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Abstract

This is an expository article aiming to introduce the reader to the underlying
mathematics and geometry of quantum error correction. Information stored on
quantum particles is subject to noise and interference from the environment.
Quantum error-correcting codes allow the negation of these effects in order
to successfully restore the original quantum information. We briefly describe
the necessary quantum mechanical background to be able to understand how
quantum error-correction works. We go on to construct quantum codes: firstly
qubit stabilizer codes, then qubit non-stabilizer codes, and finally codes with
a higher local dimension. We will delve into the geometry of these codes.
This allows one to deduce the parameters of the code efficiently, deduce the
inequivalence between codes that have the same parameters, and presents a
useful tool in deducing the feasibility of certain parameters. We also include
sections on quantum maximum distance separable codes and the quantum
MacWilliams identities.
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We have used various sources in the preparation of this article, principally Gottesman
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[6, 7], Glynn et al [5] and Ketkar et al [12]. The most original parts of these notes are
Section 4 and Section 6. Section 5 is based on Ketkar et al [12] but massaged so that
appears as a straightforward generalisation of the qubit case of Section 2. Although
the main results of Section 3 are from Glynn et al [5], in a deviation from their
approach we have chosen to prove these results without using the F4 trick, which we
do not consider until later in Section 5.5. The interested reader is referred to the
books by Sakurai [16] and Nielsen & Chuang [13] for standard treatments of quantum
mechanics and quantum information theory, to the book by Haroche & Raimond [9]
for a thorough treatment of current experiments in quantum mechanics, and to the
book by Aaronson [1] for further connections to mathematics, computer science,
physics, and philosophy. For those uninitiated in quantum mechanics or quantum
computing, we strongly recommend the delightful mnemotic essay on quantum
computing by Matuschak and Nielsen at https://quantum.country/qcvc.

1 Quantum codes

1.1 Introduction

A qubit is a two-state or two-level quantum-mechanical system. For example, the
intrinsic angular momentum (spin) of an electron is such a system. It can only
take two values when measured in arbitrary spatial direction, say by measuring the
electrons deflection when passing by an inhomogeneous magnetic field. The two
corresponding spin-states are commonly referred to as as “spin up” and “spin down”
states with respect to that direction. Another example is the polarization of light.
Here the two states can be taken to be vertically and horizontally polarized light;
another choice is light that is left circularly and right circularly polarized. In general,
a continuum of different photon polarizations are possible. Yet only two distinct
states are observed when e.g. putting beamsplitters or polarization filters in the path
of a light beam.

This raises the question: why are only ever two discrete values corresponding to
two discrete states observed, if electrons and photons can take on a continuum of
possible spin-directions or polarizations? The answer lies with what measurements
on quantum systems reveal. It turns out that for a two-state quantum-mechanical
system, any individual measurements can only ever reveal the answer to a binary
question. In other words, the measurement indicates in which of two mutually
exclusive states the qubit can be found after the measurement. Thus while qubits can
take on a continuity of states and a continuity of measurements can be performed,
only two-valued results can ever be obtained. Thus the notion of a qubit as a quantum
bit. We will not dwell on the strangeness of quantum mechanics further, the interested
reader is referred to discussions of the Stern-Gerlach and double-slit experiments
such as found in the books by Sakurai [16] and Haroche & Raimond [9] 1.

1For a visualisation of these experiments, see http://toutestquantique.fr/en/spin/ and http:

//toutestquantique.fr/en/duality/
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In mathematical terms a qubit is represented by a unit vector in C2. The spin up
and spin down (or any other choice of a pair of physically completely distinguishable
states) are represented by an orthonormal basis |0〉 and |1〉. The notation |0〉 is a

shorthand for the vector

[
1
0

]
and |1〉 stands for

[
0
1

]
. The two kets |0〉 and |1〉 are

also known as the computational basis vectors.

Consider now the state

|ψ〉 =
1√
2

(|0〉+ |1〉) =
1√
2

[
1
1

]
. (1)

While |ψ〉 ∈ C2 represents a physically unique state, it is, upon measurement in the
spin-up – spin-down direction, found in either of these two directions with equal
probability. Sometimes this situation is referred to as the system being “in two states
simultaneously”. A more accurate description is that the system is “in superposition
of spin-up and spin-down”, or in other words, the system is correctly described as a
linear combination of spin-up and spin-down.

A typical qubit reads

|α〉 = α0|0〉+ α1|1〉 .

As usual, z is the complex conjugate of the complex number z. When measured, the
qubit is with probability α0α0 found in state |0〉 (“spin-up”) and with probability
α1α1 found in state |1〉 (“spin down”). Since the sum of these two probabilities must
be one, we have that for a qubit

α0α0 + α1α1 = 1. (2)

The “ket” notation |α〉 is used for a column vector, whilst the “bra” notation 〈α| is
used for a row vector whose coordinates are the complex conjugates of the coordinates
of |α〉. Thus, the “bra” 〈α| is a linear form. The inner product or “bra-ket” on C2 is
defined as

〈α|β〉 = α0β0 + α1β1.

The normalisation condition in Eq. (2) then reads as 〈α|α〉 = 1, and qubits are
represented by complex vectors in C2 of unit length.

A unitary transformation of C2 is given by a non-singular 2 × 2 matrix U which
preserves this inner product, so

〈Uα|Uβ〉 = 〈α|β〉 ,

for all 〈α| and |β〉. The set of such unitaries forms the special unitary group SU(2).

In particular,

〈Uα|Uα〉 = 〈α|α〉 = 1.
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The matrix

U =

(
0 −i
i 0

)
is an example of a unitary transformation since

〈Uα|Uβ〉 = (−iα1 〈0|+ iα0 〈1|)(−iβ1 |0〉+ iβ0 |1〉)

= iα0(iβ0) +−iα1(−iβ1) = 〈α|β〉 .
Note that {|0〉 , |1〉} is an orthonormal basis, so

〈0|0〉 = 〈1|1〉 = 1

and

〈0|1〉 = 〈1|0〉 = 0.

The Hermitian conjugate M † of the linear operator M is the operator which satisfies

〈Mψ|φ〉 = 〈ψ|M †φ〉.

An operator M is Hermitian if M = M †. In matrix terms this is equivalent to the
conjugate transpose being the same as the matrix itself. For example,(

1 2 + i
2− i 2

)
defines a Hermitian operator on C2.

Let M be a linear operator defined on a complex space with orthonormal basis B.
The trace of M is defined as

tr(M) =
∑
|ψ〉∈B

〈ψ|M |ψ〉 .

We can easily prove that the trace of an operator does not depend on the basis
chosen. Firstly, note that

tr(MN) =
∑
|ψ〉∈B

〈ψ|MN |ψ〉 =
∑

|ψ〉,|φ〉∈B

〈ψ|M |φ〉 〈φ|N |ψ〉 .

∑
|ψ〉,|φ〉∈B

〈φ|N |ψ〉 〈ψ|M |φ〉 =
∑
|φ〉∈B

〈φ|NM |φ〉 = tr(NM),

hence

tr(PMP−1) = tr(PP−1M) = tr(M).

In matrix terms, the trace is equal to the sum of the elements on the principal
diagonal.
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The Pauli matrices,

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
,

are unitary linear transformations of C2 which form a basis for the space of 2× 2
matrices. In general, any error - also those which are not unitary - affecting a single
qubit can be written as a linear combination of the Pauli matrices. We sometimes
denote σ0, σx, σy, σz simply as I,X, Y, Z respectively. Note that the Pauli matrices
are both unitary and Hermitian. They are also mutually orthogonal under the
Hilbert-Schmidt inner product

〈A,B〉 = tr
(
A†B

)
.

A measurement or observable is represented by a hermitian operator. For example,
the spin-up – spin-down measurement σ̂z is represented by the Pauli matrix σz

2.

The outcome of an individual measurement can only take two values. These corre-
spond to the eigenvalues of σz which are +1 and −1. After the measurement, the
state is then found in the corresponding eigenstate: in |0〉 if the outcome +1 was
obtained, and in |1〉 if the outcome −1 was obtained. These occur with probabilities

p0 = |〈α|0〉|2

and
p1 = |〈α|1〉|2,

respectively.

An expectation value is obtained by the repeated measurement of identically prepared
spin particles. Measuring the spin value of σ̂z on a qubit

|α〉 = αo |0〉+ α1 |1〉

yields the expectation value

〈σ̂z〉 = 〈α|σz |α〉 = tr(σz |α〉〈α|) = α2
0 − α2

1.

One can check that this leads to the correct expectation value of

〈σ̂z〉 = p0 · (+1) + p1 · (−1) = α2
0 − α2

1 = 〈α|σz |α〉 .

The above treatment can be generalised. Denote by Â an observable which is
represented by a Hermitian matrix A. Let mi and |mi〉 be its eigenvalues and
corresponding eigenvectors. Measuring an observable Â on a quantum state |α〉

2This direction is commonly referred to as the “z-direction” in the x-y-z axis scheme.
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yields the values mi with probability pi = |〈α|mi〉|2. The state is found in the
corresponding eigenstates afterwards.

This leads to the expectation value

〈Â〉 = 〈α|A |α〉 = tr(A |α〉〈α|).

The description of multiple quantum systems takes place in the tensor product space
of the individual Hilbert spaces. Thus a system of n qubits is described in the n-fold
tensor product space of the one-qubit spaces. One arrives at the 2n-dimensional
Hilbert space (C2)⊗n = C2 ⊗ · · · ⊗ C2 (n times).

A density matrix is used to describe a classical probability distribution (also called
a statistical mixture or statistical ensemble) over quantum states. Suppose that
some source emits the quantum state |φi〉 with probability pi. One requires that
pi ≥ 0 and

∑
i pi = 1. From the discussion in the previous section, it is clear that

the measurement of an observable Â must yield an expectation value of

〈Â〉 =
∑
i

pi 〈φi|A |φi〉 .

By linearity, this can be rewritten as

〈Â〉 = tr

(
A
∑
i

pi |φi〉〈φi|
)
.

Indeed the operator

ρ =
r∑
i=1

pi |φi〉〈φi|

captures all there is to know about a quantum system and ρ is known as the density
matrix describing it.

For a complex matrix ρ to represent a quantum state, one requires ρ = ρ†, 〈ψ| ρ |ψ〉 ≥ 0
for all |ψ〉 (positive-semidefinite) and tr(ρ) = 1. Comparing with classical probability
theory, this corresponds to a real valued, non-negative, and normalized probability
distribution. The density matrix formalism can indeed be seen as a generalization of
classical probability theory and quantum mechanics can be taken to be the study
of the cone formed by complex positive-semidefinite matrices, and transformations
thereof. This is an analogy to the probability simplex encountered in classical
probability theory.

Now we can state what we left out in preceding discussion about measurements: con-
sider the case when some eigenvalues of the measurement operator A =

∑
mi |mi〉〈mi|

are equal, i.e. the spectrum of A is degenerate. What is the probability for obtaining
outcome i and what is the post-measurement state? Let Pj be the projector onto the
eigenspace with eigenvalue mj of A. Then a measurement yields outcome mj with
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probability pj = tr(Pjρ) and the density operator immediately after the measurement
reads

PjρPj
tr(Pjρ)

.

The time evolution of an isolated qubit is given by a unitary operator in SU(2).

|α〉 7→ U(t) |α〉 .

On a closed quantum system of n qubits, the time evolution is given by unitary
operators on Hsystem = (C2)⊗n. In case of a quantum system interacting with its
environment such unitaries can also act on a larger system

Hsystem ⊗Henvironment.

A unitary on such a larger system can on Hsystem be represented in the (non-unique)
operator-sum decomposition as

|α〉 7−→
∑
i

Ki |α〉〈α|K†i with the constraint
∑
i

K†iKi = 1.

Throughout 1 will denote the identity map.

More generally, this reads for a density matrix as

ρ 7−→
∑
i

KiρK
†
i with the constraint

∑
i

K†iKi = 1.

The above map is also known as a quantum channel or completely positive map and
represents the most general form of physical change a quantum state can undergo.
In the case of a classical (conventional) bit, an error is represented by the bit-flip
0� 1. For qubits, we regard any non-identity unitary transformation or non-identity
quantum channel as an error. We can decompose any unitary or quantum channel
in terms of a matrix basis.

A good choice is the Pauli group: it is generated by all possible tensor products of
the 4 Pauli matrices, together with phases ±1 or ±i. Observe that σx, σz and σy
anti-commute. That is,

σxσy = −σyσx , σxσz = −σzσx , σyσz = −σzσy

and that
σxσy = iσz , σyσz = iσx , σzσx = iσy .

Thus, the Pauli group Pn is a non-abelian group consisting of the 4n tensor products
of σ0, σx, σz and σy, which together with the four phases is a group of size 4n+1.

A quantum error-correcting code is a linear subspace Q of (C2)
⊗n

into which a number
of logical qubits can be encoded such that all errors of a certain type can be detected
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and/or corrected. The question we ask is thus: given a noisy channel E , does there
exist a recovery channel R, such that every density matrix ρ, for which the image
of ρ is contained in Q, can be recovered? In other words, for all density matrices ρ
with spectral decomposition

ρ =
∑
i

pi |φi〉 〈φi| ,

where |φi〉 ∈ Q, we require that

R ◦ E(ρ) = ρ.

1.2 A 1-qubit error-correcting quantum code

A classical code is a subset of An, where A is a finite set called the alphabet and n
is the length of the code. The repetition code is the simplest type of code in which
each element a ∈ A is encoded as (a, a, . . . , a), an n-tuple of a’s. For example, the
binary repetition code of length 3 is {(000), (111)} and we encode

0 7→ 000

and

1 7→ 111.

This encoding allows us to correct up to one error by taking a majority decision. In
other words we decode the codewords

000, 001, 010, 100 as 0

and

111, 011, 110, 101 as 1.

Can we apply the same strategy to obtain a quantum code? Not quite. A quantum
repetition code (on three qubits for example) does not exist, since we cannot map

|α〉 7→ |α〉 ⊗ |α〉 ⊗ |α〉 .

It would contradict the following (no-cloning) theorem.

Theorem 1.1 (no-cloning) There is no linear map which takes |α〉 to |α〉 ⊗ |α〉 for
all |α〉 ∈ (C2)

⊗n
.

Proof. Suppose there was such a map. Then

|α〉 7→ |α〉 ⊗ |α〉 ,
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|β〉 7→ |β〉 ⊗ |β〉
Such a map however is not linear, as

|α〉+ |β〉 7→ (|α〉+ |β〉)⊗ (|α〉+ |β〉)

6= |α〉 ⊗ |α〉+ |β〉 ⊗ |β〉 .
�

However, we could try the following repetition-type code

α0 |0〉+ α1 |1〉 7→ α0 |000〉+ α1 |111〉 .

Above and from now on, we simplify notation |0〉 ⊗ |0〉 as |00〉 , etc.

Suppose now a “bit-flip” σx happens on the second position. This gives

σ0 ⊗ σx ⊗ σ0
(
α0 |000〉+ α1 |111〉

)
= α0 |010〉+ α1 |101〉 .

One can correct such an error by majority decision,

α0 |010〉+ α1 |101〉 decodes as α0 |000〉+ α1 |111〉 .

One needs a measurement that indicates exactly where the bit-flip has occurred.
This can be done, as will be explained in Example 2.8.

However, we cannot correct a single σz error as

α0 |000〉 − α1 |111〉 ,

is also a possible state of our code.

Shor [17] was the first to introduce a quantum code which can correct any single-qubit
error. He circumvented this apparent problem by introducing a majority decision on
the signs to correct a σz error.

Example 1.2 (Shor code)

The coding space for the Shor code is (C2)⊗9 and a qubit is encoded as

|α〉 7→ |αL〉

according to

|0L〉 = (|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

and
|1L〉 = (|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).

10



Hence, by linearity,

α0 |0〉+ α1 |1〉 7→ α0(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)
+ α1(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).

Suppose that we have a σx error (bit-flip) occuring on the 4-th bit. Then the α0 term
would change to

(|000〉+ |111〉)⊗ (|100〉+ |011〉)⊗ (|000〉+ |111〉)

which we would detect and correct by taking the majority decision as with the classical
error-correcting code, so we decode

|100〉+ |011〉 as |000〉+ |111〉 .

Now suppose we have σz error (phase error) occuring on the 7-th bit. Then the α0

term would be

(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉 − |111〉)

which we would detect and correct by taking the majority decision on the signs.

