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Abstract

It is known due to the work of Van den Broeck et al [KR, 2014] that weighted first-order
model counting (WFOMC) in the two-variable fragment of first-order logic can be solved in
time polynomial in the number of domain elements. In this paper we extend this result to
the two-variable fragment with counting quantifiers.

1 Introduction

In this paper we study weighted first-order model counting (WFOMC), which is an important
problem (not only) because it can be used for probabilistic inference in most statistical relational
learning models [Van den Broeck et al., 2011; Getoor and Taskar, 2007]. Probabilistic inference
is in general intractable and the same holds for probabilistic inference in relational domains
and therefore also for WFOMC. Lifted inference refers to a set of methods developed in the
probabilistic inference literature which exploit structure and symmetries of the problems for
making inference more tractable, e.g. [Poole, 2003; de Salvo Braz, Amir, and Roth, 2005; Gogate
and Domingos, 2011; Van den Broeck, 2011; Van den Broeck, Meert, and Darwiche, 2014;
Kazemi et al., 2016]. One of the most celebrated results on symmetric WFOMC comes from the
works [Van den Broeck, 2011; Van den Broeck, Meert, and Darwiche, 2014] which established
that WFOMC can be solved in polynomial time for any fixed first-order logic sentence which
contains at most two variables. In the lifted inference literature, problems which admit such
polynomial-time algorithms are called domain-liftable [Van den Broeck, 2011].1

Kuusisto and Lutz [2018] recently extended the domain-liftability result for the two-variable
fragment by allowing to express one functionality constraint. That is, one can specify that some
binary relation should behave as a function. In their paper, they also mentioned (although
without giving any details) that if they could further extend their result to multiple funcionality
constraints, they could also establish domain liftability of the two-variable fragment of first-order
logic with counting quantifiers ∃=k, ∃≤k and ∃≥k (see, e.g., [Grädel, Otto, and Rosen, 1997]),
which stand for exist exactly k, exists at most k and exist at least k, respectively. Motivated by
the work of Kuusisto and Lutz, in this paper, we first show a simpler method to add an arbitrary
number of function constraints and cardinality constraints to sentences from the two-variable

1Like, among others, the works [Van den Broeck, 2011; Van den Broeck, Meert, and Darwiche, 2014; Kazemi et
al., 2014; Kuusisto and Lutz, 2018], we also consider only the symmetric version of weighted first-order model
counting. For details and differences with the asymmetric version, we refer to the paper [Beame et al., 2015].
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fragment while still guaranteeing polynomial-time inference. We then use this result to prove
that WFOMC is domain-liftable for sentences from the two-variable fragment of first-order logic
with counting quantifiers.

This paper is an extension of our preliminary report [Kuželka, 2020b] in which we showed
domain-liftability of WFOMC with functionality constraints in the context of Markov logic
networks. The rest of the paper is structured as follows. Section 2 contains the background
material needed for our technical results. In Sections 3-6, we work towards the proof of our main
result which we give in Section 7. We discuss related work in Section 8 and conclude the paper in
Section 9. Appendix located at the end of the paper then contains omitted proofs and additional
examples as well as some additional technical material that is not needed for the main result but
which further illustrates some of our techniques.

2 Background

2.1 Lagrange Interpolation

Lagrange interpolation (see, e.g., Séroul [2000]) is a classical method for finding the unique
polynomial p(x) of degree d that, for given d + 1 points (x0, y0), (x1, y1), . . . , (xd, yd) satisfies
p(x0) = y0, p(x1) = y1, . . . , p(xd) = yd (under the condition that xi 6= xj for all i 6= j). There
are various methods of finding the coefficients of the polynomial (e.g. based on special algorithms
for solving systems of linear equations with Vandermonde matrices), however, in this paper it
will be enough to consider the elementary method based on the explicit Lagrange formula:

L(x) =
d∑
i=0

yi · li(x)

where li is defined as

li(x) =
∏

0 ≤ j ≤ d
i 6= j

x− xj
xi − xj

.

The next proposition shows a useful property of “bit complexity” of the coefficients of such
interpolating polynomials that will be useful later in this paper (the proof of this proposition is
located in the appendix).

Proposition 1. Let L(x) =
∑d

j=0 aj ·xj be the interpolating polynomial (written in the standard
form as a sum of monomials) of points (x0, y0), (x1, y1), . . . , (xd, yd), where all xj’s are integers
and all yj’s are rational numbers, represented as fractions of integers. Every aj can be represented

as a fraction aj =
bj
cj

and the number of bits needed to represent the integers bj and cj is

polynomial in d and in the number of bits needed to represent the points (x0, y0), (x1, y1), . . . ,
(xd, yd).

2.2 First-Order Logic

We assume that the reader is familiar with first-order logic and we only cover it briefly in this
section to set up notation used throughout the paper.
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We work with function-free first-order logic languages L, defined by a set of constants, called
domain and usually denoted as ∆, a set of variables V and a set of predicates R (relations).
When there is no risk of confusion, we assume such a language implicitly and do not specify its
components V, R (although we will usually specify the domain). We use arity(R) to denote the
arity of a predicate R. An expression of the form r(a1, ..., ak), with a1, ..., ak ∈ ∆ ∪ V and r ∈ R,
is called an atom or atomic formula. For example, sm(x), sm(Alice) and fr(Alice, y) are atoms.
A variable which is not bound by any quantifier is called free. A first-order logic formula with no
free variables is called a sentence. For instance, the formula ∀x : ¬f(x, x) is a sentence, whereas
the formula f(x, x) is not a sentence as the variable x is free in it. A first-order logic formula in
which none of the atoms contains any variables is called ground. A possible world ω is represented
as a set of ground atoms that are true in ω. The satisfaction relation |= is defined in the usual
way: ω |= α means that the formula α is true in ω. For instance, if ω = {sm(Bob)} is a possible
world on the domain ∆ = {Alice,Bob} then it holds ω |= (∃x : sm(x)) and ω 6|= (∀x : sm(x)).

The two-variable fragment of first-order logic (FO2) is obtained by restricting the set of
variables to V = {x, y}. For example, the sentence ∀x∀y : a(x) ∧ e(x, y)⇒ a(y) is in FO2. The
fragment of first-order logic FO2 is interesting among others because (i) satisfiability is decidable
for it (in particular it is NEXPTIME-complete) and (ii) weighted first-order model counting is
polynomial-time (in the size of the domain) for any sentence from FO2 [Van den Broeck, 2011;
Van den Broeck, Meert, and Darwiche, 2014].

2.2.1 First-Order Logic With Counting Quantifiers

An interesting extension of the 2-variable fragment of first order logic is obtained by adding
counting quantifiers ∃=k, ∃≤k and ∃≥k to it [Grädel, Otto, and Rosen, 1997]. Satisfiability in
this fragment of first-order logic is still decidable, although this fragment lacks the finite-model
property that FO2 enjoys.

The counting quantifiers can be introduced as follows. Let ω be a possible world defined
on a domain ∆. The sentence ∃≥kx : ψ(x) is true in ω if there are at least k distinct elements
t1, . . . , tk ∈ ∆ such that ω |= ψ(ti). The other two counting quantifiers can be defined using:
(∃≤kx : ψ(x))⇔ ¬(∃≥k+1ψ(x)) and (∃=kx : ψ(x))⇔ (∃≤k : ψ(x) ∧ ∃≥k : ψ(x)).

Example 1. To give an example of the expressive power of FO2 with counting quantifiers, we
can notice that it is easy to constrain binary relations to be functions using it. In all models
of the sentence ∀x∃=1y : f(x, y), f is a function from the domain to itself. Additionally, if we
wanted to force f to be a bijection, we could use (∀x∃=1y : f(x, y)) ∧ (∀y∃=1x : f(x, y)) etc.

2.3 Weighted First-Order Model Counting

In this section we formally describe weighted first-order model counting. We start by defining an
auxiliary concept, cardinality of a relation.

Definition 1 (Cardinality of Relation). Let ω be a possible world and R be a k-ary predicate.
The cardinality of R in ω is defined as

N(R,ω) = |{R(x1, . . . , xk) ∈ ω}|,

i.e. N(R,ω) is the number of ground atoms of the predicate R that are true in ω.

