write n−1 = d ·2s
where d is odd. If n is an odd prime and (a, n) = 1, then either

ad ≡ 1 (mod n), or (5)

ad·2
r ≡ −1 (mod n), for some r with 0 ≤ r < s. (6)

If either (5) or (6) is true, then n is called a base-a strong probable prime (sprp(a)). If
either of these holds, then we also have an−1 = ad·2

s ≡ 1 (mod n).
If n is composite and either (5) or (6) is true, then n is called a base-a strong pseudoprime

(spsp(a)). The spsp(a) are a proper subset of psp(a), and so are scarcer than psp(a). For
example, of the 118968378 psp(2) < 264 found by Feitsma, only 31894014 are spsp(2) [9].
The first ten base-2 strong pseudoprimes are 2047, 3277, 4033, 4681, 8321, 15841, 29341,
42799, 49141, and 52633.

The spsp(a) are also a proper subset of epsp(a). Therefore, it makes sense for a primality
test to use the strong conditions (5) and (6) instead of (3) or (4).

To efficiently compute an−1, we use the binary expansion of n− 1: We start by using the
bits of d to compute ad: Given the result ak from the previous step, we square ak to get
a2k, and if the corresponding bit is 1, we multiply by a to get a2k+1. Once we reach ad, the
remaining s bits of n − 1 are all 0, so we then square the result s times. We also reduce
the result (mod n) at each step. This procedure fits nicely with the definition of a strong
probable prime. The following example shows how this works.

Example: Suppose n = 341 = 11 · 31 and a = 2. Then n − 1 = 340 = 85 · 22, so d = 85
and s = 2. In binary, n− 1 = 101010100 and d = 1010101. The exponent, 340, has 9 bits,
so there are (at most) 9 steps. We process the bits from the left.

First, initialize the result r, to 1: r ← 1; this is 20.

• bit 1 is 1: r ← r2 · 2 = 21 ≡ 2 (mod 341) ;
• bit 2 is 0: r ← r2 = 22 ≡ 4 (mod 341) ;
• bit 3 is 1: r ← r2 · 2 = 25 ≡ 32 (mod 341) ;
• bit 4 is 0: r ← r2 = 210 ≡ 1 (mod 341) ;
• bit 5 is 1: r ← r2 · 2 = 221 ≡ 2 (mod 341) ;
• bit 6 is 0: r ← r2 = 242 ≡ 4 (mod 341) ;
• bit 7 is 1: r ← r2 · 2 = 285 ≡ 32 (mod 341) ; this is 2d

• bit 8 is 0: r ← r2 = 2170 ≡ 1 (mod 341) ;
• bit 9 is 0: r ← r2 = 2340 ≡ 1 (mod 341) ;

The last step shows that 341 is a probable prime base 2.
However, note that, after using bit 8 to reach 22d = 2170 = 2(n−1)/2, we see that 2d 6≡ ±1,

and that 22d 6≡ −1 (mod 341), so n = 341 is not a strong probable prime base 2. This
proves that n is composite, so the final step is not needed. Therefore, the strong test, in
addition to allowing fewer composites to pass, will also terminate at least one step earlier
than simply computing an−1 (mod n).

A Carmichael number is a composite integer n that is a pseudoprime to every base a
for which (a, n) = 1. They are also sparse, although there are infinitely many of them [2].
However, there are no strong Carmichael numbers, that is, there is no composite n which is
strong pseudoprime to all bases relatively prime to n: Rabin proved [21, Theorem 1] that
any composite n is a strong pseudoprime to at most 1/4 of bases a, 1 ≤ a < n.
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2.3. Lucas sequences and pseudoprimes; Lucas-V pseudoprimes. Lucas sequences,
and their applications to prime-testing, were discussed in [5] and [6].

Let D, P and Q be integers with P > 0 and D = P 2 − 4Q 6= 0. Define U0 = 0, U1 = 1,
V0 = 2 and V1 = P . The Lucas sequences Uk and Vk with parameters P and Q are defined
recursively for k ≥ 2 by

Uk = Uk = PUk−1 −QUk−2 and Vk = Vk = PVk−1 −QVk−2 .

For k ≥ 0 we also have

Uk = (αk − βk)/(α− β) and Vk = αk + βk ,

where α and β are the distinct roots of x2−Px+Q = 0. Note that αβ = Q and α+β = P .
When n is an odd positive integer, write ε(n) for the Jacobi symbol (D/n) and let

δ(n) = n − ε(n) = n − (D/n). It is known [5, pp. 1391-1392], [6, Theorem 8] that if n is
prime and (n,Q) = 1, then

Uδ(n) ≡ 0 (mod n), (7)

Vδ(n) ≡ 2Q(1−ε(n))/2 (mod n), provided (n,D) = 1, (8)

Un ≡ ε(n) (mod n), (9)

Vn ≡ V1 = P (mod n). (10)

In case (n, 2PQD) = 1, any two of these congruences imply the other two.
Lucas pseudoprimes were defined in [5]. These are analogues of Fermat pseudoprimes in

which an−1 − 1 is replaced by a Lucas sequence.
For reasons discussed in that paper, to use Lucas sequences for primality testing, we

choose an algorithm for picking D, P , and Q based on n, and we require that the Jacobi
symbol (D/n) = −1. If n is prime, (n,D) = (n,Q) = 1, and (D/n) = −1, then δ(n) = n+1
and congruences (7) and (8) become (1) and (2). These two congruences are key parts of
the primality test that we propose below.

We’ll discuss (2) in detail later. The other congruences, (9) and (10), also hold if n is
prime, but these congruences are not very useful in primality testing [5, Section 6]: most
composite n that satisfy congruence (9) have small prime factors; many composite n that
satisfy (10) are psp(2).

If n satisfies (1), then n is called a Lucas probable prime with parameters P and Q,
written lprp(P , Q). If n satisfies (1) and we know it is composite, then we call n a Lucas
pseudoprime, written lpsp(P , Q). If n fails (1), then n is composite.

For convenience, we also introduce the following

Definition. If n satisfies (2), we call n a Lucas-V probable prime (vprp). If n is composite
and satisfies (2) with parameters P and Q, we call n a Lucas-V pseudoprime (vpsp(P,Q)).

What we call vpsp’s are sometimes called Dickson pseudoprimes of the second kind [22].
The authors of [5] proved that there are infinitely many Lucas pseudoprimes, but that

they are rare compared to the primes.
The precise sequence of numbers that turn out to be Lucas pseudoprimes depends on the

algorithm for choosing D, P , and Q. One algorithm, first proposed by John Selfridge in
[20] and mentioned in [5], and which seems to be widely used in primality testing, is:

Method A: Let D be the first element of the sequence 5, −7, 9, −11, 13, −15, . . . for
which (D/n) = −1. Let P = 1 and Q = (1−D)/4.
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This algorithm never sets Q = 1, but if D = 5, it sets Q = −1. (Method A sets Q = −1
fairly often, namely, when n ≡ ±3 (mod 10).)

We remarked in [5] that more composite n satisfying any of (7)—(10) had Q ≡ ±1 than
Q 6≡ ±1 (mod n). This observation led the authors to define the following preferred method
to select parameters, which forces Q 6≡ ±1 (mod n):

Method A*: Choose D, P , and Q as in Method A above. If Q = −1, change both P
and Q to 5.

Method A* leaves D = P 2 − 4Q unchanged from Method A.
It turns out that the Lucas pseudoprimes generated by Methods A and A* are the same.

The same is true for strong Lucas pseudoprimes (see Section 2.4). We prove this in Appendix
A.

If D, P , and Q are chosen with Method A*, the first ten lpsp are: 323, 377, 1159, 1829,
3827, 5459, 5777, 9071, 9179, and 10877.

Calculations performed for this paper show that when Method A* is used, there are
2402549 lpsp less than 1015.