Since σy = iσxσz, we can also correct σy errors since the two decisions we made
above are independent of each other. Note that the scalar i does not play a role in
the decoding.

1.3 The orthogonal projection onto a subspace

Let Q be a subspace of (C2)
⊗n

and let Q⊥ be its orthogonal subspace with respect to
the standard inner product defined on (C2)

⊗n ∼= C2n . Any vector |ψ〉 can be written
(uniquely) as the sum of a vector P |ψ〉 ∈ Q and P⊥ |ψ〉 ∈ Q⊥. The map

|ψ〉 → P |ψ〉

is a linear map, called the orthogonal projection onto Q.

Lemma 1.3 If {|ψ1〉 , |ψ2〉 , . . . , |ψk〉} is an orthonormal basis for Q then

P =

k∑
i=1

|ψi〉 〈ψi| .

Proof. For any j 6 k,

P |ψj〉 =

k∑
i=1

|ψi〉 〈ψi|ψj〉 = |ψj〉 ,
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so P |ψ〉 = |ψ〉 for all |ψ〉 ∈ Q.

Furthermore,

P |ψ〉 =

k∑
i=1

|ψi〉 〈ψi|ψ〉 = 0

for all |ψ〉 ∈ Q⊥. �

Clearly, by definition, P 2 = P . By Lemma 1.3, P is Hermitian, since it is the sum of
Hermitian operators. The following lemma implies that this is enough to characterise
P .

Lemma 1.4 If P is a linear Hermitian operator for which P 2 = P and whose image
is Q then P is the orthogonal projection onto Q.

Proof. The operator P is Hermitian, so it is diagonalisable with real eigenvalues.
Since P 2 = P , its eigenvalues are 0 and 1. By the spectral decomposition theorem,

P =

k∑
i=1

|ψi〉 〈ψi| ,

where {|ψ1〉 , |ψ2〉 , . . . , |ψk〉} is an orthonormal basis for its eigenspace with eigenvalue
1. Since

P |ψj〉 = |ψj〉
for all j = 1, . . . , k, the eigenspace with eigenvalue 1 contains im(P ), the image of P .

The eigenspace with eigenvalue 0 is im(P )⊥. Thus, P is the orthogonal projection
onto im(P ). �

1.4 Error-detection and correction

For the reliable transmission of an (unknown) quantum system over a noisy channel,
we are now faced with three major challenges.

1. Measurement disturbance. As explained in Section 1.1, measurements induce an
“update” of the state that is measured. Thus, when obtaining error syndromes
in order to understand what error has occurred, the underlying quantum state
may be altered.

2. Continuous set of errors. The set of errors is continuous and not discrete. How
can we distinguish and correct for an error set this large?

3. No-cloning. Unknown quantum states cannot be copied. Thus an approach of
adding redundancy as done for a classical repetition code is bound to fail.

12



How can these challenges be overcome? First, the syndrome measurements are
chosen such that they stabilise the set of quantum states that consist of the code. In
this way, all code states remain unchanged when extracting the syndromes, while
erroneous states are changed in reversible fashion. Second, the linearity of quantum
mechanics implies that when some discrete set of errors can be corrected, then so
can be errors which lie in their span. We shall not show a proof of this here, but one
can be found in [6, Theorem 2] and [4]. Lastly, the encoded quantum information is
distributed amongst many systems and thus “hidden” from any noisy channel. In
this way the state does not have to be copied and no redundancy is added. This not
only gives rise to the below Knill-Laflamme conditions on error correction, but also
provides an information theoretic interpretation of quantum error-correction.

In quantum error-correction one is faced with the following task. Let

N (·) =
∑
µ

Eµ(·)E†µ, where
∑
µ

E†µEµ = 1,

be a quantum channel. Given the channel N , for what set of states Q does there
exist a recovery channel R such that R ◦N (ρ) = ρ for all

ρ =
∑
i

pi |φi〉 〈φi| ,

where |φi〉 ∈ Q?

It turns out that the set of correctable states form subspaces. The following theorem
gives a necessary and sufficient condition for a recovery channel to exist.

Theorem 1.5 (Knill-Laflamme conditions) Let Q be a subspace of (Cd)⊗n. The

channel N (·) =
∑

µEµ(·)E†µ can be corrected for all ρ ∈ Q if and only if for all
|φ〉 , |ψ〉 in an orthogonal basis for Q and errors Eµ, Eν

〈φ|E†µEν |ψ〉 = cµν 〈φ|ψ〉 ,
for some cµν ∈ C.

This condition implies the following two essential properties.
1. Orthogonal code states remain orthogonal under the action of errors,

if 〈φ|ψ〉 = 0 then 〈φ|E†µEν |ψ〉 = 0,

and thus orthogonal codewords remain orthogonal under the noise.
2. The expectation value of E†µEν is constant when |φ〉 ranges over the set of code
states. In other words, for all quantum states |φ〉 , |ψ〉 ∈ Q,

tr
[
|φ〉〈φ|E†µEν

]
= 〈φ|E†µEν |φ〉 = 〈ψ|E†µEν |ψ〉 = cµν ,

In this way, the encoded quantum information is “hidden” from the noisy channel.

Lastly, a set of errors E is said to be detectable if and only if all errors E†µEν with
Eµ, Eν ∈ E are correctable.
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1.5 Error weights

We define the weight wt(M) of an operator M in the Pauli group Pn to be the
number of tensor factors which are not equal to σ0. For example,

M = σx ⊗ σz ⊗ σ0 ⊗ σy ⊗ σ0
has weight three.

In classical codes the distance between any two elements of An is the number of
coordinates in which they differ. If the minimum distance of a code C is at least 2t+1
then C is a t-error correcting code (i.e. we can correct errors if up to t coordinates
of a codeword change). In quantum codes the same holds, if a quantum code can
detect all errors of weight less than 2t+ 1 then it is a t-error correcting code.

2 Qubit stabilizer codes

2.1 Definition and examples

Most quantum codes presently known are stabilizer codes, and their usefulness lies
partially in the fact that their connection with classical codes allows for them to
be described in an efficient way. Here, we will mainly deal with stabilizer codes,
although we will also see examples of quantum codes in Section 4 which are not
stabilizer codes.

A qubit stabilizer code Q(S) is the joint eigenspace with eigenvalue 1 of the elements
of an abelian subgroup S of Pn not containing −1. The subgroup S is also known
as the stabilizer.

We will often define S as being generated by a set of n− k commuting independent
generators M1, . . . ,Mn−k of Pn. By independent, we mean that M1, . . . ,Mn−k
generate S,

〈M1, . . . ,Mn−k〉 =
{∏

Mα1
1 · · ·M

αn−k

n−k
∣∣α1, . . . , αn−k ∈ {0, 1}

}
= S

while any smaller subset does not. Thus, the set of Mi’s are called generators.

It is important note that we require −1 6∈ S, since otherwise Q(S) = {0}. We also
assume that there is no coordinate in which every element of S has a σ0 in that
coordinate, as we could simply delete this coordinate and this would not affect the
error correcting capabilities of the code.

Note that the phase of any element in S is ±1, since if

M = ±iσ1 ⊗ · · · ⊗ σn
then

M2 = −1 ∈ S,
which, as mentioned above, implies that Q(S) = {0}.
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Example 2.1 Suppose n = 2 and S is generated by a single Pauli operator M =
σx ⊗ σz.
Let |α〉 ∈ (C2)⊗2. Then |α〉 can be written as

|α〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

for some αij ∈ C. Now,

M |α〉 = α00 |10〉 − α01 |11〉+ α10 |00〉 − α11 |01〉

Thus, |α〉 is in the eigenspace of M with eigenvalue 1 if and only if

α00 = α10, α01 = −α11.

We note that the dimension of Q(S) is 2.

We often use the short-hand notation σ0 = I, σx = X, etc.., so in the previous
example we might write M = XZ.

Example 2.2 Suppose n = 3 and S is generated by M1,M2,M3, where

M1 = σ0 ⊗ σx ⊗ σz
M2 = σ0 ⊗ σy ⊗ σx
M3 = σx ⊗ σz ⊗ σy .

In the shorthand notation we would write that S is defined by

M1 = I X Z
M2 = I Y X
M3 = X Z Y

.

Observe that MiMj = MjMi for all i and j ∈ {1, 2, 3}. For example

M2M1 = (σ0 ⊗ σy ⊗ σx)(σ0 ⊗ σx ⊗ σz) = σ0 ⊗ (−iσz)⊗ (−iσy) = −σ0 ⊗ σz ⊗ σy

and

M1M2 = (σ0 ⊗ σx ⊗ σz)(σ0 ⊗ σy ⊗ σx) = σ0 ⊗ iσz ⊗ iσy = −σ0 ⊗ σz ⊗ σy.

This can be checked quickly by verifying that different Pauli matrices {σx, σy, σz}
coincide in the same position in Mi and Mj (i 6= j) an even number of times.

To find a basis for the stabilizer code, suppose that

|α〉 =
∑
ijk

αijk |ijk〉 .
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is in the code space, i.e. that α is in the +1-eigenspace of all Mi.

Since

M1 |α〉 =
1∑
j=0

(αj00 |j10〉 − αj01 |j11〉+ αj10 |j00〉 − αj11 |j01〉)

We have that |α〉 is in the +1-eigenspace M̃1 = Im(I +M1) of M1 if and only if

αj00 = αj10 and αj01 = −αj11.

Similarly,

M2 |α〉 = i
1∑
j=0

(αj00 |j11〉+ αj01 |j10〉 − αj10 |j01〉 − αj11 |j00〉)

Thus, |α〉 is in the +1-eigenspace M̃2 if and only if

iαj00 = αj11 and αj01 = −iαj10.

Finally,

M3 |α〉 = i(α000 |101〉 − α001 |100〉 − α010 |111〉+ α011 |110〉
+α100 |001〉 − α101 |000〉 − α110 |011〉+ α111 |010〉) ,

so |α〉 is in the +1-eigenspace M̃3 if and only if

iα000 = α101, α100 = −iα001, α111 = −iα010, α110 = iα011.

Thus,
Q(S) = M̃1 ∩ M̃2 ∩ M̃3

is the one-dimensional subspace spanned by

|000〉 − i |001〉+ |010〉+ i |011〉 − |100〉+ i |101〉 − |110〉 − i |111〉 .

In fact, we seldom actually calculate a basis as for Q(S) as it is not necessary in
practise. We have only calculated this previous example so one gets a feel of how
laborious this is even for small parameters. From a practical point of view it is
enough to know the orthogonal projection P for the subspace Q.

2.2 The dimension and minimum distance of a stabilizer code

Let S be an abelian subgroup of Pn. Let Q(S) be the subspace defined as the joint
eigenspace of eigenvalue 1 of the elements of S. Let P = P (S) be the orthogonal
projection onto the subspace Q(S).
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Lemma 2.3 The orthogonal projection is

P =
1

|S|
∑
E∈S

E.

Proof. Since S is an abelian subgroup, one has

MP = PM = P

for all M ∈ S.

Suppose that |ψ〉 ∈ Q(S). Then, P |ψ〉 = |ψ〉 and therefore |ψ〉 ∈ im(P ).

Vice versa, if |ψ〉 ∈ im(P ) then, for all M ∈ S,

M |ψ〉 = MP |φ〉 = P |φ〉 = |ψ〉 ,

so |ψ〉 ∈ Q(S). Thus, Q(S) = im(P ).

Since E† = E for all E ∈ Pn, we have that P † = P . Moreover,

P 2 = P
1

|S|
∑
M∈S

M =
1

|S|
∑
M∈S

PM =
1

|S|
∑
M∈S

M = P.

By Lemma 1.4, P = P (S).

�

For the proof of the next theorem, it is worth noting that

tr(σ1 ⊗ · · · ⊗ σn) = tr(σ1) · · · tr(σn).

Thus, for all E ∈ Pn with phase ±1, where E 6= ±1, tr(E) = 0 and that tr(1) = 2n.

Theorem 2.4 The stabilizer code Q(S) which is the joint +1-eigenspace of an
abelian subgroup S generated by n− k independent elements has dimension 2k.

Proof. By Lemma 2.3, the orthogonal projection onto Q(S) is

P =
1

|S|
∑
M∈S

M.

The image of P is its eigenspace of eigenvalue one and also Q(S).

The operator P is Hermitian and thus diagonalisable. Since P 2 = P its eigenvalues
are 0 and 1. The trace of P is equal to the sum of its eigenvalues, which in the case
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of P is the dimension of the eigenspace of eigenvalue one. Therefore, the dimension
of Q(S) is equal to the trace of P (S).

It only remains to note that

tr(M) = 0

for all M ∈ Pn with the exception of M = 1, in which case tr(1) = 2n. Thus,
dimQ = 2n/|S| = 2k.

�

Having ascertained the dimension of a stabilizer code, we go on to determine its
minimum distance.

Let Centraliser(S) denote the set of elements of Pn that commute with all elements
of S, i.e. the centraliser of S in the group Pn.

Lemma 2.5 E is an undetectable error for Q(S) if and only if E ∈ Centraliser(S) \ S.

Proof. We proceed by contradiction.

(⇒) Suppose that E is undetectable but that E 6∈ Centraliser(S) \ S.

Since any two elements of Pn either commute or anti-commute, E 6∈ Centraliser(S)
implies there is a M ∈ S such that

EM = −ME.

Take any |ψ〉 , |φ〉 ∈ Q(S) with 〈ψ|φ〉 = 0. Then

〈ψ|E |φ〉 = 〈ψ|ME |φ〉 = −〈ψ|EM |φ〉 = −〈ψ|E |φ〉 ,

which implies 〈ψ|E |φ〉 = 0. Hence, by Theorem 1.5, E is detectable, a contradiction.

(⇐) Suppose that E is detectable with E ∈ Centraliser(S)\S. Let |ψ〉 ∈ Q(S). Since
E ∈ Centraliser(S),

ME |ψ〉 = EM |ψ〉 = E |ψ〉
holds for all M ∈ S, which implies that E |ψ〉 ∈ Q.

Extend {|ψ〉} to an orthonormal basis B for Q. Since E is detectable,

〈φ|E |ψ〉 = 0

for all |φ〉 ∈ B \ {|ψ〉}. This implies that E |ψ〉 is in the subspace (B \ {|ψ〉})⊥. Since
this subspace has as a basis {|ψ〉},

E |ψ〉 = λψ |ψ〉 ,
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for some λψ ∈ C. Hence, |ψ〉 is an eigenvector of E.

By Theorem 1.5,

〈φ|E |φ〉 = λE ,

for all |φ〉 ∈ B. Since 〈ψ|ψ〉 = 1, this implies that λψ = λE .

The same argument as made above for |ψ〉 holds for all |φ〉 ∈ Q(S). Thus, for all
|φ〉 ∈ Q(S),

E |φ〉 = λE |φ〉 .

Since E 6∈ S, λE 6= 1.

The subgroup generated by S and λ−1E E defines a smaller stabilizer code, so there is
a |ψ〉 ∈ Q such that

λ−1E E |ψ〉 6= |ψ〉 ,

contradicting the above. Hence, E is not detectable. �

In the case that k = 0, we have that Q(S) is a 1-dimensional subspace so cannot be
used to store quantum information and all errors are correctable according to the
definition. However, we do not rule out considering such codes since for any proper
subgroup S′ of S, the code Q(S′) will be of interest. Since the elements of S \ S′ will
be in Centraliser(S′) \ S′, Theorem 2.6 indicates that it makes sense to define the
minimum distance of Q(S) to be equal to the minimum weight of the non-identity
elements of S. These codes are called self-dual, for reasons that will become clear,
see Theorem 2.12.

Theorem 2.6 If k > 1 then the minimum distance of the 2k-dimensional stabilizer
code Q(S) with stabilizer group S is equal to the minimum weight of the errors in
Centraliser(S) \ S.

Proof. By Lemma 2.5, Q(S) can detect all errors which are not elements of
Centraliser(S) \ S. In particular, it can also detect all errors of weight less than the
minimum weight of an error in Centraliser(S) \ S. �

If there are elements of S whose weight is less than the minimum distance of Q(S)
then the code is called impure. If this is not the case then the code is called pure.