Example 2. Let ω = {fr(Alice,Bob), fr(Alice,Eve), sm(Alice)}. Then

N(fr, ω) = |{fr(Alice,Bob), fr(Alice,Eve)}| = 2.
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Next we define weighted first-order model counting.

Definition 2 (WFOMC, Van den Broeck, 2011). Let Ω be a set of possible worlds over a given
domain ∆ (Ω will often be the set of all possible worlds over ∆), R be the set of predicates in the
language, w(P ) and w(P ) be functions from predicates to complex2 numbers (we call w and w
weight functions). Then for a given first-order logic sentence Γ, we define

WFOMC(Γ, w, w,Ω) =
∑

ω∈Ω:ω|=Γ

∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω).

We also define

WFOMC(Γ, w, w,∆)
def
= WFOMC(Γ, w, w,Ω∆),

where Ω∆ is the set of all possible worlds on the domain ∆ (using the predicates from R).

In this paper, when we do not explicitly define weights of some predicate R, we will assume that
w(R) = w(R) = 1.

Next we illustrate WFOMC on a small example. Additionally, we show how WFOMC can be
used for inference in Markov logic networks in Section 2.4.1.

Example 3. Let ∆ = {A,B}, R = {heads, tails}, w(heads) = 2, w(tails) = w(heads) =
w(tails) = 1, and Γ = ∀x : (heads(x) ∨ tails(x)) ∧ (¬heads(x) ∨ ¬tails(x)). There are four
models of Γ on the domain ∆: ω1 = {heads(A), heads(B)}, ω2 = {heads(A), tails(B)}, ω3 =
{tails(A), heads(A)} and ω4 = {tails(A), tails(B)}. The resulting weighted model count is
WFOMC(Γ, w, w,∆) = 4 + 2 + 2 + 1 = 9.

2.3.1 Two Useful Technical Results About WFOMC

We now describe two useful technical properties of WFOMC. The first of these is about bit
complexity of WFOMC. Later in the paper, we will need to be able to bound the bit complexity
of WFOMC and the next proposition does exactly that (its proof is located in the appendix).

Proposition 2. Let Γ be a first-order logic sentence, R = {R1, R2, . . . , Rm} be the set of
predicates from a given first-order language, ∆ be a domain and Ω∆ be the set of all pos-
sible worlds on the domain ∆ using the predicates from R. Let w and w be weight func-
tions that assign to each predicate R ∈ R a rational number w(R) = w′(R)/w′′(R) and
w(R) = w′(R)/w′′(R), where w′(R), w′′(R), w′(R) and w′′(R) are integers. Let us further
define M = maxR max{|w′(R)|, |w′′(R)|, |w′(R)|, |w′′(R)|}. Then WFOMC(Γ, w, w,∆) can be
represented as a rational number a/b. The number of bits needed to encode the integers a and b
is bounded by a polynomial in |∆| and logM (but not in m!).

At some point in the paper, we will also need to replace certain subformulas by their negations,
without actually using negation. This is possible using a technique described in [Beame et al.,
2015], stated in Appendix A.2 of their paper, which we restate in the proposition below.3

2Normally, in the literature, the weights of predicates are real numbers. However, we will also use complex-valued
weights in this paper, therefore we define the WFOMC problem accordingly using complex-valued weights.

3The same transform also appears in [Meert, Vlasselaer, and Van den Broeck, 2016] under the name “relaxed
Tseitin transform”.
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Proposition 3. Let ¬ψ(x1, . . . , xk) be a subformula of a first-order logic sentence Φ with k free
variables x1, . . . , xk. Let A, B be two new predicates of arity k. Let Φ′ denote the sentence
obtained from Φ by replacing the subformula ¬ψ(x1, . . . , xk) with A(x1, . . . , xk). Let

Υ = ∀x1∀x2 . . . ∀xk : ((ψ(x1, . . . , xk) ∨A(x1, . . . , xk))

∧ (A(x1, . . . , xk) ∨B(x1, . . . , xk)) ∧ (ψ(x1, . . . , xk) ∨B(x1, . . . , xk)))

and extend the given weight functions w and w by defining w(A) = w(A) = w(B) = 1 and
w(B) = −1. Then it holds

WFOMC(Φ, w, w,Ω) = WFOMC(Φ′ ∧Υ, w, w,Ωext)

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic language
L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by predicates A
and B.

2.4 Domain-Lifted Inference

Importantly, there are classes of first-order logic sentences for which weighted model counting can
be solved in polynomial-time. In particular, let Ω be the set of all possible worlds over a given
domain ∆ and a given set of relations R. As shown in [Van den Broeck, Meert, and Darwiche,
2014], when the theory Γ consists only of first-order logic sentences, each of which contains at
most two logic variables, the weighted model count can be computed in time polynomial in the
size of the domain ∆. This is not the case in general when the number of variables in the formulas
is greater than two unless P = #P1 [Beame et al., 2015].4 Within statistical relational learning,
the term used for problems that have such polynomial-time algorithms is domain liftability.

Definition 3 (Domain liftability). An algorithm for computing WFOMC with rational weights is
said to be domain-liftable if it runs in time polynomial in the size of the domain and the number
of bits needed to represent the weights.

The definition of domain liftability presented here differs slightly from the original definition
by Van den Broeck [2011] in that it also requires lifted algorithms to depend polynomially on
the size of the representation of the formulas’ weights. A justification for this definition follows
from the work of Jaeger [2015] (Section 4.2). In particular, as pointed out by Jaeger, all existing
domain-lifted exact-inference algorithms are also domain-lifted according to the definition that
we use here.

2.4.1 An Application of WFOMC: Inference in Markov Logic Networks

A Markov logic network [Richardson and Domingos, 2006] (MLN) is a set of weighted first-order
logic formulas (α,w), where w ∈ R and α is a function-free first-order logic formula. The
semantics are defined w.r.t. the groundings of the first-order logic formulas, relative to some
finite set of constants ∆, called the domain. An MLN Φ induces the probability distribution on
possible worlds ω ∈ Ω over a given domain:

PΦ(ω) =
1

Z
exp

 ∑
(α,w)∈Φ

w · n(α, ω)

 , (1)

4#P1 is the set of #P problems over a unary alphabet.

5



where n(α, ω) is the number of groundings of α satisfied in ω (when α does not contain any
variables, we define n(α, ω) = 1(ω |= α)), and Z, called partition function, is a normalization
constant to ensure that pΦ is a probability distribution. We also allow infinite weights. A
weighted formula of the form (α,+∞) is understood as a hard constraint imposing that all worlds
ω in which n(α, ω) is not maximal have zero probability (this can also be deduced by taking
the limit w → +∞). If all formulas in an MLN have at most k variables, we call such an MLN
k-variable.

Computation of the partition function Z of an MLN can be converted to WFOMC. To
compute the partition function Z using weighted model counting, we proceed as [Van den Broeck
et al., 2011]. Let an MLN Φ = {(α1, w1), . . . , (αm, wm)} over a set of possible worlds Ω be
given. For every (αj , wj) ∈ Φ, where the free variables in αj are exactly x1, . . . , xk and where
w 6= +∞, we create a new formula ∀x1, . . . , xk : ξj(x1, . . . , xk)⇔ αj(x1, . . . , xk) where ξj is a new
fresh predicate. When w = +∞, we instead create a new formula ∀x1, . . . , xk : αj(x1, . . . , xk).
We denote the resulting set of new formulas Γ. Then we set w(ξj) = exp (wj) and w(ξj) = 1
and for all other predicates we set both w and w equal to 1. It is easy to check that then
WFOMC(Γ, w, w,Ω) = Z, which is what we needed to compute. To compute the marginal

probability of a given first-order logic sentence γ, we have PΦ[X |= q] = WFOMC(Γ∪{q},w,w,Ω)
WFOMC(Γ,w,w,Ω)

where X is sampled from the MLN.
For more examples of applications of weighted first-order model counting to statistical

relational learning problems, we refer to [Van den Broeck, 2013].

3 Weighted Model-Counting Functions

Before getting to the weighted model-counting functions, we need to define notation for vectors
of “relation-cardinalities”. For a given possible world ω and a given list of predicates Ψ =
(R1, R2, ..., Rm), we define the respective vector of relation-cardinalities as

N(Ψ, ω)
def
= (n1, . . . , nm),

where ni = N(Ri, ω) is the cardinality of the relation Ri in ω, i.e. the number of ground atoms
of the form Ri(c1, . . . , carity(Ri)) that are true in ω.