2.4. Strong Lucas probable primes and pseudoprimes. [5] defines strong Lucas prob-
able primes and strong Lucas pseudoprimes. If n is odd, then we can write n + 1 = d · 2s
where d is odd. If n is prime and (D/n) = −1, then we will have either

Ud ≡ 0 (mod n), or (11)

Vd·2r ≡ 0 (mod n), for some r with 0 ≤ r < s. (12)

If (D/n) = −1 and n satisfies (11) or (12), then n is called a strong Lucas probable prime
with parameters P and Q, written slprp(P , Q). If n is an slprp(P , Q), then n is also an
lprp(P , Q), so that Un+1 = Ud·2s ≡ 0 (mod n).

If (D/n) = −1, n satisfies (11) or (12) and is composite, then n is called a strong Lucas
pseudoprime, written slpsp(P , Q).

If D, P , and Q are chosen with method A*, the first ten slpsp are: 5459, 5777, 10877,
16109, 18971, 22499, 24569, 25199, 40309, and 58519.

The slpsp(P,Q) are scarcer than lpsp(P,Q). For example, of the 2402549 lpsp less than
1015, only 474971 are slpsp.

Because strong lpsp are rarer than lpsp, a sensible primality test will use the strong
version of the Lucas test, Congruences (11) and (12), instead of (1).

The following equations show how to use the binary representation of n+ 1 to efficiently
compute the values on the left sides of Congruences (11) and (12). We can also compute
Un+1, and, at almost no added computational cost, Vn+1 and Qn+1.

U2k = UkVk (13)

V2k = V 2
k − 2Qk (14)

Q2k = (Qk)2 (15)

Uk+1 = (PUk + Vk)/2 (16)

Vk+1 = (DUk + PVk)/2 (17)

Qk+1 = Q ·Qk (18)

Congruences (13) and (14) are Congruences 4.2.6 and 4.2.7 in Williams [26] while (16) and
(17) are 4.2.21 in that book. Congruences (13)—(15) are used to double the subscript and
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exponent; Congruences (16)—(18) are used to increment the subscript and exponent. These
congruences are also given in [6, p. 628].

(In Congruences (16) or (17), if the numerator is odd, we can increment it by n to make
it be even. This is legitimate because n is odd, and we care only about the result modulo
n.)

All of the calculations are performed modulo n to keep the size of the numbers reasonable.
For example, suppose n = 323 = 17 · 19. The Jacobi symbol (5/n) = −1, so Method

A* sets D = P = Q = 5. Writing n + 1 = 324 = d · 2s where d is odd, gives d = 81 and
s = 2. In binary, d = 1010001 and n + 1 = 101000100. n + 1 has 9 bits, so there are (at
most) 9 steps. We process the bits from the left. At each step, we double the subscript and
exponent and compute U2k, V2k, and Q2k (mod n). If the corresponding bit is odd, we also
compute U2k+1, V2k+1, and Q2k+1 (mod n).

All results are shown (mod n). Step 1 merely initializes the sequences.

• bit 1 is 1: (U0, V0, Q
0) = (0, 2, 1), (U1, V1, Q

1) = (1, 5, 5);
• bit 2 is 0: (U2, V2, Q

2) = (5, 15, 25);
• bit 3 is 1: (U4, V4, Q

4) = (75, 175, 302), (U5, V5, Q
5) = (275, 302, 218);

• bit 4 is 0: (U10, V10, Q
10) = (39, 5, 43);

• bit 5 is 0: (U20, V20, Q
20) = (195, 262, 234);

• bit 6 is 0: (U40, V40, Q
40) = (56, 23, 169);

• bit 7 is 1: (U80, V80, Q
80) = (319, 191, 137), (U81, V81, Q

81) = (247, 306, 39);
• bit 8 is 0: (U162, V162, Q

162) = (0, 211, 229);
• bit 9 is 0: (U324, V324, Q

324) = (0, 135, 115);

From the last step, we see that n is a Lucas probable prime because Un+1 ≡ 0 (mod n).
However, this n fails the strong test, which proves n is composite: d = 81, but none of

Ud, Vd, or V2d = V162 is 0 (mod n). So, this example proved that n is composite upon
reaching subscript 162 = (n+ 1)/2.

Because of Congruences (11) and (12), the strong test always terminates at or before
subscript d · 2s−1 = (n + 1)/2 either with the conclusion that n is composite, or that is a
strong Lucas probable prime.

However, if n is a strong lprp, then we we recommend continuing the calculation a few
more steps until we reach subscript n + 1, in order to obtain Vn+1 (mod n). This enables
us to check Congruence (2), which, as we will see in Section 4, is even more effective than
(1) at distinguishing primes from composites.

3. The original Baillie-PSW primality test

In [5], the first and third authors show that we get a very effective test for primality by
combining Fermat and Lucas probable prime tests.

This combined test works so well because, in some sense, psp’s and lpsp’s tend to be
different kinds of numbers. For example, the numbers that are psp(2) and those that are
lpsp from Method A* tend to fall into residue classes +1 and −1, respectively, for small
moduli [5, pp. 1404-1405]. A similar phenomenon is observed for psp(a) for other a, and
for lpsp’s generated by several other methods for choosing D, P , and Q.

The probable prime test we proposed in [5] has these steps:

(1) If n is not a strong base-2 probable prime, then n is composite, so stop.
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(2) Choose Lucas parameters with Method A*. (If you encounter aD for which (D/n) =
0: if either |D| < n, or if |D| ≥ n but n does not divide |D|, then n is composite, so
stop.)

(3) If n is not a strong Lucas probable prime with the chosen parameters, then n is
composite. Otherwise, declare n to be (probably) prime.

If n is composite, the test almost always stops in the first step so the other steps are not
needed. The test almost never stops in the second step. If n is prime, then all three steps
are needed.

The authors of [20] and [5] observed that, up to 25 · 109, there was no overlap between
the psp(2) and the lpsp from Method A*. Using more recent data from Feitsma [9], we
find that none of the 118968378 psp(2) up to 264 ≈ 1.8 · 1019 is an lpsp when Method A*
is used. Therefore, this test correctly distinguishes primes from composites up to at least
264. Further, no one has reported a larger composite n that is both psp(2) and lpsp(P , Q)
using method A*.

Richard Pinch [16], [17] has computed a list of all 20138200 Carmichael numbers up to
1021. He kindly provided his list to the first author, for which we thank him. None of these
Carmichael numbers is an lpsp when Method A* is used.

The reader might notice that the above test does not first check n for divisibility by small
primes. This check is omitted because it is not necessary (although step 2 does sometimes
find small factors). However, for the sake of efficiency, a practical primality test should
first check to see whether n is divisible by small primes before proceeding to step 1.

Some version of this test is used as a fast algorithm for finding large probable primes
in mathematical software packages like FLINT, Maple, Mathematica, Pari/GP, SageMath,
and by programs for choosing large primes for public-key ciphers like RSA.

Several programming languages, like GNU GMP, Java, and Perl also provide functions
for doing Fermat and Lucas tests.

While some cryptographic libraries use a combined Fermat/Lucas test, some do not.
Albrecht, et al, were able to find composite numbers which some of the latter libraries
declared were prime [1].

A reward of $620 was offered for an example of a composite n declared prime by this
test. No one has claimed the reward after 40 years; many have tried to collect it. It has
been tested on billions of large odd integers n and has never been reported to have failed.

