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Abstract

We provide the exact solution of several variants of simple models of the zipping transition
of two bound polymers, such as occurs in DNA/RNA, in two and three dimensions using
pairs of directed lattice paths. In three dimensions the solutions are written in terms of
complete elliptic integrals. We analyse the phase transition associated with each model giving
the scaling of the partition function. We also extend the models to include a pulling force
between one end of the pair of paths, which competes with the attractive monomer-monomer
interactions between the polymers.

1 Introduction

Experimental techniques able to micro-manipulate single polymers [1, 19, 20] and the connection
to modelling DNA denaturation [3, 5, 6, 7, 8, 9, 11] have provided the impetus for studying
models of polymer adsorption, pulling and zipping. In the pursuit of exact solutions, idealised
two-dimensional directed walk models have been constructed to capture the effects of adsorption,
where a polymer grafts itself onto a surface at low temperature [2, 4, 12, 16]; as well as zipping,
where two polymers are entwined with one another (again at low temperature) [10, 15, 18].
Recently extensions of these models to include multiple effects in two-dimensional exactly solved
models of directed walks [13, 14, 21, 22, 23] have provided rich mathematical results that display
key physical characteristics of these polymer systems.

Here we pursue models of the zipping transition in three dimensions, modelling DNA de-
naturation, and demonstrate how different variations demonstrate modified, though broadly
similar, behaviour. We analyse the scaling behaviour of the associated partition function and the
phase transitions that occur. We begin by reviewing and enlarging the range of two-dimensional
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models solved. The models each contain two directed paths on either the square or cubic lattice
which may share sites. To these we add an attractive/repulsive potential energy each time they
share a such site: this drives the zipping transition where the polymers either come together on
average or stay apart. Our solutions include a pulling force that separates the ends of the walks
and so competes with the zipping interaction. In our models there are three phases which we
denote free, zipped and unzipped. It should be noted that without pulling the "zipping" transition
is between the free and zipped phases.

2 Two dimensions

A directed path p on the square lattice Z2 is a sequence of vertices (p0, p1, . . . , pn), with p0 = (0, 0)
and pi − pi−1 ∈ {(1, 0), (0, 1)} for i = 1, . . . , n. Equivalently, p can be viewed as a sequence of
north (N) and east (E) steps.

Let p and q be a (ordered) pair of directed paths of the same length n. The pair p and q
are asymmetric if x(pi) ≤ x(qi) (equivalently, y(pi) ≥ y(qi)) for all i. A pair of paths without
the asymmetric restriction are symmetric (so asymmetric pairs form a subset of symmetric pairs).
The pair is said to osculate if pi = qi ⇒ pi+1 6= qi+1 for all i. That is, the two paths never occupy
the same edge of the lattice. A pair of paths without the osculating restriction are friendly (again,
osculating pairs are therefore a subset of friendly pairs).

LetAO (resp.AF , SO and SF ) be the set of asymmetric/osculating (resp. asymmetric/friendly,
symmetric/osculating and symmetric/friendly) pairs of paths.

We define the following three statistics on pairs of paths φ = (p, q) of length n:

• |φ| = n;

• v(φ) = |{i > 0 : pi = qi}|, that is, the number of shared vertices (excluding the origin);

• d(φ) = 1√
2
‖qn − pn‖, that is, the (scaled) separation of the endpoints.

Note that d is equivalent to the minimum number of steps that p and q must take in order to
come together. See Figure 1 for examples.

For each of the four sets X , define the partition functions

Xn(c, y) = ∑
φ∈X
|φ|=n

cv(φ)yd(φ). (1)

The variables c and y are Boltzmann weights, and can be interpreted as c = eα/kT and y =

e f , where α is the energy associated with a contact between the two polymers, T is absolute
temperature, k is Boltzmann’s constant and f is a force applied to the endpoints of the polymers,
pulling them apart when f > 0 and together when f < 0.

The free energy of the system is

ψX(c, y) = lim
n→∞

1
n

log Xn(c, y). (2)
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d

(a) |φ| = 9, v(φ) = 2, d(φ) = 2

d

(b) |φ| = 9, v(φ) = 4, d(φ) = 2

d

(c) |φ| = 10, v(φ) = 3, d(φ) = 1

d

(d) |φ| = 10, v(φ) = 4, d(φ) = 1

Figure 1: The four types of two-dimensional pairs of paths: (a) asymmetric/osculating, (b) asym-
metric/friendly, (c) symmetric/osculating, and (d) symmetric/friendly.
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It will also be useful to define the generating functions

PX(t; c, y) = ∑
n

Xn(c, y)tn = ∑
φ∈X

t|φ|cv(φ)yd(φ). (3)

These will be viewed as power series in t with coefficients in Z[c, y]. Note that if tX(c, y) is the
radius of convergence of this series, then

ψX(c, y) = − log tX(c, y). (4)

For brevity we will often write PX(y) instead of PX(t; c, y).

2.1 Asymmetric and friendly pairs of paths

The four two-dimensional models can all be solved with a now-classical tool called the kernel
method [17]. We will give the details for asymmetric/friendly pairs.

Pairs of paths are iteratively grown one pair of steps at a time. Initially, a pair consists only of
a single vertex. After this, each of the two paths (p, q) can step N or E, subject to the asymmetric
constraint that p cannot step to the right of q. When p steps N and q steps E, v increases by 1;
when p steps E and q steps N, v decreases by 1; and in the other two cases v does not change. In
addition, when the pair step to a shared vertex, c increases by 1.

This all gives the functional equation

PAF(y) = 1 + t(2 + y + y)PAF(y)− tyPAF(0) + 2t(c− 1)PAF(0) + t(c− 1)[y1]PAF(y), (5)

where y = 1
y and [y1] is the linear operator which extracts the coefficient of y1 from each term of

a power series.
We can eliminate the [y1]PAF(y) term by considering those pairs which end together:

PAF(0) = 1 + 2tcPAF(0) + tc[y1]PAF(y). (6)

Combining (5) and (6),
K(y)PAF(y) = c + (1− c− ty)PAF(0), (7)

where K(y) ≡ K(t; y) = 1− t(2 + y + y) and c = 1
c .