We use the shorthand notation ((n,K, d)) to denote a quantum code of (C2)
⊗n

of
dimension K and minimum distance d. The notation [[n, k, d]] denotes a quantum
code of dimension 2k. If it is a stabilizer code Q(S) then d is equal to the minimum
weight of the elements in Centraliser(S) \ S.

We now rewrite the Shor code from Example 1.2 as a stabilizer code.
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Example 2.7 (A [[9, 1, 3]] code) Let S be the subgroup generated by the following
elements of P9.

M1 = σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M2 = σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M3 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0
M4 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0 ⊗ σ0 ⊗ σ0
M5 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz ⊗ σ0
M6 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σ0 ⊗ σz ⊗ σz
M7 = σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σ0 ⊗ σ0 ⊗ σ0
M8 = σ0 ⊗ σ0 ⊗ σ0 ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx ⊗ σx

In shorthand notation this would be written in the following way.

MI = Z Z I I I I I I I
M2 = I Z Z I I I I I I
M3 = I I I Z Z I I I I
M4 = I I I I Z Z I I I
M5 = I I I I I I Z Z I
M6 = I I I I I I I Z Z
M7 = X X X X X X I I I
M8 = I I I X X X X X X

One can check that Mi and Mj commute for any i and j.

Suppose that E is an error of weight at most 2. We want to prove that E ∈ S or E
does not commute with some Mi.

We proceed with a case-by-case analysis.

If E has weight one and a single X or Y then it does not commute with one of
M1, . . . ,M6. If E has weight one and a single Z then it does not commute with one
of M7,M8.

If E has weight two which are both X then, without loss of generality, suppose there
is a X in the first system. Then E must have a X or Y in the second system so that
it commutes with M1. But then it must also have a X or Z in the third system so
that it commutes with M2, contradicting the fact that it has weight two.

We leave the case-by-case analysis as an exercise but conclude that the only errors of
weight two which commute with all the Mi are precisely those which are in S, i.e.
M1, . . . ,M6,M1M2,M3M4,M5M6.

We will prove that the minimum distance of this code is 3 in a very simple manner
once we have determined its geometry.

An important observation here is that the Shor code is impure since S contains errors
of weight 2, whereas the minimum distance is 3.
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We can store the same amount of information on fewer qubits with the following
code.

Example 2.8 (A [[5, 1, 3]] code) Let S be the subgroup generated by the following
elements of P5.

MI = X Z Z I X
M2 = Z X I Z X
M3 = I Z X Z Y
M4 = Z I Z X Y

This matrix makes the task of checking that MiMj = MjMi fairly quick. We will
prove that the minimum distance is 3 by considering its geometry in Example 3.15.

Let us see how we can use this example to correct errors of weight one. We perform
measurements M̂i on E |φ〉. This will return a value ±1 (the eigenvalues of Mi).
This gives us a “syndrome”, a 4-tuple of signs for each error E. These are given in
the following tables.

M1 M2 M3 M4

XIIII + − + −
IXIII − + − +
IIXII − + + −
IIIXI + − − +
IIIIX + + − −

M1 M2 M3 M4

ZIIII − + + +
IZIII + − + +
IIZII + + − +
IIIZI + + + −
IIIIZ − − − −

M1 M2 M3 M4

Y IIII − − + −
IY III − − − +
IIY II − + − −
IIIY I + − − −
IIIIY − − + +

Since each syndrome is distinct we can use this look-up table to identify the error and
correct it. An important observation here is that when we perform the measurement
M̂i, only the sign of the state can possibly change. Since

MiE |φ〉 = ±EMi |φ〉 = ±E |φ〉 ,

E |φ〉 is an eigenvector of Mi, so after measuring we will be in the state ±E |φ〉.
Thus, we can measure consecutively each measurement M̂i, for i = 1, . . . , n− k.

2.3 Qubit stabilizer codes as binary linear codes

In this section we introduce a connection between qubit stabilizer codes and classical
binary linear codes. We will go on to exploit this connection to construct qubit
quantum codes and then to realise a more general connection between stabilizer
codes and classical codes.

Let Fq denote the finite field with q elements. Consider the map

τ : {σ0, σx, σy, σz} → F2
2
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defined by the following table.

τ :



σ0 7→ (0|0)

σx 7→ (1|0)

σz 7→ (0|1)

σy 7→ (1|1)

We extend the map τ to Pn by applying τ to an element of Pn coordinatewise, where
the image of the j-th position of M is the j and (j + n)-th coordinate in τ(M). For
example,

τ(σx ⊗ σy ⊗ σ0 ⊗ σx ⊗ σz) = (11010 | 01001).

We draw the line between the n and (n+ 1)-st coordinate, for readability sake. We
ignore the phase, so τ(λM) = τ(M) for all λ ∈ {±1,±i}. Effectively, this defines the
domain of the map τ as Pn/{±1,±i}.

Lemma 2.9 For all M,N ∈ Pn/{±1,±i},

τ(MN) = τ(M) + τ(N).

Proof. Observe that the multiplicative structure up to a phase factor (for example
we ignore the i in σy = iσxσz) is isomorphic to the additive structure of F2

2. �

We have established a bijection between the elements of Pn/{±1,±i} and F2n
2 . The

above lemma implies that a subgroup S of Pn is in bijective correspondence with a
subspace of F2n

2 . We now wish to ascertain what property this subspace has if S is a
subgroup generated by commuting elements of Pn.

To this end, we define an alternating form for u,w ∈ F2n
2 ,

(u,w)a =
n∑
j=1

(ujwj+n − uj+nwj).

Lemma 2.10 For M,N ∈ Pn/{±1,±i},

MN = NM if and only if (τ(M), τ(N))a = 0.

Proof. Suppose u = τ(M) and w = τ(N). One can check directly that

ujwj+n − wjuj+n = 0

if and only if the Pauli matrices in the j-th position of M and N commute and is ±1
otherwise.
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The operators M and N commute if and only if there are an even number of positions
where the Pauli-matrices do not commute. This is the case if and only if there are
an even number of coordinates j for which

ujwj+n − wjuj+n = 1,

a condition equivalent to (τ(M), τ(N))a = 0. �

The symplectic weight of a vector v ∈ F2n
2 is defined as

|{i ∈ {1, . . . , n} | (vi, vi+n) 6= (0, 0)}|.

Lemma 2.11 The weight of M ∈ Pn is equal to the symplectic weight of τ(M).

Proof. We have that n−wt(M) is equal to the number of σ0’s in M which is equal
to n minus the symplectic weight of τ(M). �

For a subspace C 6 F2n
2 , we define ⊥a as

C⊥a = {u ∈ F2n
2 | (u,w)a = 0, for all w ∈ C}.

Theorem 2.12 S is a subgroup of Pn generated by n − k independent mutually
commuting elements if and only if C = τ(S) is a (n− k)-dimensional subspace of
F2n
2 for which C 6 C⊥a . If k 6= 0 then the minimum distance of Q(S) is equal to the

minimum symplectic weight of the elements of C⊥a \ C. If k = 0 then the minimum
distance of Q(S) is equal to the minimum symplectic weight of the non-zero elements
of C = C⊥a.

Proof. The fact that C = τ(S) is contained in C⊥a follows from Lemma 2.9 and
Lemma 2.10.

By Theorem 2.6, for k 6= 0, the minimum distance is equal to the minimum weight
of the images of the elements of Centraliser(S) under τ , which are not elements of
the image of S. Since C = τ(S) and C⊥a = τ(Centraliser(S)), the theorem follows
for k 6= 0.

For k = 0, by definition, the minimum distance is equal to the minimum weight of
the images of the elements of S under τ , which are the non-zero elements of C.
�

We can construct a generator matrix G(S) for C = τ(S) by taking the (n− k)× 2n
matrix whose i-th row is τ(Mi).

Lemma 2.13 S is a subgroup of Pn generated by n− k independent elements if and
only if the matrix G(S) has rank n− k.
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Proof. There is a there is a proper subset J ⊆ {1, . . . , n− k} such that∑
j∈J

τ(Mj) = 0,

if and only if the rank of G(S) is not n− k. By Lemma 2.9, this is if and only if∏
j∈J

Mj = 1.

�

The following table makes for a useful reference.

Pn the Pauli group, given by n-fold tensor products of Pauli matrices
σ0, σx, σy, σz with phases {±i,±1}.

M1, . . . ,Mn−k the generators, a set of independent elements of Pn that generate S.
S the stabilizer, an abelian subgroup of Pn.
Q(S) the quantum code obtained as the joint intersection

of the eigenspaces of eigenvalue 1 of the operators in S.
Centraliser(S) the centraliser of S in Pn
C the subspace of F2n

2 obtained from the image of S under τ .
C⊥a the subspace of F2n

2 obtained as the image of Centraliser(S) under τ .
G(S) the (n− k)× 2n generator matrix for C whose i-th row is τ(Mi).

Example 2.14 (A [[5, 0, 3]] stabilizer code).

Let S be the subgroup of P5 generated by the following pairwise commuting elements.

M1 = X Z I I Z
M2 = Z X Z I I
M3 = I Z X Z I
M4 = I I Z X Z
M5 = Z I I Z X

The matrix G(S) for this code is
1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0


One can check directly that (u, v)a = 0 for any two rows u, v of G(S). Alternatively,
it is enough to observe that A is symmetric and that

(I |A)(
At

I
) = At +A = A+A = 0.
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We will prove in Example 3.15 that the minimum distance of Q(S) is 3.

Observe that any n×n symmetric matrix A gives a [[n, 0, d]] code, where G(S) = (I | A).
The difficulty lies in choosing A so that the symplectic weight of the code generated
by G (and hence d) is large.

3 The geometry of additive, linear and stabilizer codes

3.1 Additive and linear codes over a finite field

We recall that a code of length n is a subset C of An, where A is a finite set called
the alphabet. An element of C is called a codeword.

The distance between any two elements of An is the number of coordinates in which
they differ. The minimum distance of C is the minimum distance between any two
codewords of C.

Suppose A is a finite abelian group with identity element 0. If u + v ∈ C for all
u, v ∈ C then we say that C is additive.

The weight of an element (codeword) u of an additive code is the number of non-zero
coordinates that it has.

Lemma 3.1 If C is an additive code over an alphabet which is a finite abelian group
then the minimum distance d of C is equal to the minimum non-zero weight w.

Proof. Summing u ∈ C enough times will eventually give the n-tuple of all zeros,
hence 0 = (0, . . . , 0) ∈ C. Note that this implies −u ∈ C too.

Suppose that u is a codeword of minimum weight w. Then since 0 ∈ C, we have
w > d.

Suppose that u and v are two codewords which differ in exactly d coordinates. Then
u− v is a codeword in C of weight d and so d > w. �

Suppose that A = Fq, the finite field with q = ph elements, p prime. If C is additive
then λu ∈ C for all λ ∈ Fp, so C is a subspace over Fp. If C has the additional
property that λu ∈ C for all λ in Fq then we say C is linear. A linear code of length
n is a subspace of Fnq .

We use the notation (n,K, d)q code to denote a code over an alphabet of size q of
length n, size K and minimum distance d.

The notation [n, k, d]q code denotes a k-dimensional linear code over Fq of length n
and minimum distance d.

3.2 The geometry of linear codes

We will begin our geometrical study of codes by considering linear codes over Fq.
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Let G be a k×n matrix. We recall that when at is a row vector in Fkq , the expression
atG yields a linear combination of the rows of G. Likewise, when b is a column vector
in Fnq , the expression Gb yields a linear combination of the columns of G.

Let C be a k-dimensional linear code over Fq of length n, in other words, C is
a k-dimensional subspace of Fnq . We describe C by a k × n matrix G whose row
space is C, i.e. the rows of G are a basis for C. Thus, for each u ∈ C, there is an
at = (a1, . . . , ak) ∈ Fkq such that

u = atG.

In other words, the generator matrix G acts as a linear encoding matrix for the
message a, yielding the codeword u ready to be sent over a noisy channel.

The geometry of C is seen by considering the set of columns of the generator matrix G.
Let X be the set of columns of G, so X is a (possibly multi-)set of n vectors of Fkq .
The codeword u = atG has a zero in its i-th coordinate if and only if

a · z = a1z1 + · · ·+ akzk = 0

where z = (z1, . . . , zk) is the i-th column of G. This property is unaffected if we
replace z by a non-zero scalar multiple of z, so it is natural to consider X as a
(possibly multi-)set of n points of PG(k − 1, q), the (k − 1)-dimensional projective
space over Fq.

The projective space PG(k− 1, q) is obtained from the vector space Fkq by identifying
the vectors which are scalar multiples of each other. In this way, the points of
PG(k− 1, q) are the one-dimensional subspaces of Fkq and, more generally, the (i− 1)-

dimensional subspaces of PG(k − 1, q) are the i-dimensional subspaces of Fkq . The
lines, planes and hyperplanes of PG(k−1, q) are the 1-dimensional, 2-dimensional and
co-dimension 1 subspaces, respectively. Note that in PG(k − 1, q) familiar geometric
properties hold. For example, two points are joined by a line; the intersection of
two planes in a three-dimensional subspace is a line. If a point x is contained in a
subspace π we say that x is incident with π. If two subspaces π1 and π2 have an
empty intersection (i.e. their corresponding subspaces in Fkq intersect in the zero
vector), then we say that they are skew.

A set of points x1, . . . , xr of a projective space are independent if they span an
(r − 1)-dimensional (projective) subspace. If they are not independent then they are
dependent.

The number of r-tuples of linearly independent vectors of Fkq is

(qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1).

Hence, the number of r-dimensional subspaces of Fkq is[
k
r

]
q

:=
(qk − 1)(qk−1 − 1) · · · (qk−r+1 − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)
.

26



Thus, the number of points of PG(k − 1, q) is

qk − 1

q − 1
= qk−1 + qk−2 + · · ·+ q + 1.

There is a natural duality between the points of PG(k − 1, q) and the hyperplanes of
PG(k− 1, q). A point (a1, . . . , ak) is mapped to the hyperplane defined as the kernel
as the linear form

a1X1 + · · ·+k Xk.

For example, the point (1,−1, 0) is mapped to the hyperplane X1 −X2 = 0,

Thus, the number of hyperplanes of PG(k − 1, q) is also

qk−1 + qk−2 + · · ·+ q + 1,

which can be checked directly by calculating

[
k

k − 1

]
q

The number of lines of PG(3, q) is

(q4 − 1)(q3 − 1)

(q2 − 1)(q − 1)
= (q2 + 1)(q2 + q + 1).

The number of points in PG(k−1, 2) is 2k−1 and the number of lines of PG(k−1, 2)
is (2k − 1)(2k−1 − 1)/3.

Lemma 3.2 The number of (r−1)-dimensional subspaces of PG(k−1, q) containing
a fixed (s− 1)-dimensional subspace is[

k − s
r − s

]
q

.

Proof. For any s-dimensional subspace U of Fkq , the quotient space Fkq/U is a
(k − s)-dimensional vector space. An r-dimensional subspace containing U is a
(r − s)-dimensional subspace in the quotient space. Thus, the lemma is holds taking
into account the dimension shift when considering the projective space. �

The following theorem explains what the minimum distance d of a linear code implies
for the set of points X .

Theorem 3.3 An [n, k, d] linear code over Fq is equivalent to a (possibly multi-)set
of points X in PG(k − 1, q) in which every hyperplane of PG(k − 1, q) contains at
most n− d points of X and some hyperplane contains exactly n− d points of X .
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Proof. Let G be a k× n matrix whose row space is a [n, k, d] linear code C. Let X
be the set of columns of G viewed as points of PG(k − 1, q).

Recall that the codeword u = atG has a zero in its i-th coordinate if and only if

a · z = a1z1 + · · ·+ akzk = 0

where z = (z1, . . . , zk) is the i-th column of G.

The kernel of the linear form

a1X1 + · · ·+ akXk

defines a hyperplane πa of PG(k − 1, q). The codeword u = atG has weight w if and
only if u has exactly n − w zero coordinates. This is the case if and only if πa is
incident with n− w points of X .

By Lemma 3.1, the minimum distance of a linear code is equal to its minimum weight.
Hence, the maximum number of points of X on a hyperplane of PG(k− 1, q) is n− d,
where d is the minimum distance of C. �

3.3 The geometry of additive codes

An additive code C over Fq is linear over Fp, where q = ph for some prime p.
Therefore, |C| = pr for some r. The following theorem is the additive version of
Theorem 3.3; the set of points X is replaced by a set of subspaces.

