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PROOF OF THREE CONJECTURES ON

DETERMINANTS RELATED TO

QUADRATIC RESIDUES

DARIJ GRINBERG, ZHI-WEI SUN AND LILU ZHAO

Abstract. In this paper we confirm three conjectures of Z.-W.
Sun on determinants. We first show that any odd integer n > 3
divides the determiant

∣

∣

∣

∣

(i2 + dj2)

(

i2 + dj2

n

)∣

∣

∣

∣

0≤i,j≤(n−1)/2

,

where d is any integer and ( ·
n ) is the Jacobi symbol. Then we

prove some divisibility results concerning |(i + dj)n|0≤i,j≤n−1 and
|(i2 + dj2)n|0≤i,j≤n−1, where d 6= 0 and n > 2 are integers. Fi-
nally, for any odd prime p and integers c and d with p ∤ cd,

we determine completely the Legendre symbol (Sc(d,p)
p ), where

Sc(d, p) := |( i2+dj2+c
p )|1≤i,j≤(p−1)/2.

1. Introduction

For an n×n matrix [aij ]1≤i,j≤n over a commutative ring with identity,
we shall denote its determinant by |aij|1≤i,j≤n. In this paper we study
some determinants related to quadratic residues. For the standard
theory of quadratic residues, one may consult [2, Chapter 5, pp. 50-65].
Our first theorem in the case d = 1 was originally conjectured by Sun

[6, Conjecture 4.5(i)] amid a study of determinants involving Jacobi
symbols.

Theorem 1.1. Let n > 3 be an odd integer. For any integer d, we
have

∣

∣

∣

∣

(i2 + dj2)

(

i2 + dj2

n

)
∣

∣

∣

∣

0≤i,j≤(n−1)/2

≡ 0 (mod n), (1.1)

where ( ·
n
) denotes the Jacobi symbol.

Key words and phrases. Determinant, divisibility, Jacobi symbol, Vandermonde-
type determinant.
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Let p be an odd prime. R. Chapman [1] evaluated the determinant
∣

∣

∣

∣

(

i+ j − 1

p

)
∣

∣

∣

∣

1≤i,j≤(p+1)/2

=

∣

∣

∣

∣

(

i+ j

p

)
∣

∣

∣

∣

0≤i,j≤(p−1)/2

,

and M. Vsemirnov [7, 8] determined the exact value of
∣

∣

∣

∣

(

i− j

p

)
∣

∣

∣

∣

0≤i,j≤(p−1)/2

guessed by Chapman. Recall that (a
p
) ≡ a(p−1)/2 (mod p) for any a ∈ Z.

Our next theorem in the case c = 0 and d = 1 confirms a conjecture
of Sun [5] posed in 2013.

Theorem 1.2. Let c, d and n be integers with d 6= 0 and n > 2. Set

an = |(i+ dj + c)n|0≤i,j≤n−1 and bn =
∣

∣(i2 + dj2)n
∣

∣

0≤i,j≤n−1
. (1.2)

Then

a′n =
and

−n(n−1)/2

(n− 2)!n
∏n

k=1 k!
and b′n =

bnd
−n(n−1)/2

2
∏n

k=1(k!(2k − 1)!)
(1.3)

are integers; in particular,

dn(n−1)/2n2 | an and dn(n−1)/2(2n)! | bn. (1.4)

Also, (−1)n(n−1)/2an > 0 and (−1)n(n−1)/2bn > 0 if d > 0 and c ≥ 0.

In the particular case c = 0 and d = 1, our numerical computations
yield the following data:

a′3 = −4, a′4 = 229, a′5 = 89200, a′6 = −336775500;

b1 = 0, b2 = −1, b3 = −17280, b4 = 1168415539200

and

b′3 = −1, b′4 = 559, b′5 = 10767500, b′6 = −9372614611500.

Let n ∈ Z+ = {1, 2, 3, . . .}. For any polynomial P (z) =
∑n−1

k=0 akz
k

of degree smaller than n with complex coefficients, it is known (cf. [3,
Lemma 9]) that

|P (xi+yj)|1≤i,j≤n = ann−1

n−1
∏

k=0

(

n− 1

k

)

×
∏

1≤i<j≤n

(xi−xj)(yj−yi). (1.5)

In particular,
∣

∣(i+ j)k
∣

∣

0≤i,j≤n−1
= 0 for all k = 0, . . . , n− 2,
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and

∣

∣(i+ j)n−1
∣

∣

0≤i,j≤n−1
=(−1)n(n−1)/2

∏

0≤i<j≤n−1

(j − i)2 ×
n−1
∏

k=0

(

n− 1

k

)

=(−1)n(n−1)/2((n− 1)!)n.