The kernel K(y) has two roots in y; one of them,

Y ≡ Y(t) =
1− 2t−

√
1− 4t

2t
, (8)

has a power series expansion around t = 0. Substituting into (7) cancels the left side, yielding

PAF(0) =
Y

tc + (1− c)Y
. (9)

Substituting this into (7) then gives the overall solution

PAF(y) =
t(y−Y)

yK(y)(tc + (1− c)Y)
(10)

=
2
(
1− 2t(1 + t) +

√
1− 4t

)(
1 + 2t− 2t(2 + t)c +

√
1− 4t

) (
1− 2t(1 + y) +

√
1− 4t

) . (11)

4



For given c and y, the radius of convergence of PAF(c, y) is given by the absolute value of the
dominant singularity, ie. the closest point of non-analyticity to the origin. In PAF(c, y), there are
three possible sources of singularities – the branch point of the square root in Y, roots of K(y),
and roots of tc + (1− c)Y.

These singularities all play a part in the asymptotics of the model, and their locations are
respectively

1
4

,
y

(1 + y)2 , and
1− c±

√
c(c− 1)

c
. (12)

By examining how these functions vary with c and y, it is straightforward to determine that the
dominant singularity of the model is

tAF(c, y) =


1
4 if y ≤ 1 and c ≤ 4

3
y

(1+y)2 if y ≥ max{1, f (c)}
1−c+
√

c(c−1)
c if c ≥ 4

3 and y ≤ f (c)

(13)

where
f (c) = c− 1 +

√
c(c− 1).

The three regions correspond respectively to the free, ballistic and zipped phases. The free-
zipped boundary is at c = 4

3 , the free-ballistic boundary is at y = 1, and the zipped-ballistic
boundary is at y = f (c).

2.2 Asymmetric and osculating pairs of paths

A similar application of the kernel method yields

PAO(t; c, y) =
t(y−Y)

yK(y)(tc + (1− c + 2tc)Y)
(14)

=
2
(
1− 2t(2− t) + (1− 2t)

√
1− 4t

)(
1− 2t− 2t2c +

√
1− 4t

) (
1− 2t(1 + y) +

√
1− 4t

) . (15)

The dominant singularity is

tAO(c, y) =


1
4 if y ≤ 1 and c ≤ 4

y
(1+y)2 if y ≥ max{1, g(c)}
√

c−1
c if c ≥ 4 and y ≤ g(c)

(16)

where
g(c) =

√
c− 1.

The three regions correspond respectively to free, ballistic and zipped phases. The free-zipped
boundary is at c = 4, the free-ballistic boundary is at y = 1, and the zipped-ballistic boundary is
at y = g(c).
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2.3 Symmetric and friendly pairs of paths

For symmetric pairs the paths can cross, but we will weight the endpoint separation regardless
of which path is above or below.

Another application of the kernel method gives the generating function as

PSF(t; c, y) =
t(y−Y)(1 + yY)

yK(y)(2tc + (1− 2c + 2tc)Y)
(17)

=
t(1− y2)− y

√
1− 4t(

1− c + c
√

1− 4t
)
(t(1 + y)2 − y)

(18)

The dominant singularity is then

tSF(c, y) =


1
4 if y ≤ 1 and c ≤ 1

y
(1+y)2 if y ≥ max{1, h(c)}
2c−1
4c2 if c ≥ 1 and y ≤ h(c)

(19)

where
h(c) = 2c− 1.

2.4 Symmetric and osculating pairs of paths

The kernel method gives the generating function as

PSO(t; c, y) =
t(y−Y)(1 + yY)

yK(y)(2tc + (1− 2c + 4tc)Y)
(20)

=
t(1− y2)− y

√
1− 4t(

1− c + 2tc + c
√

1− 4t
)
(t(1 + y)2 − y)

(21)

The dominant singularity is

tSO(c, y) =


1
4 if y ≤ 1 and c ≤ 2

y
(1+y)2 if y ≥ max{1, m(c)}
√

2c−1
2c if c ≥ 2 and y ≤ m(c)

(22)

where
m(c) =

√
2c− 1.

The free-zipped boundary is c = 2, the free-ballistic boundary is y = 1, and the zipped-ballistic
boundary is y = m(c). Note that tSO(c, y) = tAO(2c, y).

2.5 Comparing the four models

See Figure 2 for a plot of the four different phase boundaries.
For fixed y, the zipping transitions occur with increasing c in the order

SF < AF < SO < AO.
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Figure 2: The phase boundaries for the four two-dimensional models. The vertical lines are the
boundaries between the free and zipped phases; the horizontal lines are the boundaries between
free and unzipped; and the sloping curves are the unzipped-zipped boundaries.

By looking at the entropic loss involved in a contact, this makes sense: SF loses no entropy at a
contact, AF loses one of its four “choices”, SO loses two of four choices, and AO loses three of
four.

In all four cases, the free-zipped and free-unzipped phase boundaries are second-order, while
the zipped-unzipped phase boundaries are first-order.

3 Three dimensions

In three dimensions we again take a pair φ = (p, q) of directed paths (ie. paths which step in
the positive x, y or z directions) which start at the origin. However, unlike in two dimensions,
there is no longer a sensible notion of the paths “crossing”. In order to generalize the notion of
symmetric and asymmetric pairs to three dimensions, we will say that the pair is asymmetric if
they satisfy the following: if pi = qi, then

• pi+1 − pi = (1, 0, 0)⇒ qi+1 − qi 6= (0, 0, 1)

• pi+1 − pi = (0, 1, 0)⇒ qi+1 − qi 6= (1, 0, 0)

• pi+1 − pi = (0, 0, 1)⇒ qi+1 − qi 6= (0, 1, 0).