Theorem 3.4 An (n, pr, d) additive code over Fq with q = ph is equivalent to a
(possibly multi-)set X of 6 (h− 1)-dimensional subspaces in PG(r − 1, p) in which
every hyperplane of PG(r − 1, p) contains at most n− d subspaces of X and some
hyperplane contains exactly n− d subspaces of X .

Proof. Let G be a r × n matrix which is a basis for C over Fp. As in the case of
linear codes, we consider the (possibly multi-)set X of columns of G. However, we
shouldn’t consider the elements of X as points of PG(r−1, q), since we obtain C from
G by taking the row span over Fp and not over Fq. Thus, we consider the elements of
X as subspaces of PG(r− 1, p). Suppose that e ∈ Fq, is such that {1, e, e2, . . . , eh−1}
is a basis for Fq over Fp. Then, up to scalar factor, we can write x ∈ X as

h−1∑
j=0

ejxj ,

where xj ∈ Frp. We associate x with the subspace spanned by x0, . . . , xh−1 in
PG(r − 1, p), which we denote by `x. The subspace `x has dimension at most h− 1.
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Suppose that x is the i-th column of G, so x ∈ X . The non-zero codeword u = atG,
where a ∈ Frp, has a zero in its i-th coordinate if and only if the hyperplane of
PG(r − 1, p), which is the kernel of linear form

a1X1 + · · ·+ arXr,

contains the subspace `x. �

Observe that a linear code over Fq necessarily has size qk, so if we wish to obtain an
additive code with the same parameters as a linear code, then r = kh for some k.

3.4 The geometry of qubit quantum codes

For the moment, we restrict to the case q = 2 and consider the geometrical conse-
quences of Theorem 2.12, which describes the connection between stabilizer codes
and binary linear codes.

A qubit stabilizer code Q(S) is equivalent to a binary linear code C = τ(S) of length
2n which is contained in its alternating dual C⊥a . According to Theorem 2.12, the
minimum distance of Q(S) is the minimum symplectic weight of C⊥a\C.

Consider once again the Shor code from Example 1.2.

Example 3.5 (Shor code) Applying the map τ to the elements in Example 1.2 we
have that C = τ(S) is the F2 row span of the matrix

G(S) =



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0


.

Since there are two columns which are linearly dependent, there are elements of C⊥a

of symplectic weight two; these are images under τ of Pauli operators of Centraliser(S)
of weight two.

To see this, recall that the alternating form is defined as

(u,w)a =
n∑
j=1

(ujwj+n − uj+nwj),

so the dependency of the first two columns implies that

(0, 0, 0, 0, 0, 0, 0, 0, 0 | 1, 1, 0, 0, 0, 0, 0, 0, 0)
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is an element of C⊥a . However, this element is an element of C, since it’s the first row
of the matrix. Recall that the minimum distance is equal to the minimum symplectic
weight of C⊥a \ C. Therefore, although C⊥a contains elements of symplectic weight
2, the minimum symplectic weight of C⊥a \ C is in fact 3. We will prove this in
Example 3.9.

Given a subgroup S, generated by n− k commuting elements M1, . . . ,Mn−k of Pn,
we obtain a set X of n lines or possibly points in PG(n− k − 1, 2) in the following
way. For each i ∈ {1, . . . , n}, we get a line (or a point) by considering the span of
the i-th and (i+ n)-th column of the generator matrix G(S). Vice versa, given a set
of n lines in PG(n− k − 1, 2), we construct a (n− k)× 2n matrix, from which we
obtain M1, . . . ,Mn−k by applying τ−1 to the rows of the matrix.

On first sight it may seem that there is a certain amount of freedom when we
reconstruct the code from a given quantum set of lines. Each line is incident with
three points and we can choose which pair of points on the line to use to construct
the i-th and the (i + n)-th column of G. This choice is equivalent to invoking a
permutation of {σx, σy, σz} on the i-th position of each of the M1, . . . ,Mn−k. This
does not affect the property that these elements pairwise commute, so we define all
quantum codes that can be obtained from each other in this way to be equivalent.

For example, in Example 2.14, invoking the permutation σ which takes X → Z →
Y → X on the Mi in the first, second and fourth positions gives

σ(M1) = Z Y I I Z
σ(M2) = Y Z Z I I
σ(M3) = I Y X Y I
σ(M4) = I I Z Z Z
σ(M5) = Y I I Y X

.

The matrix whose i-th row is τ(Mi) is
0 1 0 0 0 1 1 0 0 1
1 0 0 0 0 1 1 1 0 0
0 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 1
1 0 0 1 1 1 0 0 1 0


Comparing this to the matrix

G(S) =


1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0


from Example 2.14, we see that the set of lines X remains unchanged.
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There is also a choice between the scalar factor of M when we apply τ−1 to a row of
the matrix G. We will always assume that this factor to be 1. However, changing
the sign of some of the generators of a subgroup S can be useful, as we shall see in
Section 4.

Lemma 3.6 The span of the i-th and (i + n)-th column of the generator matrix
G(S) is a line of PG(n − k − 1, 2) for all i = 1, . . . , n if and only if the minimum
non-zero weight of Centraliser(S) is at least two.

Proof. We fail to obtain a line of PG(n − k − 1, 2) if and only if the i-th and
(i+ n)-th column of the matrix G(S) are either the same non-zero vector or one or
both of them is the zero vector. This implies that in the i-th position of all the Pauli
operators in S, there is either σ0 or a fixed element σ ∈ {σx, σy, σz}. This occurs if
and only if there is an element of Centraliser(S) of weight 1. �

If Q(S) is pure then the condition that the minimum non-zero weight of Centraliser(S)
is at least 2 can be replaced by the condition that the minimum distance of Q(S) is
at least 2. However, this does not need to hold for impure codes. Indeed it could be
that there are elements of Centraliser(S)∩ S of weight one. Yet, if the stabilizer of a
[[n, k, d]] code Q(S) contains an element of weight one, then it is easy to see that one
can construct a [[n− 1, k, d]] stabilizer code by deleting that position.

We would like to give a geometrical interpretation of the fact that the code C = τ(S)
is contained in C⊥a .

Recall that we say two subspaces of PG(k − 1, q) are skew if they do not intersect.

Theorem 3.7 The following are equivalent.

1. There is a [[n, k, d]] stabilizer code Q(S), where S is a subgroup generated by
n− k independent commuting elements of Pn and whose centraliser contains
no element of weight one.

2. There is a set of n lines X spanning PG(n− k − 1, 2) with the property that
every co-dimension 2 subspace is skew to an even number of the number of
lines of X .

Proof. (1⇒ 2)

Let C = τ(S) and let G = G(S) be a (n− k)× 2n generator matrix for C.

From Lemma 2.13, the matrixG has rank n−k. Thus, its columns span PG(n− k− 1, 2).

Let X be the set of n lines obtained for i = 1, . . . , n as the span of the i-th and
(i+ n)-th column of G(S).
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Let u,w ∈ C, so u = (a1, . . . , an−k)G and w = (b1, . . . , bn−k)G for some a =
(a1, . . . , an−k) ∈ Fn−k2 and b = (b1, . . . , bn−k) ∈ Fn−k2 .

One has C ⊆ C⊥a if and only if

(u,w)a =
n∑
j=1

(ujwn+j − wjun+j) = 0,

for all u,w ∈ C.

We want to deduce the geometrical meaning of (u,w)a = 0.

Consider a single term in the sum first. Let x and y be the j-th and the (n+ j)-th
column of G respectively. Then

ujwn+j − un+jwj = (a · x)(b · y)− (a · y)(b · x).

The right-hand side is zero if and only if the matrix(
a · x a · y
b · x b · yc

)
has zero determinant, i.e. it has rank 1.

This is if and only if there exists λ, µ ∈ F2 such that

a · (λx+ µy) = 0

and
b · (λx+ µy) = 0.

Recall that we define πa as the hyperplane which is the kernel of the linear form

a ·X = a1X1 + · · ·+ an−kXn−k.

We can thus rewrite the above conditions as the requirement that the point λx+ µy
is contained in both πa and πb. In other words, there is a point on the line `, spanned
by x and y, which is incident with the intersection of the two hyperplanes πa and πb.

Returning to the condition (u, v)a = 0, we must therefore get an even number of
ones in the sum

n∑
j=1

(ujwn+j − un+jwj) .

All lines of X that are skew to πa ∩ πb = ker(a ·X) ∩ ker(b ·X) contribute; for any
given a and b there there must in total be an even number of such lines.

We note that every co-dimension 2 subspace of PG(n− k − 1, 2) can be realised in
this way (as the intersection of some a · X = 0 and b · X = 0). This proves the
forward implication.
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πa

λx+ µy
x

a line that is skew to πa ∩ πb

x′
y′

πb

`

y

πa ∩ πb (co-dimension 2)

Figure 1:
A point λx+ µy on the intersection of the hyperplanes πa and πb.

(1⇐ 2)

Let X be a set of lines spanning PG(n − k − 1, 2) with the property that every
co-dimension 2 subspace of PG(n− k− 1, 2) is skew to an even number of lines of X .
Let G be the matrix whose i-th and (i + n)-th column are points which span the
i-th line of X . Let C be the code generated by G. Since X spans PG(n− k − 1, 2),
the code C is (n − k)-dimensional. As we proved in the forward implication, the
property that every co-dimension 2 subspace is skew to an even number of lines of X
implies that for any two codewords u and v of C, (u, v)a = 0 holds. By Lemma 2.10,
the image under τ−1 of C is an abelian subgroup S of Pn and by Lemma 2.13, it is
generated by n− k pairwise commuting elements of Pn. �

Let X be a set of lines and let Θ(X ) be the space spanned by the lines of X .

We say that X is a quantum set of lines if it has the property that every co-dimension 2
subspace of Θ(X ) is skew to an even number of lines of X . To deduce the minimum
distance of the corresponding stabilizer code, we introduce the parameter d(X ).

Recall that r points are independent if they span an (r − 1)-dimensional subspace;
they are dependent otherwise.

Consider first the case in which dim Θ(X ) 6= |X | − 1. By Theorem 3.7, X will give a
quantum [[n, k, d]] code with k 6= 0. We define the parameter d(X ) as the minimum
number of dependent points that can be found on distinct lines of X ; not including
the dependencies for which there is a hyperplane of Θ(X ) which both

a) contains all the lines of X which do not contain the dependent points ,

b) contains all the dependent points.3

3In the original definition of Glynn et al [5], the condition b) does not appear.

33



Thus, d(X ) = r, where r is minimal such that there exists a set of dependent points
{x1, . . . , xr}, where each xi is incident with a line `i ∈ X and the lines `1, . . . , `r are
distinct, but for which there is no hyperplane containing the lines X \ {`1, . . . , `r}
and the points {x1, . . . , xr}.
In the case in which dim Θ(X ) = |X | − 1, Theorem 3.7 implies that X will give a
quantum [[n, k, d]] code with k = 0. We define the parameter d(X ) as the minimum d
for which there is a hyperplane of Θ(X ) containing |X | − d lines of X . Equivalently.
it is the minimum number of dependent points that can be found on distinct lines of
X . This definition and the equivalence will be justified in the proof of Theorem 3.8.

From now on we assume that the centraliser of the stabilizer S contains no elements
of weight one. By Lemma 3.6, this assumption guarantees that there is a quantum
set of lines associated with the stabilizer code. As mentioned before, this is equivalent
to assuming that the minimum distance is at least 2 in the case of pure codes.

Theorem 3.8 There is a [[n, k, d]] stabilizer code if and only if there is a quantum
set of lines X for which d(X ) = d and Θ(X ) = PG(n− k − 1, 2).

Proof. We only have to prove the part about the minimum distance since Theo-
rem 3.7 covers the rest.

(⇒) Let Q(S) be a [[n, k, d]] stabilizer code given by some stabilizer S. Let C = τ(S).

As in the proof of Theorem 3.7, let G = G(S) be the (n− k)× 2n generator matrix
with entries from F2 whose row space forms the code C. Define a set of lines

X = {`j | j = 1, . . . , n},

where `j is the line that corresponds to the span of the j-th and (j + n)-th column
of G.

Consider the case k 6= 0.

By Theorem 2.12, the parameter d is the minimum symplectic weight of C⊥a \ C.

Suppose now that v ∈ C⊥a has symplectic weight w and let W denote the set of
positions that contribute to the weight,

W = {j ∈ {1, . . . , n} | (vj , vn+j) 6= (0, 0)}.

Clearly, |W | = w.

Denote by xj the j-th column of G. Since v = (v1, . . . , v2n) is in C⊥a , one has∑
j∈W

(vn+jxj − xn+jvj) = 0. (3)

Each summand corresponds to some point of `j . Thus, there are w = |W | points on
distinct lines {`j | j ∈W} which are dependent.

34



However, since the minimum distance d is the minimum symplectic weight of C⊥a \C,
we have to disregard this dependency if v ∈ C.

A vector v is in C if and only if v = aG for some a ∈ Fn−k2 . As a consequence,
vj = a · xj for all j = 1, . . . , 2n.

First, consider those positions j of v that do not contribute to its symplectic weight,
that is, j /∈W . For each j /∈W , one has that vj = a · xj = 0 and vn+j = a · xn+j = 0
if and only if the line lj is contained in the hyperplane πa described by a ·X = 0. So
the lines of {`j | j ∈ {1, . . . , n} \W} are contained in πa.

Second, consider those positions j of v that contribute to its symplectic weight,
j ∈W . Then

a · (vn+jxj − xn+jvj) = vn+j(a · xj)− (a · xn+j)vj = vn+jvj − vn+jvj = 0,

since vj = a · xj and vn+j = a · xn+j . Hence, the dependent points are also contained
in the hyperplane a ·X = 0.

This exactly coincides with our definition of d(X ).

Now, consider the case k = 0.

By Theorem 2.12, the parameter d is the minimum non-zero symplectic weight of C.

Let v ∈ C be of minimum non-zero symplectic weight. Since v ∈ C, v = aG for some
a ∈ Fn−k2 . Thus, vj = a · xj for all j = 1, . . . , 2n.

Let W denote the set of positions that contribute to the symplectic weight of v, i.e.

W = {j ∈ {1, . . . , n} | (vj , vn+j) 6= (0, 0)}.

Then, for j ∈ W , a · xj = a · xn+j = 0 which is equivalent to the line `j ∈ X being
contained in the hyperplane a · X = 0. Therefore, there is a hyperplane of Θ(X )
containing |X | − d lines of X which coincides with our definition of d(X ) in this case.

Alternatively, since C = C⊥a , the parameter d is the minimum non-zero symplectic
weight of C⊥a . As in the case k 6= 0, a vector v = (v1, . . . , v2n) ∈ C⊥a of symplectic
weight d, will give a dependency of d points of X , which coincides with our alternative
definition of d(X ) in this case.

(⇐) Vice-versa, suppose that X is a quantum set of lines for which d(X ) = d and
Θ(X ) = PG(n− k − 1, 2).

Let G = G(S) be the (n− k)× 2n generator matrix for a code C, whose i-th and
(i + n)-th column span the i-th line of X . Let S = τ−1(C) and let Q(S) be the
stabiliser code. By Theorem 3.7 and the fact that Θ(X ) = PG(n− k − 1, 2), Q(S) is
a [[n, k, d]] stabilizer code for some d. The fact that d = d(X ) follows from the same
arguments as in the forward implication, observing that if

a · (vn+jxj − xn+jvj) = 0
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then

vn+j(a · xj)− (a · xn+j)vj = 0

which implies vj = a ·xj and vn+j = a ·xn+j , assuming (a ·xj , a ·xn+j) 6= (0, 0). This
is precisely the assumption that `j is not contained in the hyperplane πa. �

Example 3.9 (Shor code) As we saw in Example 3.5, the Shor code has the generator
matrix

G(S) =



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0


.

Let ei denote the i-th vector in the canonical basis of F8
2.

The quantum set of lines X is

{〈e1, e7〉, 〈e1 + e2, e7〉, 〈e2, e7〉, 〈e3, e7 + e8〉,

〈e3 + e4, e7 + e8〉, 〈e4, e7 + e8〉, 〈e5, e8〉, 〈e5 + e6, e8〉, 〈e6, e8〉}.
which is drawn in Figure 2. Here, 〈ei, ej〉 denotes the line spanned by points ei and
ej.