Example 4. Let ω = {sm(Alice), sm(Bob), fr(Alice,Bob)} and Ψ = (sm, fr). Then the vector of
relation-cardinalities is N(Ψ, ω) = (2, 1).

Next we define model-counting function (which we will also call MC-function).

Definition 4 (Model-Counting Function). Let Ω be a set of possible worlds and let Ψ =
(R1, R2, . . . , Rm) be a list of predicates. We define the model counting function as

MCΨ,Ω(n) = |{ω ∈ Ω|N(Ψ, ω) = n}|.

Given first-order logic sentence Γ and a domain ∆ we also define

MCΨ,Γ,∆(n)
def
= MCΨ,ΩΓ,∆

(n),

where ΩΓ,∆ is the set of models of the sentence Γ on the domain ∆ (assuming some given
first-order language that also specifies the predicates).
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Figure 1: Model-counting functions from Example 6.

Intuitively, for any n ∈ Zm, the model counting function gives us the number of possible worlds
(from the given set Ω) that satisfy N(Ψ, ω) = n.

Example 5. Let us consider the domain ∆ = {A,B,C,D}, the sentence Γ = ∀x : (heads(x) ∨
tails(x)) ∧ (¬heads(x) ∨ ¬tails(x)) and the list Ψ = (heads). We assume that the first-order
language over which the possible worlds are defined contains only the predicates heads and tails.
Then we have, for instance, NΨ,Γ,∆(0, 0) = 0 (since the sentence Γ makes it impossible for any
domain element to be neither heads nor tails) and NΨ,Γ,∆(1, 3) = 4 and so on.

Example 6. In Figure 1, we show examples of two MC-functions, MCΨ,Γ,∆(n), where Ψ = (ξ1, ξ2),
Γ = (∀x∀y : ξ1(x, y)⇔ (sm(x) ∧ fr(x, y)⇒ sm(y))) ∧ (∀x : ξ2(x)⇔ sm(x)), and ∆ is a domain
of size 3 and 4, respectively. Note that the form of the sentence Γ corresponds to the encoding of
an MLN with two formulas α = sm(x) ∧ fr(x, y)⇒ sm(y) and β = sm(x) (cf. Section 2.4.1).

The concept of model-counting function can be straightforwardly generalized to weighted
model-counting functions that we define next. Weighted model-counting functions are the main
“work-horses” that we use in the rest of the paper.

Definition 5 (Weighted Model-Counting Function). Let Ω be a set of possible worlds and let
Ψ = (R1, R2, . . . , Rm) be a list of predicates. We define the model counting function as:

WMCΨ,Ω(n, w, w) = WFOMC(>, w, w, {ω ∈ Ω|N(Ψ, ω) = n}),

where > (tautology) is the trivial sentence which is always true. Given a first-order logic sentence
Γ and a domain ∆, we also define

WMCΨ,Γ,∆(n, w, w)
def
= WMCΨ,ΩΓ,∆

(n, w, w),

where ΩΓ,∆ is the set of models of the sentence Γ on the domain ∆ (assuming some given
first-order language that specifies the predicates).

Clearly, model-counting functions are a special case of weighted model counting functions for
w ≡ 1 and w ≡ 1.

In the next subsection we explain how to compute weighted model-counting functions using
a WFOMC oracle.
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3.1 Computing Weighted Model-Counting Functions

At first it may not be obvious how to compute weighted model-counting functions efficiently. In
[Kuželka, 2020a], we described a method based on discrete Fourier transform that can be used
for computing weighted model-counting functions (we describe this method in the appendix). A
downside of this method is that it requires computing WFOMC over complex numbers. Even
though existing lifted inference algorithms, which normally only count over real-valued weights,
can be straightforwardly modified to also allow complex numbers, it would be nicer if we could
do the same without modifying them. In this section, we show that it is possible to compute
weighted model-counting functions efficiently also without WFOMC over complex numbers. In
particular, we prove the following proposition.

Proposition 4. Let ∆ be a set of domain elements, Γ be a first-order logic sentence and
Ψ = (R1, . . . , Rm) be a list of relations. If WFOMC(Γ, w, w,∆) can be computed in time
polynomial in |∆| and in the number of bits needed to encode w and w then the corresponding
WMC-function WMCΨ,Γ,∆(n, w, w) can also be computed in time polynomial in |∆| and in the
number of bits needed to encode w and w.

Proof. We prove this proposition by showing how to compute weighted model-counting functions
using Lagrange interpolation when we have access to a WFOMC oracle.

Let w∗ and w∗ be weight functions defined by: w∗(R) = w∗(R) = 1 for all R ∈ Ψ and
w∗(R) = w(R) and w∗(R) = w(R) for all the other predicates R 6∈ Ψ. Then we can write:

WFOMC(Γ, w, w∗,∆) =
∑
n∈D

WMCΨ,Γ,∆(n, w∗, w∗) ·
m∏
i=1

w(Ri)
ni

where ni denotes the i-th component of n,

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm} ,

and M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm).
It follows that, when we fix all weights of all predicates R 6∈ Ψ (i.e. if we keep them

constant), WFOMC(Γ, w, w∗,∆) becomes a polynomial in the weights w(R1), . . . , w(Rm). Let us
denote this polynomial as W (w1, . . . , wm). Importantly, WMCΨ,Γ,∆(n, w∗, w∗) is the coefficient
of
∏m
i=1w(Ri)

ni in this polynomial, where ni denotes the i-th component of n. If we can extract
the coefficients of the monomials efficiently, it will mean that we can efficiently compute the
WMC-function using an oracle for WFOMC. For that we first introduce another, univariate,
polynomial:

W0(t)
def
= W

(
t, tM1+1, t(M1+1)(M2+1), . . . , t(...(M1+1)(M2+1))... )(Mm−1+1)

)
.

The polynomial W0 has the convenient property that the coefficient of

tn1+(M1+1)n2+···+(...(M1+1)(M2+1))... )nm

is equal to the coefficient of wn1
1 wn2

2 . . . wnm
m in W (w1, w2, . . . , wm). Let us denote this coefficient

by An1,...,nm . It follows that An1,...,nm is also equal to WMCΨ,Γ,∆(n, w∗, w∗), from which we can
then obtain

8



WMCΨ,Γ,∆(n, w, w) = WMCΨ,Γ,∆(n, w∗, w∗) ·
m∏
i=1

w(Ri)
ni · w(R)|∆|

arity(Ri)−N(Ri,ω)

= An1,...,nm ·
m∏
i=1

w(Ri)
ni · w(R)|∆|

arity(Ri)−N(Ri,ω).

The only missing part is to show that we can extract the coefficient An1,...,nm efficiently using
a WFOMC oracle. This can be done using Lagrange interpolation (cf Section 2.1). First, we
define |D|+ 1 points (xi, yi) for the polynomial interpolation problem: (1,W0(1)), (2,W0(2)),
. . . , (|D| + 1,W0(|D| + 1)). Using Proposition 2, we have that the number of bits needed to
encode each of W0(1), W0(2), . . . , W0(|D| + 1) is polynomial in |D|. Combining that with
Proposition 1, we then have that the number of bits needed to encode the coefficients of the
polynomial interpolating the points (1,W0(1)), (2,W0(2)), . . . , (|D|+ 1,W0(|D|+ 1)) grows only
polynomially with |D|. Since |D| is itself bounded by a polynomial in the size of the domain |∆|,
it follows that we can extract the coefficients and consequently the WMC-function that we want
to compute in time polynomial in |∆| and the number of bits needed to encode w and w.

Remark 1. We could do a bit better in terms of practical efficiency than the construction from
the above proof if we replaced the univariate Lagrange interpolation by its multivariate version
(we could use, e.g., Lemma 5 from [Koiran and Perifel, 2011]). Then we would only need to
evaluate WFOMC on weights from the set {0, 1, 2, . . . , |D|}. For simplicity, in the proof of the
above proposition we opted for the more elementary approach, which is enough for our purposes.