But this is of no help in simplifying the determinants an and bn given
in (1.2) even if c = 0 and d = 1.
Our third theorem confirms Conjecture 4.3 of Sun [6].

Theorem 1.3. Let p be an odd prime, and let c, d ∈ Z with p ∤ cd.
Define

Sc(d, p) :=

∣

∣

∣

∣

(

i2 + dj2 + c

p

)
∣

∣

∣

∣

1≤i,j≤(p−1)/2

.

Then

(

Sc(d, p)

p

)

=























1 if ( c
p
) = 1 and (d

p
) = −1,

(−1
p
) if ( c

p
) = (d

p
) = −1,

(−2
p
) if (−c

p
) = (d

p
) = 1,

(−6
p
) if (−c

p
) = −1 and (d

p
) = 1.

(1.6)

In contrast, for any odd prime p and d ∈ Z with p ∤ d, Sun [6, (1.15)
and (1.20)] showed that

(

S0(d, p)

p

)

=

{

(−1
p
) if (d

p
) = 1,

0 if (d
p
) = −1.

But the method used to prove this does not work for Theorem 1.3.
We will prove Theorem 1.1 in the next section. Using an auxiliary

formula in Section 3, we are going to prove Theorems 1.2 and 1.3 in
Sections 4 and 5 respectively.

2. Proof of Theorem 1.1

Lemma 2.1. Let p be a prime and let k ∈ N = {0, 1, 2, . . .}. Then

p−1
∑

i=1

ik ≡
{

−1 (mod p) if p− 1 | k,
0 (mod p) if p− 1 ∤ k.

This is a well known fact, see, e.g., [2, Section 15.2, Lemma 2].
In our proof of Theorem 1.1 and further on, we shall freely use

the ring isomorphism Z(p)/pZ(p)
∼= Z/pZ, where p is a prime num-

ber and where Z(p) is the ring of all rational numbers with nonnegative
p-valuation. This allows us to work with fractions inside congruences
modulo p as long as the denominators are not divisible by p.
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Proof of Theorem 1.1. If n is composite, then n can be written as
n = pm for some odd integers m ≥ p > 2, and thus i := (m− p)/2 and
i′ := (m+ p)/2 are integers satisfying 0 ≤ i < i′ ≤ (n− 1)/2 and i2 ≡
i′2 (mod n). So, when n is composite, there are 0 ≤ i < i′ ≤ (n− 1)/2
such that

(i2 + dj2)

(

i2 + dj2

n

)

≡ ((i′)2 + dj2)

(

(i′)2 + dj2

n

)

(mod n)

for all j = 0, . . . , (n − 1)/2, and hence (1.1) holds (since an integer
matrix that has two rows congruent to each other modulo n must have
a determinant congruent to 0 modulo n).
It thus remains to prove Theorem 1.1 in the case when n is a prime.

So let us assume that n is a prime p > 3.
Fix j ∈ {0, . . . , (p− 1)/2}. As (a

p
) ≡ a(p−1)/2 (mod p) for all a ∈ Z

(due to Euler), we have

(p−1)/2
∑

i=1

(i2 + dj2)

(

i2 + dj2

p

)

≡
(p−1)/2
∑

i=1

(i2 + dj2)(p+1)/2 =

(p−1)/2
∑

i=1

(p+1)/2
∑

k=0

(

(p+ 1)/2

k

)

i2k(dj2)(p+1)/2−k

=

(p+1)/2
∑

k=0

(

(p+ 1)/2

k

)

(dj2)(p+1)/2−k

(p−1)/2
∑

i=1

i2k (mod p).

Multiplying this by 2, we obtain

2

(p−1)/2
∑

i=1

(i2 + dj2)

(

i2 + dj2

p

)

≡
(p+1)/2
∑

k=0

(

(p+ 1)/2

k

)

(dj2)(p+1)/2−k ·
(p−1)/2
∑

i=1

(i2k + (p− i)2k)

≡
(p+1)/2
∑

k=0

(

(p+ 1)/2

k

)

(dj2)(p+1)/2−k

p−1
∑

i=1

i2k (mod p). (2.1)

For each k ∈ {0, . . . , (p+ 1)/2}, clearly
p− 1 | 2k ⇐⇒ k = 0 or k = (p− 1)/2,

and hence by Lemma 2.1 we get

p−1
∑

i=1

i2k ≡
{

−1 (mod p) if k = 0 or k = (p− 1)/2,

0 (mod p) otherwise.
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Hence, (2.1) simplifies to

