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A BIJECTION BETWEEN TWO SUBFAMILIES OF MOTZKIN

PATHS

NANCY S.S. GU AND HELMUT PRODINGER

Abstract. Two subfamilies of Motzkin paths, with the same numbers of up, down,

horizontal steps were known to be equinumerous with ternary trees and related ob-

jects. We construct a bijection between these two families that does not use any

auxiliary objects, like ternary trees.

1. Introduction

Motzkin paths are similar to Dyck paths, but allow also horizontal steps of unit
length. In this note, we concentrate on two subfamilies, where there are n up steps
(u), n down steps (d), and n horizontal steps (h). Both families are enumerated by

1 + z3 + 3z6 + 12z9 + 55z12 + 273z15 + · · · ,

and the coefficients also enumerate ternary trees and many other objects, see sequence
A001764 in [2].

The first family originates from Asinowski and Mansour [1]. They start from a Dyck
path of length 2n and label each maximal sequence of up steps by a Dyck path. If we
say replace instead of label and use the steps h and u for the replaced sequence, we
have a Motzkin path with n horizontal steps. To clarify, we give a list of all 12 such
paths of length 9:

The second family was introduced to model frog hops from a question in a student’s
olympiad [3]: They were called S-Motzkin paths, have the same number of u, d, h,
and when deleting the down steps, the sequence must look like huhuhu . . . hu. Here is
again a list of all 12 objects of length 9:

These paths and some of their properties were investigated in the recent paper [4].
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The goal of the present note is to describe a bijection between the two families,
which operates strictly on the paths themselves, without involving any other objects
that are equinumerous.

Instead of drawing pictures, we use the more economical description with the letters
u, d, h, and we always consider the paths from left to right.

2. From paths of the Asinowski/Mansour type to S-Motzkin paths

From paths given by Asinowski and Mansour, let A0D1A1D2 . . . At−1Dt denote a
path where Ai (i = 0, 1, . . . , t− 1) denotes a sub-path consisting of horizontal and up
steps, and Di (i = 1, 2, . . . , t) denotes a sub-path consisting of consecutive down steps.
Let di (i = 1, 2, . . . , t) denote the number of steps of Di. For completeness, we mention
that all Ai and Di are non-empty.

First, we replace horizontal steps and up steps by up steps and down steps, respec-
tively, in Ai to get a Dyck path Ai. Then for each Ai, we insert horizontal steps into
it to form an S-Motzkin path A′

i
such that each horizontal step is in the first position

that can be inserted from left to right. Observe that in A′

i
, there are no two horizontal

steps on the same height such that all the steps between these two steps are above
that height, and each up step except for the last one must be followed (eventually) by
a horizontal step.

These canonically obtained S-Motzkin paths are the building stones of the final
object, and the numbers d1, d2, . . . , dt−1 are used to tell us how to glue them together.
Notice also that the number dt will not be used for the construction.

Let ui denote the number of up steps of A′

i
. Notice that

i∑

k=1

dk ≤
i−1∑

k=0

uk (1 ≤ i ≤ t− 1), (2.1)

t∑

k=1

dk =

t−1∑

k=0

uk. (2.2)

First, we draw A′

0. Then according to d1, d2, . . . , dt−1, we insert A1, A2, . . . , At in
turn. If d1 < u0, then from the beginning of A′

0, find the d1-th up step and insert A′

1

behind it. If d1 = u0, then insert A′

1 behind the last step of A′

0.

Assume that we have inserted Ai−1 (1 ≤ i ≤ t − 1). Then from the beginning of
A′

i−1, find the di-th up step. Notice that if di < ui−1, then the di-th up step belongs
to A′

i−1 and is not the last up step of A′

i−1. We insert A′

i
behind this di-th up step. If

di = ui−1, then insert A′

i
behind the end of A′

i−1. If di > ui−1, then the di-th up step
may belong to A′

0, A
′

1, . . . , or A
′

i−2. This time, if this step is not any last up step of A′

0,
A′

1, . . . , or A
′

i−2, we insert A′

i
behind it. Otherwise, if this step is the last up step of

A′

s
(s ∈ {0, 1, . . . , i− 2}), then we put A′

i
behind A′

s
. Note that (2.1) and (2.2) ensure

that we can always find the aimed up step.

Finally, we get an S-Motzkin path until we have inserted all A′

i
(i = 0, 1, . . . , t− 1).
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3. From S-Motzkin paths to paths of the Asinowski/Mansour type

For an S-Motzkin path P , from left to right, we check the horizontal steps in turn.
For a given horizontal step hi, look along the path from hi. If there is a closest horizontal
step on the same height and all the steps between these two steps denoted by Pi are
not below this height, then hiPi is an S-Motzkin path. We call hi a paired horizontal
step. For the first horizontal step of the S-Motzkin path P , no matter whether it is
paired or not, we always call it a paired horizontal step denoted by h0. If there are no
other horizontal steps on height 0, then P = h0P0. Let h0, h1, . . . , ht−1 denote these
paired horizontal steps of P .

If there are no paired horizontal steps in Pi, then hiPi is an S-Motzkin sub-path
with all the horizontal steps located in their first positions. We assume hiPi as A′

i
.

Back to the S-Motzkin path P , if the up step just before hi is the di-th up step when
we are counting from the beginning of A′

i−1, then we record di. Then in the S-Motzkin
path P , we find the next paired horizontal step behind hi, and repeat the process.

If there is a paired horizontal step hi+1 in Pi, then we use hi+1 to find A′

i+1. Note
that now A′

i
contains the steps of hiPi without those steps in A′

i+1.

