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Abstract

In scope of this paper we show that there are relations between the
properties of a complete m-ary rooted tree of height n and the expectation
and variance of the distribution of lengths of random strings generated
from the alphabet {α1, α2, . . . αm} until we see n instances of a specific
symbol in a row. Based on this we demonstrate a new interpretation for
the integer sequence A286778.

Overview

Consider a complete m-ary rooted tree graph of height n: Gm,n = (V,E). Let’s
denote the total number of edges in such tree as Tm,n := |E| = m · m

n−1
m−1 . For

every node v ∈ V there always exists a unique path π(v) from the node v to the
root node (we treat paths as sets of edges). For any pair of nodes (a, b) ∈ V ×V
we can find the length of the common sub-path to the root node: |π(a) ∩ π(b)|.
Let’s denote the sum of the common sub-path lengths over all 2-tuples of nodes
of such tree as Sm,n :=

∑
(a,b)∈V×V |π(a) ∩ π(b)|.

(a) T2,2 = 6 and S2,2 = 22. (b) T3,2 = 12 and S3,2 = 57

Figure 1: Examples of the trees and the corresponding values of Tm,n and Sm,n.

On the other hand, consider a process that generates a random string as
follows: starting from the empty string we pick a random symbol from the
alphabet {α1, α2, . . . αm} and append it to the string, the process continues
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until we see n instances of a specific symbol (say, α1) in a row. Let’s introduce
a random variable ξm,n that represents a length of the string generated by the
described process.

We will prove that the following relations between Tm,n and the expectation
of ξm,n, and between Sm,n and the variance of ξm,n, are true for all m,n ≥ 1:

Var[ξm,n] = (m− 1) · Sm,n (1)

E[ξm,n] = Tm,n (2)

In the table 1 you can see few examples:

(m,n) Tm,n E[ξm,n] Sm,n Var[ξm,n]
(2,2) 6 6 22 22
(2,3) 14 14 142 142
(2,4) 30 30 734 734
(2,5) 62 62 3390 3390

(3,2) 12 12 57 114
(3,3) 39 39 678 1356
(3,4) 120 120 6834 13668

(4,2) 20 20 116 348
(4,3) 84 84 2228 6684
(4,4) 340 340 37812 113436

Table 1: Note, that the relations between the items in the rows obey the equa-
tions (1) and (2).

For proving the relations (1) and (2) in case when m ≥ 2 we will use the
closed-form expressions for Tm,n, E[ξm,n], Sm,n and Var[ξm,n].

The computation of expectation E[ξm,n] and variance Var[ξm,n] is described
in the literature, for instance: the approach based on generating functions is
described in [1], and the approach based on martingales is described in [2], also
the closed-form expression for E[ξm,n] is provided in [3].

For completeness, in scope of these notes we will derive the closed-form
expressions for E[ξm,n] and Var[ξm,n]. We will use the transfer matrix method
[4], which is similar to the approach based on the absorbing Markov chain. In
the section 1 we will construct a matrix W based on the adjacency matrix of
a digraph that corresponds to the described string-generation problem. Using
the fact, that the spectral radius of W is less than 1 (which we will prove in
the section 4) we will derive the matrix-form expressions for computing the
expectation and variance (where I is an identity matrix):

E[ξm,n] = (0, . . . , 0, 1) ·W · (I−W )−2 · (1, 0, . . . , 0)T (3)

Var[ξm,n] = (0, . . . , 0, 1) ·W · (I +W ) · (I−W )−3 · (1, 0, . . . , 0)T − E[ξm,n]2

(4)
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Afterwards (in the section 2), taking into account relations between the
entries of the matrices W , (I + W ), and (I − W )−1, we will derive from the
equations (3) and (4) the closed-form expressions for expectation and variance:

E[ξm,n] = m · m
n − 1

m− 1
(5)

Var[ξm,n] =
m

(m− 1)2
· (m2n+1 − (2n+ 1) ·mn+1 + (2n+ 1) ·mn − 1) (6)

In the section 3 we will derive the closed-form expression for Sm,n using the
combinatorial counting techniques:

Sm,n =
m

(m− 1)3
· (m2n+1 − (2n+ 1) ·mn+1 + (2n+ 1) ·mn − 1) (7)

The equation (1) follows from the equations (6) and (7). And the equation
(2) follows from the equation (5) and the definition of Tm,n.