That is, if p and q share vertex i and p’s next step is +x (resp. +y,+z), then q’s next step is not
+z (resp. +x,+y). Symmetric pairs are not restricted in this way.

7



x

y

z

Figure 3: An asymmetric/osculating pair of paths φ with |φ| = 10, v(φ) = 2, dx(φ) = −1,
dy(φ) = 1 and dz(φ) = 0. The red path is p and the blue path is q.

Osculating and friendly paths are defined as for two dimensions (friendly paths may share
edges, osculating paths may not).

As in 2D, we letAO (resp.AF , SO and SF ) be the set of asymmetric/osculating (resp. asym-
metric/friendly, symmetric/osculating and symmetric/friendly) pairs of paths.

If φ = (p, q) is a pair of paths, we again let |φ| be the length of p and q and v(φ) be the
number of shared vertices, excluding the origin. However, the statistic d(φ) must be defined
slightly differently in three dimensions. We will postpone its definition for now. We instead
introduce two new measurements: dx(φ) = x(pn)− x(qn) and dy(φ) = y(pn)− y(qn). Note that
we can also define dz(φ) = z(pn)− z(qn), but

dz(φ) = (n− x(pn)− y(pn))− (n− x(qn)− y(qn)) = −(dx(φ) + dy(φ)), (23)

so this is not really necessary. See Figure 3 for an example.
For each of the four models, we define a partition function

Xn(c, u, v) = ∑
φ∈X
|φ|=n

cv(φ)udx(φ)vdy(φ) (24)

and generating function

PX(t; c, u, v) ≡ P(u, v) = ∑
n

Xn(c, u, v)tn = ∑
φ∈X

t|φ|cv(φ)udx(φ)vdy(φ). (25)

Note that, since dx and dy can be negative, Xn(c, u, v) ∈ Z[c, u, v, u, v].

3.1 Symmetric and friendly pairs of paths

3.1.1 The generating function with zipping only

Having not yet defined d(φ), we will first only consider the model with a weight c associated
with shared vertices (but no pulling force).

Pairs of paths are grown iteratively in the same way as for two dimensions. A pair of paths
is either a single vertex, or can be constructed by appending a new step to each path. Each path
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has three choices: +x, +y or +z. When both paths step in the same direction, neither dx nor
dy change. When one of paths steps +z and the other steps +x (resp. +y), only dx (resp. dy)
changes. When neither path steps +z, both dx and dy change. And when the paths step to the
same vertex, the pair gains a factor of c.

For brevity, write W(i,j)
SF = [uivj]WSF(u, v). Then the above can be encoded with the functional

equation

WSF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSF(u, v) + 3t(c− 1)W(0,0)
SF

+ t(c− 1)W(1,0)
SF + t(c− 1)W(0,1)

SF + t(c− 1)W(−1,0)
SF

+ t(c− 1)W(0,−1)
SF + t(c− 1)W(−1,1)

SF + t(c− 1)W(1,−1)
SF . (26)

It may seem that there are too many unknowns to handle here, but the model has many
symmetries we can exploit. If φ = (p, q) is a pair of paths, define Sxy(φ) to be the pair obtained
by replacing every +x step with a +y step, and vice versa, in p and q. Similarly define Sxz(φ)

and Syz(φ). Note that, since dx(φ) = dy(Sxy(φ)) and dy(φ) = dx(Sxy(φ)), if φ has a shared vertex
at step i then so too does Sxy(φ). Similar arguments apply to Sxz(φ) and Syz(φ). It follows that
v(φ) = v(Sxy(φ)) = v(Sxz(φ)) = v(Syz(φ)), and hence

W(1,0)
SF = W(0,1)

SF = W(−1,0)
SF = W(0,−1)

SF = W(−1,1)
SF = W(1,−1)

SF . (27)

Thus

WSF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSF(u, v) + 3t(c− 1)W(0,0)
SF + 6t(c− 1)W(1,0)

SF . (28)

Next, by considering only those pairs which end at a shared vertex,

W(0,0)
SF = 1 + 3tcW(0,0)

SF + 6tcW(1,0)
SF . (29)

We then arrive at

WSF(u, v) =
1
c
+ t(3 + u + v + u + v + uv + uv)WSF(u, v) +

(
1− 1

c

)
W(0,0)

SF . (30)

Write (30) in kernel form

K(u, v)WSF(u, v) =
1
c
+

(
1− 1

c

)
W(0,0)

SF (31)

where K(u, v) = 1− t(3 + u + v + u + v + uv + uv).
There are obvious similarities between (31) and (7). However, the key difference here is that

the coefficients of WSF(u, v) are Laurent polynomials in u and v. So while K(u, v) does have a root
in u (or, by symmetry, v) which is a power series in t, it cannot be validly substituted into (31).

However, we have another way to approach this problem. Rearranging,

WSF(u, v) =
1

cK(u, v)
+

c− 1
cK(u, v)

W(0,0)
SF . (32)
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Let

X(t) ≡ X = [u0v0]
1

K(u, v)
(33)

= 1 + 3t + 15t2 + 93t3 + 639t4 + 4653t5 + . . . (34)

=
∞

∑
n=0

xntn (35)

where

xn =
n

∑
k=0

(
2k
k

)(
n
k

)2

(36)

(OEIS sequence A002893). The series X can be written in terms of K, the complete elliptic integral
of the first kind:

X =
2
√

2

π
√

1− 6t− 3t2 +
√
(1− t)3(1− 9t)

K

(
8t

3
2

1− 6t− 3t2 +
√
(1− t)3(1− 9t)

)
(37)

Then by extracting the constant term with respect to u and v from (32), we find

W(0,0)
SF =

X
c + (1− c)X

(38)

the generating function of asymmetric and friendly pairs of paths which start and end together.