4 WFOMC with Cardinality Constraints

In this paper, a simple cardinality constraint is en expression of the form |R| ∈ A where R is
a predicate and A ⊆ N. A possible world ω satisfies a given cardinality constraint |R| = k if
N(R,ω) ∈ A, i.e. if the number of ground atoms Ri(t1, . . . , tn) that are true in ω is in A. We
write ω |= (|R| ∈ A) when the cardinality constraint |R| ∈ A is satisfied in ω. We will also
use the notation |R| ./ k, where ./∈ {=,≤,≥, <,>} and k ∈ N. So, e.g., |R| ≤ k is a short for
|R| ∈ {0, 1, . . . , k}. Finally, we allow cardinality constraints as atomic formulas in first-order
logic formulas. For instance, (|f | = 2) ∧ (∀x∀y : f(x, y)⇒ f(y, x)) is a valid formula (its models
can be interpreted as undirected graphs with exactly one edge) and the satisfaction relation |= is
extended naturally.

Computing WFOMC with cardinality constraints can be done using WMC-functions. More-
over as the next proposition shows, domain-liftability is preserved when we add cardinality
constraints to a sentence which is domain-liftable.

Proposition 5. Let Γ be a first-order logic sentence, ψ(x1, . . . , xm) be propositional logic formula
and let Υ = ψ(|Ri1 | ./ k1, . . . , |Rim | ./ km), where ψ is a Boolean formula and ./∈ {=,≤,≥, <,>}.
If computing the WFOMC of Γ is domain-liftable then computing the WFOMC of Γ ∧Υ is also
domain-liftable.

Proof. Let Ψ = (Ri1 , . . . , Rim). Since computing WFOMC(Γ, w, w,∆) is domain-liftable, so
is computing WMCΨ,Γ,∆(n), which follows from Proposition 4. In addition we only need to
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evaluate the WMC-function on a set of polynomially-many (in |∆|) points, specifically on
the set D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm} where M1 = |∆|arity(Ri1

),
M2 = |∆|arity(Ri2

), . . . , Mm = |∆|arity(Rim ). Finally, we can compute WFOMC(Γ ∧ Υ, w, w,∆)
as:

WFOMC(Γ, w, w,∆) =
∑
n∈D

ψ(|Ri1 | ./ k1, . . . , |Rim | ./ km) ·WMCΨ,Γ,∆(n)

where ni denotes the i-th component of the vector n. Hence, WFOMC(Γ ∧Υ, w, w,∆) can be
computed in time polynomial in the size of the domain which finishes the proof.

Remark 2. The techniques from this section do not apply only to encoding of cardinality
constraints. It is easy to replace the Boolean formula ψ by a function to rational numbers and
show that one can efficiently compute weighted first-order model counts with “non-multiplicative”
weight functions, i.e. with weight functions that only depend on N(Ψ, ω). We will not need this
more general setting in this paper.

5 WFOMC with Functionality Constraints5

A functionality constraint is a constraint expressed by a first-order-logic sentence of the form

∀x∃=1y : ψ(x, y),

which asserts that for every x there is exactly one y such that ψ(x, y) is true. In this section
we show how to compute WFOMC of a 2-variable first-order logic sentence with an arbitrary
number of functionality constraints while still guaranteeing runtime polynomial in the domain
size |∆|.

First, we can notice that we can replace any functional constraint of the form ∀x∃=1y : ψ(x, y),
where ψ(x, y) is a formula, with free variables exactly x and y, by (∀x∀y : ξ(x, y)⇔ ψ(x, y)) ∧
(∀x∃=1y : ξ(x, y)), where ξ is a fresh predicate not occurring anywhere else. Therefore we
will assume without loss of generality that the only functional constraints are of the form
∀x∃=1y : R(x, y) where R is a predicate. The main result of this section is then the following
theorem.

Theorem 1. Let Γ be an FO2 sentence and Υ = (|Ri1 | ./ k1) ∧ · · · ∧ (|Rim | ./ km) ∧ (∀x∃=1y :
Ri1(x, y))∧· · ·∧(∀x∃=1y : Rim′ (x, y)) be a conjunction of cardinality and functionality constraints
where ./∈ {=,≤,≥, <,>}. Computing the WFOMC of Γ ∧Υ is domain-liftable.

Next we prove a simple lemma that will allow us to reduce WFOMC with functionality (and
possibly also cardinality) constraints to WFOMC involving only cardinality constraints and no
functionality constraints.

Lemma 1. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order
logic sentence. Let Φ = (∀x∃=1y : Ri1(x, y)) ∧ · · · ∧ (∀x∃=1y : Rih(x, y)) and Φ′ = (∀x∃y :
Ri1(x, y)) ∧ (|Ri1 | = |∆|) ∧ · · · ∧ (∀x∃y : Rih(x, y)) ∧ (|Rih | = |∆|). Then for all ω ∈ Ω:
(ω |= Γ ∧ Φ)⇔ (ω |= Γ ∧ Φ′).

5In the next section, we generalize the results presented here to allow constraints of the form ∀x∃=ky : ψ(x, y),
of which ∀x∃=1y : ψ(x, y) is a special case. However, the case of functionality constraints, besides being easier to
understand, is important on its own and has been studied in the literature [Kuusisto and Lutz, 2018]. We note
that whereas Kuusisto and Lutz [2018] only allowed one functionality constraint, here we already allow multiple
functionality constraints.
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Figure 2: Left: The MC-function from Example 7. Right: The distribution of the number of
fixed points (see Example 7).

Proof. Let R be any of the relations Ri1 , . . . , Rih . The constraint ∀x∃=1y : R(x, y) can
be rewritten as: (i) ∀x∃y : R(x, y) and (ii) ∀x, y, z : R(x, y) ∧ R(x, z) ⇒ y = z. (⇒) It
follows from (i) that |R| ≥ |∆|. If |R| > |∆| then by the pigeon-hole principle, there must
be at least one s ∈ ∆ such that R(s, t) and R(s, t′) for some t 6= t′ ∈ ∆ which contradicts
(ii). Hence, ∀x∃=1y : R(x, y) implies |R| = |∆| and ∀x∃y : R(x, y). (⇐) What we need
to show is that if (∀x∃y : R(x, y)) ∧ (|R| = |∆|) holds then (i) and (ii) must hold as well.
Clearly, (i) must hold. So let us suppose, for contradiction, that (∀x∃y : R(x, y)) ∧ (|R| = |∆|)
holds but there is some s ∈ ∆ such that R(s, t) and R(s, t′) for some t 6= t′ ∈ ∆. We have
|{(x, y) ∈ ∆2|R(x, y) ∧ x 6= s}| ≥ |∆| − 1 (from ∀x∃y : R(x, y)). Therefore it is easy to see that
|R| ≥ |{(x, y) ∈ ∆2|R(x, y) ∧ x 6= s}|+ 2 > |∆|, which is a contradiction.

Note that the constraints |Ri1 | = |∆|, . . . , |Rih | = |∆| are cardinality constraints which we
already know how to deal with.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Using Lemma 1, we can reduce the problem of computing the WFOMC of
Γ∧Υ to the problem of computing the WFOMC of Γ∧Υ′∧Υ′′ where Υ contains only cardinality
constraints and Υ′ has the form (∀x∃y : ψ1(x, y)) ∧ · · · ∧ (∀x∃y : ψm′(x, y)). Since Γ ∧Υ′′ is an
FO2 sentence (hence domain-liftable) and Υ′ is a conjunction of cardinality constraints, we can
use Proposition 5 to finish the proof.

Next we provide an illustration of the techniques derived so far.

Example 7. How many fixed points does a uniformly sampled function from {1, 2, . . . , n} to
itself have? We can answer this question using WFOMC with functionality constraints. We
define

Γ = (∀x∃y : f(x, y)) ∧ (∀x : ξ(x)⇔ f(x, x)).

Here, we introduced a fresh new predicate ξ such that, for all t ∈ ∆, ξ(t) is true if and only if t
is a fixed point of f . Next we define

Ψ = {f, ξ}.
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Then, using the techniques described in Section 3, we compute the MC-function MCΨ,Γ,∆, which
is shown for n = 10 in the left panel of Figure 2. Now we can extract the distribution that we
wanted to compute from this MC-function by ignoring all points except those where |f | = |∆|.
That is, the probability pk that a uniformly sampled function has k fixed points is equal to:

pk =
MCΨ,Γ,∆(|∆|, k)∑|∆|
j=1 MCΨ,Γ,∆(|∆|, j)

.