4. The data to 1015

Recall that lpsp and vpsp are composite n that satisfy (1) and (2), respectively.
We computed the lpsp and vpsp up to 1015, using Method A* to choose the Lucas

parameters.
This calculation took about 750000 core-hours on the Rice cluster at Purdue University,

plus about 10000 core-hours on computers at the University of Lethbridge.
The counts are shown in Table 1. What is striking is that, while there are about 2 million

each of psp(2) and lpsp, there are only five vpsp.
These five numbers are shown in Table 2. For n = 14760229232131, Method A* set

P = 1, Q = 2. For the other four n, Method A* set P = Q = 5.
In Section 7, we give heuristic arguments as to why vpsp are so rare, especially when

Q 6≡ ±1 (mod n).
When P and Q are chosen by Method A*, we found that (i) none of the five vpsp(P,Q)

is an lpsp(P,Q), (ii) none of the 118968378 psp(2) less than 264 is either an lpsp or a vpsp,
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k psp(2) spsp(2) lpsp slpsp vpsp
2 0 0 0 0 0
3 3 0 2 0 1
4 22 5 9 2 1
5 78 16 57 12 1
6 245 46 219 58 1
7 750 162 659 178 1
8 2057 488 1911 505 1
9 5597 1282 5485 1415 1

10 14884 3291 15352 3622 1
11 38975 8607 42505 9714 1
12 101629 22407 116928 25542 3
13 264239 58892 319687 67045 3
14 687007 156251 875270 178118 4
15 1801533 419489 2402549 474971 5

Table 1. Number of psp(2), spsp(2), lpsp, slpsp, and vpsp with n < 10k

using Method A*.

n n factored n− 1 factored n+ 1 factored
913 11 · 83 24 · 3 · 19 2 · 457

150267335403 3 · 47 · 89 · 563 · 21269 2 · 157 · 478558393 22 · 1609 · 23347939
430558874533 75913 · 5671741 22 · 32 · 11959968737 2 · 197947 · 1087561

14760229232131 2467 · 5983068193
2·3·5·107·53569·
·85837

22 · 3690057308033

936916995253453 2027 · 21521 · 21477559
22 ·3·37·41·1109·
·46409057

2 · 389 · 15313 ·
·78643211

Table 2. vpsp < 1015 using Method A*.

and (iii) none of the 20138200 Carmichael numbers below 1021 is either an lpsp or a vpsp.
(We do not know if there is an n > 1015 which is both lpsp(P,Q) and vpsp(P,Q).)

The enhanced primality test we propose in Section 6 is based on the rarity of vpsp, and
on this absence of overlap between any two of spsp(2), slpsp, and vpsp.

Dana Jacobsen’s website [13] displays counts of psp(2), spsp(2), lpsp, and slpsp less
than 1015, where P and Q are selected by method A (or A*), as well as other types of
pseudoprimes. The lists of pseudoprimes can also be downloaded from that site.

5. Is there anything special about Method A*?

The reader may wonder whether the rarity of vpsp compared to lpsp is an artifact of
using Method A* to choose D, P , and Q.

The answer appears to be “no”, especially if we require that Q 6≡ ±1 (mod n). We
compared several methods for choosing D, P , and Q; see Table 3.

For example, [5] describes Methods B and B*:

Method B: Let D be the first element of the sequence 5, 9, 13, 17, . . . for which
(D/n) = −1. Let P be the smallest odd number exceeding

√
D, and Q = (P 2 −D)/4.
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Method B*: Choose D, P , and Q as in Method B. If Q = 1, replace Q by P + Q + 1
and replace P by P + 2 (this preserves the value of D).

For this paper, we also tested:
Method C: Same as Method A, except we start testing D’s at D = 41 instead of at

D = 5. This insures that Method C almost always produces a (P,Q) pair different from
the pair produced by Method A.

Method D: Fix Q = 2. Try P = 4, 5, 6, 7, ... until (D/n) = −1.
Method R1: Choose P and Q at random from a uniform distribution with 1 ≤ P,Q ≤

n − 1, until (D/n) = −1. We used the random( ) function in version 2.11.4 of PARI/GP,
initialized with PARI ’s default seed of 1.

Method R2: Same as Method R1, but initialized with the (randomly-selected) seed
737984.

We compared these eight methods for odd, composite n < 1010.
Methods A*, B*, C, and D can never set Q ≡ ±1 (mod n).
Method B yielded 5940 vpsp. Only one of these, n = 64469, occurred with Q 6≡

±1 (mod n): This n is vpsp(5, 3), but is not lpsp(5, 3).
Method B* yielded two vpsp: n = 913 (P = Q = 5) and n = 64469 (P = 5, Q = 3).
No vpsp from Method R1 or R2 had Q ≡ ±1 (mod n). This is not surprising: Q was a

random integer between 1 and n− 1, and Q ≡ ±1 (mod n) occurred for only eight n’s with
R1 and twelve with R2.

simultaneously
Method lpsp vpsp, Q ≡ ±1 vpsp, Q 6≡ ±1 lpsp and vpsp
A 15352 914 0 757
A* 15352 – 1 0
B 15019 5939 1 4374
B* 12879 – 2 0
C 13766 – 4 0
D 15957 – 6 0
R1 17065 0 3 0
R2 16863 0 4 0

Table 3. Number of lpsp and vpsp to 1010 using various methods for choos-
ing P and Q.

All of the methods tested in Table 3 yielded fewer vpsp than lpsp. Moreover, if Q 6≡
±1 (mod n), none of the lpsp(P,Q) was also vpsp(P,Q). This Table supports the importance
of choosing Q 6≡ ±1 (mod n).

6. The enhanced BPSW primality test

The enhanced primality test we propose here is based on the one described in Section 3.
The most important strengthening is that we now include Congruence (2) to check whether
n is a vprp. This has very little additional computational cost beyond the Lucas test in
step 3.

The strong Lucas probable prime test, Congruences (11) and (12), allows us to stop
the calculation one or more steps before reaching Un+1, Vn+1, and Qn+1 (mod n). Here,
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we assume that we continue the calculation for a few additional steps in order to obtain
Q(n+1)/2 and Vn+1 (mod n).

Here is our proposed enhanced primality test for odd, positive integer n:

(1) If n is not a strong probable prime to base 2, then n is composite; stop.
(2) Choose Lucas parameters with Method A*. If you encounter a D for which (D/n) =

0: if either |D| < n, or if |D| ≥ n but n does not divide |D|, then n is composite;
stop.

(3) If n is not an slprp(P , Q), then n is composite; stop.
(4) If n is not a vprp(P , Q), then n is composite; stop.

(5) If n does not satisfy Q(n+1)/2 ≡ Q · (Q/n) (mod n), then n is composite; stop.
Otherwise, declare n to be probably prime.

Recall that no composite number is known that passes steps 1 through 3. This test is
more powerful than the original BPSW test because so few composite n satisfy step 4. A
composite n that passes this test would have to be, simultaneously, spsp(2), slpsp(P,Q),
and vpsp(P,Q). Consequently, we expect that a composite n would be even less likely to
pass this test than to pass the original BPSW test.

An odd, composite n that is both an lpsp and a vpsp is a Frobenius pseudoprime [7, p.
145], [11], [12]. These are rare [13], in part because, as we’ve seen above, the vpsp are rare.
Odd, composite n that pass this enhanced test should be even rarer.

Step 5 is a primality check based on Euler’s criterion, Congruence (4). This is a relatively
minor enhancement. However, since we essentially already have the power of Q necessary
for the test, we may as well use it. Once we have calculated Q(n+1)/2 = Q·Q(n−1)/2 (mod n),
we can compute (Q/n), then apply Euler’s criterion to check whether

Q(n+1)/2 ≡ Q · (Q/n) (mod n).

If this congruence fails, then n is composite.

Suggestions for implementing this primality test.
1. For efficiency, before step 1, one should first check n for divisibility by small primes.
2. We recommend doing a (strong) Fermat test to base 2 instead of to some other base.

As far as anyone knows, there is nothing inherently better about using base 2. However,
because we know all psp(2) up to 264, we know that no psp(2) below that limit is an lpsp.
We do not know whether this is true for other bases.

3. In step 2: If n happens to be a perfect square, then (D/n) will never be −1. So, after
encountering, say, 20 D’s with (D/n) = 1, one should check whether n is a perfect square;
if so, it is composite. This can be done quickly using Newton’s method; see [5, p. 1401].

4. It is easy to show that, if n is sprp(a), then n is also sprp(±(ak)) for k ≥ 1. Therefore,
if Method A* chooses a Q such that |Q| is a power of 2, then, because n is known from step
1 to be sprp(2), the test in step 5 will not strengthen the test. For n < 109, this happens
about 28 percent of the time (D = −7, Q = 2; D = −15, Q = 4; D = 17, Q = −4, etc).

5. To compute all three of Un+1, Vn+1, and Qn+1 (mod n) takes roughly three times
as many multi-precision operations as it takes to compute 2n−1 (mod n). Therefore, this
enhanced BPSW test takes about as long as doing Fermat tests to four different bases.
However, as noted in [20, p. 1020], if n is psp to base a, then n is more likely than the
average number of that size to also be psp to some other base b. In other words, there are
diminishing returns in doing repeated Fermat tests. Therefore, it makes more sense to do
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one Fermat test followed by the Lucas tests in steps 3 and 4, than to perform Fermat tests
to four (or more) different bases.