In case when m = 2 we have E[ξ2,n] = T2,n and Var[ξ2,n] = S2,n for all
n ≥ 1. While it is known that both E[ξ2,n] and T2,n are described by the integer
sequence A000918 [5], and it is known that S2,n is described by the integer
sequence A286778 [6], we obtain a new interpretation for the integer sequence
A286778: this sequence describes Var[ξ2,n] – a variance of the number of tosses
of a fair coin until we see n heads in a row. In this case we can derive from
the equation (6) the same formula as provided in [6] for computing the values
of A286778:

an = 4 · 22n − (4n+ 2) · 2n − 2 (8)

As a closing remark, it worth to admit, that it might be interesting to inves-
tigate further: whether it is possible to find similar relations for the distributions
of lengths of randomly generated strings, that are generated until we observe
any particular (given in advance) word for the given alphabet.

1 Expectation and variance of the lengths of
generated strings

In case if m = 1 (the alphabet contains only one symbol) the expressions for
expectation and variance are trivial: E[ξ1,n] = n and Var[ξ1,n] = 0 (and the
equations (1) and (2) are true in this case), so in the remaining part of the
paper we will focus on the case when m ≥ 2.

We can represent our string generation problem as a walk in the digraph
displayed in the figure 2 (each edge is associated with a subset of symbols from
our alphabet: either {α2, . . . αm}, or {α1}).

This graph has a (n+ 1)× (n+ 1) adjacency matrix (9), where the outgoing
edges of vertices are represented as column-vectors, and the values of the items
of this matrix represent the sizes of the subsets of symbols associated with the
corresponding edges.
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Figure 2: After choosing the random symbol from the alphabet we follow the
edge, which contains the chosen symbol (we start from the “initial” vertex).

A =

Initial α1 α1α1 . . . α1α1...α1 Final



(m− 1) (m− 1) (m− 1) . . . (m− 1) 0 Initial

1 0 . . . . . . 0 0 α1

0 1 0 . . .
...

... α1α1

...
. . .

. . .
. . .

...
...

...

...
. . .

. . . 0
... α1α1...α1

0 . . . . . . 0 1 0 Final

(9)
We are interested in the number of walks, that arrive into the final vertex

after k steps (starting from the initial vertex). The matrix Ak allows to obtain
the number of walks of length k between any pair of vertices. So, the number
of walks between the initial vertex and between the final vertex is a leftmost
bottom element of Ak:

(0, . . . , 0, 1) ·Ak · (1, 0, . . . , 0)T (10)

Given the alphabet size m the total number of walks of length k is mk,
therefore the probability that the random walk of the length k will finish in the
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final vertex is:

pk =
1

mk
· (0, . . . , 0, 1) ·Ak · (1, 0, . . . , 0)T

= (0, . . . , 0, 1) ·
(

1

m
·A
)k
· (1, 0, . . . , 0)T

(11)

Let’s denote W := 1
m · A. Also, let’s introduce a discrete random variable

ξm,n, that represents a length of the string, generated until we observed n sym-
bols α1 in a row (ξm,n takes values from the set {0, 1, 2, 3, . . . }). Thus, the
expected length of the string is:

E[ξm,n] =

∞∑
k=0

k · pk = (0, . . . , 0, 1) ·

( ∞∑
k=0

k ·W k

)
· (1, 0, . . . , 0)T (12)

In the section 4 we will investigate the spectral radius of W , and we will show
that ρ(W ) < 1. Thus, we deal with the Neumann series:

∑∞
k=0W

k = (I−W )−1.
Consequently, we can transform the infinite sum in equation (12) using the same
technique as with formal power series:

∞∑
k=0

k · xk = x · d
dx

( ∞∑
k=0

xk

)
=

x

(1− x)2
(13)

Hence, the expectation can be expressed as:

E[ξm,n] = (0, . . . , 0, 1) ·W ·
(
(I−W )−1

)2 · (1, 0, . . . , 0)T (14)

The product of matrices W · (I−W )−1 is commutative (the proof is in the
section 6), so the order of matrices in the equation (14) does not matter.