2

(p−1)/2
∑

i=1

(i2 + dj2)

(

i2 + dj2

p

)

≡
(

(p+ 1)/2

0

)

(dj2)(p+1)/2(−1) +

(

(p+ 1)/2

(p− 1)/2

)

(dj2)(−1)

≡− dj2
((

dj2

p

)

+
p+ 1

2

)

≡ −dj2

2

(

dj2

p

)(

2 +

(

d

p

))

(mod p)

(where the last two congruence signs relied on (a
p
) ≡ a(p−1)/2 (mod p)

and on the easily verified congruence dj2 ≡ dj2(dj
2

p
)(d

p
) (mod p), respec-

tively). In other words,

(p−1)/2
∑

i=1

4

2 + (d
p
)
(i2+dj2)

(

i2 + dj2

p

)

+(02+dj2)

(

02 + dj2

p

)

≡ 0 (mod p).

This congruence holds for all j = 0, . . . , (p − 1)/2. Thus, if we add
the last (p− 1)/2 rows multiplied by 4/(2+ (d

p
)) to the first row of the

determinant

D :=

∣

∣

∣

∣

(i2 + dj2)

(

i2 + dj2

p

)
∣

∣

∣

∣

0≤i,j≤(p−1)/2

,

then all the entries in the first row of the resulting determinant are
multiples of p. So we have D ≡ 0 (mod p) as desired.
In view of the above, this completes the proof of Theorem 1.1. �

3. A general formula for |(xi + yj)
n|1≤i,j≤n

For each k = 1, . . . , n, the kth elementary symmetric polynomial σk

in x1, . . . , xn is defined by

σk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

k
∏

j=1

xij .

In addition, we set σ0(x1, . . . , xn) = 1 as usual.
To prove Theorem 1.2, we need the following auxiliary theorem which

improves a result of [4, Section 354(a)].



6 DARIJ GRINBERG, ZHI-WEI SUN AND LILU ZHAO

Theorem 3.1. Let n be a positive integer, and let x1, . . . , xn, y1, . . . , yn
be elements of any commutative ring with identity. Then

|(xi + yj)
n|1≤i,j≤n = (−1)n(n−1)/2

∏

1≤i<j≤n

(xj − xi)(yj − yi)

×
n
∑

k=0

(

∏

r∈[0,n]\{k}

(

n

r

))

σk(x1, . . . , xn)σn−k(y1, . . . , yn),

(3.1)
where [0, n] denotes the set {0, . . . , n}.
Proof. Define an n× (n + 1)-matrix A and an (n+ 1)×n-matrix B by

A =

[(

n

k

)

xk
i

]

1≤i≤n

0≤k≤n

and B =
[

yn−k
j

]

0≤k≤n

1≤j≤n

.

As the binomial formula yields

(xi + yj)
n =

n
∑

k=0

(

n

k

)

xk
i y

n−k
j ,

we have
AB = [(xi + yj)

n]1≤i,j≤n .

Applying the Cauchy-Binet formula, we therefore get

|(xi + yj)
n|1≤i,j≤n (3.2)

=

n
∑

k=0

∣

∣

∣

∣

(

n

j

)

xj
i

∣

∣

∣

∣

1≤i≤n

j∈[0,n]\{k}

∣

∣yn−i
j

∣

∣

1≤j≤n

i∈[0,n]\{k}

=
n
∑

k=0

(

∏

r∈[0,n]\{k}

(

n

r

))

∣

∣xi
j

∣

∣

i∈[0,n]\{k}
1≤j≤n

× (−1)n(n−1)/2
∣

∣yij
∣

∣

i∈[0,n]\{n−k}
1≤j≤n

(3.3)

(by standard properties of determinants). For each k ∈ {0, . . . , n},
comparing the coefficient of xk on both sides of the polynomial equality
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1 1
x1 x2 · · · xn x
...

...
. . .

...
...

xn−1
1 xn−1

2 · · · xn−1
n xn−1

xn
1 xn

2 · · · xn
n xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

1≤i<j≤n

(xj − xi)×
n
∏

i=1

(x− xi)

(a consequence of Vandermonde’s determinant), we find that

(−1)n−k
∣

∣xi
j

∣

∣

i∈[0,n]\{k}
1≤j≤n

= (−1)n−kσn−k(x1, . . . , xn)
∏

1≤i<j≤n

(xj − xi)
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(where the left-hand side was computed by expanding the determinant
along its last column). Hence,

∣

∣xi
j

∣

∣

i∈[0,n]\{k}
1≤j≤n

= σn−k(x1, . . . , xn)
∏

1≤i<j≤n

(xj − xi).