Note that the point e7 is on the two lines 〈e1, e7〉 and 〈e1 + e2, e7〉, and thus e7
is “dependent with itself”. So at first sight it seems that d(X ) = 2. However,
the remaining seven lines span a six dimensional subspace since the two planes
〈e3, e4, e7 + e8〉 and 〈e5, e6, e8〉 span a five dimensional subspace, while the line
〈e2, e7〉 extends this to a six dimensional subspace that also contains the point e7
(i.e. contains all dependent points). Following Theorem 3.8, we do not count this
dependency and conclude that d(X ) > 3. The dependency of e7 with itself implies that
the Shor code is impure. The dependent points {e1, e2, e1 + e2} imply that d(X ) = 3.
Although the six lines not containing these points are contained in a hyperplane, there
is no hyperplane containing the six lines and the dependent points, thus we do not
disregard this dependency. Thus, we see that condition b) is essential in the definition
of d(X ).

Let us generalize one feature of the Shor code further: a planar pencil of lines in a
projective space is a set of lines which are all contained in some plane and are all the
lines incident with a point in that plane. As illustrated in Figure 2, the Shor code is
the union of three planar pencils.
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e7 + e8

e7 e8

e1
e1 + e2 e2

e3 e4e3 + e4

e5

e6
e5 + e6

Figure 2: The set of nine (thick) lines describing the geometry of the Shor code.

Observe that a planar pencil of lines is itself a quantum set of lines. Our aim is to
show that a quantum set of lines is nothing more than the union modulo two of
planar pencils of lines. We first prove a few lemmas.

Lemma 3.10 The union modulo two of two quantum sets of lines is a quantum set
of lines.

Proof. Let X and Y be two quantum sets of lines. Recall that Θ(X ), Θ(Y), and
Θ(X ∪ Y) are the spaces spanned by X , Y, and both sets of lines respectively. A
co-dimension 2 subspace π intersects Θ(X ) in either a co-dimension 2 subspace, in a
hyperplane, or in Θ(X ). In the first case it is skew to an even number of the lines of
X ; in the latter two cases it is skew to none (which is even).

Let X be the subset of X of lines skew to π. Likewise, let Y be the subset of Y of
lines skew to π. Then π is skew to |X |+ |Y| − 2|X ∩ Y| lines of the union modulo
two of X and Y.

Since both |X | and |Y| are even, every co-dimension 2 subspace is skew to an even
number of lines of X ∪ Y. This proves the lemma. �

An r-sputnik is a set of (r + 1) concurrent lines (they are all incident with some
point) in an r-dimensional subspace π with the property that any r of them span π.
In Figure 3 a 3-sputnik is illustrated.

Our aim will be to prove that a quantum set of lines is the union modulo two of
planar pencils of lines. Firstly we will prove that this claim is true for an r-sputnik.
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Figure 3: A 3-sputnik looks quite like a Soviet radio satellite from 1957.

`

`′

Figure 4: A 3-sputnik seen as the union modulo two of two planar pencils of lines.

Lemma 3.11 An r-sputnik is the union modulo two of planar pencils of lines. In
particular, an r-sputnik is a quantum set of lines.

Proof. Let X be an r-sputnik and take any two lines ` and `′ ∈ X . The r− 1 lines
of X \ {`, `′} span a (r− 1)-dimensional subspace which intersects the plane spanned
by ` and `′ in a line `′′. The line `′′ is the third line in the planar pencil of lines
spanned by ` and `′. Thus, adding (modulo 2) this pencil of lines to X we get an
(r − 1)-sputnik. Now continue adding planar pencils of lines in this way until we
get a 2-sputnik. Since a 2-sputnik is a planar pencil of lines, it is a quantum set of
lines. We can then reverse the process adding planar pencils of lines to recover the
r-sputnik which, by Lemma 3.10, is also a quantum set of lines. �

Lemma 3.12 Let X be a quantum set of lines. There is a set D of dependent points
such that each point of D is incident with a different line of X .

Proof. Let π = Θ(X ) be the subspace spanned by the lines of X and let ` ∈ X . Let
π′ = Θ(X \ {`}) be the subspace spanned by the lines of X \ {`}. The subspace π′ is
either a co-dimension 2 subspace of π, a hyperplane of π, or π itself. The first case is
ruled out since X is a quantum set of lines and, by definition, any co-dimension 2
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subspace is skew to an even number of lines of X . Therefore, there is a point of x of
` incident with π′. Any point of π′ is the sum of points incident with the lines of
X \ {`}. Thus, we obtain a set of dependent points each incident with a line of X .
If in this set there are two points y and z incident with same line `′ of X , then we
can replace y and z by `′ \ {y, z}. Hence, we obtain a set of dependent points each
incident with a distinct line of X . �

Lemma 3.13 A quantum set of three lines is a planar pencil of lines.

Proof. Suppose that the quantum set of three lines X = {`1, `2, `3} span PG(4, 2)
or PG(5, 2) respectively. Then there is a point x ∈ `2 such that the co-dimension 2
subspace spanned by `1 and x (resp. `1 and `2) is skew to `3. This contradicts the
definition of a quantum set of lines.

Suppose that the quantum set of three lines X = {`1, `2, `3} span PG(3, 2). If `1 and
`2 intersect then the co-dimension 2 subspace `1 (and also `2) must also intersect
`3. Since they span PG(3, 2) the three lines must be concurrent (and not co-planar).
Taking the union modulo 2 of the planar pencil of lines spanned by `2 and `3 we
obtain, by Lemma 3.10, a quantum set of two lines, which does not exist. Thus we
have three pairwise skew lines `1, `2, `3 with the property that any line incident with
two of them is incident with the third. This implies there are nine lines which are all
incident with exactly one point of each of `1, `2, `3, see Figure 5. By Lemma 3.2, a
point of PG(3, 2) is incident with seven lines of PG(3, 2), so in all we have that there
are (at least)

9(7− 4) + 3 + 9 = 39

lines of PG(3, 2), when in fact, by Lemma 3.2, there are 35.

Therefore, the quantum set of three lines span a PG(2, 2). A co-dimension 2 subspace
is just a point, so a quantum set of lines must be incident with every point of the
plane. Hence, X is a planar pencil of lines. �

The following theorem is due to Glynn, Gulliver, Maks and Gupta [5]. It is important
to note that if the qubit stabilizer code has minimum distance 2 then it is possible
that the quantum set of lines X contains repeated lines. This occurs, for example, in
the [[5, 2, 2]] code.

Theorem 3.14 A qubit stabilizer code with minimum distance at least three is
equivalent to a quantum set of lines which is generated by the union modulo two of
planar pencils of lines.

Proof. Let X be a quantum set of lines. We will prove that there is an r-sputnik
X ′ such that the union modulo 2 of X , X ′ and r − 1 planar pencils of lines is a
quantum set of |X | − 1 lines. Since, by Lemma 3.11, X ′ is the union modulo 2 of
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Figure 5: Configuration of the lines in PG(3, 2).

planar pencils of lines, this implies that, by iteration, we can take the union modulo
2 of X and some planar pencils of lines and obtain a quantum set of three lines, by
Lemma 3.10. By Lemma 3.13, this set of three lines is a planar pencil of lines and
we are done.

By Lemma 3.12, there is a set x1, . . . , xr+1 of minimally dependent points incident
with the lines `1, . . . , `r+1 of X , respectively. Let x ∈ `r+1 \ {xr+1}. Let `′j be the
line spanned by the points x and xj , for j = 1, . . . , r. Let X ′ be the r-sputnik,

X ′ = {`′j | j = 1, . . . , r} ∪ {`r+1}.

Let Lj be the planar pencil of lines spanned by `j and `′j . In Figure 6, r = 5, the
lines `j are the thick lines, the `′j are the medium thickness lines and the thin lines
are the third line in the planar pencil of lines spanned by `j and `′j .

By Lemma 3.10, the union modulo two of

(∪rj=1Lj) ∪ X ∪ X ′

is a quantum set of lines and, on inspection, it is a set of |X | − 1 lines. �

Example 3.15 Consider again the [[5, 0, 3]] code constructed in Example 2.14. As
a quantum set of lines X , this is the union modulo two of pencils of lines drawn in
Figure 7.

Since k = 0, d(X ) is the minimum d for which there is a hyperplane of PG(4, q)
containing |X | − d = 5− d lines of X . Since any three lines span the whole space, we
have that d = 3. Thus, this is a [[5, 0, 3]] code.

We can also construct the [[5, 1, 3]] code from Figure 7. We only have to replace e5
with e1 + e2 + e3 + e4 and check that the five (thick) lines are then pairwise skew.
This can be done by writing down the 15 points and checking we get every point of
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x6 x1

x2 x3x4

x5

x

Figure 6: The thick lines are in X , the medium-thick lines are in X ′ and the thin
lines make up the planar pencils at each point x1, . . . , xr.

e1

e2

e3e4

e5

e1 + e3

e2 + e4e3 + e5

e1 + e4

e2 + e5

Figure 7: The [[5, 0, 3]] code as the union modulo two of planar pencils of lines.
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e1

e2

e3

e4

e5

e6

e12

e23

e34e45

e56

e16

e123

e234
e345

e456

e156

e126

e123

e234

e345

e456

e156

e126

e123456

e36

e25

e14 e14

e25

e36

Figure 8: The quantum set of lines (the thicker lines) giving a [[6, 0, 4]] code.

PG(3, 2). Then, since any two of the thick lines are pairwise skew, we have that the
minimum distance is 3.

Example 3.16 The [[6, 0, 4]] code is the sum modulo 2 of 16 planar pencils of lines,
see Figure 8. The cyclic structure allows one to check quickly that there are no
three collinear points intersecting distinct lines of the six lines of the quantum set
of lines. Indeed, the points of weight two obtained by summing two points incident
with the quantum lines are cyclic shifts of 26, 36, 46 and the points of weight three
obtained by summing two points incident with the quantum lines are cyclic shifts of
134 and 146. Therefore, the minimum distance of the code is at least 4. The points
e126, e34, e16, e234 are four dependent points, implying that the minimum distance of
the code is 4.

Research Problem 1 The parameters [[14, 3, 5]] are the smallest for which it is
unknown whether there exists a qubit stabilizer code or not [8]. To construct such
a code one should look for a union modulo two of planar pencils of lines that give
14 lines in PG(10, 2), such that any four points on 4 of the 14 lines that also lie on
a common plane, the remaining 10 lines are contained in a hyperplane which also
contains those four dependent points.

Theorem 3.14 can also be used to rule out the existence of quantum codes with
certain parameters sets. For example, were a [[4, 0, 3]] stabilizer code to exist then X
would be a set of four skew lines in PG(3, 2) with the property that any line is skew
to an even number of lines of X . However, the lines of X themselves are skew to the
other three lines of X , which is an odd number. A more interesting exercise is to
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prove that a [[7, 0, 4]] code does not exist. To prove this, show that there are at least
five three dimensional subspaces which intersect all of the 7 lines of PG(6, 2) in the
quantum set of lines and prove that these pairwise intersect in a point.

4 Non-additive qubit quantum codes

4.1 Direct sum of stabilizer codes

As discussed in the previous sections, a stabilizer code is defined as the com-
mon (+1)-eigenspace of an independent set of pairwise commuting Pauli operators
M1, . . . ,Mn−k; this is the generator of the code. In other words, these codes are
completely characterized by an abelian subgroup S = 〈M1, . . . ,Mn−k〉 ⊂ Pn. The
aim of this section is to construct quantum codes that are the direct sum of stabilizer
codes. Technically speaking, any subspace can be regarded as a quantum code, and
naturally we want to make sure to obtain a large mininum distance when taking
this direct sum of subspaces. Thus, we seek for some additional structure amongst
them. While each individual subspace will again be defined by a set of generators
M1, . . . ,Mn−k, we will now not simply take the joint eigenspace with eigenvalue 1 as
our code space.

We have already observed that to avoid constructing a trivial code, one restricts the
stabilizer not to contain a non-trivial multiple of the identity, −1 6∈ S. This implies
that each generator can only have an overall phase of +1 or −1 and they are of the
form

Mj = ±σ1 ⊗ · · · ⊗ σn
for some σ1, . . . , σn ∈ P1. Now observe that when M1, . . . ,Mn−k commute, then so
do

±M1, . . . ,±Mn−k .

Thus for all t = (t1, . . . , tn−k) ∈ {0, 1}n−k, one can define a corresponding stabilizer
code Q(St) as the joint (+1)-eigenspace of

(−1)t1M1, . . . , (−1)tn−kMn−k.

For distinct t and t′ ∈ T , there is a j such that tj 6= t′j . Without loss of generality,
suppose that tj = 1. For all |v〉 ∈ Q(St) and |w〉 ∈ Q(St′), one has 〈v|w〉 =
〈v|Mjw〉 = 〈Mjv|w〉 = −〈v|w〉 = 0. Consequently, Q(St) and Q(St′) are orthogonal.

For any T ⊂ {0, 1}m, we define a direct sum stabilizer code (confusingly also known
as a union stabilizer code) as

Q(ST ) =
⊕
t∈T

Q(St).

To be able to determine the minimum distance of this quantum code, we first
determine the errors which are not detectable.
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In the following lemma, the coordinates where two (n− k)-tuples t and t′ differ is
denoted by

supp(t+ t′) = {j ∈ {1, . . . , n− k} | tj 6= t′j}.

Lemma 4.1 Suppose Q(ST ) is unable to detect an error E. Then there is a pair
t, t′ ∈ T such that E commutes with Mj for all j ∈ {1, . . . , n− k} \ supp(t+ t′).

Proof. Suppose there is no such pair. Then, for all t, t′ ∈ T , there is a j ∈
{1, . . . , n− k} \ supp(t+ t′) for which E anti-commutes with Mj .

For any u ∈ Q(St) and u′ ∈ Q(St′), we have either

〈u|E
∣∣u′〉 = 〈u|MjE

∣∣u′〉 = −〈u|EMj

∣∣u′〉 = −〈u|E
∣∣u′〉

in the case that both u and u′ are eigenvectors of Mj with eigenvalue 1 and

〈u|E
∣∣u′〉 = −〈u|MjE

∣∣u′〉 = 〈u|EMj

∣∣u′〉 = −〈u|E
∣∣u′〉

in the case that both u and u′ are eigenvectors of Mj with eigenvalue −1.

Either way, 〈u|E |u′〉 = 0.

Similarly, for any u, u′ ∈ Q(St), since E anti-commutes with Mj , 〈u|E |u′〉 = 0.

Suppose that Bt is an orthogonal basis for Q(St). Since Q(ST ) is a direct sum of
orthogonal subspaces,

BT =
⋃
t∈T

Bt

is an orthogonal basis for Q(ST ).

Suppose that w,w′ ∈ Q(ST ) and that 〈w|w′〉 = 0. Writing out w and w′ with respect
to the basis BT we have

〈w|E
∣∣w′〉 =

(∑
t∈T

∑
u∈Bt

λu 〈u|
)
E
(∑
t′∈T

∑
u′∈B′t

λu′
∣∣u′〉 ) =

∑
t∈T

∑
u∈Bt

∑
u′∈Bt

λuλu′ 〈u|E
∣∣u′〉 = 0.

This implies that E is detectable, a contradiction. This ends the proof. �

Thus, according to Lemma 4.1, we only need concern ourselves with the errors which
are in Centraliser(St+t′) for any t, t′ ∈ T .

This motivates the definition

dT = min{dt+t′ | t, t′ ∈ T} (4)

where dt+t′ is the minimum distance of Q(St+t′).

Theorem 4.2 The subspace Q(ST ) is an ((n, |T |2k, dT )) quantum code.

Proof. If E is undetectable then it is an element of Centraliser(St+t′) for some
t, t′ ∈ T . Thus, the minimum distance of Q(ST ) will be the minimum of the minimum
distances of Q(St+t′). �
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4.2 The Rains, Hardin, Shor, Sloane non-additive quantum code

This code first appeared in [15], although the geometric observation given here
appears to be new.

Example 4.3 (Rains, Hardin, Shor, Sloane) Consider the following elements of P5.

M1 = Z X Y Y X
M2 = X Z X Y Y
M3 = Y X Z X Y
M4 = Y Y X Z X
M5 = X Y Y X Z

The corresponding matrix whose i-th row is τ(Mi) is
0 1 1 1 1 1 0 1 1 0
1 0 1 1 1 0 1 0 1 1
1 1 0 1 1 1 0 1 0 1
1 1 1 0 1 1 1 0 1 0
1 1 1 1 0 0 1 1 0 1

 .