Now, let’s compute the variance:

Var[ξm,n] = E[ξ2m,n]− E[ξm,n]2 (15)

Let’s compute E[ξ2m,n]:

E[ξ2m,n] =

∞∑
k=0

k2 · pk = (0, . . . , 0, 1) ·

( ∞∑
k=0

k2 ·W k

)
· (1, 0, . . . , 0)T (16)

As far as ρ(W ) < 1, we can transform the sum
∑∞
k=0 k

2 ·W k using the same
technique as with formal power series:

∞∑
k=0

k2 · xk = x · d
dx

( ∞∑
k=0

k · xk
)

=
x · (1 + x)

(1− x)3
(17)

Hence, E[ξ2m,n] could be expressed as:

E[ξ2m,n] = (0, . . . , 0, 1) ·W · (I +W ) ·
(
(I−W )−1

)3 · (1, 0, . . . , 0)T (18)
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The products of matrices W ·(I+W ) and (I+W )·(I−W )−1 are commutative
(the proof is in the section 6), so the order of matrices in the equation (18) does
not matter.

From equations (14) and (18) we obtain the matrix-form expression for the
variance:

Var[ξm,n] =E[ξ2m,n]− E[ξm,n]2

=(0, . . . , 0, 1) ·W · (I +W ) ·
(
(I−W )−1

)3 · (1, 0, . . . , 0)T−

−
(

(0, . . . , 0, 1) ·W ·
(
(I−W )−1

)2 · (1, 0, . . . , 0)T
)2 (19)

Generally speaking, for the cases when we generate random strings until we
encounter any arbitrary word constructed from the given alphabet (not only
until we see n instances of a specific symbol in a row) – the matrix-form expres-
sions for expectation and variance (14) and (19) are true as long as the series,
that involve the corresponding matrix W , converges. But, still, in scope of this
paper we focus on the random string generation process that continues until we
see n instances of a specific symbol in a row.

2 The closed-form expressions for expectation
and variance

Taking into account the structure of the matrix A from the equation (9) and
that W := 1

m ·A, we can notice that the values of entries of the matrix (I−W )−1

obey a simple pattern:



mn (mn −m1) (mn −m2) . . . (mn −mk) . . . (mn −mn)
... mn−1 (mn−1 −m1) . . . (mn−1 −mk−1) . . .

...
...

... mn−2 . . .
... . . .

...
...

...
...

...
...

...
...

...
. . . (mn−k+1 −m1)

...
...

...
... mn−k ...

...
...

...
...

...
m2 m2 m2 . . . m2 (m2 −m2)

m1 m1 m1 . . . m1 . . . (m1 −m1)
m0 m0 m0 . . . m0 . . . m0

(20)
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Considering the structure of the matrix W we can compute (0, . . . , 0, 1) ·W :

(0, . . . , 0, 0, 1) ·W =

(
0, . . . , 0,

1

m
, 0

)
(21)

Let’s compute (I−W )−1 · (1, 0, . . . , 0)T using the matrix from (20):

(I−W )−1 · (1, 0, . . . , 0)T = (mn,mn−1,mn−2, . . . ,m0)T (22)

Using the similar vector-matrix multiplications as in (21) and (22) we can
compute the closed-form expression for E[ξm,n]:

E[ξm,n] = (0, . . . , 0, 1) ·W ·
(
(I−W )−1

)2 · (1, 0, . . . , 0)T

=

(
0, . . . , 0,

1

m
, 0

)
· (I−W )−1 · (mn,mn−1,mn−2, . . . ,m0)T

=

((
0, . . . , 0,

1

m
, 0

)
· (I−W )−1

)
· (mn,mn−1,mn−2, . . . ,m0)T

=

(
1

m
· (m,m,m, . . . ,m, 0)

)
· (mn,mn−1,mn−2, . . . ,m0)T

= (1, . . . , 1, 0) · (mn,mn−1,mn−2, . . . ,m0)T

=

n∑
k=1

mk = m · (mn − 1)

(m− 1)

(23)

So, we have shown that E[ξm,n] = m · (m
n−1)

(m−1) .