We show the computed distribution in the right panel of Figure 2 (blue circles). As a sanity
check, we also computed the distribution analytically using the formula

(
n
k

)
(n− 1)n−k/nn and

displayed it in the same plot (red crosses). As expected, the values computed using the two
approaches are the same.

We give a slightly more complex example, computing the number of anti-involutive functions,
in Appendix C.1.

6 The ∃=k-Quantifier

In this section we show how the techniques used for WFOMC with functionality constraints,
described in the previous section, can be further generalized to more complex settings. In
particular, we show how to use them to compute WFOMC with the counting quantifier ∃=k.

6.1 Two Types of Constraints: ∀x∃=ky and ∃=kx∀y

We start by showing how to extend domain-liftability to FO2 with constraints of the form
∀x∃=ky : R(x, y) and ∃=kx∀y : R(x, y), where ∃=k is the counting quantifier “exists exactly k”.

Theorem 2. Let Γ be an FO2 sentence and

Υ = (|Ri1 | ./ c1) ∧ · · · ∧ (|Rim | ./ cm)

∧ (∀x∃=k1y : ψ1(x, y)) ∧ · · · ∧ (∀x∃=km′y : ψm′(x, y))

∧ (∃=k′1
x∀y : ψ1(x, y)) ∧ · · · ∧ (∃=k′

m′′
x∀y : ψm′(x, y)),

where ./∈ {=,≤,≥, <,>}. Then computing the WFOMC of Γ ∧Υ is domain-liftable.

To prove Theorem 2, we will need the following two lemmas.

Lemma 2. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order logic
sentence. Let Φ be a first-order logic sentence with cardinality constraints, defined as follows:

Φ = (|R| = k · |∆|) ∧ (∀x, y : R(x, y)⇔ (fR1 (x, y) ∨ fR2 (x, y) ∨ · · · ∨ fRk (x, y)))

∧
k∧
i=1

(∀x∃y : fRi (x, y)) ∧
k∧

i,j=1,i 6=j
(∀x, y : ¬fRi (x, y) ∨ ¬fRj (x, y)).

Then it holds:

WFOMC(Γ ∧ ∀x∃=ky : R(x, y), w, w,Ω) =
1

(k!)|∆|
WFOMC(Γ ∧ Φ, w, w,Ωext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic language
L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by predicates fR1 ,
. . . , fRk .
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Proof. First we show that, for all ω ∈ Ωext, it holds: if ω |= Γ∧Φ then ω |= Γ∧ ∀x∃=ky : R(x, y).
The sentence Φ implies that for every t1, t2 ∈ ∆ such that R(t1, t2) is true, there is exactly one
i ∈ {1, 2, . . . , k} such that fRi (t1, t2) is true. It follows that |R| = |fR1 |+ · · ·+ |fRk |. Now, using
similar reasoning as in the proof of Lemma 1, we can see that |R| = |fR1 |+ · · ·+ |fRk | = k · |∆|
together with

∧k
i=1(∀x∃y : fRi (x, y)) and

∧k
i,j=1,i 6=j(∀x, y : ¬fRi (x, y) ∨ ¬fRj (x, y)) also implies

that all of fR1 (x, y), . . . , fRk (x, y) must be functions. It follows that ∀x∃=ky : R(x, y) must be
true in any possible world ω ∈ Ω that satisfies Φ.

To finish the proof, let [ω]L denote the “projection” of ω on the language L which is the
possible world obtained from ω by removing all atoms whose predicates are not contained
in L (i.e. fR1 , . . . , fRk ). One can show easily that, for every model ω ∈ Ω of the sentence
Γ ∧ ∀x∃=ky : R(x, y), there are exactly (k!)|∆| models ω′ ∈ Ωext such that ω = [ω′]L, which
follows from the following: (i) if, for any t ∈ ∆, we permute t1, t2, . . . , tk in fR1 (t, t1), fR2 (t, t2)
. . . , fRk (t, tk) in the model ω′, we get another model of Γ ∧ Φ, (ii) up to these permutations, the
predicates fki in ω′ are determined uniquely by ω. Finally, the weights of all these ω′s are the
same as those of ω.

Lemma 3. Let Ω be the set of all possible worlds on a domain ∆. Let Γ be a first-order logic
sentence and U and R be predicates. Then it holds:

WFOMC(Γ ∧ ∃=kx∀y : R(x, y), w, w,Ω)

= WFOMC(Γ ∧ (∃=kx : UR(x)) ∧ (∀x : UR(x)⇔ (∀y : R(x, y))), w, w,Ωext).

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic language
L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by the predicate
UR (in particular, we assume w.l.o.g. that L did not originally contain this predicate).

Proof. The proof is straightforward.

We are now ready to prove Theorem 2.

Proof of Theorem 2. First, repeatedly using Lemma 3, we can get rid of all constraints of the
form ∃=kx∀y : R(x, y). Besides new first-order logic sentences, this also produces new constraints
of the form ∃=kx : UR(x) which can be easily encoded using cardinality constraints |UR| = k.
Finally, we can use Lemma 2 repeatedly to get rid of the constraints of the form ∀x∃=ky : R(x, y).
Since the resulting sentence contains only two variables and cardinality constraints, it follows
from Proposition 5 that we can compute its WFOMC in time polynomial in the size of the
domain ∆.

6.1.1 An Illustration: Counting K-Regular Graphs

We now illustrate the techniques developed in this section on the problem of computing the
number of 2-regular graphs on n vertices. An undirected graph is called k-regular if all its vertices
have degree k. Note that we do not count non-isomorphic graphs here.

We start by writing down the axioms defining 2-regular graphs:

∀x : ¬e(x, x), (2)

∀x, y : e(x, y)⇒ e(y, x), (3)

∀x∃=2y : e(x, y). (4)
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Here (2) forbids self-loops, (3) requires e to be a symmetric relation (to model undirected graphs)
and (4) requires every vertex to have two out-going edges. Since, by (3), edges are guaranteed to
be symmetric, (4) is enough to guarantee that every vertex will have degree 2.

Since every sentence in the above theory has at most 2 variables and contains only quantifiers
∀ and ∃=k, we can apply the techniques developed in this section to compute the number of
2-regular graphs using WFOMC. We now provide details. First, we can rewrite (4) using only ∀,
∃ and cardinality constraints as in Lemma 2:

∀x∀y : ξ(x, y)⇔ e(x, y), (5)

|ξ| = 2|∆|, (6)

∀x∃y : f1(x, y), (7)

∀x∃y : f2(x, y), (8)

∀x∀y : ξ(x, y)⇔ (f1(x, y) ∨ f2(x, y)), (9)

∀x∀y : ¬f1(x, y) ∨ ¬f2(x, y). (10)

We set the weights of all the predicates to 1 except for ξ for which we set w(ξ) = w and
w = 1. Let Γ be the conjunction of (2), (3), (5), (7), (8), (9), (10). Since Γ is in FO2, we can
use, e.g., the algorithm from [Beame et al., 2015] to compute WFOMC for any weight w in time
polynomial in the size of the domain and number of bits needed to encode w. Thus we can use the
techniques described in Section 3 to compute the MC-function MCΨ,Γ,∆, where we set Ψ = {ξ}.
Finally, we still need to divide the MC-function by 2!|∆| = 2|∆| to account for the over-counting
caused by f1 and f2. The number of 2-regular graphs is then equal to MCΨ,Γ,∆(n)/2|∆| where
n = 2|∆|. For 3, 4, 5, 6, 7, 8, 9, 10 vertices this method yields the following numbers of 2-regular
graphs: 1, 3, 12, 70, 465, 3507, 30016, 286884. One can check that these numbers are exactly the
same as the numbers of 2-regular graphs listed in the On-Line Encyclopedia of Integer Sequences
as sequence A001205.6 We show one example of the MC-function divided by 210 in Figure 3 for
|∆| = 10. The x-coordinate of the red point shown there is n = 2|∆| = 20 and its y-coordinate
MCΨ,Γ,∆ /2

10 = 286884 is the number of 2-regular graphs on 10 vertices.
One can easily adapt the above example for counting the number of k-regular graphs for

a general k (although the complexity of the encoding grows with k). We note that counting
k-regular graphs is, in fact, an interesting, not completely trivial, problem; for k = 2, 3, 4, 5 we
refer to [Goulden and Jackson, 1986] for more details.