Observe that deleting any two rows of this matrix we obtain a 3× 10 matrix whose
5 pairs of columns define a quantum set of lines in PG(2, 2). This quantum set of
lines defines a stabilizer code whose minimum distance is 2. Therefore, if we set

T = {∅, {1}, {2}, {3}, {4}, {5}}

then, by Theorem 4.2, Q(ST ) is a ((5, 6, 2)) quantum code.

4.3 The geometry of direct sum stabilizer codes

Suppose that we restrict our choice of elements of T to singleton subsets and the
empty set, as in Example 4.3. Let X be the quantum set of lines of PG(n− k − 1, 2)
associated with the [[n, k, d]] quantum stabilizer code Q(S), where S is the subgroup
generated by M1, . . . ,Mn−k. Let P = {e1, . . . , er} be a set of linearly independent
points of PG(n−k−1, 2), chosen so that the projection from any two points ei, ej ∈ P
of the lines of X is a set of lines of PG(n − k − 3, 2). If this projection is a set of
lines then it is necessarily a quantum set of lines, which we denote by Xij .
If we choose a basis so that ej ∈ P is the j-th element in the basis then the projection
from ei and ej gives a stabilizer code generated by

{M` | ` ∈ {1, . . . , n− k} \ {i, j}}.

The parameter d(Xij) is then the minimum distance of the stabilizer code Q(Sei+ej ).
Thus, the definition in (4) will be

dT = min{d(Xij) | i, j ∈ {1, . . . , r}}.
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Hence, we have a purely geometric way to construct direct sum stabilizer codes with
parameters ((n, (r + 1)2k, dT )), for some r 6 n− k.

Research Problem 2 Find quantum sets of lines X for which there are points with
the property that the projection of the lines of X from any pair is onto a quantum
set of lines X ′ with relatively large d(X ′). It should be possible to make direct sum
stabilizer codes with good parameters from this geometrical construction. It would
be of great interest if one could construct codes with parameters for which stabilizer
codes could feasibly exist but none are known to exist.

5 Stabilizer codes for larger alphabets

5.1 The higher-dimensional Pauli group

When a quantum system has D levels we speak of a quDit. In this section, we will
consider quantum codes over such larger subsystems. Consequently, these codes are
subspaces of the Hilbert space (CD)⊗n.

We will consider (Cq)⊗n, where q = ph, is the power of a prime p. The restriction to
prime powers allows us to use the structure of the finite field for their construction.
In the case when D is not a prime power, one can use the ring Z/DZ, but then most
of the constructions that we will consider here will not work.

We label the coordinates of Cq with elements of Fq, where Fq denotes the finite field
with q elements. In this way, a basis for the space of endomorphisms of Cq can be
indexed by the elements of Fq × Fq.

For each a ∈ Fq, we define a q × q matrix X(a) to be matrix obtained from from the
linear map which permutes the coordinates of Cq by adding a to the index.

In other words, with basis {|x〉 | x ∈ Fq} of C,

X(a) |x〉 = |x+ a〉 .

For example, if q = 3 and the elements of Fq are {0, 1, 2} then

X(0) =

 1 0 0
0 1 0
0 0 1

 , X(1) =

 0 0 1
1 0 0
0 1 0

 and X(2) =

 0 1 0
0 0 1
1 0 0

 .

For each b ∈ Fq, we define a q × q matrix Z(b) to be the diagonal matrix whose i-th
diagonal entry is wtr(ib). Here, w = e2πi/p is a primitive p-th root of unity and tr is
the trace map from Fq to its prime subfield Fp,

tr(a) =

h−1∑
j=0

ap
j
.
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As in the previous case, if we take say q = 3 then

Z(0) =

 1 0 0
0 1 0
0 0 1

 , Z(1) =

 1 0 0
0 ω 0
0 0 ω2

 and Z(2) =

 1 0 0
0 ω2 0
0 0 ω

 ,

where ω is a primitive complex third root of unity. Recall, that the rows and columns
of the matrix are indexed by elements of Fq, so i ∈ Fq. Thus,

Z(b) |x〉 = ωtr(xb) |x〉 .

We define the Pauli group for q odd as

P1 = {ωcX(a)Z(b) | a, b ∈ Fq, c ∈ Z/pZ}

and for q even, that is when p = 2, as

P1 = {ifωcX(a)Z(b) | a, b ∈ Fq, c ∈ Z/2Z, f ∈ Z/2Z}.

The reason that we accommodate this slightly larger group for q even is due to
Lemma 5.2 below. One can check that this definition coincides with our definition of
the Pauli group for q = 2.

More generally, we define the group of Pauli operators on (Cq)⊗n to be the n-fold
direct product Pn = P1 × · · · × P1 (n times). Thus

Pn = { σ1 ⊗ · · · ⊗ σn | σj ∈ P1}.

The size of Pn is pq2n for q odd and 4q2n for q even.

The weight of an element cσ1 ⊗ · · · ⊗ σn, where σi = X(ai)Z(bi), is the number of
i ∈ {1, . . . , n} such that σi 6= X(0)Z(0).

Lemma 5.1 For all a, b ∈ Fnq ,

ωtr(a·b)X(a)Z(b) = Z(b)X(a).

Proof. We have

X(a)Z(b) |x〉 = ωtr(b·x)X(a) |x〉 = ωtr(b·x) |x+ a〉 .

Meanwhile,

Z(b)X(a) |x〉 = Z(b) |x+ a〉 = ωtr(b·(x+a)) |x+ a〉 .

�
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The following lemma implies that non-identity elements of the Pauli group have
order p, for q odd. Note that for q even this is not the case; there are elements of
order four. However, we extend the Pauli group as above (defining σy = iσxσz) and
in this way we introduce more elements of order two. We do this so that we have
more options for Mi in our set of pairwise commuting operators which will generate
the abelian subgroup S. 4

Lemma 5.2 For all a, b ∈ Fnq and r ∈ N,

(X(a)Z(b))r = ω(r2)tr(a·b)X(a)rZ(b)r.

Proof. By induction on r, we have

(X(a)Z(b))r = (X(a)Z(b))r−1X(a)Z(b) = ω(r−1
2 )tr(a·b)X(a)r−1Z(b)r−1X(a)Z(b).

By Lemma 5.1, this is equal to

ω(r−1
2 )tr(a·b)X(a)r−1ω(r−1)tr(a·b)X(a)Z(b)r−1Z(b) = ω(r2)tr(a·b)X(a)rZ(b)r.

�

As in the case of qubit codes, we will again be looking to construct stabilizer codes
and for this reason it will be of interest to know when elements M,N ∈ Pn commute
or not. For this reason the following lemma is fundamental.

Lemma 5.3 For all a, b, a′, b′ ∈ Fnq ,

X(a)Z(b)X(a′)Z(b′) = ωtr(a′·b−b·a′)X(a′)Z(b′)X(a)Z(b).

Proof. X(a) and X(a′) commute, likewise Z(b) and Z(b′), so the lemma follows
from Lemma 5.1. �

5.2 Error detection and correction

As in the case of qubit codes it suffices to consider errors from the group Pn of
Pauli-errors which are unitary operators of the form

E = σ1 ⊗ · · · ⊗ σn

where σi = X(a)Z(b), for some a, b ∈ Fq.
4This was overlooked in the seminal paper of Ketkar et. al. [12] on stabilizer codes over finite

fields. They do not accommodate the larger Pauli group when q is even, or include any version of
Lemma 5.2. However, this larger group is necessary for all the examples of qubit stabiliser codes we
have included here.
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Let Q be a quantum error correcting code of (Cq)⊗n, i.e. a subspace of (Cq)⊗n.

Then again, as in the case of qubit codes, Q detects an error E ∈ P if for all
|φ〉 , |ψ〉 ∈ Q with 〈φ|ψ〉 = 0, we have that

〈φ|E |ψ〉 = 0 ,

and
〈φ|E |φ〉 = cE ,

for some constant cE which depends only on E.

A quantum code Q has minimum distance d if one can detect Pauli-errors with up
to d− 1 non-identity matrices and correct Pauli-errors with up to bd−12 c non-identity
matrices.

We say that a quantum code of (Cq)⊗n of dimension K and minimum distance d is
a ((n,K, d))q code. If the code has dimension K = qk then we say that the code is
a [[n,K, d]]q code. Note that some authors reserve the latter notation [[n,K, d]]q for
stabilizer codes only.

5.3 Stabilizer codes

A stabilizer code is the intersection of the eigenspaces with eigenvalue one of the
elements of an abelian subgroup S of Pn. As before, we denote the code by Q(S).
We insist that λ1 6∈ S whenever λ 6= 1, since otherwise Q(S) is trivial.

As in the qubit case, a stabilizer code Q(S) with stabilizer S can detect all Pauli-
errors that are scalar multiples of elements in S or that do not commute with some
element of S. We denote by Centraliser(S), the elements of Pn that commute with
all elements of S. A non-detectable Pauli-error must be in Centraliser(S).

Commuting elements are characterised as follows.

By Lemma 5.3, two elements M = ωcX(a)Z(b) and N = ωc
′
X(a′)Z(b′) satisfy

MN = ωtr(b·a′−b′·a)MN.

Therefore, M and N commute if and only if the trace symplectic form

tr(b · a′ − b′ · a) (5)

is zero.

As in the case for qubit codes, we introduce the map τ which maps elements of Pn
to F2n

q by
τ(X(a)Z(b)) = (a|b).

For elements u,w ∈ F2n
q , the trace symplectic form is

(u,w)a =

n∑
j=1

tr(ujwj+n − wjuj+n). (6)
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Then with u = (a|b) and w = (a′|b′), this is the trace symplectic form (5).

5.4 Stabiliser codes as additive codes over Fq

Let τ be the map that maps cX(a)Z(b) to (a|b) ∈ F2n
q .

The group S is mapped to an additive code C = τ(S). The symplectic weight of
(a|b) ∈ F2n

q is the number of i ∈ {1, . . . , n} such that (ai, bi) 6= (0, 0). Thus, an
element cX(a)Z(b) of weight w is mapped to a vector of symplectic weight w.

The elements of Centraliser(S) are mapped to the dual code of C, namely

C⊥a = {w ∈ F2n
q | (u,w)a = 0, for all u ∈ C} .

Here the dual ⊥a is taken with respect to the trace symplectic form (6).

We have the following important theorem.

Theorem 5.4 An ((n,K, d))q stabilizer code exists if and only if there exists an
additive code C 6 F2n

q of size |C| = qn/K such that C 6 C⊥a . If K 6= 1 then d is the

minimum symplectic weight of an element of C⊥a \ C, otherwise d is the minimum
symplectic weight of an element of C⊥a = C.

Proof. Let S be an abelian subgroup of Pn not containing non-trivial multiples of
the identity. Let Q(S) be the corresponding ((n,K, d))q stabilizer code and let

P =
1

|S|
∑
M∈S

M.

Then, as in Lemma 2.3, P is the orthogonal projection onto Q(S). For any element
M = X(a)Z(b) we have that M †M = 1, so M ∈ S if and only if M † ∈ S. Hence,
P † = P .

Thus, since P is Hermitian and P 2 = P , the dimension of its image Q(S) is equal
to the trace of P . Since tr(M) = 0 for all M ∈ Pn, M 6= 1 and tr(1) = qn, one has
tr(P ) = qn/|S| and so |S| = qn/K, since dimQ(S) = K.

We note that C = τ(S) is an additive code since S is an abelian subgroup and has
size |S| = qn/K. Since τ(Centraliser(S)) = C⊥a , we have C 6 C⊥a .

For K 6= 1, the minimum symplectic weight of any element of C⊥a \ C is d, since
the minimum distance of Q(S) is the minimum weight of the Pauli operators in
Centraliser(S)\S. As in the qubit case, if K = 1 then we define the minimum distance
of Q(S) to be the minimum weight of the Pauli operators in Centraliser(S) = S,
which is equal to the minimum symplectic weight of any element of C⊥a = C

The backwards implication is similar. Let S = τ−1(C) and define the stabilizer code
to be Q(S). Then the dimension follows as above. If K 6= 1 then the minimum
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distance of Q(S) corresponds as above to the minimum symplectic weight of an
element of C⊥a \ C, since Centraliser(S) is equal to τ−1(C⊥a) up to a scalar factor.
If K = 1 then the minimum distance of Q(S) corresponds to the minimum non-zero
symplectic weight of the elements of C⊥a = C. �

5.5 Constructions

The following theorem is known as the Calderbank-Shor-Steane construction. The ⊥
refers to the standard inner product on Fnq given by

u · v = u1v1 + · · ·unvn.

Theorem 5.5 Suppose there are linear codes C1 and C2 with parameters [n, k1, d1]q
and [n, k2, d2]q, with the property that C⊥1 6 C2. Then there is a [[n, k1 + k2 − n, d]]q
code, where d is the minimum weight of the elements in (C1 \ C⊥2 ) ∪ (C2 \ C⊥1 ) if
k1 + k2 6= n and d is the minimum non-zero weight of the elements in C1 ∪ C2 if
k1 + k2 = n.

Proof. Let C = C⊥1 × C⊥2 6 F2n
q . Then C is a linear code over Fq and for all

v = (v1|v2) and w = (w1|w2) in C,

(v, w)a = tr(v1 · w2 − v2 · w1) = tr(0− 0) = 0 .

In the above the first term vanishes since v1 ∈ C⊥1 6 C2 and w2 ∈ C⊥2 . Likewise, the
second term vanishes since v2 ∈ C⊥2 and w1 ∈ C⊥1 6 C2.

Hence, C 6 C⊥a and Theorem 5.4 applies.

To determine the minimum distance first note that C⊥a > C2 × C1, since for all
v = (v1|v2) ∈ C⊥1 × C⊥2 and w = (w2|w1) ∈ C2 × C1,

(v, w)a = tr(v1 · w1 − v2 · w2) = tr(0− 0) = 0.

The dimension of C2×C1 is k1+k2 and the dimension of C⊥a is 2n−(n−k1)−(n−k2) =
k1 + k2, so

C⊥a = C2 × C1.

Thus, by Theorem 5.4, if k1 + k2 6= n then the minimum distance of the stabilizer
code τ−1(C) is the minimum weight of the elements in (C1 \ C⊥2 ) ∪ (C2 \ C⊥1 ). If
k1 +k2 = n then the minimum distance of the stabilizer code τ−1(C) is the minimum
non-zero weight of the elements in C2 × C1 = C⊥1 × C⊥2 , which is equal to the
minimum non-zero weight of the elements in C1 ∪ C2 = C⊥1 ∪ C⊥2 . �

Example 5.6 The ternary extended Golay code C1 is a [12, 6, 6]3 code for which
C1 = C⊥1 . Applying Theorem 5.5, this implies there is a [[12, 0, 6]]3 quantum stabilizer
code.
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The code C1 has a generator matrix

G =



1 0 2 1 2 2 0 0 0 0 0 1
0 1 0 2 1 2 2 0 0 0 0 1
0 0 1 0 2 1 2 2 0 0 0 1
0 0 0 1 0 2 1 2 2 0 0 1
0 0 0 0 1 0 2 1 2 2 0 1
0 0 0 0 0 1 0 2 1 2 2 1


so C = C1 × C1 has generator matrix, a 12× 24 matrix(

0 G

G 0

)
.

The 12 Pauli operators generating the stabilizer group S are

Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 1 1 Z(1)
1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 1 Z(1)
1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 1 Z(1)
1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 1 Z(1)
1 1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) 1 Z(1)
1 1 1 1 1 Z(1) 1 Z(2) Z(1) Z(2) Z(2) Z(1)

X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 1 1 X(1)
1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 1 X(1)
1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 1 X(1)
1 1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 1 X(1)
1 1 1 1 X(1) 1 X(2) X(1) X(2) X(2) 1 X(1)
1 1 1 1 1 X(1) 1 X(2) X(1) X(2) X(2) X(1)



.

The next construction is called the Fq2 trick (for qubit codes this is the F4 trick).
It’s not really a trick at all but it is a quick and effective way to construct quantum
codes. These codes are a very special type of stabilizer code in which we impose
more structure on the additive code C.