Similarly,
∣

∣yij
∣

∣

i∈[0,n]\{n−k}
1≤j≤n

= σk(y1, . . . , yn)
∏

1≤i<j≤n

(yj − yi).

Therefore, we can rewrite (3.3) as

|(xi + yj)
n|1≤i,j≤n =(−1)n(n−1)/2

∏

1≤i<j≤n

(xj − xi)(yj − yi)

×
n
∑

k=0

(

∏

r∈[0,n]\{k}

(

n

r

))

σn−k(x1, . . . , xn)σk(y1, . . . , yn).

Substituting n − k for k on the right-hand side, and observing that
∏

r∈[0,n]\{n−k}

(

n
r

)

=
∏

r∈[0,n]\{k}

(

n
r

)

, we obtain the desired (3.1). �

4. Proof of Theorem 1.2

Proof of Theorem 1.2. Clearly (1.4) holds if a′n, b
′
n ∈ Z.

(i) Let us first discuss an and a′n ∈ Z. We can easily verify the desired
result for n = 3, 4; so let us assume that n ≥ 5.
Define

S(n) :=

n
∑

k=0

σk(0, . . . , n−1)σn−k(d0+c, . . . , d(n−1)+c)
∏

r∈[0,n]\{k}

(

n

r

)

,

which is positive if c ≥ 0 and d > 0. Applying Theorem 3.1, we find
that

an =(−1)n(n−1)/2
∏

0≤i<j≤n−1

(j − i)(dj − di)× S(n)

=(−d)n(n−1)/2S(n)
n−1
∏

j=1

(j!)2.

Hence, (−1)n(n−1)/2an > 0 if c ≥ 0 and d > 0. To prove a′n ∈ Z it
suffices to show that

1!2! . . . (n− 3)!S(n) ≡ 0 (mod n2). (4.1)

Fix k ∈ [0, n]. The product
∏

r∈[0,n]\{k}

(

n
r

)

contains at least two of

the three factors
(

n
1

)

,
(

n
2

)

and
(

n
n−1

)

(since n ≥ 5). But each of these

three factors is divisible by n or (in the case of the second factor) by
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n/2 (when n is even). Thus, the product
∏

r∈[0,n]\{k}

(

n
r

)

is divisible by

n · n or (when n is even) by n · (n/2). In either case, it follows that
2·∏r∈[0,n]\{k}

(

n
r

)

is divisible by n2. Since n ≥ 5 yields 2 | 1!2! . . . (n−3)!,

we thus conclude that 1!2! . . . (n− 3)!
∏

r∈[0,n]\{k}

(

n
r

)

is divisible by n2.

Since we have shown this for all k ∈ [0, n], it follows that 1!2! . . . (n −
3)!S(n) is divisible by n2. This proves (4.1).

(ii) For n = 3, . . . , 8 we can verify directly the desired result for bn
and b′n.
Now we assume n ≥ 9 and define

T (n) :=

n
∑

k=0

σk(0
2, . . . , (n− 1)2)σn−k(d0

2, . . . , d(n− 1)2)
∏

r∈[0,n]\{k}

(

n

r

)

=
n−1
∑

k=1

dn−kσk(0
2, . . . , (n− 1)2)σn−k(0

2, . . . , (n− 1)2)
∏

r∈[0,n]\{k}

(

n

r

)

,

which is positive if d > 0 and always satisfies d | S(n). In view of
Theorem 3.1,
∣

∣(i2 + dj2)n
∣

∣

0≤i,j≤n−1
=(−1)n(n−1)/2

∏

0≤i<j≤n−1

(j2 − i2)(dj2 − di2)× T (n)

=(−d)n(n−1)/2T (n)

n−1
∏

j=1

((2j − 1)!j)2

and so

bn = (−d)n(n−1)/2T (n)((n− 1)!)2
n−1
∏

j=1

((2j − 1)!)2. (4.2)

Thus (−1)n(n−1)/2bn > 0 if d > 0. Also, (4.2) yields

(−1)n(n−1)/2b′n =
(n− 1)!2

∏n−1
j=1 (2j − 1)!

(2n− 1)!× 2
∏n

k=1 k!
T (n)

=

∏n−2
k=1

(2k−1)!
k!