6.2 The General Case

In this section we use the results from the previous sections to show that computing WFOMC of
arbitrary two-variable first-order logic sentences with the quantifiers ∃=k is domain-liftable.

Theorem 3. Let Γ be a sentence in the two-variable fragment of first-order logic, possibly
containing a finite number of counting quantifiers ∃=k1, ∃=k2, . . . , ∃=km. Then computing
WFOMC(Γ, w, w,∆) is domain-liftable.

We already know from the previous sections how to do inference with special types of
constraints, in particular with cardinality constraints and constraints of the form ∀x∃=ky and
∃=kx∀y. The main difficulty in extending these results is to be able to encode sentences of the

6http://oeis.org/A001205
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Figure 3: The function MCΨ,Γ,∆(n)/2|∆|, where Ψ and Γ are described in the main text in
Section 6.1.1 and |∆| = 10.

form ∀x : A(x)⇔ (∃=kR(x, y)). We show how to do it in two steps. In Lemma 4, we show how
to encode sentences of the form ∀x : A(x) ∨ (∃=kR(x, y)) using the form of constraints that we
already know how to handle. We then use this intermediate result, together with Proposition 3
(Appendix A.2 in [Beame et al., 2015]), to encode the sentence ∀x : A(x)⇔ (∃=kR(x, y)) when
we prove Theorem 3.

Lemma 4. Let R be a relation, Γ be a first-order logic sentence and Υ be a conjunction of
∀x∃=ky and ∃=kx∀y-constraints and cardinality constraints. Let us define Φ = Φ1 ∧Φ2 ∧Φ3 ∧Φ4

where:

Φ1 =∀x∃=ky : BR(x, y),

Φ2 =(|UR| = k),

Φ3 =∀x∀y : (A(x) ∧BR(x, y))⇒ UR(y),

Φ4 =∀x∀y : ¬A(x)⇒ (R(x, y)⇔ BR(x, y)).

Then the following holds for WFOMC:

WFOMC(Γ∧Υ∧(∀x : A(x)∨(∃=ky : R(x, y))), w, w,∆) =
1(|∆|
k

) WFOMC(Γ∧Υ∧Φ, w, w,Ωext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic language
L and Ωext is the set of all possible worlds on the domain ∆ w.r.t. L extended by predicates
UR and BR, . . . , fRk (in particular, we assume w.l.o.g. that L did not originally contain these
predicates).

Proof. First, we show that for every possible world ω ∈ Ωext it holds: if ω |= Φ then ω |= (∀x :
A(x)∨ (∃=ky : R(x, y))). For contradiction, let us assume that ω∗ ∈ Ωext is a possible world such
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that ω∗ |= Φ and ω∗ 6|= (∀x : A(x) ∨ (∃=ky : R(x, y))). Then there must be a t ∈ ∆ such that
ω∗ |= ¬A(t)∧¬(∃=ky : R(t, y)). At the same time, it must be the case that ω∗ |= ∃=ky : BR(t, y)
(from Φ1) and ω∗ |= ∀y : R(t, y)⇔ BR(t, y) (from Φ4). However, these cannot be all true at the
same time, thus, we have arrived at a contradiction.

To finish the proof, let [ω]L denote the “projection” of ω on the language L which is the
possible world obtained from ω by removing all atoms whose predicates are not contained in L
(i.e. UR and BR). We show that for every ω ∈ Ω such that ω |= (∀x : A(x) ∨ (∃=ky : R(x, y)))

there are exactly
(|∆|
k

)
possible worlds ω′ ∈ Ωext such that ω′ |= Φ and ω = [ω′]L. Let ω ∈ Ω

be any such possible world. Due to Φ2, to extend ω, we have to select a set {t1, t2, . . . , tk} of
elements of the domain ∆ and make U(t1), U(t2), . . . , U(tk) true (and no other). This can

be done in
(|∆|
k

)
different ways. Once, we set the UR predicate in this way, there is only one

way to extend the possible world ω: For every t ∈ ∆ such that ω′ |= A(t), it must be true
ω′ |= B(t, t1) ∧ · · · ∧BR(t, tk). This is because, due to Φ1, for every t ∈ ∆ there must be exactly
k domain elements t′1, . . . , t′k such that ω′ |= BR(t, t′1) ∧ · · · ∧ BR(t, t′k). Moreover, due to Φ4,
if ω′ |= A(t) ∧ BR(t, t′i) are true then ω′ |= UR(t′i) must be true as well. However, there are
only k such domain elements t′i (due to Φ2). This means that BR(t, t′i) is uniquely determined.
Moreover, for all the other t ∈ ∆ such that ω′ |= ¬A(t), BR must coincide with R and hence is
uniquely determined as well. This is what we needed to finish the proof.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We start by showing how to deal with sentences of the form Γ ∧Υ where

Υ = ∀x : A(x)⇔ (∃=ky : R(x, y)).

First we rewrite the sentence

Υ1 = ∀x : A(x)⇒ (∃=ky : R(x, y))

into a form that we already know how to handle. For that we introduce a new unary predicate
B and define

Υ′1 = (∀x : A(x)⇔ ¬B(x)) ∧ (∀x : B(x) ∨ (∃=ky : R(x, y))).

Sentences in this form can already be handled by Lemma 4. Let Ω′ext be the set of all possible
worlds on domain ∆ over the given language extended by the predicate B. Then for every
possible world ω ∈ Ω which is a model of Γ∧Υ1 there is exactly one possible world in Ω′ext which
is a model of Γ ∧Υ′1, and vice versa.

Next we need to show how to handle the sentence Υ2 = ∀x : A(x)⇐ (∃=ky : R(x, y)). At first
this may seem difficult but Proposition 3 comes to the rescue here. Specifically, if we equivalently
write

Υ2 = ∀x : A(x) ∨ ¬(∃=ky : R(x, y)),

we can get rid of the negation in front of (∃=ky : R(x, y)) using Proposition 3 as follows. We
create two new unary predicates C and D and define

Υ′2 = ∀x : ((∃=ky : R(x, y)) ∨ C(x)) ∧ (C(x) ∨D(x)) ∧ ((∃=ky : R(x, y)) ∨D(x))).

It follows from Proposition 3 that if we set w(C) = w(C) = w(D) = 1 and w(D) = −1 then for
any sentence Θ it will hold

WFOMC(Θ ∧Υ2, w, w,Ω) = WFOMC(Θ ∧ (∀x : A(x) ∨ C(x)) ∧Υ′2, w, w,Ω
′′
ext),
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where Ω is the set of all possible worlds on the domain ∆ w.r.t. the given first-order logic language
L and Ω′′ext is the set of all possible worlds on the domain ∆ w.r.t. L extended by the predicates
C and D.

Next we can apply consecutively the two steps described above which gives us

WFOMC(Γ ∧Υ, w, w,Ω) = WFOMC(Γ ∧ (∀x : A(x) ∨ C(x)) ∧Υ′1 ∧Υ′2, w, w,Ω
′′′
ext),

where Ω is the set of all possible worlds on the domain ∆ w.r.t. a given first-order logic language
L and Ω′′′ext is the set of all possible worlds on the domain ∆ w.r.t. L extended by the predicates
B, C and D. From Lemma 4, we already know how to handle the sentences Υ′1 and Υ′2 when
computing WFOMC.

Finally, we use the above to compute WFOMC of arbitrary FO2 sentences which may contain
quantifiers ∃=k. This is relatively straightforward. Let Γ be such a sentence. We just need
to repeatedly replace every subformula of the form ∃=ky : ψ(x, y) by Aψ(x), where Aψ is a
fresh unary predicate, and add a “definition” of this predicate in the form (∀x∀y : Bψ(x, y)⇔
ψ(x, y)) ∧ (Aψ(x)⇔ (∃=ky : Bψ(x, y))). It is not difficult to see that the resulting sentence (i) is
in a form that can be handled by Theorem 2, (ii) that it contains only two variables and (iii)
that its size is independent of the size of the domain. Additionally, the only way in which the
resulting sentence will depend on the domain is through the cardinality constraints of the form
|R| = k|∆| and, in any such a constraint, k will grow only polynomially with the size of the
domain (this is no problem for establishing domain liftability). The statement of the theorem
then follows from the above and from Theorem 2.

7 The Two-Variable Fragment with Counting

In this section we show that the results from the previous sections imply domain liftability for
the two-variable fragment of first-order logic with counting quantifiers.