Now, let’s compute E[ξ2m,n]:

E[ξ2m,n] = (0, . . . , 0, 1) ·W · (I +W ) ·
(
(I−W )−1

)3 · (1, 0, . . . , 0)T

=

(
0, . . . , 0,

1

m
, 0

)
· (I +W ) ·

(
(I−W )−1

)2 · (mn,mn−1,mn−2, . . . ,m0)T

=

((
0, . . . , 0,

1

m
, 0

)
· (I +W )

)
·
(
(I−W )−1

)2 · (mn,mn−1,mn−2, . . . ,m0)T

=

(
0, . . . , 0,

1

m2
,

1

m
, 0

)
·
(
(I−W )−1

)2 · (mn,mn−1,mn−2, . . . ,m0)T

=

((
0, . . . , 0,

1

m2
,

1

m
, 0

)
· (I−W )−1

)
· (I−W )−1 · (mn,mn−1,mn−2, . . . ,m0)T

=

(
2, . . . , 2,

2m− 1

m
, 0

)
· (I−W )−1 · (mn,mn−1,mn−2, . . . ,m0)T

= (a0, a1, . . . , an−1, 0) · (mn,mn−1,mn−2, . . . ,m0)T

(24)

Where ak = 2m
m−1 · (m

n −mk)− 1 for every k ∈ {0, 1, . . . , n− 1}.
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Thus:

E[ξ2m,n] =

n∑
k=1

mk · an−k

=

n∑
k=1

mk ·
(

2m

m− 1
· (mn −mn−k)− 1

)
=

m

(m− 1)2
· (2 ·m2n+1 − (2n+ 3) ·mn+1 + (2n+ 1) ·mn +m− 1)

(25)

From equations (23) and (25) we can obtain the closed-form expression for
variance:

Var[ξm,n] = E[ξ2m,n]− E[ξm,n]2

=
m

(m− 1)2
· (m2n+1 − (2n+ 1) ·mn+1 + (2n+ 1) ·mn − 1)

(26)

3 Sum of the common sub-path lengths in the
complete m-ary tree of depth n

Given a complete m-ary rooted tree of depth n: Gm,n = (V,E), we will find
the closed-form expression for Sm,n :=

∑
(a,b)∈V×V |π(a) ∩ π(b)|, where π(v) is

a set of edges that represents a path from the node v ∈ V to the root node of
the tree.

Consider some integer d ∈ {1, 2, . . . n} which represents the length of a com-
mon sub-path. Let’s define the subset Pd ⊂ V × V , such that ∀(a, b) ∈ Pd:
|π(a) ∩ π(b)| = d. Then:

Sm,n =

n∑
d=1

d · |Pd| (27)

Consider a pair (a, b) ∈ Pd. As far as the length of the common sub-path
between π(a) and π(b) is d, the deepest common node of these two paths (let’s
call it c) is located in the d-th level of the tree. There are md nodes in the d-th
level of the tree. Hence, the set Pd can be represented as a union of md disjoint
subsets Qc (where Qc represents the set of pairs (a, b) whose paths contain a
deepest common node c, located in the d-th level of the tree):

|Pd| = md · |Qc| (28)

For computing |Qc| we need to consider the following three disjoint cases:

• Case 1: Nodes a and b are located in the different subtrees of c (see the
figure 3a). There are

(
m
2

)
possibilities to choose such subtrees. Each of

these subtrees contains
∑n−1−d
k=0 mk = mn−d−1

m−1 nodes. The node a is taken
from one subtree, and the node b is taken from the other subtree. The total

number of tuples (a, b) constructed in such case is: 2 ·
(
m
2

)
·
(
mn−d−1
m−1

)2
.

8



(a) Both nodes from the tuple (a, b) are descendants
of the node c.

(b) One node from the tuple (a, b) is descendant of
the node c, and the other node from the tuple is the
node c.

Figure 3: Two cases when the length of the common sub-path is d.

• Case 2: One of the nodes of the tuple is c, and the other node belongs
to the subtree of c (see the figure 3b). There are m ·

∑n−1−d
k=0 mk =

mn−d+1−1
m−1 − 1 possibilities to choose a descendant of c. The total number

of tuples (a, b) constructed in such case is: 2 ·
(
mn−d+1−1

m−1 − 1
)

.

• Case 3: Both nodes in the tuple are c: (a, b) = (c, c). There is only 1 such
case.