For any two vectors u, v in Fnq2 , we define the Hermitian form

u ◦ v = uq · v (7)

and for a Fq2-linear code E we define

E⊥h = {u ∈ Fnq2 | u ◦ v = 0, for all v ∈ E}.

Theorem 5.7 If there exists a linear [n, n− k, d]q2 code D for which D⊥h 6 D then
there is a [[n, n− 2k,> d]]q stabilizer code.
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Proof. The code D⊥h is a [n, k, d′]q2 code for some d′.

Fix a basis {e, eq} for Fq2 over Fq, where e2q 6= e2.

Let θ be the map from Fnq2 to F2n
q defined by

θ((a1e+ b1e
q, . . . , ane+ bne

q)) = (a1, . . . an|b1, . . . , bn)

Let C = θ(D⊥h), a 2k-dimensional linear code over Fq of length 2n.

For u ∈ D⊥h and u′ ∈ D,

0 = uq · u′ =
n∑
i=1

(aie+ bie
q)q(a′ie+ b′ie

q).

This implies

0 =
n∑
i=1

(a′ibie
2 + b′iaie

2q + (aia
′
i + bib

′
i)e

q+1).

Applying the x 7→ xq map, we get

0 =
n∑
i=1

(a′ibie
2q + b′iaie

2 + (aia
′
i + bib

′
i)e

q+1).

Subtracting the last two equations,

0 = (e2q − e2)
n∑
i=1

(aib
′
i − bia′i).

Hence,
(θ(u), θ(u′))a = 0,

and so θ(D) 6 C⊥a . Since |D| = |C⊥a | = q2(n−k), we have that θ(D) = C⊥a .

Moreover, C = θ(D⊥h) and D⊥h 6 D, so C 6 C⊥a . The symplectic weight of an
element of θ(u) is equal to the weight of u, so the minimum symplectic weight of
C⊥a \ C is the minimum weight of D \D⊥h .

The theorem follows from Theorem 5.4. �

We will use the construction of Theorem 5.7 to obtain quantum MDS codes in the
next section.

Research Problem 3 If k is small enough one can multiply the columns of a
generator matrix for D⊥h with non-zero scalars to obtain an equivalent code for which
D⊥h 6 D holds. It would be interesting to calculate the combinatorial threshold for
codes when this can always be done and then deduce properties of codes which surpass
this threshold.
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5.6 The geometry of quqit codes

In the case q = ph, Theorem 5.4 implies that the existence of a ((n, qn/pr, d))q
stabilizer code Q(S) is equivalent to the existence of an additive code C 6 C⊥a of
length 2n, such that C is generated by r vectors of F2n

q that are linearly independent
over Fp. Thus, the code C is generated by a r × 2n matrix G(S) over Fp and its
columns are vectors in Frq. We have seen in Section 3.3 that when h > 1, we should
consider those columns as subspaces of PG(r− 1, p) and not as points of PG(r− 1, q).

Let xi be the i-th column of the matrix G(S) and let e be an element of Fq with the
property that {1, e, e2, . . . , eh−1} is a basis for Fq over Fp.

Then there are vector xi,j ∈ Frp such that

xi =
h−1∑
j=0

xi,je
j .

Let `i be the subspace

`i = 〈xi,0, . . . , xi,h−1, xi+n,0, . . . , xi+n,h−1〉, (8)

as a subspace of PG(r − 1, p).

The following lemma can be considered as a generalisation of Lemma 3.6

Lemma 5.8 The subspace `i is a (2h− 1)-dimensional subspace for all i = 1, . . . , n
if and only if the minimum non-zero weight of Centraliser(S) is at least two.

Proof. Suppose that `i is a (2h− 1)-dimensional subspace for all i = 1, . . . , n and
that E ∈ Centraliser(S) has weight one. Suppose that E has a X(a)Z(b) 6= X(0)Z(0)
in its i-th position, Consider any M ∈ S and suppose that in the i-th coordinate M
has the Pauli matrix X(a′)(Z(b′). Since M and E commute,

tr(a′b− b′a) = 0.

Thus, (a′, b′) is in the kernel of the linear (over Fp) form

tr(bX − aY ).

The kernel of a linear form is a hyperplane of PG(2h− 1, p), so `i has dimension at
most 2h− 2, a contradiction.

Suppose that the minimum non-zero weight of Centraliser(S) is at least two and that
`i is not a (2h − 1)-dimensional subspace for some i = 1, . . . , n. Since `i does not
span the whole of PG(2h− 1, p), there is an element (a, b) ∈ F2

q such that

tr(a′b− b′a) = 0,
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for all X(a′)Z(b′) occurring in the i-th position of some M ∈ S. This implies that
the Pauli operator of weight one E with a X(a)Z(b) commutes with all M ∈ S,
contradicting the fact that the minimum non-zero weight of Centraliser(S) is at least
two. �

Thus, by Lemma 5.8, the geometry of the stabilizer code Q(S) for which the minimum
non-zero weight of Centraliser(S) is at least two, is given by a set X of (2h − 1)-
dimensional subspaces of PG(r − 1, p) of size n. The following lemma allows us to
deduce the minimum distance of Q(S), at least in the case that Q(S) is pure.

Lemma 5.9 There are w dependent points incident with distinct subspaces of X if
and only if there is an element of Centraliser(S) of weight w.

Proof. Suppose that there is an element in Centraliser(S) of weight w. Then the
image under τ of this element is a vector v ∈ C⊥a with symplectic weight w. Let D
be the support of v restricted to the first n coordinates. As before, let xi be the i-th
column of the matrix G(S) and define xij as in (8). Since v ∈ C⊥a ,∑

i∈D
tr(vi+nxi − xi+nvi) = 0.

This implies ∑
i∈D

h−1∑
j=0

(xijtr(vi+ne
j)− xi+ntr(vie

j)) = 0.

The summand is a point of the subspace `i and there are |D| = w such points. This
proves the backwards implication.

Suppose there are w dependent points incident with distinct subspaces of X . Then
there is a subset D ⊆ {1, . . . , n} of size w and λi,j , λi+n,j ∈ Fp, such that

∑
i∈D

h−1∑
j=0

(λi,jxi,j − λi+n,jxi+n,j) = 0.

Recall that

xi =
h−1∑
j=0

xi,je
j .

Since `i is a (2h− 1)-dimensional subspace, the points xj , x
p
j , . . . , x

ph−1

j are h linearly
independent points, which implies there are µi,r ∈ Fq such that

xi,j =
h−1∑
r=0

µi,rx
pr

i .
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Since xi,j ∈ Frp, we have that µi,r = µp
r

i , for some µi. Substituting in the above gives,

∑
i∈D

h−1∑
j=0

h−1∑
r=0

(λi,j(µixi)
pr − λi+n,j(µi+nxi+n)p

r
) = 0.

Defining

vi =

h−1∑
j=0

λi,jµi

this equation becomes ∑
i∈D

tr(vi+nxi − vixi+n) = 0.

�

The property that defines X as a quantum set of lines for p = 2 does not carry over
to the case p > 3. This is because we can scale any column of G by an element of
Fq \ {0, 1} and not alter the set of lines X . This will alter the value of (u, v)a, so
the geometric interpretation of C 6 C⊥a will not be so clean as in the qubit case.
Moreover, it is difficult to deduce the pureness of the code directly from the geometry.
To see this, suppose that v ∈ C⊥a has symplectic support D and for simplicity sake
assume that q is prime. Then∑

i∈D
(vi+nxi − vixi+n) = 0.

Now, v ∈ C if and only if there is an a ∈ Frp such that vi = a · xi. This implies
that the lines not incident with the dependent points are once again contained in a
hyperplane, but we cannot deduce that the points of the dependencies are contained
in the hyperplane a ·X = 0. Indeed, the fact that

a · (vi+nxi − vixi+n) = 0,

implies that (vi, vi+n) = λi(xi, xi+n) for some non-zero scalar λi ∈ Fq. Since this λi
depends on i, we cannot deduce that vi = a · xi for all i = 1, . . . , 2n.

However, this also means that when p > 3 we have some flexibility in choosing a basis
for `i and this choice will affect whether C 6 C⊥a . Consider the set of n (2h− 1)-
dimensional subspaces of PG(4n− 1, p) associated with a pure [[n, n− 4, 3]]q stabilizer
code. By Lemma 5.9, these subspaces are pairwise skew. In geometrical language
this is called a partial spread. To construct such a code, according to Theorem 5.7, it
suffices to construct a [n, n− 2, 3]q2 linear code D for which D⊥h 6 D. Such a code
is has a generator matrix (

x1 x2 . . . xn
y1 y2 . . . yn

)
,
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where xiyj 6= xjyi and

n∑
i=1

xq+1
i =

n∑
i=1

yq+1
i =

n∑
i=1

xqi yi = 0. (9)

For any n 6 q2 + 1 such a matrix can be found by scaling the first three columns so
that the equation in (9) are satisfied.

Research Problem 4 The Glynn et al [5] manuscript developed the geometry of
qubit stabilizer codes, introducing the concept of a quantum set of lines. This led
them to prove Theorem 3.14, which gives a beautiful geometric classification of qubit
stabilizer codes. Here, we have generalised the concept of quantum set of lines to
non-qubit stabilizer codes. Although we have seen that the existence of non-identity
non-zero scalars means we cannot hope for such a clean geometric classification, one
can certainly expect some geometric classification for larger q.

6 Quantum MDS codes

6.1 Stabiliser MDS codes

Let C be a code of length n and minimum distance d over an alphabet of size q. If
we consider any n− (d− 1) coordinates then any two codewords must be different
on these coordinates (if not the distance between them is at most d− 1), so there
are at most qn−d+1 codewords in the code. This is the Singleton bound

|C| 6 qn−d+1.

A code which attains the Singleton bound is called a maximum distance separable
code or simply an MDS code.

Recall that if C is an additive code over Fq, where q = ph for some prime p, then C
is linear over Fp and so necessarily |C| = pr for some r, see Section 3.3. Thus, if C is
also an MDS code then h divides r and |C| = qk, where k = n− d+ 1.

Theorem 5.4 states that an [[n, k, d]]q stabilizer code exists if and only if there exists
an additive code C 6 F2n

q of size |C| = qn−k such that C 6 C⊥a and the minimum

symplectic weight of an element of C⊥a \C is d. Considering C⊥a as a code over the
alphabet Fq × Fq, then C⊥a has minimum weight d, so

|C⊥a | 6 q2n−2d+2.

Since |C| = qn−k we have that |C⊥a | = qn+k, which implies that for a [[n, k, d]]q
stabilizer code to exist, we must have the condition

k 6 n− 2(d− 1).
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Compare this with the Singleton bound above

k 6 n− (d− 1),

for codes of size qk.

What is perhaps surprising is that this bound holds for all [[n, k, d]]q quantum codes.
The quantum Singleton bound states that

n > k + 2(d− 1) .

Consequently, codes reaching equality are called quantum maximum distance separable
codes or QMDS codes for short. We will prove this bound in Section 6.3.

6.2 Reed-Solomon codes

The classical example of an MDS code is the following linear code over Fq. Denote
by {a1, . . . , aq} the elements of Fq. The Reed-Solomon code is

C = {(f(a1), . . . , f(aq), fk−1) | f ∈ Fq[X], deg f 6 k − 1},
where fk−1 denotes the coefficient of Xk−1 in f(X). If k 6 q then each polynomial
f defines a different codeword, so the dimension of C is k. A non-zero codeword has
weight at least n − k + 1, since a polynomial of degree at most k − 1 has at most
k − 1 zeros. Lemma 3.1 then implies that the minimum distance d = n− k + 1 and
so the code is MDS.

We can use Theorem 5.7 to construct quantum stabilizer codes from Reed-Solomon
codes over Fq2 , but only if we can scale the coordinates of C so that C 6 C⊥h . Then
D = C⊥h is a [n, n − k, k + 1]q2 linear MDS code with the property that D⊥h 6 D.
Observe that replacing the i-th coordinate f(ai) by λif(ai) does not alter the
parameters of the code. Such a code is then called a generalised Reed-Solomon code.
This can only be done for k 6 q, in which case we obtain a [[q2 + 1, q2 + 1−2k, k+ 1]]q
stabilizer code. For case k = q, one can check that the Reed-Solomon code

{(f(a1), . . . , f(aq2), fq−1) | f ∈ Fq2 [X], deg f 6 q − 1},
is contained in its Hermitian dual, so there is no need to scale in this case.

6.3 Quantum Singleton bound

To prove the quantum Singleton bound we will need some technical tools.

1. Bloch decomposition. Let {ei} be a basis for the space of complex D×D matrices

such that tr
(
e†iej

)
= Dδij . For qubits, take for example the Pauli matrices. Every

one-quDit density matrix can then be expanded as

ρ =
1

D

∑
i

tr
(
e†iρ
)
ei,
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where we recall that the trace of a matrix is given by the sum of its diagonal elements,
tr(M) =

∑
imii for any square matrix M = (mij).

Consider now an n-partite system in the space (CD)⊗n. Denote by {Eα}, with a
multi-index α = (α1, . . . , αn), the matrix basis formed by tensor-products of the ei’s

Eα = eα1 ⊗ . . .⊗ eαn .

For tensor products, such as say E ⊗ F , one has tr(E ⊗ F ) = tr(E) · tr(F ). In other

words, the trace of a tensor product factorizes. Consequently tr
(
E†αEβ

)
= Dnδαβ,

and the matrix basis formed by {Eα} is orthogonal.

Denote by wt(Eα) the number of non-identity terms in the tensor-decomposition, and
by supp(Eα) the collection of sites where the non-identity terms act on. Naturally,
wt(Eα) = | supp(Eα)|.
We can expand an n-partite state as

ρ =
1

Dn

∑
E

tr
(
E†ρ

)
E .

As above, we from now on omit the index α for readability. This is the Bloch
decomposition of ρ.

2. Partial trace. Consider the linear function trj which maps

trj : eα1 ⊗ . . .⊗ eαn 7→ tr
(
eαj

)
· eα1 ⊗ . . .⊗ eαj−1 ⊗ eαj+1 ⊗ . . .⊗ eαn .

The function trj is called the partial trace and its action can be understood as that
of removing the j-th tensor component.

The partial trace does not depend on the basis. Its coordinate-free definition is the
following: Let V and W be two vector spaces and denote by IW the identity matrix
on W . The partial trace trW is the unique operator, which for all M acting on
V ⊗W and N acting on V satisfies

tr(M · (N ⊗ IW )) = tr(trW (M) ·N) .

Considering the Hilbert-Schmidt inner product 〈M,N〉 = tr
(
M †N

)
, the partial trace

can be seen as the adjoint to the map V → V ⊗ IW . Note that partial traces over
different subsystems commute, trj tri = tri trj and one has that

tr(M1 ⊗M2 ⊗ . . .⊗Mn) = tr(M1) tr(M2) · · · tr(Mn) .

3. Purification. A density matrix ρ on HA can always be diagonalized as

ρ =

dim(HA)∑
i=1

λi |λi〉〈λi|A ,
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where {|λi〉A} is its set of eigenvectors and {λi} is its set of corresponding eigenvalues.

The density matrix ρ acting on some Hilbert space HA can always be represented as
the reduction or marginal of a pure state on HA ⊗HB with dim(HB) ≥ dim(HA).
This works as follows: choose an orthonormal basis {|λi〉B} for an arbitrary dim(HA)-
dimensional subspace of HB. We then write

|φ〉 =

dim(HA)∑
i=1

√
λi |λi〉A ⊗ |λi〉B .

It can be checked that trB(|φ〉〈φ|) = ρ and the state |φ〉 is known as a purification of
ρ.

4. Von Neumann entropy. Consider a classical probability distribution represented
by a set of probabilities pi ≥ 0 with

∑
i pi = 1. Its Shannon entropy is

S(p) = −
∑
i

pi log(pi) .

We can introduce a similar quantity for quantum states. Given a density matrix ρ,
its von Neumann entropy is defined as

S(ρ) = − tr ρ log(ρ) .

Such matrix functions of hermitian operators can be evaluated on their eigenvalues
{λi}. Then the von Neumann entropy evaluates as

S(ρ) = −
∑
i

λi log(λi) .

Let us now write SA = S(trB[ρAB ]) and so on. For a state ρ on HA with purification
|φ〉 ∈ HA ⊗HB, we have that SA = SB.

The von Neumann entropy satisfies subadditivity and strong subadditivity,

SAB ≤ SA + SB ,

SABC + SB ≤ SAB + SBC .