In view of all the paired horizontal steps, and using the above method, we can
identify all A′

i
(i = 0, 1, . . . , t− 1) and di (i = 1, 2, . . . , t− 1).

Deleting all the horizontal steps in A′

i
(0 ≤ i ≤ t − 1), and then replacing up and

down steps by horizontal and up steps, respectively, we obtain Ai. Let Di (1 ≤ i ≤
t − 1) be the sub-path consisting of di consecutive down steps. Then we draw a path
A0D1A1D2A2 . . .Dt−1At−1, and add enough consecutive down steps after it to form a
Motzkin path given by Asinowski and Mansour.

4. A detailed example

We consider a path given by Asinowski and Mansour

hhhuuudhhuuhudhuddhhuuddddd.

Then we can divide the paths into four parts A0, A1, A2 and A3 by using the consecutive
down steps which are in bold. Set

A0 = hhhuuu, A1 = hhuuhu, A2 = hu, A3 = hhuu,

d1 = 1, d2 = 1, d3 = 2, d4 = 5.

In fact, we do not need d4 in the bijection.

First, replacing horizontal steps and up steps by up steps and down steps, respec-
tively, in Ai (i = 0, 1, 2, 3), we have four Dyck paths

A0 = uuuddd, A1 = uuddud, A2 = ud, A3 = uudd.

Then inserting horizontal steps in Ai (i = 0, 1, 2, 3) in the first possible positions, we
get

A′

0 = huhuhuddd, A′

1 = huhuhddud, A′

2 = hud, A′

3 = huhudd.
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Since d1 = 1, we find the first up step in A′

0. Then inserting A′

1 behind this step, we
obtain

huhuhuhddudhuhuddd.

For the above path, since d2 = 1, we find the first up step from the beginning of A′

1.
That is to say, deleting the first two steps in the above path, we get a sub-path. For
this sub-path, we find the d2-th up step, and then insert A′

2. Let u1 be the number of
up steps of A′

1. Note that if d2 < u1, then A′

2 is inserted in A′

1. If d2 = u1, then put
A′

2 just behind A′

1. If d2 > u1, then A2 is inserted between two steps of A′

0. Back to
this example, we have d2 < u1. So

huhuhudhuhddudhuhuddd.

For the above path, since d3 = 2, we find the second up step from the beginning of
A′

2. That is to say, deleting the first four steps in the above path yields a sub-path. In
this sub-path, we find the second up step. In this example, d3 > u2, and the second
up step is not the last up step of A′

1 or A′

0. So we insert A′

3 behind the second up step
directly. we have

huhuhudhuhuhuddhddudhuhuddd

which is an S-Motzkin path.

Inversely, for the S-Motzkin path

huhuhudhuhuhuddhddudhuhuddd,

we can find the paired horizontal steps as follows:

huhuhudhuhuhuddhddudhuhuddd.

The first horizontal step must be a paired horizontal step although there is no other
horizontal step on level 0. We mark it as

(h̄uhuhudhuhuhuddhddudhuhuddd).

Here we use a pair of parentheses to identify A′

0.

Then we find the next pair of horizontal steps

(h̄u(ȟuhudhuhuhuddhddud)ȟuhuddd).

So we have d1 = 1, and we use a pair of parentheses to identify A′

1 from A′

0.

Next, we have

(h̄u(ȟu(ĥud)ĥuhuhuddhddud)ȟuhuddd)

and d2 = 1. We add a pair of parentheses to identify A′

2.

Finally, we obtain

(h̄u(ȟu(ĥud)ĥu(ḣuhudd)ḣddud)ȟuhuddd)

and d3 = 2 where we use a pair of parentheses to identify A′

3.

Therefore, we have

A′

0 = huhuhuddd, A′

1 = huhuhddud, A′

2 = hud, A′

3 = huhudd,

d1 = 1, d2 = 1, d3 = 2.
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Deleting all the horizontal steps in A′

0, A
′

1, A
′

2 and A′

3, and then replacing up and
down steps by horizontal and up steps, respectively, we obtain

A0 = hhhuuu, A1 = hhuuhu, A2 = hu, A3 = hhuu.

Combining Ai (i = 0, 1, 2, 3) and di (i = 1, 2, 3), we have the following path

hhhuuudhhuuhudhuddhhuu.

Finally, we add enough down steps at the end of the above path to form a Motzkin
path given by Asinowski and Mansour:

hhhuuudhhuuhudhuddhhuuddddd.

5. The objects of length 9 matched

For the reader’s convenience, we provide the correspondence of 12 objects. The
number 12 is very convenient; it is not too small and not too large. In [4], there were
also many explicit lists with 12 objects each.

No. AM-paths AM-paths dec. S-Motzkin paths

1 huhuhuddd ududud 3 huhduhdud

2 hhuuhuddd uuddud 3 huhuhddud

3 huhhuuddd uduudd 3 huhduhudd

4 hhuhuuddd uududd 3 huhuhdudd

5 hhhuuuddd uuuddd 3 huhuhuddd

6 huhuddhud udud 2 ud 1 huhdudhud

7 hhuuddhud uudd 2 ud 1 huhuddhud

8 hudhhuudd ud 1 uudd 2 hudhuhudd

9 hudhuhudd ud 1 udud 2 hudhuhdud

10 hhuudhudd uudd 1 ud 2 huhudhudd

11 huhudhudd udud 1 ud 2 huhudhdud

12 hudhudhud ud 1 ud 1 ud 1 hudhudhud

Table 1. Paths from Asinowski and Mansour, also decomposed, and
the corrresponding S-Motzkin paths.
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