3.1.2 Incorporating the unzipping force

We can model zipping with this, but it does not allow us to model a force pulling on the two
ends. For that, we substitute back into (32):

WSF(u, v) =
1

cK(u, v)
+

(c− 1)X
cK(u, v)(c + (1− c)X)

=
1

K(u, v)(c + (1− c)X)
. (39)

With two directed paths in two dimensions, the statistic d(φ) was useful not only for mod-
elling a force applied at the endpoints, but also played a part in the solutions to the functional
equations, with the variable y temporarily serving as a “catalytic variable”. Here, the catalytic
variables are u and v, but dx and dy are not exactly what we need in order to incorporate the
force.

Let d∗(φ) be the Euclidean distance between the endpoints of the two paths. We have

d∗(φ) =
√

2
(
dx(φ)2 + dx(φ)dy(φ) + dy(φ)2

)
. (40)

Since this is not a linear function of dx and dy, there is no simple evaluation of u and v which
allows us to introduce a Boltzmann weight of the form yd∗(φ).

10



dx(φ)

dy(φ)

d(φ)

Figure 4: A plot of d(φ) versus dx(φ) and dy(φ).

Instead, let d(φ) be the minimum number of steps required for the two paths p and q to reach
a shared vertex. This can be written as a piecewise linear function of dx and dy:

d(φ) =



dx(φ) + dy(φ) if dx(φ), dy(φ) ≥ 0

−dx(φ)− dy(φ) if dx(φ), dy(φ) ≤ 0

dx(φ) if 0 ≤ −dy(φ) ≤ dx(φ)

−dy(φ) if 0 ≤ dx(φ) ≤ −dy(φ)

dy(φ) if 0 ≤ −dx(φ) ≤ dy(φ)

−dx(φ) if 0 ≤ dy(φ) ≤ −dx(φ)

(41)

See Figure 4. This looks complicated, but we can again exploit the inherent symmetries of
the model. By applying all possible combinations of the maps Sxz and Syz (note that Sxy is not
necessary – this will be important later when we come to the asymmetric models), we have

WSF(u, v) = WSF(uv, v) = WSF(v, uv) = WSF(v, u) = WSF(uv, u) = WSF(u, uv). (42)

If a configuration has weight udx(φ)vdy(φ), with dx(φ) and dy(φ) satisfying one of the six conditions
in (41), then (42) implies that it can be uniquely mapped to a configuration which satisfies any
one of the other five conditions. In other words, there is a six-fold symmetry. To study the phase
diagram it thus suffices to focus on only one of the six symmetry classes. We will focus on the
case dx(φ), dy(φ) ≥ 0.

Before proceeding with the solution, we are now also able to compare d∗(φ) and d(φ). With

11



dx(φ), dy(φ) ≥ 0 and manipulating (40),√
dx(φ)2 + 2dx(φ)dy(φ) + dy(φ)2 ≤ d∗(φ) ≤

√
2
(
dx(φ)2 + 2dx(φ)dy(φ) + dy(φ)2

)
(43)

⇐⇒ dx(φ) + dy(φ) ≤ d∗(φ) ≤
√

2
(
dx(φ) + dy(φ)

)
(44)

⇐⇒ d(φ) ≤ d∗(φ) ≤
√

2d(φ) (45)

⇐⇒ 1√
2
d∗(φ) ≤ d(φ) ≤ d∗(φ). (46)

We thus see that, while d(φ) does not exactly correspond to the distance between the two end-
points, it is bounded above and below by constant multiples of this distance.

Let W++
SF (u, v) be the part of WSF(u, v) with non-negative powers in u and v. Then from (39),

W++
SF (u, v) =

X++(u, v)
c + (1− c)X

(47)

where X++(u, v) is the part of 1
K(u,v) with non-negative powers in u and v. We wish to assign

weight yd(φ), so let

X∗(t; y) ≡ X∗(y) = X++(u, v)|u=v=y (48)

= 1 + t(3 + 2y) + t2(15 + 16y + 4y2) + t3(93 + 120y + 54y2 + 8y3) + . . . (49)

and define

W∗SF(t; c, y) =
X∗(y)

c + (1− c)X
(50)

as the generating function we are interested in.

3.1.3 The dominant singularity

Now there are three singularities of interest here: the dominant singularity of X, the dominant
root of c + (1− c)X, and the dominant singularity of X∗(y). As for X, one finds that

X ∼
t→ 1

9
−

A log
(

1
1− 9t

)
+ B + o(1), where A =

3
√

3
4π

and B = (3 log 2)A. (51)

Thus
xn ∼ A · 9n

n
. (52)

So X has radius of convergence 1
9 , and diverges as t → 1

9 from below. It follows that if
0 ≤ c < 1 then c + (1− c)X has no roots for t ∈ [0, 1

9 ]. If c > 1 then there will be a root, say
ρSF(c), smaller than 1

9 .
Unfortunately the complicated nature of X means that we have no way of getting an explicit

expression for ρSF(c). We can, however, determine its behaviour as c → 1+ and as c → ∞. For
small c, some numerical investigation shows that

ρSF(c) =
c→1+

1
9
− exp

(
α

c− 1
+ β + O(c− 1)

)
. (53)
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Substituting this into (51) and solving X = c
c−1 , we find

α = − 4π

3
√

3
and β = − 4π

3
√

3
− log

(
9
8

)
. (54)

For large c, we can use Lagrange inversion and (36) to obtain an asymptotic expansion:

ρSF(c) =
c→∞

c− 2c2 − 2c3 + 8c5 + O
(
c6), (55)

where c = 1
3c . The expression (55) becomes more accurate with increasing c.