We are now in position to prove the Quantum Singleton bound.

Theorem 6.1 (Quantum Singleton bound) Any [[n, k, d]]q code with k ≥ 1 sat-
isfies

n ≥ k + 2(d− 1) .

Proof. The distance must be bounded by 2(d− 1) < n, as otherwise n− (d− 1) <
(d−1) and we could recover the encoded state from two disjoint subsystems, violating
the no-cloning theorem.
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Let ΠQ =
∑qk

i=1 |vi〉〈vi| be the projector onto the code space. A purification with a
reference system R leads to

|ψQR〉 =
1√
qk

qk∑
i=1

|vi〉 ⊗ |iR〉 ,

where |iR〉 is any orthonormal basis for R. Let us partition the code into the three
subsystems A,B,C, such that |A| = |B| = d − 1 and |C| = n − 2(d − 1). Then
SR = log

(
qk
)
. As the code has distance d, any subsystem of size strictly smaller

than d cannot reveal anything about the reference system R: indeed the condition of
%RA = %R ⊗ %A is known to be a necessary and sufficient condition for the subsystem
A to be correctable [13]; this is also equivalent to SRA = SR + SA. With the
subadditivity of the von Neumann entropy this leads to

SR + SA = SRA = SBC ≤ SB + SC ,

SR + SB = SRB = SAC ≤ SA + SC ,

where we used that the entropies of complementary subsystems are equal for a pure
state. The combination of the above two inequalities yields

log qk = SR ≤ SC ≤ log dim(HC) = log qn−2(d−1).

�

Similar to classical MDS codes, quantum MDS are, in a certain sense, extremal. We
have the following interesting properties:

(a) If a [[n, n− 2d+ 2, d]] quantum MDS code exists, then so do all [[n− s, n− 2d+
2 + s, d− s]] codes for all 0 ≤ s ≤ d.

(b) For every subset S ⊂ {1, . . . , n} with |S| ≤ n+k
2 , we have that trSc(P ) ∝ 1,

where P is the orthogonal projection onto the quantum MDS code.

Let us discuss these properties: a) states that QMDS codes form families of codes
where n + k is constant. Within each family, only the member with the highest
distance has to be determined, as its descendants can be obtained by a partial trace:
tracing out over a single particle, one has n 7→ n− 1, k 7→ k + 1, d 7→ d− 1. This
works because QMDS codes are pure codes, that is, all their (d− 1)-party marginals
are maximally mixed. For general quantum codes, this method of making new codes
from old is not necessarily possible.

Property (b) states that for all pure states |v〉 in the code, the marginals of size
less than d are maximally mixed. This implies that every vector in the code space
shows maximal bipartite entanglement across any bipartition of d− 1 vs. n− d+ 1
parties. Thus QMDS codes form subspaces that show high bipartite entanglent. We
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[[6, 0, 4]]2
[[5, 1, 3]]2
[[4, 2, 2]]2
[[3, 3, 1]]2

[[12, 0, 7]]3
[[11, 1, 6]]3
[[10, 2, 5]]3
[[9, 3, 4]]3
[[8, 4, 3]]3
[[7, 5, 2]]3
[[6, 6, 1]]3

n+ k = 6, D = 2 n+ k = 12, D = 3

6 ∃
6 ∃
6 ∃
6 ∃
∃
∃
∃

∃
∃
∃
∃

Figure 9: Two families of quantum MDS codes. Once the topmost existing parent
code is known, (here: [[6, 0, 4]]2 and [[8, 4, 3]]3), its descendants can be obtained by
partial traces.

relate this to similar property of classical MDS codes: the parity check matrix H of
a classical [n, k, d] code has the property that every set of n− k columns are linearly
independent.

A necessary condition for QMDS to exist is the following bound.

Proposition 6.2 ([10]) If there is a quantum MDS code with parameters [[n, n−
2d+ 2, d]]q then

n 6 q2 + d− 2 .

This should be compared to the “trivial” upper bound for MDS codes. If there is a
(n, qk, n− k + 1)q MDS code then

n 6 q + k − 1.

The MDS conjecture states that if 4 6 k 6 q and there is a (n, qk, n− k + 1)q MDS
code then

n 6 q + 1.

This is known to hold for linear codes if q is a prime, see [3].

For quantum MDS codes, the MDS conjecture states that if 5 6 d 6 q2− 1 and there
is a linear [[n, n− 2d+ 2, d]]q MDS code then

n 6 q2 + 1.

Ketkar [12, Corollary 65] claims that if the classical MDS conjecture holds for linear
codes then quantum MDS conjecture holds for stabilizer codes. This is not the case.
By Theorem 5.4 the existence of a stabilizer code is equivalent to the existence of an
additive code, so [12, Corollary 65] should state that the quantum MDS conjecture
holds for stabilizer codes if the MDS conjecture holds for additive codes.
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Research Problem 5 Prove the MDS conjecture for linear codes with q non-prime.

Research Problem 6 Prove the MDS conjecture for additive codes over Fq, starting
with q = p2 for some prime p.

Research Problem 7 Find all inequalities that relate the von Neumann entropies
of the marginals of multipartite systems.

Research Problem 8 Show that all QMDS codes are either stabilizer codes or the
direct sum of stabilizer codes.

7 Weight enumerators

7.1 MacWilliams identity for linear codes

Let C be an [n, k, d]q code and define Ai to be the number of codewords of C of
weight i, i.e. the number of codewords of C which have i non-zero coordinates. Since
the zero codeword is in C, A0 = 1 and since the minimum distance is d, Ai = 0 for
all i = 1, . . . , d− 1. Let Bi denote the number of codewords of C⊥ of weight i. The
MacWilliam’s identities relate the polynomials

A(x, y) =
n∑
i=1

Aix
n−iyi

and

B(x, y) =
n∑
i=1

Bix
n−iyi.

Specifically, we have that

|C|B(x, y) = A(y + (q − 1)x, y − x)

and dually,

|C⊥|A(x, y) = B(y + (q − 1)x, y − x).

Let G be a k×n generator matrix for C and let X be the set or multi-set of columns
of G, viewed as points of PG(k − 1, q). In Section 3.2, we saw that a non-zero
codeword u = aG corresponds to a hyperplane πa of PG(k − 1, q) and that πa = πλa
for any λ ∈ Fq. The number of points of X incident with the hyperplane πa is n
minus the weight of the codeword u. Thus, for i 6= 0, there are Ai/(q−1) hyperplanes
which are incident with n− i points of X .
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7.2 MacWilliams identity for quantum codes

As for classical codes, weight enumerators can be defined for quantum codes, which
again are useful to deduce the error-correcting properties of codes and to obtain
bounds on their existence.

Let Q be a quantum code and let P be the orthogonal projection onto Q. The
weights of the primary and secondary Shor-Laflamme enumerators are

Aj =
∑

wt(E)=j

tr(EP ) tr
(
E†P

)
,

Bj =
∑

wt(E)=j

tr
(
EPE†P

)
,

where the sum is over Pauli operators E of weight j and phase 1.

The enumerator polynomials are given by

A(x, y) =

n∑
j=0

Ajx
n−jyj , B(x, y) =

n∑
j=0

Bjx
n−jyj .

Lemma 7.1 For a stabilizer code, Aj is q2n/|S|2 times the number of elements in
the stabilizer subgroup S that have weight j. Similarly, Bj is qn/|S| times the number
of elements in the normaliser of S of weight j.

Proof. By Lemma 2.3,

P =
1

|S|
∑
M∈S

M.

The map tr is linear and tr(M) = 0 unless M = 1 and tr(1) = qn.

Hence, if E 6∈ S,

tr(EP ) tr
(
E†P

)
= 0

and if E ∈ S then
tr(EP ) tr

(
E†P

)
= q2n/|S|2.

Thus, Aj is q2n/|S|2 times the number of elements in the stabilizer subgroup S that
have weight j.

We leave the result for Bj as an exercise.

�

The geometrical interpretation of Aj for stabilizer codes is as follows. Suppose that
X is a quantum set of lines in PG(n− k − 1, q). Then Aj is (q − 1) times number of
hyperplanes containing n− j lines of X .
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The quantum MacWilliams identity states that

qnB(x, y) = A(x+ (q2 − 1)y, x− y),

and respectively that

qnA(x, y) = B(x+ (q2 − 1)y, x− y).

Before proving the quantum MacWilliams identity, consider the following example.

Example 7.2 (self-dual hexacode) Consider the [6, 3, 4]4 code D generated by the
matrix  1 0 0 1 1 1

0 1 0 1 e e2

0 0 1 1 e2 e

 ,

where e2 = e+ 1. One can prove that the minimum distance is 4 by checking that all
3× 3 submatrices are non-singular. By verifying that the hermitian inner product
(7) between any two rows is zero, one quickly concludes that D = D⊥h . Theorem 5.7
implies that we can construct a [[6, 0, 4]]2 stabilizer code Q(S) from D. By writing out
the entries in the matrix over F2 and considering the F2 span we obtain the matrix
G(S) for this quantum code.

Consider the [[6, 0, 4]]2 code that can be constructed from the code D. The code τ(S)
is spanned by the generator matrix

G(S) =



1 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 1 1
0 1 0 1 0 1 0 0 0 0 1 1
0 0 0 0 1 1 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 1 1 0 1

 .

Thus, the stabilizer subgroup has generators

M1 = X 1 1 X X X
M2 = Z 1 1 Z Z Z
M3 = 1 X 1 X Z Y
M4 = 1 Z 1 Z Y X
M5 = 1 1 X X Y Z
M6 = 1 1 Z Z X Y

By Lemma 5.9, the quantum set of six lines X we get from the matrix G(S) has the
property that any three lines of X span the whole space PG(5, 2). Therefore, any
two span a three-dimensional subspace which is contained in three hyperplanes which
contain no further line of X . Thus, there are 45 hyperplanes which contain exactly
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two lines of X . Let ` be a line of X . There are 15 hyperplanes containing `, so
counting pairs (`, π) where ` ∈ X and π is a hyperplane containing `, we conclude
that any hyperplane containing a line of X contains two lines of X .

Thus, we work out the weight distribution. For codes with k = 0 (that is, pure
states), both weight distributions coincide; this can be checked from the definition.
From before, we have that Aj is the (q − 1) times number of hyperplanes containing
n− j lines of X . Thus, we have proved that the weight distribution for the quantum
hexacode is

(A0, . . . , A6) = (1, 0, 0, 0, 45, 0, 18).

The corresponding enumerator polynomials are

A(x, y) = B(x, y) = x6 + 45x2y4 + 18y6 .

This polynomial is indeed invariant under the quantum MacWilliams transform, since

64B(x, y) = (x+ 3y)6 + 45(x+ 3y)2(x− y)4 + 18(x− y)6 = 64(x6 + 45x2y4 + 18y6).

Research Problem 9 For stabilizer codes, Aj and Bj count the number of terms in
the stabilizer S and its normaliser N(S) respectively; there is no such combinatorial
interpretation for general quantum codes. Although Aj can interpreted as the Hilbert-
Schmidt norms of the j-body correlations that appear in the code, we would like to
determine what object Bj is counting for non-stabilizer codes.

We return to the proof of the quantum MacWilliams identity.

Proof. [Quantum MacWilliams identity] We will only state a proof sketch; the
rather tedious combinatorial details can be found in [11, 14].

Let S be a collection of subsystems and denote by trS the partial trace the systems
in S. Denote by Sc the complement of S in {1, . . . , n}. Consider now how the partial
trace trS followed by a ”padding“ with the identity acts on an operator P .

trS(P )⊗ 1S = trS

( 1

qn

∑
E

tr
(
E†P

)
E
)
⊗ 1S =

1

qn−|S|

∑
supp(E)⊆Sc

tr
(
E†P

)
E . (10)

It can be shown (c.f. Appendix A in Ref. [11]) that this can also be written as

trS(P )⊗ 1S =

∫
U(qn) s.t.
supp(U)⊆S

UPU †dU =
1

q|S|

∑
supp(E)⊆S

EPE† , (11)

where the integration is over the unitarily invariant Haar measure of unitary matrices
that act trivially on the subsystem Sc. The second equality follows from the fact
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that any complete orthonormal matrix basis {Eα} containing the identity forms a
unitary 1-design 5.

The quantum MacWilliams identity now essentially follows from equating Eqs. (10)
and (11), summing over all subsystems of size |S| = m, multiplying by P , and taking
the trace. This yields terms of the form

∑
tr
(
E†P

)
tr(EP ) and

∑
tr
(
E†PEP

)
,

corresponding to the two types of weights Aj and Bj .

Proceeding in this manner, Eq. (10) gives∑
|S|=m

tr(trS(P )⊗ 1S · P ) =
∑
|S|=m

tr
(
qm−n

∑
supp(E)⊆Sc

tr
(
E†P

)
E · P

)
= qm−n

∑
|S|=m

∑
supp(E)⊆Sc

tr
(
E†P

)
tr
(
EP
)

= qm−n
n−m∑
j=0

(
n

n−m

)(
n−m
j

)(
n

j

)−1
Aj

= qm−n
n−m∑
j=0

(
n− j
m

)
Aj .

Meanwhile, Eqs. (11) gives∑
|S|=m

tr(trS(P )⊗ 1S · P ) =
∑
|S|=m

tr
(
q−m

∑
supp(E)⊆S

E†PE · P
)

= q−m
∑
|S|=m

∑
supp(E)⊆S

tr
(
E†PEP

)

= q−m
m∑
j=0

(
n

m

)(
m

j

)(
n

j

)−1
Bj

= q−m
m∑
j=0

(
n− j
n−m

)
Bj .

Thus for every operator P and 0 ≤ m ≤ n one has that

qm−n
n−m∑
j=0

(
n− j
m

)
Aj = q−m

m∑
j=0

(
n− j
n−m

)
Bj .

Using generating functions, in other words the weight enumerator polynomials A(x, y)
and B(x, y), and Krawtchouk polynomials, this yields the MacWilliams identity

qnB(x, y) = A(x+ (q2 − 1)y, x− y).

5 t-designs replace the integration over some compact group by a finite sum. A unitary t-design
is a set of unitaries Ui, i = 1, . . . ,K acting on Cq, such that

∫
U(D)

Pt,t(U)dU = 1
K

∑K
i=1 Pt,t(Ui)

holds for every homogeneous polynomial Pt,t that has degree t in the matrix elements of U and
degree t in the matrix elements of U∗.
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This ends the proof sketch. �

The enumerators and their weights have a couple of interesting properties: Let
K = dim(imP ).

a) The weights Aj and Bj are invariant under the local choice of basis and are
so-called local unitary invariants (LU-invariants). That is,

Aj(P ) = Aj(P
′) and Bj(P ) = Bj(P

′) ,

where P ′ = (U1 ⊗ . . .⊗ Un)P (U †1 ⊗ . . .⊗ U †n) and U1, . . . , Un are unitary q × q
matrices.

b) A0 = dim(P ) and KBj ≥ Aj ≥ 0.

c) A projection operator P with K = dim(im(P )) is a code of distance d, if and
only if it satisfies KBj = Aj for 0 ≤ j < d.

d) One can check that for codes withK = 1, the enumerator polynomial is invariant
under the quantum MacWilliams transform, and one has B(x, y) = A(x, y).
When such a code is of stabilizer type, it corresponds to a classical self-dual
code.

Some comments are in order. The weights must be LU-invariant - the properties of
the code should not depend on the way one sets up the local coordinate system for
each spin particle. The last two properties are useful to obtain weights of hypothetical
codes and to apply the machinery of linear programming bounds [2]. That is, one sets
up a system of linear equalities and inequalities in the variables A0, . . . , An making
use of a), b), and the quantum MacWilliams identity.

For example, it is a longstanding open problem if a (pure) code with the parameters
[[24, 0, 10]]2 exists. It is known that such code must have even weights only and using
linear programming, one can fix the weight distribution to be

[A10, A12, A14, ...A24] = [18216, 156492, 1147608, 3736557, 6248088, 4399164,

1038312, 32778] .

Indeed this is also the weight distribution of hypothetical [24, 12, 10] self-dual additive
code over GF(4) (see OEIS http://oeis.org/A030331).

Research Problem 10 Either find a quantum code with parameters [[24, 0, 10]]2, or
show that no such code can exist.

We refer to the tables by M. Grassl [8] for more existence results.
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