Reward for a counterexample or for a proof that there are none.
A counterexample to this enhanced test would be a positive, odd composite n which

this test declares is probably prime. The first and third authors each offer U.S. $1000
for either the first counterexample to this enhanced test, or the first proof, published in a
peer-reviewed journal, that there are none. A claim that n is a counterexample must be
accompanied by a (P,Q) pair that came from Method A*, for which the test claims n is
probably prime. The claim must also be accompanied by a proof that n is composite: either
a (not necessarily prime) factor of n that is larger than 1 and less than n, or a base a with
2 < a < n− 1 for which n is not a base-a strong probable prime, or a (P,Q) pair not from
Method A* such that D = P 2 − 4Q has Jacobi symbol (D/n) = −1, but for which n is not
slpsp(P,Q), or is not vpsp(P,Q).

7. Some Heuristics for lpsps and vpsps

We note that both conditions of (7) and (8) are both congruences modulo n, and thus if
p is any prime which divides n, then we obtain implied congruences modulo p. That is if

Uδ(n) ≡ 0 (mod n), then Uδ(n) ≡ 0 (mod p)

and if

Vδ(n) ≡ 2Q(1−ε(n))/2 (mod n), then Vδ(n) ≡ 2Q(1−ε(n))/2 (mod p).

Moreover, if n were square free, we have that the conditions modulo p for all p dividing n
would give sufficient conditions for the same congruences modulo n.

Now, suppose we write n = py, we can assess the probability that for example

Vδ(n) ≡ 2Q(1−ε(n))/2 (mod p)

by considering the probability that, as we vary y among y with ε(py) = ε(n),

Vδ(py) ≡ 2Q(1−ε(py))/2 (mod p).

We note that this quantity only depends on y modulo the period of the sequence Vk (mod p),
so the probability is well defined. If these probabilities were independent for distinct prime
factors of n, then for square free n we could determine the probability that n is a pseudo-
prime from local contributions. These probabilities are most likely not independent.

Assume D is square free.
Before looking at these probabilities in the various cases we first recall a few facts. Fix

the prime p. Let Fp and Fp2 denote the fields of order p and p2, respectively. In the notation
of the Section 2.3,

α =
P +

√
D

2
β =

P −
√
D

2
.

We think of these quantities as elements of Q(
√
D), or Fp2 when (D/p) = −1, or Fp when

(D/p) = 1.

When (D/p) = −1, for x, y ∈ Fp we have (x+ y
√
D)p = x− y

√
D in Fp2 . In particular,

αp = β and βp = α. Whereas when (D/p) = 1, for x, y ∈ Fp we have (x+y
√
D)p = x+y

√
D

and xp−1 = 1 in Fp. In particular, αp−1 = 1 and βp−1 = 1.
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These facts allow us to derive the formulas (7) and (8). Indeed if (D/p) = −1, then in
Fp2 we have

Up+1 =
αp+1 − βp+1

α− β
=
αβ − βα
α− β

= 0

and

Vp+1 = αp+1 + βp+1 = 2αβ = 2Q.

Since both sides are in Fp, we may think of these congruences as congruences modulo p.
These give exactly (7) and (8) with (D/p) = −1.

Similarly if (D/p) = 1, then in Fp we have

Up−1 =
αp−1 − βp−1

α− β
=

1− 1

α− β
= 0

and

Vp−1 = αp−1 + βp−1 = 1 + 1 = 2.

We are most interested in the case (D/n) = −1 and composite n that satisfy Un+1 ≡
0 (mod n) and Vn+1 ≡ 2Q (mod n). Consequently in the following we shall focus on the
case of ε(n) = −1. We now investigate the probabilities mentioned above.

7.1. Case 1: (D/p) = −1. Since (D/p)(D/y) = (D/py) = (D/n) = −1, we must have
(D/y) = 1. We also have

Upy+1 =
αpy+1 − βpy+1

α− β
= αβ

βy−1 − αy−1

α− β
= QUy−1

and

Vpy+1 = αpy+1 + βpy+1 = Q(βy−1 + αy−1) = QVy−1.

Thus, for Congruences (7) and (8) we are interested respectively in the probability that
Uy−1 ≡ 0 (mod p) and the probability that Vy−1 ≡ 2 (mod p).

The sequences Uy and Vy as functions of y modulo p are periodic with periods less than
p2. The condition (D/y) = 1 has period D (or 4D) as we are implicitly interested in
representatives for y that are odd. By the CRT this modulo D condition is irrelevant to
the conditional probability unless D | p2 − 1.

Lemma 1. The periodicity of the appearance of 0 for the sequence Uy−1 is exactly the order
of the image of α in the group F×

p2
/F×p . In particular, it divides p+ 1.

Moreover, the order is 2 when P = 0 (mod p).

Proof. We recall that the sequence Uy−1 gives the irrational part of the number αy−1, and
thus Uy−1 = 0 (mod p) if and only if αy−1 ∈ Fp. Thus the collection of y such that Uy−1 = 0
is exactly the kernel of the map F×

p2
→ F×

p2
/F×p . Hence, we are really studying the image

of the map 〈αn〉 → F×
p2
/F×p . Since the image is a subgroup, its order divides p + 1. This

completes the proof of the first claim.
We note that if P = 0 (mod p), then α =

√
D/2 and α2 = −Q ∈ Fp.

Since we know U(p+2)−1 = 0, we obtain

Proposition 1. There exists a divisor k of p+ 1 such that Upy+1 ≡ 0 (mod p) if and only
if y ≡ p+ 2 ≡ 1 (mod k).

In particular, the probability that Upy+1 ≡ 0 (mod p) is 1
k ≥

1
p+1 .
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If we assume additionally the y is odd then subject to this condition the probability is at
least 2

p+1 .

We note that in the above we are not directly accounting for the possibility that D
divides k, in which case the condition (D/y) = 1 would tend to lead to a higher conditional
probability as some of the k options for y must be discarded, but we will never discard the
option 1 mod k. In particular the claim remains valid with these considerations.

Now we note that the order of α in F×
p2
/F×p is precisely the order of α

β = α2

Q in F×
p2

and

the condition Uy+1 ≡ 0 (mod p) is equivalent to
(
α2

Q

)y+1
= 1 ∈ F×

p2
. In the case n, and

hence y, are odd we will always have y + 1 even, and writing y + 1 = 2z the condition on z
is

1 =

(
α2

Q

)2z

.

As such we can see that this order is automatically at most (p+ 1)/2.
If we continue to write y + 1 = 2z and look at

1 =

(
α2

Q

)2z

=

(
α2

−Q

)2z

.

we can see that the 2-part of the order of (α2/Q)2 will tend to further bounded if Q or −Q
is a square. Though this is guaranteed when p ≡ 3 (mod 4) it is also guaranteed if Q or
−Q is an integer perfect square.

Additionally we notice that when y is odd if we replace α, β by the conjugate pair α′ =√
Dα, β′ = −

√
Dβ we effectively replace Q by −DQ but the order of (α′/β′)2 agrees with

that of (α/β)2. It follows that having any of

Q, ,−Q, DQ, −DQ
perfect integer squares will tend to increase the probability Uy+1 ≡ 0 (mod p) when y is
odd. This phenomenon can be observed empirically by counting the proportion of n which
are lpsp for different options P,Q. Those with Q of the above form will tend to be above
average.

The situation for (8) is somewhat more subtle. We have the following

Lemma 2. The period of the sequence Vy−1 divides the order of α in F×
p2

, which is a divisor

of p2 − 1.
Moreover, the order of α in F×

p2
is divisible by the LCM of the order of α in the group

F×
p2
/F×p and the order of Q in F×p , and is at most twice this amount. In particular, this

period is at least as large as the period of Lemma 1.