Next we turn to X∗(y). This is a D-finite function but we do not have a simple explicit
expression. However, we can compute the asymptotic behaviour of the coefficients (and thus the
dominant singularity). Observe that

[tn]
1

K(u, v)
= (3 + u + v + u + v + uv + uv)n (56)

= ∑
k1+···+k7=n

(
n

k1, . . . , k7

)
3k1 uk2−k4+k6−k7 vk3−k5−k6+k7 . (57)

Then

[tn]X∗(y) = ∑
k1+···+k7=n

−k2+k4≤k6−k7≤k3−k5

(
n

k1, . . . , k7

)
3k1 yk2+k3−k4−k5 . (58)

This six-fold sum can be written out over the ranges

k2 = 0, . . . , n (59)

k3 = 0, . . . , n− k2 (60)

k4 = 0, . . . , n− k2 − k3 (61)

k5 = 0, . . . , n− k2 − k3 − k4 (62)

k6 = 0, . . . , n− k2 − k3 − k4 − k5 (63)

k7 = max{0,−k3 + k5 + k6}, . . . , min{n− k2 − k3 − k4 − k5 − k6, k2 − k4 + k6} (64)

k1 = n− k2 − k3 − k4 − k5 − k6 − k7. (65)

To compute the asymptotics we replace the sums with integrals and apply Stirling’s approxima-
tion:

n! ∼
√

2πn
(n

e

)n
(

1 + O
(

1
n

))
.

When y > 1, the sum (integral) is dominated by terms with k1, . . . , k7 all O(n). We thus set
ki = κin for constants κi (to be determined), where κ1 = 1− κ2 − · · · − κ7. The dominant term in
the integrand is then

In(y) =
3κ1ny(κ2+κ3−κ4−κ5)n

8n3π3

7

∏
i=1

κ
−(κin+1/2)
i . (66)
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We wish to find the values of the κi which maximise this, or rather, its growth rate. To do this,
we take 1

n log In, take the derivative with respect to κi for i = 2, . . . , 6 (separately), and then take
the limit n→ ∞ in each. This gives the six terms

log y− log 3− log κ2 + log κ1 (67)

log y− log 3− log κ3 + log κ1 (68)

− log y− log 3− log κ4 + log κ1 (69)

− log y− log 3− log κ5 + log κ1 (70)

− log 3− log κ4 + log κ1 (71)

− log 3− log κ5 + log κ1 (72)

To maximise we set all of these to 0, and arrive at the solutions

κ1 =
3y

(2 + y)(1 + 2y)
(73)

κ2 = κ3 =
y2

(2 + y)(1 + 2y)
(74)

κ4 = κ5 =
1

(2 + y)(1 + 2y)
(75)

κ6 = κ7 =
y

(2 + y)(1 + 2y)
(76)

(Note that for y > 1, the condition (64) is automatically satisfied. That is, when y > 1 it is the
first of the six conditions in (41) which dominates.)

Upon substitution back into (66), we find that the growth rate of In(y), and hence of [tn]X∗(y),
is (2+y)(1+2y)

y . (We could actually compute the integral to find the full asymptotics of [tn]X∗(y),
but this is not necessary to get the free energy.) For y > 1, the critical point of X∗(y) is thus
σSF(y) =

y
(2+y)(1+2y) .

Putting all this together and determining which singularities dominate where, we find

tSF(c, y) = min{ 1
9 , ρSF(c), σSF(y)} (77)

=


1
9 if c ≤ 1 and y ≤ 1

σSF(y) if y ≥ max{1, f (ρSF(c))}
ρSF(c) if c ≥ 1 and y ≤ f (ρSF(c))

(78)

where

f (x) =
1− 5x +

√
(1− x)(1− 9x)
4x

. (79)

3.2 Symmetric and osculating pairs of paths

3.2.1 The generating function

It is straightforward to repeat the above procedure for osculating paths. Let WSO(u, v) be the
analogue of WSF(u, v). Then the equivalent of (28) is

WSO(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WSO(u, v) +−3tW(0,0)
SO + 6t(c− 1)W(1,0)

SO , (80)
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the difference being that the walks cannot step in the same directions when dx = dy = 0. We
then have

W(0,0)
SO = 1 + 6tcW(1,0)

SO . (81)

Substituting,

K(u, v)WSO(u, v) =
1
c
+

(
1− 1

c
− 3t

)
W(0,0)

SO , (82)

with K(u, v) as defined in the previous section. Also using the same X as before, we find

WSO(u, v) =
1 + 6tX

K(u, v) (c + (1− c + 3tc)X)
. (83)

To incorporate the unzipping force, we can again make use of the symmetries of the model, and
only consider the cases with dx, dy ≥ 0. So we focus on

W∗SO(t; c, y) =
X∗(y)(1 + 6tX)

c + (1− c + 3tc)X
. (84)

3.2.2 The dominant singularity

This time the denominator of (84) has a root t = ρSO(c) when c > 3
2 . As c → 3

2
+ we observe

similar behaviour to (53):

ρSO(c) =
c→ 3

2
+

1
9
− exp

(
α

c− 3
2

+ β + O(c− 3
2 )

)
. (85)

Again using (51) and solving c + (1− c + 3tc)X = 0, we find

α = −
√

3π and β = − 2π√
3
− log

(
9
8

)
. (86)

As c → ∞, we can again use Lagrange inversion to determine the behaviour of ρSO(c). This
time, letting c̃ = 1

4
√

6c
, we have

ρSO(c) =
c→∞

4c̃− 40c̃2 + 40c̃3 + 256c̃4 + 1336c̃5 + O(c̃6). (87)

The y-dependence of W∗SO and W∗SF is the same, i.e. the factor X∗(y). So let σSO(y) = σSF(y).
Then

tSO(c, y) = min{ 1
9 , ρSO(c), σSO(y)} (88)