Thus, taking into account that the described cases are disjoint:

|Qc| = 2 ·
(
m

2

)
·
(
mn−d − 1

m− 1

)2

+ 2 ·
(
mn−d+1 − 1

m− 1
− 1

)
+ 1 (29)

From equations (28) and (29) we have:

|Pd| = md ·

(
2 ·
(
m

2

)
·
(
mn−d − 1

m− 1

)2

+ 2 ·
(
mn−d+1 − 1

m− 1
− 1

)
+ 1

)
(30)

Hence the sum of the common lengths over all 2-tuples of nodes of the
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complete m-ary tree of depth n is:

Sm,n =

n∑
d=1

d ·md ·

(
2 ·
(
m

2

)
·
(
mn−d − 1

m− 1

)2

+ 2 ·
(
mn−d+1 − 1

m− 1
− 1

)
+ 1

)

=

n∑
d=1

d ·md ·
(
m2n−2d+1 − 1

m− 1

)
=

m

(m− 1)3
·
(
m2n+1 − (2n+ 1) ·mn+1 + (2n+ 1) ·mn − 1

)
(31)

So, from the equations (26) and (31) we see that Var[ξm,n] = (m− 1) ·Sm,n.
In case when m = 2 we have:

Var[ξ2,n] = S2,n = 4 · 22n − (4n+ 2) · 2n − 2 (32)

It is known that S2,n is described by the integer sequence A286778 [6]. But
now, we have obtained a new interpretation for the integer sequence A286778:
this sequence describes Var[ξ2,n] – a variance of the number of tosses of a fair
coin until we see n heads in a row.

4 Convergence of
∑∞

k=0 W
k

In this section we will show that the series
∑∞
k=0W

k converges (taking into
account the structure of the matrix A from the equation (9) and that W :=
1
m · A). Firstly, let’s check how does the linear transformation W act on some
arbitrary column-vector ~w = (fk, fk−1, fk−2, . . . , fk−n)T:

W · ~w =
1

m
·A · ~w =

1

m
· (fk+1, fk, fk−1, fk−2, . . . , fk−n+1)T (33)

where fk+1 = (m− 1) ·
∑n−1
j=0 fk−j , and m ≥ 2, n ≥ 1.

So, we see that the matrix A encodes a linear recurrence relation:

fk+1 = (m− 1) ·
n−1∑
j=0

fk−j (34)

In case if m = 2 this is a recurrence relation for the Fibonacci n-Step Num-
bers [7]. Below is a characteristic polynomial for the recurrence relation (34):

xn − (m− 1) ·
n−1∑
j=0

xj = 0 (35)

As described in [8]: when k → ∞, the value of a k-th element of a linear
recurrence relation is proportional to |r|k, where r is a root of the characteristic
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polynomial with the maximal absolute value among other roots. So, we need to
analyse the roots of the characteristic polynomial (35).

In the section 5 we will show that the equation (35) is equivalent to the equa-
tion xn · (m−x) = m−1, and we will show that for any n the absolute values of
roots of this polynomial are strictly less than m: |r| < m (when m = 2 this result
is consistent to the result described in [7]: the k-th Fibonacci n-Step Number is
proportional to rk, where 1 < r < 2 is a solution of the equation xn ·(2−x) = 1).

Consider a column-vector that has 1 at the i-th position, and 0 at all other
positions: ~vi = (0, 0, . . . , 0, 1, 0, . . . 0)T = (fn, fn−1, fn−2, . . . , f0)T. The expres-
sion Ak · ~vi allows to obtain a vector with the (n+ k)-th, (n+ k− 1)-th (and so
forth) elements of the recurrence relation (34): (fn+k, fn+k−1, fn+k−2, . . . , fk−n)T,
based on the given vector of initial values ~vi.

On the other hand, the expression Ak · ~vi equals to the i-th column of the
matrix Ak. Hence, all elements of the matrix Ak correspond to the items of the
linear recurrence (34), but the values in each column are based on the different
vectors of initial values ~vi.

Hence, all values in the matrix Ak are non-negative and have an upper
bound: C · |r|k+n for some |r| < m, and where C ∈ R+ is some constant.
Consequently, all values of the matrix W k are bound by 1

mk · C · |r|k+n. Thus,

the upper bound for the Frobenius norm of W k is:

‖W k‖F ≤

√√√√ n∑
i=0

n∑
j=0

(
C · 1

mk
· |r|n+k

)2

= (n+ 1) · C · 1

mk
· |r|n+k (36)

Let’s estimate the spectral radius of W using the Gelfand’s formula:

ρ(W ) = lim
k→∞

‖W k‖1/kF

≤ lim
k→∞

(
(n+ 1) · C · 1

mk
· |r|n+k

)1/k

= lim
k→∞

|r|
m
· ((n+ 1) · C · |r|n)

1/k

=
|r|
m

< 1

(37)

As far as ρ(W ) < 1 the series
∑∞
k=0W

k converges to (I−W )−1 and is known
as Neumann series.