Proof. The first claim about the period is clear given that α and β have the same period.
For the second claim we note that the order of an element is divisible by the order

of its image under any homomorphism. We obtain the result by considering the map
F×
p2
→ F×

p2
/F×p as well as the norm map

NF×
p2
/F×

p
: F×

p2
→ F×p

for which we have

NF×
p2
/F×

p
(α) = αp+1 = Q
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Because the intersection of the kernels of these two maps is ±1 we conclude that the exact
order of α is either the LCM or the two quantities, or exactly twice this. (The exact order
is twice this if and only if there exists z with αz = −1 (mod p). This is guaranteed if Q is
not a square mod p.) We note further that because we are taking the LCM of a number
dividing p+ 1 and one dividing p− 1 the LCM is almost exactly the product.

Note from the lemma above we may conclude that if P = 0 the order of α is exactly 2
times the order of −Q. We also conclude that if Q = ±1, the order of α divides 2(p+ 1).

It remains the case that we cannot expect that 2 only appears once in each period.
Additionally, in contrast to the previous case there is no guarantee that the appearance of
2 in the period is actually itself periodic.

Lemma 3. Let ` denote the period of Vy modulo p. We have that Vy+m(p+1) = QmVy and

consequently each a ∈ F×p is repeated by Vy equally often as Qma and hence not more than
`/ord(Q) times within one period of Vy (mod p).

Proof.
This follows from the observation that

Vy+p+1 = QVy

from which we obtain a bijection between the occurrences of x and Qx. Hence, each value
0 6≡ x (mod p) which occurs, does so just as often as Qx (mod p) in one period.

Now we consider the map
Ψ : Z→ Fp × F×p

given by
y 7→ (Vy, NF×

p2
/F×

p
(αy)) = (Vy, Q

y).

And note that this map has a period which is either ord(α) or ord(α)/2

Lemma 4. The function Ψ is exactly 2 : 1 on its image, and hence each a ∈ F×p is repeated
by Vy no more than 2ord(Q) times in 0 ≤ y ≤ ord(α).

We note that the image of Ψ gives the trace and norm of αy, hence we can recover the
minimal polynomial of αy from Ψ(y). It follows that Ψ(y1) = Ψ(y2) implies either αy1 = αy2

or αy1 = βy2 . Because ` divides the order of α in the first case we obtain y1 ≡ y2 (mod `).
In the second case we obtain y1 ≡ py2 ≡ −y2 (mod `).

Proposition 2. The probability that Vpy+1 ≡ 2Q (mod p) is less than the minimum of

1

ord(Q)
and

2ord(Q)

ord(α)
.

We remark that
2ord(Q)

ord(α)
=

{
1
k if ∃z, αz = −1 (mod p)
2
k otherwise

where as before, k is the order of α in F×
p2
/F×p

We first note that this proposition gives an indication of why having ord(Q) large is
beneficial. Moreover, it indicates why one should expect the V test to be better than the
U test, and at least as good even when Q = −1.

We next note that in the above we are not accounting for the possibility that D | `, in
which case the condition (D/y) = 1 and (D/p) = −1 would imply the map Ψ must be
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injective on relevant cases. The effect is that the conditional probabilities are still bounded
by the above.

Finally we note that when we combine both the U and V conditions, and consider
the conditional probability of the V condition assuming the U condition this amounts
to restricting to the subsequence y = (p + 2) + kx for which that Uy−1 = 0, then as
(α− β)Uz + 2βz = Vz, the condition Vy−1 = V(p+2)+xk−1 = 2 becomes

β(p+1)+kx = Q(βk)x.

This condition is periodic in x, with period the exact order of βk, as k is the smallest power
for which βk ∈ F×p the order of βk divides p − 1 and is, up to a multiple of 2, the order of
Q. In particular, if Q has a large order, this probability the V condition is satisfied remains
low independently of the U condition.

7.2. Case 2: (D/p) = 1. Since (D/p)(D/y) = (D/py) = (D/n) = −1, we must have
(D/y) = −1. As αp = α and βp = β we also have

Upy+1 =
αpy+1 − βpy+1

α− β
=
αy+1 − βy+1

α− β
= Uy+1,

so we want to estimate the fraction of y with (D/y) = −1 that have Uy+1 ≡ 0 (mod p).
Likewise we have

Vpy+1 = αpy+1 + βpy+1 = αy+1 + βy+1 = Vy+1,

so we want to estimate the fraction of y with (D/y) = −1 that have Vy+1 ≡ 2Q (mod p).
We note that in this case α, β ∈ F×p are essentially independently chosen elements (de-

termined by P and Q).

Lemma 5. The sequence Uy+1 is zero precisely when ((α)β−1)y+1 = 1. Hence the period of
the vanishing of Uy+1 is precisely the order of (α)β−1 as an element of F×p . In particular,
it divides p − 1 and the LCM of the orders of α and β. Consequently, there is a divisor k
of p− 1 such that Uy+1 = 0 if and only if y = −1 (mod k).

Proof. The condition Uy+1 ≡ 0 (mod p) becomes αy+1 = βy+1 in F×p , or (α)β−1 = 1, which
proves the lemma.

If it happens that D | k, then we should consider the impact of the condition (D/y) =
−1. In contrast to the previous case it may not be possible to have (D/y) = −1 and
y = −1 (mod k). If we assume D | k so that y = −1 (mod D), then in the case

• D = 1 (mod 4) and D > 0 then (D/y) = (y/D) = (−1/D) = 1 hence the conditions
are never simultaneously satisfiable.
• D = 3 (mod 4) andD > 0 then (D/y) = (−1/y)(y/D) = (−1/y)(−1/D) = −(−1/y)

hence the condition is satisfiable if y = 1 (mod 4). But we note that if 4 | k this is
not possible.
• D = 3 (mod 4) and D < 0 then (D/y) = (−1/y)(y/ − D) = (−1/y)(−1/ − D) =

(−1/y) hence the condition is satisfiable if y = 3 (mod 4).
• D = 1 (mod 4) and D < 0 then (D/y) = (y/ − D) = (−1/ − D) = −1 hence the

condition is always satisfiable.

The above suggests D = 1 (mod 4) and D > 0 would be ideal. We note about the above
conditions, D | p − 1 is only particularly likely for random n when D is small. Counts of
lpsps are consistent with this expectation that small positive D have fewer lpsps.
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We remark that as in the case (D/p) = −1 if y+ 1 = 2z we are considering the condition

1 =

(
α

β

)y+1

=

(
α4

Q2

)z
.

In the case p ≡ 3 (mod 4) the 2-part of the order is already reduced to 1. However, if
p ≡ 1 (mod 4), we will have −1, D,−D are all squares modulo p, hence if any of

Q, −Q, DQ, −DQ

are perfect integer squares this will reduce the maximum 2-part of the order of ((α)β−1)2

and hence increase the probability that Uy+1 ≡ 0 (mod p). In contrast if Q is not a square

((α)β−1)(p−1)/2 ≡ (αp−1/Q(p−1)/2) ≡ −1. This phenomenon can be observed empirically by
counting the proportion of n which are lpsp for different options P,Q. Those with Q of the
above form will tend to be above average.

Lemma 6. The period of the Vy+1 sequence divides the LCM of the orders of α and β. The
order of Q divides the LCM of the orders of α and β, as does the order of (α)β−1. All of
these orders divide p− 1.

Proof. It is clear from the definition of Vy+1 that its period divides the periods of the two
functions added to obtain it. Since Q = αβ, its order must divide the LCM of the orders
of α and β. Likewise, the order of (α)β−1 divides this LCM. This completes the proof.

In contrast to the previous cases, if Q 6≡ 1 or P/2 (mod p), there is no guarantee that
there are any solutions at all.

However, we know that

V(p−2)+`(p−1)+1 ≡ 2 (mod p) and V`(p−1)+1 ≡ P (mod p).

Lemma 7. Let t denote the order of α/β in F×p then

Vy+mt = (βt)mVy

and hence each a ∈ F×p is repeated by Vy equally often as (βt)ma and hence not more than

`/ord(βt) times within one period of Vy (mod p).
Let f denote the order of α in F×p then

Vy+mf = Vy + βy((βf )m − 1)

and hence each a ∈ F×p is repeated by Vy equally often as (βf )ma and hence not more than

`/ord(βt) times within one period of Vy (mod p).