=


1
9 if c ≤ 3

2 and y ≤ 1

σSF(y) if y ≥ max{1, f (ρSO(c))}
ρSF(c) if c ≥ 3

2 and y ≤ f (ρSO(c))

(89)

where f is as defined in (79).
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3.3 Asymmetric and friendly pairs of paths

3.3.1 The generating function

Things are a little more complicated here, as Sxy is no longer a valid symmetry of the model. The
main functional equation is

WAF(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WAF(u, v) + 3t(c− 1)W(0,0)
AF

− t(u + uv + v)W(0,0)
AF + 3t(c− 1)W(1,0)

AF + 3t(c− 1)W(0,1)
AF . (90)

Then using
W(0,0)

AF = 1 + 3tcW(0,0)
AF + 3tcW(1,0)

AF + 3tcW(0,1)
AF , (91)

we arrive at

K(u, v)WAF(u, v) =
1
c
+

(
1− 1

c
− t(u + uv + v)

)
W(0,0)

AF (92)

or alternatively

WAF(u, v) =
1

cK(u, v)
+

c− 1− tc(u + uv + v)
cK(u, v)

W(0,0)
AF . (93)

Now let
Y(t) ≡ Y = [u−1v0]

1
K(u, v)

= [u1v−1]
1

K(u, v)
= [u0v1]

1
K(u, v)

. (94)

Extracting the coefficient of u0v0 in (93),

W(0,0)
AF =

X
c
+

(c− 1)X
c

W(0,0)
AF − 3tYW(0,0)

AF . (95)

But now we also have

Y = [u1v0]
1

K(u, v)
= [u−1v1]

1
K(u, v)

= [u0v1]
1

K(u, v)
, (96)

so X = 1 + 3tX + 6tY. Substituting into (95) and solving,

W(0,0)
AF =

2X
c + (2− c− 3tc)X

. (97)

Then
WAF(u, v) =

1
K(u, v)(c + (2− c− 3tc)X)

[1 + (1− 3t)X− 2t(u + uv + v)X] (98)

Now WAF still satisfies the same six-fold symmetry as WSF and WSO as per (42) (because Sxy

was not required there), so we can still incorporate the unzipping force by restricting to those
configurations with dx, dy ≥ 0 and setting u = v = y. Define

X→(u, v) = tu[u≥−1v≥0]
1

K(u, v)
(99)

X↖(u, v) = tuv[u≥1v≥−1]
1

K(u, v)
(100)

X↓(u, v) = tv[u≥0v≥1]
1

K(u, v)
. (101)
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Then

W++
AF (u, v) =

1 + (1− 3t)X
c + (2− c− 3tc)X

X++(u, v)

− 2X
c + (2− c− 3tc)X

[
X→(u, v) + X↖(u, v) + X↓(u, v)

]
. (102)

Finally, let
X†(y) = X→(u, v) + X↖(u, v) + X↓(u, v)

∣∣∣
u=v=y

. (103)

Then

W∗AF(t; c, y) =
(1 + (1− 3t)X)X∗(y)− 2XX†(y)

c + (2− c− 3tc)X
. (104)

3.3.2 The dominant singularity

The critical value of c is again 3
2 , with the denominator having a root ρAF(c) if c > 3

2 . For small c
we have

ρAF(c) =
c→ 3

2
+

1
9
− exp

(
α

c− 3
2

+ β + O(c− 3
2 )

)
. (105)

We determine α and β by substituting (51) into the denominator of (104) and taking the limit
c→ 3

2 . In this case,

α = −
√

3π

2
and β = − π√

3
− log

(
9
8

)
. (106)

Meanwhile, as c→ ∞, we have

ρAF(c) =
c→∞

c− c2 − 3c3 − 10c4 − 34c5 + O(c6) (107)

where c = 1
3c as before.

As for the y-dependence, we now have the function X†(y) in addition to X∗(y). However,
note that X++(u, v) counts configurations of symmetric and friendly paths (with no c weight)
with dx, dy ≥ 0, while X→(u, v) + X↖(u, v) + X↓(u, v) counts a subset of those paths – namely
those ending with a (+x,+z), (+y,+x) or (+z,+y) pair of steps. Hence, considered as formal
power series with non-negative coefficients, X†(y) ≤ X∗(y), and so the dominant singularity
of X†(y) is bounded below by that of X∗(y). So nothing new happens here, and we can set
σAF(y) = σSF(y).

Then

tAF(c, y) = min{ 1
9 , ρAF(c), σAF(y)} (108)

=


1
9 if c ≤ 3

2 and y ≤ 1

σAF(y) if y ≥ max{1, f (ρAF(c))}
ρAF(c) if c ≥ 3

2 and y ≤ f (ρAF(c))

(109)

where f is as defined in (79).
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3.4 Asymmetric and osculating pairs of paths

3.4.1 The generating function

The last model we consider has both the asymmetric and osculating restrictions. The main
functional equation is

WAO(u, v) = 1 + t(3 + u + v + u + v + uv + uv)WAO(u, v)

− t(3 + u + uv + v)W(0,0)
AO + 3t(c− 1)W(1,0)

AO + 3t(c− 1)W(0,1)
AO . (110)

Using
W(0,0)

AO = 1 + 3tcW(1,0)
AO + 3tcW(0,1)

AO (111)

we get

K(u, v)WAO(u, v) =
1
c
+

(
1− 1

c
− t(3 + u + uv + v)

)
W(0,0)

AO . (112)

Then

W(0,0)
AO =

X
c
+

(c− 1− 3tc)X
c

W(0,0)
AO − 3tYW(0,0)

AO , (113)

and using X = 1 + 3tX + 6tY, we have

W(0,0)
AO =

2X
c + (2− c + 3tc)X

. (114)

Then
WAO(u, v) =

1
K(u, v)(c + (2− c + 3tc)X)

[1 + (1− 3t)X− 2t(u + uv + v)X] . (115)