5 Upper bound on the absolute values of roots
of the characteristic polynomial

Consider the polynomial (35): xn − (m − 1) ·
∑n−1
j=0 x

j = 0 where m ≥ 2 and
n ≥ 1. The Cauchy’s bound gives a non-strict bound for the absolute values of
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roots of this polynomial: the values are less or equal to m. Let’s show that this
bound is strict (that the absolute values of roots are strictly less than m).

As far as 1 is not a root of this polynomial, we can rewrite this equation as
follows:

xn − (m− 1) · x
n − 1

x− 1
= 0

⇐⇒ xn · (m− x) = m− 1
(38)

We need to consider the roots of the polynomial: xn · (m−x)− (m− 1) = 0.
For the sake of contradiction let’s assume, that x = m · eiφ (for some φ ∈ R) is
a root of this polynomial. After doing the substitution we obtain:

mn · einφ · (m−m · eiφ) = m− 1

⇐⇒ einφ − ei(n+1)φ =
m− 1

mn+1

(39)

Using the trigonometric form of complex numbers we can rewrite the latter
equality as follows:

(cos(nφ)− cos((n+ 1)φ))− i · (sin(nφ)− sin((n+ 1)φ)) =
m− 1

mn+1
(40)

As far as the imaginary part on the left hand side is 0 we have a following
system:  sin(nφ)− sin((n+ 1)φ) = 0

cos(nφ)− cos((n+ 1)φ) =
m− 1

mn+1

(41)

Using the sum-to-product trigonometric identities we can rewrite the system
as follows: 

2 · cos
(

2n+ 1

2
φ

)
· sin

(
−φ

2

)
= 0

− 2 · sin
(

2n+ 1

2
φ

)
· sin

(
−φ

2

)
=
m− 1

mn+1

(42)

Looking at the first equation: 2 · cos
(
2n+1

2 φ
)
· sin

(
−φ2
)

we conclude that

some of its multipliers should be 0. So, we have two cases:

• Case 1 : sin
(
−φ2
)

= 0. In this case the second equation shows a contra-

diction: −2 · sin
(
2n+1

2 φ
)
· sin

(
−φ2
)

= 0 6= m−1
mn+1

• Case 2 : cos
(
2n+1

2 φ
)

= 0. In this case we can see that: φ = 2k+1
2n+1π for

k ∈ Z. Let’s substitute φ into the second equation:

−2 · sin
(

2n+ 1

2
· 2k + 1

2n+ 1
π

)
· sin

(
−1

2
· 2k + 1

2n+ 1
π

)
=
m− 1

mn+1

⇐⇒ sin

(
2k + 1

2 · (2n+ 1)
π

)
=

m− 1

2 ·mn+1

(43)
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So, from the second equation we have obtained the equation sin(a · π) =
b, where a and b are rational numbers (a = 2k+1

2·(2n+1) and b = m−1
mn+1 ).

Furthermore, in case if m ≥ 2, n ≥ 1 we see that b 6∈ {0,±1,± 1
2}. In this

case, we have a contradiction with the Niven’s Theorem [9] (that states,
that if sin(a · π) = b and a, b ∈ Q, then the sine takes only the values
0,±1,± 1

2 ).

So, we see that the original assumption (that m · eiφ is a root of the poly-
nomial) leads to the contradiction. Consequently, m · eiφ can’t be a root of the
polynomial. In combination with the Cauchy’s bound we have a strict bound
on the absolute values of roots: the roots are strictly less than m.

6 Matrix products properties

The product of matrices W · (I−W )−1 is commutative:

W · (I−W )−1 = (I− (I−W )) · (I−W )−1

= (I−W )−1 − (I−W ) · (I−W )−1

= (I−W )−1 − (I−W )−1 · (I−W )

= (I−W )−1 · (I− (I−W ))

= (I−W )−1 ·W

(44)

The product of matrices W · (I +W ) is commutative:

W · (I +W ) = W +W 2 = (I +W ) ·W (45)

Taking into account the commutativity property (44) we can show that the
products of matrices (I +W ) · (I−W )−1 is also commutative:

(I +W ) · (I−W )−1 = (I−W )−1 +W · (I−W )−1

= (I−W )−1 + (I−W )−1 ·W
= (I−W )−1 · (I +W )

(46)
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