By symmetry each a ∈ F×p is repeated by not more than `/ord(αord(β)) times within one
period of Vy (mod p).

The proof is as in the previous case.
Now we consider the map

Ψ : Z→ Fp × F×p
given by

y 7→ (Vy, NF×
p2
/F×

p
(αy)) = (Vy, Q

y).

And note that this map has a period which divides the LCM of ord(α) and ord(β), and
equals it up to a multiple of 2.
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Lemma 8. The function Ψ is either 1 : 1 or 2 : 1 on its image, and hence each a ∈ F×p is
repeated by Vy no more than 2ord(Q) times within for 0 ≤ y ≤ LCM(ord(α), ord(β)).

It is 1 : 1 unless there exists k with β = αk and α = βk.

The proof is as in the previous case.

Proposition 3. The probability that Vpy+1 ≡ 2Q (mod p) is less than the minimum of

2ord(Q)

LCM(ord(α), ord(β))
,

ord(α)

LCM(ord(α), ord(β))
,

ord(β)

LCM(ord(α), ord(β))
,

ord(α/β)

LCM(ord(α), ord(β))
.

In contrast to the previous case it is challenging to get strong bounds on this expectation
when the orders of α and β are both large. However, in that case one still expects the values
of αy and βy to behave like uniform random variables, and hence Vy = αy + βy should as
well.

Note also that, as in the case (D/p) = −1 if we were considering the conditional prob-
ability of Congruence (8) given (7), we would restrict to y = (p − 2) + x`, where ` is the
order of (α)β−1 so that Uy+1 = 0, then as

(α− β)Uz + 2βz = Vz

the condition

2Q = Vy+1 = V(p−2)+x`+1 = 2βx`

becomes

Q = βx`

which is periodic with period the order of β`, and is up to a multiple of 2 the order of
αβ = Q. By symmetry we also obtain

Q = αx`

and taking the product of these two congruences gives

Q2 = Qx`

and so x` = 2 (mod ord(Q)). This final condition has a low probability of being satisfied if
ord(Q) is large. And is likely impossible to satisfy if ` = ord((α)β−1) is not relatively prime
to ord(Q).

Once again we can see why the V sequence probably outperforms the U sequence: the
expected period of the U sequence is strictly less than p− 1, while that of V is likely to be
closer to p− 1 as it comes from the LCM of two periods. The probability that Vy+1 = 2Q
can however be less than 1/(p − 1) since it can be 0. Realistically, one expects that the
values of the V sequence occur with equal frequency, though this is not guaranteed.

In contrast to the previous case the probabilities that for fixed D and p we have Uy+1 = 0
or Vy+1 = 2Q are largely not independent as they both depend on periods modulo p − 1
and so likely either completely conflict or completely overlap. This is consistent with the
observation that there should be fewer composites satisfying (7) and (8) with (D/n) = −1
where most p | n have (D/p) = 1.
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7.3. Both cases together. We have seen that heuristically, if you use (8) with (D/p) = −1
and allow Q = 1 or −1 as in Method A, then the order of α divides 2(p + 1). But if you
force |Q| > 1 as in Method A*, then this order divides p2− 1 = (p− 1)(p+ 1) and probably
not 2(p+ 1) or p− 1.

Consider the BPSW probable prime test. The Fermat condition 2n−1 = 1 (mod n)
basically requires that the order of 2 modulo any prime factor p of n divide n − 1. If the
order is large, as it often is, then it rarely divides n−1 when n has other prime factors than
p. But it is not that rare; it does happen occasionally, and we get (some) pseudoprimes to
base 2.

The Lucas condition (7) is trickier. With (D/n) = 1, it is just a Fermat test with 2
replaced by α. With (D/n) = −1, it operates in Fp2 and needs n+1 to satisfy a congruence
condition modulo p+ 1 in order to report n probably prime. Such a condition modulo p+ 1
happens about as often as p− 1 divides n− 1, so we get occasional Lucas psps.

When we combine the Fermat and Lucas conditions, we ask for n to satisfy congruence
conditions modulo both p − 1 and p + 1. These probabilities are not independent, but
as a first approximation, each event has probability about 1/p. The probability of both
events simultaneously would be 1/p2. Now

∑
p 1/p diverges, while

∑
p 1/p2 converges. By

the Borel-Cantelli lemmas, the first event (just pseudoprimes or just Lucas pseudoprimes)
occurs infinitely often, while the second event (counterexample to BPSW) occurs only
finitely often. (The first Borel-Cantelli lemma requires the events be (at least pairwise)
independent; the other one does not have this hypothesis.)

If we consider just (8) with (D/n) = −1 and use a method for choosing D, P , Q that
does not allow |Q| = 1, then we are forcing both congruence conditions on n modulo p− 1
and p+ 1 (or at least a large divisor of p− 1 respectively p+ 1), so the number of solutions
should be finite. Of course, the fact that some orders will be proper divisors of p− 1, p+ 1,
or p2− 1 will allow some solutions, perhaps infinitely many, because the event probabilities
are greater than 1/p2 but still less than 1/p.

8. Are there infinitely many counterexamples to the test?

As noted earlier, no odd, composite n is known that is psp(2) and, when Method A* is
used to choose P and Q, such that n is also lpsp(P,Q).

Nevertheless, if we search hard enough, we can find odd, composite n and Lucas param-
eters P and Q for which

2n−1 ≡ 1 (mod n) ,

Un+1 ≡ 0 (mod n) , and

Vn+1 ≡ 2Q (mod n)

are simultaneously true. One such example is n = 341, P = 27, Q = 47, D = P 2−4Q = 541.
This example was found by testing all possible (P,Q) pairs (mod n), something one would
not do when testing n for primality.

We can also find odd, composite n along with P and Q, such that n is simultaneously
strong psp(2), strong lpsp(P,Q), and vpsp(P,Q). This theorem was found empirically by
testing all (P,Q) pairs (mod n).

Theorem 1. Let n ≡ 3 (mod 4) be a strong pseudoprime base 2. Let k ≥ 0 be an integer.
Set P = 2k and Q = 22k−1. Then n is also a strong lpsp(P,Q) and a vpsp(P,Q).
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Remarks.
1. If k = 0, then Q = 2−1 ≡ (n+ 1)/2 (mod n).
2. Examples of spsp(2) that are ≡ 3 (mod 4) include composite Mersenne numbers of

the form 2p − 1 where p is an odd prime [20, p. 1008].
3. Corollary 1 below shows that infinitely many n satisfy Theorem 1.
4. This proof uses the facts that n is an epsp(2) and that n ≡ 3 (mod 4). However, if

n ≡ 3 (mod 4), then n is epsp(a) if and only if n is spsp(a) [20, Theorem 4, p. 1009].

Proof. First, D = P 2−4Q = 22k−4 ·22k−1 = 22k−2 ·22k = −(2k)2. Because n ≡ 3 (mod 4),
this D has Jacobi symbol (D/n) = (−1/n) · ((2k)2/n) = −1.

Write n+ 1 = d · 2s, where d is odd. Then s > 1, and 2d ≤ (n+ 1)/2. We will first prove
that V2d ≡ 0 (mod n); by Congruence (12), this will prove that n is slpsp(P,Q).

Let α and β be the roots of the characteristic equation x2 − Px+Q = 0, so that

α =
P +

√
D

2
=

2k +
√
−4k

2
= 2k−1(1 + i) ,

β =
P −

√
D

2
=

2k −
√
−4k

2
= 2k−1(1− i) .

Then V2d = α2d + β2d. Because (1 + i)2 = 2i, we have

α2d =
(

2k−1
)2d
· (1 + i)2d =

(
22k−2

)d
· (2i)d =

(
22k−1

)d
· id .

Similarly, because (1− i)2 = −2i, we have β2d =
(
22k−1

)d · (−i)d. Therefore,

V2d = α2d + β2d =
(

22k−1
)d
· (id + (−i)d) = 0 ,

so n is a strong lpsp(P,Q).
We will now prove that Vn+1 ≡ 2Q (mod n). Because n ≡ 3 (mod 4), we can write

n+ 1 = 4M , where M is an integer. Also, Vn+1 = αn+1 + β+1.
Observe that (1 + i)4 = (1− i)4 = −4. Then

αn+1 =
(

2k−1
)n+1

· (1 + i)4M =
(
2n+1

)k−1 · (1 + i)4M =
(
4 · 2n−1

)k−1 · (−4)M .