Using the same technique as for WAF,

W++
AO (u, v) =

1 + (1− 3t)X
c + (2− c + 3tc)X

X++(u, v)

− 2X
c + (2− c− 3tc)X

[
X→(u, v) + X↖(u, v) + X↓(u, v)

]
, (116)

and so finally

W∗AO(t; c, y) =
(1 + (1− 3t)X)X∗(y)− 2XX†(y)

c + (2− c + 3tc)X
. (117)

3.4.2 The dominant singularity

This time the critical value of c is 3, with the denominator having a root ρAO(c) if c > 3. As
c→ 3+, we have

ρAO(c) =
c→3+

1
9
− exp

(
α

c− 3
+ β + O(c− 3)

)
(118)

with

α = −2
√

3π and β = − 2π√
3
− log

(
9
8

)
. (119)
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Figure 5: The phase boundaries for the four three-dimensional models. The vertical lines are the
boundaries between the free and zipped phases; the horizontal lines are the boundaries between
free and unzipped; and the sloping curves are the unzipped-zipped boundaries. The free-zipped
boundaries for the AF and SO models coincide.

As c→ ∞,
ρAO(c) =

c→∞
4ĉ− 40ĉ2 + 40ĉ3 + 256ĉ4 + 1336ĉ5 + O(ĉ6) (120)

where ĉ = 1
4
√

3c
.

As with the three earlier cases, the y-dependence comes from X∗(y), so set σAO(y) = σSF(y).
Then

tAO(c, y) = min{ 1
9 , ρAO(c), σAO(y)} (121)

=


1
9 if c ≤ 3 and y ≤ 1

σAO(y) if y ≥ max{1, f (ρAO(c))}
ρAO(c) if c ≥ 3 and y ≤ f (ρAO(c))

(122)

3.5 Phase diagrams

We plot the four phase diagrams together in Figure 5.
For fixed y ≤ 1, the zipping transitions occur with increasing c in the order

SF < AF ≡ SO < AO.

This can be understood in the same way as the two-dimensional case: SF loses no entropy at a
contact, AF and SO each lose three of the nine step choices, and AO loses six choices.
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For fixed y > 1, the unzipped-zipped transitions occur with increasing c in the order

SF < AF < SO < AO.

The fact that the AF model “zips” together before the SO model can be understood by observing
that the zipped phase for the AF model has twice the density of contacts of the SO model, and
so ρAF(c) decreases more quickly (with increasing c) than ρSO(c).

In all cases the free-zipped and free-unzipped phase transitions are second-order, while the
unzipped-zipped transitions are first-order.

4 Conclusion

We have defined and analysed four different models of interacting pairs of directed polymers, in
two and three dimensions. The different models are classified according to whether the polymers
are able to share edges or only sites, and according to the allowed symmetries between the
pair. In each case we incorporate two Boltzmann weights – one to control the strength of the
attraction/repulsion between the polymers, and another to model a force pulling apart the ends.
The models exhibit qualitatively similar but quantitatively different phase diagrams, which have
been computed exactly for two dimensions and (partly) numerically for three dimensions.

These models can be enhanced in a number of ways. One would be to include a Boltzmann
weight to control the flexibility or stiffness of the polymers; another would be to introduce an
impenetrable surface with which the polymers can interact. A further possibility would be to
analyse how the polymers twist around one another.

References

[1] A. Ashkin. “Optical trapping and manipulation of neutral particles using lasers”. In: Proc. Nat. Acad.
Sci. 94.10 (1997), pp. 4853–4860. doi: 10.1073/pnas.94.10.4853.

[2] E. Bouchaud and J. Vannimenus. “Polymer adsorption: bounds on the cross-over exponent
and exact results for simple models”. In: Journal de Physique 50.19 (1989), pp. 2931–2949. doi:
10.1051/jphys:0198900500190293100.

[3] B. Essevaz-Roulet, U. Bockelmann, and F. Heslot. “Mechanical separation of the complementary
strands of DNA”. In: Proc. Nat. Acad. Sci. 94.22 (1997), pp. 11935–11940. doi: 10.1073/pnas.94.22.11935.

[4] G. Iliev and E.J. Janse van Rensburg. “Directed path models of adsorbing and pulled copolymers”.
In: J. Stat. Mech.: Theor. Exp. (2012), P01019. doi: 10.1088/1742-5468/2012/01/p01019.

[5] D.K. Lubensky and D.R. Nelson. “Pulling pinned polymers and unzipping DNA”. In: Phys. Rev.
Letts. 85.7 (2000), pp. 1572–1575. doi: 10.1103/physrevlett.85.1572.

[6] D.K. Lubensky and D.R. Nelson. “Single molecule statistics and the polynucleotide unzipping tran-
sition”. In: Phys. Rev. E 65.3 (2002), p. 031917. doi: 10.1103/physreve.65.031917.

[7] D. Marenduzzo, S.M. Bhattacharjee, A. Maritan, E. Orlandini, and F. Seno. “Dynamical scaling
of the DNA unzipping transition”. In: Phys. Rev. Lett. 88.2 (2001), p. 028102. doi: 10.1103/phys-
revlett.88.028102.

[8] D. Marenduzzo, A. Maritan, A. Rosa, and F. Seno. “Stretching of a Polymer below the θ Point”. In:
Phys. Rev. Lett. 90.8 (2003), p. 88301. doi: 10.1103/physrevlett.90.088301.

20

http://dx.doi.org/10.1073/pnas.94.10.4853
http://dx.doi.org/10.1051/jphys:0198900500190293100
http://dx.doi.org/10.1073/pnas.94.22.11935
http://dx.doi.org/10.1088/1742-5468/2012/01/p01019
http://dx.doi.org/10.1103/physrevlett.85.1572
http://dx.doi.org/10.1103/physreve.65.031917
http://dx.doi.org/10.1103/physrevlett.88.028102
http://dx.doi.org/10.1103/physrevlett.88.028102
http://dx.doi.org/10.1103/physrevlett.90.088301


[9] D. Marenduzzo, A. Maritan, A. Rosa, F. Seno, and A. Trovato. “Phase diagrams for DNA de-
naturation under stretching forces”. In: J. Stat. Mech.: Theor. Exp. 2009.04 (2009), p. L04001. doi:
10.1088/1742-5468/2009/04/l04001.