Theorem 4. Weighted first-order model counting is domain-liftable for the two-variable fragment
of first-order logic with counting quantifiers.

Proof. We can prove this theorem by reducing it to the case with just the ∃=k-quantifier, whose
domain-liftability is established by Theorem 3.

First, any sub-formula of the form ∃≤ky : ψ(x, y) can be replaced by:

(∀y : ¬ψ(x, y)) ∨ (∃=1y : ψ(x, y)) ∨ (∃=2y : ψ(x, y)) ∨ · · · ∨ (∃=ky : ψ(x, y)).

Obviously, the size of the result of the above transformation is independent of the domain size
and if the original formula was in FO2, the new one will be in FO2 as well.

Next we need to get rid of the sub-formulas of the form ∃≥ky : ψ(x, y). Note that we cannot
blindly apply the same method we used for the sub-formulas with the quantifier ∃≤k because,
in that case, the number of disjuncts in the resulting formula would grow with the size of the
domain. Instead, we proceed as follows. We equivalently rewrite the sub-formula as:

∃≥ky : ψ(x, y) = ¬¬(∃≥ky : ψ(x, y)) = ¬(∃≤k−1y : ψ(x, y)).

We already know how to handle sub-formulas of this form. So we are done.
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8 Related Work

The work presented in this paper builds on a long stream of research in lifted inference [Poole,
2003; Braz, Amir, and Roth, 2005; Van den Broeck, 2011; Gogate and Domingos, 2011; Van den
Broeck, 2013; Van den Broeck, Meert, and Darwiche, 2014; Beame et al., 2015; Kazemi et
al., 2016; Kuusisto and Lutz, 2018]. On the technical level, in the present paper, we directly
exploit results from [Van den Broeck, Meert, and Darwiche, 2014] that together established
domain-liftability of the two-variable fragment of first-order logic, which we extended by allowing
counting quantifiers. The result on domain-liftability of the two-variable fragment was relatively
recently extended in two somewhat related directions that we describe below.

First, Kazemi et al. [2016] showed that so-called domain-recursion rule, which had been
previously proposed by Van den Broeck, allows to enlarge the class of domain-liftable theories.
In particular, they identified two new domain-liftable fragments of first-order logic which they
call S2FO2 and S2RU. These two classes contain among others certain theories with functionality
axioms but, as also pointed out by Kuusisto and Lutz [2018], not all FO2 theories with functionality
axioms are contained in them. The domain-liftable class identified in our work, i.e. FO2 with
counting quantifiers, and the classes studied by Kazemi et al. [2016] are incomparable. However,
we believe that our techniques and theirs could be combined in future work.

More recently, Kuusisto and Lutz [2018] showed that WFOMC for FO2 with at most one
functionality constraint is domain-liftable using a rather complex argument. They also mentioned
in the same work (although without giving any details) that if one could extend this result to
multiple functionality constraints, domain-liftability of FO2 with counting quantifiers would
follow. Specifically, in the concluding section of their paper, they say: It can be shown that
WFOMC for formulae of two-variable logic with counting C2 can be reduced to WFOMC for
FO2 with several functionality axioms. Thus, in principle, our results from Section 6.1, where
we established domain-liftability of FO2 with an arbitrary number of functionality constraints,
combined with their remark would also be sufficient to establish our main result. However, since
there are no details and no proof, we had to provide these ourselves. In fact, we did not use
reductions directly based on functionality constraints in our proofs (since that seemed to be
rather wasteful), therefore we suspect that our reductions might also be more efficient.

Finally, the methods that we used in the present paper resemble techniques used in enumerative
combinatorics [Stanley, 1986], in particular generating functions. We plan to investigate these
connections more closely in future work.

9 Conclusions

In this work we showed that the two-variable fragment of first-order logic with counting quantifiers
is domain-liftable. This significantly broadens the class of weighted first-order model counting
problems that can be solved in polynomial time. There is still a lot one can do from here,
especially for improving the practical efficiency of lifted inference algorithms on problems that
result from our reductions.
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for pointing out the problem of inference in the two-variable fragment of FOL with counting
quantifiers.

A Computing Weighted Model-Counting Functions Using DFT

Here we describe an alternative approach to computing weighted model-counting functions based
on discrete Fourier transform. This approach is a generalization of a method from our previous
work [Kuželka, 2020a] where it was used in the context of Markov logic networks.

Notation We need a bit more notation here. We use i to denote the imaginary unit i2 = −1
and 〈v, w〉 to denote the inner product of the vectors v and w (when v and w are real vectors,
inner product coincides with scalar product).

A.1 Discrete Fourier Transform

Here we describe the basic properties of multi-dimensional Fourier transform (DFT) that will be
needed in this paper. Let d be a positive integer and let N = [N1, . . . , Nd] ∈ (N\{0})d be a vector
of positive integers. Let us define J = {0, 1, . . . , N1−1}×{0, 1, . . . , N2−1}×· · ·×{0, 1, . . . , Nd−1}.
Let f : J → C be a function defined on J . Then the DFT of f is the function g : J → C defined
as

g(k) =
∑
n∈J

f(n)e−i2π〈k,n/N〉 (11)

where k/N
def
= [[k]1/N1, [k]2/N2, . . . , [k]d/Nd] (i.e. “/” denotes component-wise division). We

use the notation g = F {f}. The inverse transform is then given as

f(n) =
1∏d

l=1Nl

∑
k∈J

g(k)ei2π〈n,k/N〉. (12)

It holds f = F−1 {F {f}}.

A.2 Computing Weighted Model-Counting Functions Using DFT

Let Ω be the set of all possible worlds on a given domain ∆ and a given set of predicates R.
Here we show how to compute the WMC-function WMCΨ,Γ,∆(n) for given list of predicates
Ψ = (R1, . . . , Rm) and a given sentence Γ using DFT.

First, WMCΨ,Γ,∆(n) is a real-valued function of m-dimensional integer vectors. We can
restrict the domain7 of WMCΨ,Γ,∆(n) to the set

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm}

where
M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm).

Second, from the definition of DFT we then have for the Fourier transform g(k):

g(k) =
∑
n∈D

WMCΨ,Γ,∆(n, w, w) · e−i2π〈k,n/M〉 (13)

7Here, domain refers to the domain of a mathematical function, not to a domain as a set of domain elements ∆.
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where k = (k1, . . . , km), M = (M1 + 1, . . . ,Mm + 1) and the division in n/M is again component-
wise.

Third, let Ω∗ = {ω ∈ Ω|ω |= Γ}. Let R be the set of all predicates R that have non-neutral
weights (i.e. w(R) 6= 1 or w(R) 6= 1). Using the definition of WMCΨ,Γ,∆(n, w, w), we can write

g(k) =
∑
n∈D

 ∑
ω∈Ω∗:N(Ψ,ω)=n

∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

 e−i2π〈k,n/M〉

=
∑
n∈D

∑
ω∈Ω∗:N(Ψ,ω)=n

(∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

)
e−i2π〈k/M,N(Ψ,ω)〉

=
∑
ω∈Ω∗

(∏
R∈R

w(R)N(R,ω) · w(R)|∆|
arity(R)−N(R,ω)

)
e−i2π〈k/M,N(Ψ,ω)〉

= WFOMC(Γ, w′, w′,∆),

where we set w′(Ri) = w(Ri) · e−2iπki/Mi for all Ri ∈ Ψ, w′(R) = w(R) for all R ∈ R \ Ψ and
w′(R) = 1 for all R ∈ R. Thus, we can compute the DFT of WMC-functions using a polynomial
number (in |∆|) of queries to a WFOMC oracle. Once we have the DFT g(k) of the MC-function,
obtaining the MC-function from the DFT is trivial. We just compute the inverse DFT of g(k).
Importantly, to obtain this, we did not need to add explicit cardinality constraints, expressed as
first-order logic sentences, to Γ or modify the formulas in it or in the set Ψ in any way.

A note on representation of complex numbers In [Kuželka, 2020a] we discuss the issues
of representing complex numbers in the computations such as DFT in detail.

B Omitted Proofs

In this section we give proofs that were omitted from the main text.