βn+1 has the same value. Therefore,

Vn+1 = αn+1 + βn+1 = 2 ·
(
4 · 2n−1

)k−1 · (−1)M · 4M

= 2 · 22k−2 ·
(
2n−1

)k−1 · (−1)M · 22M

= 22k−1 ·
(
2n−1

)k−1 · (−1)M · 2(n+1)/2

= 2Q ·
(
2n−1

)k−1 · (−1)M · 2(n−1)/2 . (19)

But 2n−1 ≡ 1 (mod n) because n is spsp(2) and is therefore a Fermat pseudoprime base 2
that satisfies Congruence (3).

Moreover, because n is spsp(2), it is therefore an Euler pseudoprime base 2, so that, by

Congruence (4), 2(n−1)/2 ≡
(
2
n

)
(mod n). We now separate (19) into two cases.

Case I. n ≡ 3 (mod 8). Then (a), M is odd, so (−1)M = −1, and (b), (2/n) = −1.
Case II. n ≡ 7 (mod 8). Then (a), M is even, so (−1)M = 1, and (b), (2/n) = 1.
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In both cases, (19) becomes

Vn+1 = 2Q ·
(
2n−1

)k−1 · (−1)M · 2(n−1)/2 ≡ 2Q · 1 · (−1)M ·
(

2

n

)
≡ 2Q (mod n) .

Therefore, n is also vpsp(P,Q). This completes the proof of the theorem.

With this n and Q, the condition Q(n+1)/2 ≡ Q · (Q/n) (mod n) in step 5 of the enhanced
primality test is also satisfied: Since n is a spsp(2), it is also an spsp(22k−1), that is, spsp(Q).

Therefore n is an Euler pseudoprime to base 2: Q(n−1)/2 ≡ (Q/n) (mod n). Multiply by Q
to get the condition in step 5.

Note that the values of n in Theorem 1 are not counterexamples to our primality test,
because Method A* never chooses these values of P and Q.

Before we discovered paper [24] we tried to prove on our own that there are infinitely
many spsp(2) in the congruence class 3 (mod 4) and found the theorem below, which has
independent interest and which needs the following lemma.

Lemma 9. For every positive integer r there exists an integer a ≡ 3 (mod 4) such that for

every odd prime p, if p ≡ a (mod 4r), then r is a quadratic residue modulo p:
(
r
p

)
= +1.

Proof. Write r = 2st with t odd. If t ≡ 1 (mod 4), let a = 1 + 2t. If t ≡ 3 (mod 4), let
a = 4t − 1. In either case, if s is odd, add 4t to a. It is easy to see that a ≡ 3 (mod 4) in
all cases. In the rest of the proof suppose that p is an odd prime and p ≡ a (mod 4r). Note
that this implies that p ≡ 3 (mod 4).

If r is a power of 4, then s is even, t = 1, a = 3 and
(
r
p

)
=
(
1
p

)
= +1.

If r is twice a power of 4, then s is odd, t = 1, a = 7, 8 | 4r and
(
r
p

)
=
(
2
p

)
= +1 by the

supplement to the LQR that says that if p ≡ 7 (mod 8), then
(
2
p

)
= +1.

Now suppose s is even and t > 1. If t ≡ 1 (mod 4), then by the LQR we have(
r

p

)
=

(
2st

p

)
=

(
t

p

)
=
(p
t

)
=
(a
t

)
=

(
1 + 2r

t

)
=

(
1

t

)
= +1.

If t ≡ 3 (mod 4), then by the LQR we have(
r

p

)
=

(
2st

p

)
=

(
t

p

)
= −

(p
t

)
= −

(
4t− 1

t

)
= −

(
−1

t

)
= +1.

Finally, suppose s is odd and t > 1. Then 8 | 4r and a ≡ 7 (mod 8). If t ≡ 1 (mod 4),
then by the LQR we have(

r

p

)
=

(
2st

p

)
=

(
2

p

)(
t

p

)
= (+1)

(p
t

)
=
(a
t

)
=

(
1 + 2t+ 4t

t

)
=

(
1

t

)
= +1.

If t ≡ 3 (mod 4), then by the LQR we have(
r

p

)
=

(
2st

p

)
=

(
2

p

)(
t

p

)
= −

(p
t

)
= −

(a
t

)
= −

(
4t− 1 + 4t

t

)
= −

(
−1

t

)
= +1.

This completes the proof.

Theorem 2. If r > 1 is an integer, there are infinitely many Carmichael numbers m ≡
3 (mod 4) that are also strong pseudoprimes to base r. Moreover, there is a constant

K > 0 which depends on r so that the number of such m < X is ≥ XK/(log log logX)2 for all
sufficiently large X.
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Proof. Let M = 4r and choose a by Lemma 9. Wright [27] proved that there are infinitely

many Carmichael numbers m ≡ a (mod M) and in fact ≥ XK/(log log logX)2 of them below
X for all large enough X. Since a ≡ 3 (mod 4) and 4 | M , we have m ≡ 3 (mod 4). In
the construction of the Carmichael numbers m in the proof in [27], every prime factor p of
m is odd and ≡ a (mod M). Thus each p | m satisfies p ≡ 3 (mod 4) and, by Lemma 9,(
r
p

)
= +1. By Corollary 1.2 of [3], if

(
r
p

)
has the same value for every prime p | m, then

m is a strong pseudoprime to base r. This completes the proof.

In 1980, van der Poorten and Rotkiewicz [24] proved that for every integer r > 1 there
are infinitely many spsp(r) in every arithmetic progression ax+ b with (a, b) = 1, but they
did not bound the growth rate of such numbers.

Theorem 1 of [20] asserts that for all r > 1 and x > r15r + 1, there are more than
(log x)/(4r log r) strong pseudoprimes to base r less than x. Every one of these spsp(r) is
≡ 1 (mod 4). Later, Pomerance [18] proved an even greater lower bound on the number of
strong pseudoprimes to base r less than x. All of the spsp(r) he constructed are ≡ 1 (mod 4).

Corollary 1. Let k be a nonnegative integer. Let P = 2k and Q = 22k−1. Then there exist
infinitely many Carmichael numbers m ≡ 3 (mod 4) that are strong pseudoprimes to base 2,
strong lpsp(P,Q) and vpsp(P,Q). Moreover, there is a constant K > 0 so that the number

of such m < X is ≥ XK/(log log logX)2 for all sufficiently large X.

The corollary follows from Theorems 1 and 2.
In the case r = 2 all spsp(2) that we constructed in Theorem 2 are ≡ 7 (mod 8). This

is because when r = 2 Lemma 9 sets s = t = 1 and a = 7. It is easy to modify the proof
of Theorem 2 to show that there are infinitely many spsp(2) that are ≡ 3 (mod 8). Rather
than use Lemma 9, just set M = 8 and a = 3. Then Wright’s proof for this arithmetic
progression constructs many Carmichael numbers m ≡ 3 (mod 8), every prime factor of

which is also ≡ 3 (mod 8). Then the Legendre symbols
(
2
p

)
are all −1 by the supplement

to the LQR so that Corollary 1.2 of [3] still applies to show that m is spsp(2).
The smallest Carmichael number that satisfies all the conditions of this Corollary is

3215031751.

Pomerance’s heuristic argument.
In 1899, Korselt [14] proved that n is a Carmichael number if and only if n is square free,

has at least three prime factors, and for each prime p dividing n we have p−1 divides n−1.
Erdős [8] gave a heuristic argument that concludes that there are infinitely many (in fact
more than x1−ε up to x) Carmichael numbers. The argument of Erdős showed heuristically
that there are many square free n with more than two prime factors and for each prime p
dividing n we have p−1 divides n−1. Pomerance [19] modified this argument to show that
there are infinitely many strong pseudoprimes n to base 2 that are also Lucas pseudoprimes
with (D/n) = −1. Pomerance’s argument showed heuristically that there are Carmichael
numbers n so that for each prime p dividing n we have p+ 1 divides n+ 1, and congruence
conditions to ensure that n is a strong pseudoprime to base 2 and (D/n) = (5/n) = −1.
Since the numbers n Pomerance constructed all satisfy p − 1 | n − 1 and p + 1 | n + 1 for
each prime factor p of n, they satisfy all of Congruences (7)–(10).