[10] D. Marenduzzo, A. Trovato, and A. Maritan. “Phase diagram of force-induced DNA unzipping in
exactly solvable models”. In: Phys. Rev. E 64.3 (2001), p. 031901. doi: 10.1103/physreve.64.031901.

[11] E. Orlandini, S.M Bhattacharjee, D. Marenduzzo, A. Maritan, and F. Seno. “Mechanical denatura-
tion of DNA: existence of a low-temperature denaturation”. In: J. Phys. A 34 (2001), p. L751. doi:
10.1088/0305-4470/34/50/104.

[12] E. Orlandini, M.C Tesi, and S.G Whittington. “Adsorption of a directed polymer subject to an elon-
gational force”. In: J. Phys. A: Math. Gen. 37 (2004), p. 1535. doi: 10.1088/0305-4470/37/5/005.

[13] A.L. Owczarek and A. Rechnitzer. “Force signature of the unzipping transition for strip confined
two-dimensional polymers”. In: J. Phys. A: Math. Theor. 50 (2017), p. 484001. doi: 10.1088/1751-
8121/aa9105.

[14] A.L. Owczarek, A. Rechnitzer, and T. Wong. “Exact solution of two friendly walks above a sticky
wall with single and double interactions”. In: J. Phys. A: Math. Theor. 45 (2012), 425003 (23pp). doi:
10.1088/1751-8121/aa9105.

[15] D. Poland and H. A Scheraga. Theory of Helix-Coil Transitions in Biopolymers. Acad. Press, 1970.

[16] V. Privman, G. Forgacs, and H.L. Frisch. “New solvable model of polymer-chain adsorption at a
surface”. In: Phys. Rev. B 37.16 (1988), pp. 9897–9900. doi: 10.1103/physrevb.37.9897.

[17] H. Prodinger. “The Kernel Method: A Collection of Examples”. In: SÃl’m. Loth. Combin. 50 (2004),
Article B50f, 19 pp.

[18] C. Richard and A.J Guttmann. “Poland–Scheraga models and the DNA denaturation transition”. In:
J. Stat. Phys. 115.3-4 (2004), pp. 925–947. doi: 10.1023/b:joss.0000022370.48118.8b.

[19] T. Strick, J.F Allemand, V. Croquette, and D. Bensimon. “The manipulation of single biomolecules”.
In: Physics Today 54 (2001), p. 46. doi: 10.1063/1.1420553.

[20] K. Svoboda and S.M Block. “Biological applications of optical forces”. In: Annu. Rev. Biophys. Biomol.
Struct. 23.1 (1994), pp. 247–285. doi: 10.1146/annurev.bb.23.060194.001335.

[21] R. Tabbara, A. L. Owczarek, and A. Rechnitzer. “An exact solution of two friendly interacting di-
rected walks near a sticky wall”. In: J. Phys. A: Math. Theor. 47.1 (2014), p. 015202. doi: 10.1088/1751-
8113/47/1/015202.

[22] R. Tabbara, A. L. Owczarek, and A. Rechnitzer. “An exact solution of three interacting friendly walks
in the bulk”. In: J. Phys. A: Math. Theor. 49 (2016), p. 154004. doi: 10.1088/1751-8113/49/15/154004.

[23] R. Tabbara and A.L. Owczarek. “Pulling a polymer with anisotropic stiffness near a sticky wall”. In:
J. Phys. A: Math. Theor. 45 (2012), p. 435002. doi: 10.1088/1751-8113/45/43/435002.

21

http://dx.doi.org/10.1088/1742-5468/2009/04/l04001
http://dx.doi.org/10.1103/physreve.64.031901
http://dx.doi.org/10.1088/0305-4470/34/50/104
http://dx.doi.org/10.1088/0305-4470/37/5/005
http://dx.doi.org/10.1088/1751-8121/aa9105
http://dx.doi.org/10.1088/1751-8121/aa9105
http://dx.doi.org/10.1088/1751-8121/aa9105
http://dx.doi.org/10.1103/physrevb.37.9897
http://dx.doi.org/10.1023/b:joss.0000022370.48118.8b
http://dx.doi.org/10.1063/1.1420553
http://dx.doi.org/10.1146/annurev.bb.23.060194.001335
http://dx.doi.org/10.1088/1751-8113/47/1/015202
http://dx.doi.org/10.1088/1751-8113/47/1/015202
http://dx.doi.org/10.1088/1751-8113/49/15/154004
http://dx.doi.org/10.1088/1751-8113/45/43/435002

	1 Introduction
	2 Two dimensions
	2.1 Asymmetric and friendly pairs of paths
	2.2 Asymmetric and osculating pairs of paths
	2.3 Symmetric and friendly pairs of paths
	2.4 Symmetric and osculating pairs of paths
	2.5 Comparing the four models

	3 Three dimensions
	3.1 Symmetric and friendly pairs of paths
	3.1.1 The generating function with zipping only
	3.1.2 Incorporating the unzipping force
	3.1.3 The dominant singularity

	3.2 Symmetric and osculating pairs of paths
	3.2.1 The generating function
	3.2.2 The dominant singularity

	3.3 Asymmetric and friendly pairs of paths
	3.3.1 The generating function
	3.3.2 The dominant singularity

	3.4 Asymmetric and osculating pairs of paths
	3.4.1 The generating function
	3.4.2 The dominant singularity

	3.5 Phase diagrams

	4 Conclusion