B.1 Proof of Proposition 1

First, we bound the coefficients of monomials of the polynomials li(x). We write li(x) =∑d
j=0

ei,j
fi,j
· xj where ei,j , fi,j ∈ N. We have

max
i

log |ei,j | ≤ max
i

log

2d
d∏

0 ≤ j ≤ d
i 6= j

xj

 ≤ log

(
2d max

j
|xj |d

)
= d log

(
2 max

j
|xj |
)
, (14)

max
i

log |fi,j | ≤ max
i

log


d∏

0 ≤ j ≤ d
i 6= j

|xi − xj |

 ≤ max
i

log

(
max
j
|xi − xj |d

)

= d log

(
2 max

j
|xj |
)
. (15)
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Let yi =
y′i
y′′i

where both y′i and y′′i are integers. We then also have for the coefficient aj of the

monomial xj in the interpolating polynomial:

aj =
d∑
i=0

y′i
y′′i

ei,j
fi,j

=

∑d
i=0 y

′
iei,j

∏
0≤k≤d,k 6=j y

′′
kfk,j∏d

i=0 y
′′
i fi,j

.

Both the numerator and denominator of the last expression are integers and it holds

log

∣∣∣∣∣∣
d∑
i=0

y′iei,j ·
∏

0≤k≤d,k 6=j
y′′kfk,j

∣∣∣∣∣∣
 ≤ log

∣∣∣∣∣∣dmax
i

{
y′iei,j

}
·

∏
0≤k≤d,k 6=j

y′′kfk,j

∣∣∣∣∣∣


≤ log d+ log max
i
|y′i|+ log max

i
|ei,j |+

∑
0≤k≤d,k 6=j

(
log |y′′k |+ log |fk,j |

)
≤ log d+ log max

i
|y′i|+ d log max

i
|y′′i |+

(
d+ d2

)
log

(
2 max

j
|xj |
)

(here the last inequality follows from (14) and (15)). It also holds

log

(∣∣∣∣∣
d∏
i=0

y′′i fi,j

∣∣∣∣∣
)
≤ d log max

i
|y′′i |+ dmax

i
log (|fi,j |) ≤ d log max

i
|y′′i |+ d2 log

(
2 max

j
|xj |
)
.

It follows that the number of bits needed to represent the coefficients of the interpolating
polynomial grows only polynomially with the number of bits needed to encode the points (xi, yi),
which is what we needed to show.

B.2 Proof of Proposition 2

Let use define the following set of integer vectors

D = {0, 1, . . . ,M1} × {0, 1, . . . ,M2} × · · · × {0, 1, . . . ,Mm}

where M1 = |∆|arity(R1), M2 = |∆|arity(R2), . . . , Mm = |∆|arity(Rm). It is obvious that the weight

of any possible world ω ∈ Ω can be only one of the form
∏m
i=1w(Ri)

ni · w(Ri)
|∆|arity(Ri)−ni for

some (n1, n2, . . . , nm) ∈ D. That means that there are only polynomially many, in ∆, different
weights of possible worlds and the WFOMC is their weighted sum. Specifically, the WFOMC
can be written as

WFOMC(Γ, w, w,∆) =
∑

(n1,...,nm)∈D

C(n1,...,nm)

m∏
i=1

(
w′(Ri)

w′′(Ri)

)ni

·
(
w′(Ri)

w′′(Ri)

)|∆|arity(Ri)−ni

(16)

where C(n1,...,nm) ∈ N. It is easy to see that C(n1,...,nm) ≤ 2m·|∆|
A

and ni ≤ |∆|A where
A = maxR∈R arity(R). Next we define

D′(n1,...,nm) = C(n1,...,nm)

m∏
i=1

w′(Ri)
ni · w′(Ri)|∆|

arity(Ri)−ni

D′′(n1,...,nm) =
m∏
i=1

w′′(Ri)
ni · w′′(Ri)|∆|

arity(Ri)−ni
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We have

logD′(n1,...,nm) = logC(n1,...,nm) +
m∑
i=1

ni logw′(Ri) +
m∑
i=1

(
|∆|arity(Ri) − ni

)
logw′(Ri)

≤ mA log 2 + 2m|∆|A logM

and similarly also

logD′′(n1,...,nm) =
m∑
i=1

ni logw′′(Ri) +
m∑
i=1

(
|∆|arity(Ri) − ni

)
logw′′(Ri) ≤ 2m|∆|A logM.

It follows that each of the summands in (16) can be represented as a fraction where both the
numerator and the denominator are represented using a polynomial number of bits in |∆| and in
logM .

Finally, WFOMC(Γ, w, w,∆) is a sum of |D| such fractions and |D| is also polynomial in |∆|.
The statement of the proposition follows from this.

C Additional Examples

C.1 Counting Anti-Involutive Functions

Here we provide another example in which we illustrate how the techniques presented in Section
6.1, where we introduced ∀∃=1-constraints, can be used to efficiently encode more complex
examples without much additional complexity Although the techniques that we developed in
the later sections (Section 6.2 and Section 7) are more general but we may often pay for this
generality by computational speed. For that we may sometimes need to slightly just these
techniques. We illustrate it on the case of anti-involutive functions.

We look at functions from M = {1, 2, . . . ,m} to N = {1, 2, . . . , n}. We say that a function
f : M → N is anti-involutive if f(f(x)) 6= x for all x ∈ M . We are interested in the problem
of counting all anti-involutive functions from M to N . For that we first define such functions
in first-order logic with counting quantifiers and cardinality constraints (which could also be
represented in this case using counting quantifiers):

|M | = m, (17)

∀x : M(x)⇒ (∃=1y : f(x, y)), (18)

∀x, y : ¬M(x)⇒ ¬f(x, y), (19)

∀x, y : ¬f(x, y) ∨ ¬f(y, x). (20)

We also assume that ∆ = N . The models of this theory on the domain ∆ must be anti-involutive
functions from a set of size m (rather than from the set M) to ∆. This means that to obtain the
number of anti-involutive functions from M to N , we will need to divide the model count that
we obtain by

(
n
m

)
.

First, we replace both (18) and (19) by:

|f | = m, (21)

∀x∃y : M(x)⇒ f(x, y). (22)
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Figure 4: Left: The MC-function for computing the number of anti-involutive functions when
n = 5. Right: The number of anti-involutive functions from {1, 2, . . . ,m} to {1, 2, . . . , 5}.
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Figure 5: Left: The MC-function for computing the number of anti-involutive functions when
n = 10. Right: The number of anti-involutive functions from {1, 2, . . . ,m} to {1, 2, . . . , 10}.

The correctness of this transformation follows from similar reasoning as we used in the proof
of Lemma 1. Now we have no more counting quantifiers, only first-order logic sentences and
cardinality constraints. Hence, all we need is to compute the MC-function MCΨ,Γ,∆(n), where
Ψ = (f,M) and Γ is a conjunction of (20) and (22), and then use it to count only over the
possible worlds that satisfy the cardinality constraints |f | = |M | = m.

We plotted the resulting MC-functions in the left panels of Figure 4 and Figure 5, for n = 5
and n = 10, respectively.8 In the right panels of these two figures, we plotted the numbers of
anti-involutive functions computed by our approach (blue circles). Note that each of these plots
corresponds to the diagonal of the respective MC-function (i.e. MCΨ,Γ,∆(m,m)) divided by

(
n
m

)
.

8It is interesting to note that there is a good reason why the MC-function is zero in the roughly bottom half of
the plots. Taking a closer look at the MC-function we can notice that it is zero for |f | >

(
n
2

)
. This is because of

the constraint ∀x∀y : ¬f(x, y) ∨ ¬f(y, x). Which implies that the cardinality of the relation f cannot exceed the
number of edges of the complete undirected graph on n vertices.
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As a sanity check we compared our results with the numbers given by the explicit formula

F (m,n) =

bm/2c∑
i=0

(−1)i(n− 1)m−2i

(
m

2i

)
(2i)!

2i(i!)
,

derived by Kuusisto and Lutz [2018]. We plotted it as red crosses. As expected, both methods
give the same results.

Alternatively, instead of replacing (18) and (19) by (21) and (22), we could have used the
transformation from Lemma 4. However, that would actually lead to a more complex encoding.
So, even though, we would still be able to solve the counting problem in time polynomial in the
size of the domain (i.e. in n), the exponent of the polynomial might be higher. This illustrates
the fact that there may often be more efficient transformations than those we used in our proofs.
Arguably, there seems to be quite some potential in investigating more efficient transformations
for certain cases.
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