Pomerance chooses an integer k > 4 and a large T . He lets Pk(T ) be the set of all primes
p in [T, T k] such that
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(1) p ≡ 3 (mod 8) and the Jacobi symbol (5/p) = −1.
(2) (p− 1)/2 is square free and composed only of primes q < T with q ≡ 1 (mod 4).
(3) (p+ 1)/4 is square free and composed only of primes q < T with q ≡ 3 (mod 4).

Let Q1 be the product of all primes q < T with q ≡ 1 (mod 4). Let Q3 be the product
of all primes q < T with q ≡ 3 (mod 4).

Heuristically, the size of Pk(T ) is about T k/ log2 T .
Let ` be odd and let n be any product of ` primes p ∈ Pk(T ) such that n ≡ 1 (mod Q1)

and n ≡ −1 (mod Q3).
Then n ≡ 3 (mod 8), (5/n) = −1 and for all primes p | n we have p − 1 | n − 1 and

p + 1 | n + 1. This implies that n is a strong pseudoprime to base 2 and n satisfies all of
(7)—(10), so n is a Lucas pseudoprime, a v pseudoprime, and so is a counterexample to the
enhanced BPSW primality test.

The arguments of both Erdős and Pomerance were heuristic, with many unproved but
plausible assumptions.

The condition k > 4 allows one to show that there are x1−ε counterexamples n to the
enhanced BPSW primality test with n < x.

The conditions p ≡ 3 (mod 8) for p ∈ Pk(T ) make it easy to prove n is spsp(2).
A computer search for counterexamples to BPSW using Pomerance’s construction would

be very slow due partly to the conditions 2 and 3 above for primes q < T and due partly
to the conditions n ≡ 1 (mod Q1) and n ≡ −1 (mod Q3).

Conclusion.
In Section 7, we have presented some reasons why counterexamples to the BPSW test or to

our new strengthened test should be rare or nonexistent. On the other hand, in this section
we have suggested that there might be many, perhaps infinitely many counterexamples to
these tests. So which is it?

The arguments in Section 7 seem to apply to relatively small numbers, those with hun-
dreds or thousands of decimal digits that we might actually test for primality using com-
puters. We believe that counterexamples to either test are extremely rare among numbers
of that size. The arguments in this section seem to apply to truly enormous numbers,
numbers too large for even a computer to multiply. Some day, when we know more about
the distribution of primes, we might be able to prove rigorously that there are infinitely
many counterexamples, but these numbers might be so large that their logarithm exceeds
the number of electrons in the universe.

9. Open Questions

Suppose n is composite and that we have the full factorization of n. Work by various
authors has produced formulas that count or estimate:

• the number of bases a for which n is a psp(a) [5, Thm. 1], [15, Lemma 1]
• the number of bases a for which n is a spsp(a) [15, Prop. 1], [4, Thm. 1.4]
• given D, the number of P for which there is a Q such that n is lpsp(P,Q) [5, Thm.

2]
• given D, the number of (P,Q) pairs for which n is slpsp(P,Q) [4, Thm. 1.5]
• the number of (P,Q) pairs (mod n) for which n is simultaneously lpsp(P,Q) and

vpsp(P,Q) [10, Thm. 16].

We would like to have a formula that bounds, or better yet, counts, the number of D, or
the number of (P,Q) pairs for which n is a vpsp(P,Q). We would also like to see an estimate
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of the asymptotic growth rate for the number of vpsp’s ≤ x; this would presumably depend
on the algorithm for choosing P and Q.
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Appendix A. Appendix. Methods A and A* generate the same lpsp lists

Recall that a Lucas probable prime is a solution n to (1). Here we prove that Methods
A and A* give the same solutions. We also prove a similar result for strong Lucas probable
primes. In this appendix we write Un(P,Q) and Vn(P,Q) for the two Lucas sequences with
parameters P , Q.

Theorem 3. Let n be a positive integer relatively prime to 10. Then n is a Lucas probable
prime for Method A if and only if it is a Lucas probable prime for Method A*.

Proof. Methods A and A* differ only when D = 5. With that D, Method A sets P = 1,
Q = −1, while A* sets P = Q = 5. Let

α1 =
1 +
√

5

2
and β1 =

1−
√

5

2

be the two roots of x2 − x− 1 = 0 and let

α2 =
5 +
√

5

2
and β2 =

5−
√

5

2

be the two roots of x2 − 5x+ 5 = 0. Then

α2
2 = 5

(
3 +
√

5

2

)
= 5α2

1 and β22 = 5

(
3−
√

5

2

)
= 5β21 . (20)

Since α1 − β1 =
√

5 = α2 − β2, we have

U2k(5, 5) =
α2k
2 − β2k2
α2 − β2

= 5k
(
α2k
1 − β2k1
α1 − β1

)
= 5kU2k(1,−1).

Now n is odd, so we can write n+ 1 = 2k; by the previous expression,

Un+1(5, 5) = 5(n+1)/2Un+1(1,−1).

https://www.math.dartmouth.edu/~carlp/dopo.pdf
https://doi.org/10.1090/S0025-5718-1980-0572872-7
https://math.dartmouth.edu/~carlp/PDF/paper25.pdf
https://doi.org/10.1016/0022-314X(80)90084-0
http://www.sbc.org.pl/Content/33711/2003_03.pdf
https://arxiv.org/abs/1503.01839
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Since n is not a multiple of 5, Un+1(5, 5) ≡ 0 (mod n) if and only if Un+1(1,−1) ≡ 0 (mod n).
This completes the proof.

Now we prove the analogue of this theorem for the strong lprp test.

Theorem 4. Let n be a positive integer relatively prime to 10. Then n is a strong Lucas
probable prime for Method A if and only if it is a strong Lucas probable prime for Method
A*.

Proof. Let α1, α2, β1, β2 be as in the proof of the previous theorem. We will prove that

U2k+1(5, 5) = 5kV2k+1(1,−1), (21)

V2k+1(5, 5) = 5k+1U2k+1(1,−1), and (22)

V2k(5, 5) = 5kV2k(1,−1), (23)

Using Equation (20), the left side of (21) is

α2k+1
2 − β2k+1

2

α2 − β2
=

5k

α2 − β2

(
α2k
1 α2 − β2k1 β2

)
=

5k√
5

(
α2k+1
1

α2

α1
− β2k+1

1

β2
β1

)
.

Now
α2

α1
=

5 +
√

5

1 +
√

5
=
√

5 and
β2
β1

=
5−
√

5

1−
√

5
= −
√

5,

so the left side of (21) becomes

5k√
5

(
α2k+1
1

√
5− β2k+1

1 (−
√

5)
)

= 5k
(
α2k+1
1 + β2k+1

1

)
,

which is the right side of (21). Equation (22) is proved the same way. Equation (23) is even
easier:

V2k(5, 5) = α2k
2 + β2k2 = (5α1)

2k + (5β1)
2k = 5k(α2k

1 + β1)
2k = 5kV2k(1,−1).

Now if n is an slprp(1,−1) because Vd(1,−1) ≡ 0 (mod n), then Equation (21) shows that
n is an slprp(5,5) because Ud(5, 5) ≡ 0 (mod n), and vice versa. Also if n is an slprp(1,−1)
because Ud(1,−1) ≡ 0 (mod n), then Equation (22) shows that n is an slprp(5,5) because
Vd(5, 5) ≡ 0 (mod n), and vice versa. Finally, if n is an slprp(1,−1) because Vd2s(1,−1) ≡ 0
(mod n) for some 0 < s < d, then Equation (23) shows that n is an slprp(5,5) because
Vd2s(5, 5) ≡ 0 (mod n), and vice versa. This completes the proof.
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