2n(2n− 1)(2n− 2)
T (n). (4.3)

As n+4 ≤ 2n− 5 and one of n+1, n+ 2, n+3, n+4 is divisible by
4, we have

4(n− 1)n

∣

∣

∣

∣

(2(n− 2)− 1)!

(n− 2)!
.

Therefore, (4.3) leads to (2n − 1)b′n ∈ Z. If we can furthermore show
that 2n(2n− 2)b′n ∈ Z, then we will conclude that b′n ∈ Z (since 2n− 1
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is coprime to 2n(2n−2)). So it remains to show that 2n(2n−2)b′n ∈ Z,

i.e., that 2n− 1 | T (n)
∏n−2

k=1
(2k−1)!

k!
.

If 2n − 1 = pq with p, q ∈ Z+ and 3 ≤ p < q, then p < q ≤ 2n−1
3

≤
n− 3, and hence 2n− 1 = pq divides

(2(p− 1)− 1)!

(p− 1)!
× (2(q − 1)− 1)!

(q − 1)!
.

If 2n − 1 = p2 with p an odd prime, then 5 ≤ p =
√
2n− 1 < n − 2

since 2n− 1 > n ≥ 9, hence 2n− 1 = p2 divides

(2(p− 2)− 1)!

(p− 2)!
× (2(p− 1)− 1)!

(p− 1)!
.

If 2n− 1 is a prime p, then p > 3 and

bn =
∣

∣(i2 + dj2)(p+1)/2
∣

∣

0≤i,j≤(p−1)/2

≡
∣

∣

∣

∣

(i2 + dj2)

(

i2 + dj2

p

)
∣

∣

∣

∣

0≤i,j≤(p−1)/2

≡ 0 (mod p)

by Theorem 1.1, hence 2n − 1 = p divides T (n) by (4.2) and due to

d | T (n). In either case, we obtain 2n− 1 | T (n)
∏n−2

k=1
(2k−1)!

k!
.

The proof of Theorem 1.2 is now complete. �

5. Proof of Theorem 1.3

We need the following known lemma (see [6, Lemma 2.3]):

Lemma 5.1. Let p be a prime with p ≡ 1 (mod 4), and write n =
(p− 1)/2. Then

(

n!

p

)

=

(

2

p

)

.
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Proof of Theorem 1.3. For convenience we set n = (p−1)/2. Applying
Theorem 3.1, we see that

∣

∣(i2 + dj2 + c)n
∣

∣

1≤i,j≤n

=(−1)n(n−1)/2
∏

1≤i<j≤n

(j2 − i2)(dj2 + c− (di2 + c))×
n
∏

r=0

(

n

r

)

×
n
∑

k=0

σk(1
2, . . . , n2)σn−k(d1

2 + c, . . . , dn2 + c)
(

n
k

)

=(−d)n(n−1)/2
∏

1≤i<j≤n

(j2 − i2)2 ×
n
∏

r=0

(

n

r

)

× Rn, (5.1)

where

Rn :=σn(1
2, . . . , n2) + σn(d1

2 + c, . . . , dn2 + c)

+
∑

0<k<n

σk(1
2, . . . , n2)σn−k(d1

2 + c, . . . , dn2 + c)
(

n
k

) . (5.2)

As observed in [6, (3.2)], we have the polynomial congruence

n
∑

k=0

(−1)kσk(1
2, . . . , n2)xn−k

=

n
∏

r=1

(x− r2) ≡ xn − 1 (mod p). (5.3)

So σn(1
2, . . . , n2) ≡ −(−1)n (mod p) and σk(1

2, . . . , n2) ≡ 0 (mod p)
for all k = 1, . . . , n − 1. Note also that p ∤

(

n
k

)

for all k = 0, . . . , n.
Therefore, (5.2) yields

Rn + (−1)n

≡σn(d1
2 + c, . . . , dn2 + c) =

n
∏

r=1

(c+ dr2) = (−d)n
n
∏

r=1

(

− c

d
− r2

)

≡(−d)n
((

− c

d

)n

− 1
)

= cn − (−d)n ≡
(

c

p

)

−
(−d

p

)

(mod p),

where we have used (5.3) in the third-to-last congruence. Solving
this for Rn and substituting the result into (5.1), and noting that
the left-hand side of (5.1) is congruent to Sc(d, p) modulo p (since
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(a
p
) ≡ an (mod p) for all a ∈ Z), we find

Sc(d, p)

≡(−d)n(n−1)/2

(

∏

1≤i<j≤n

(j2 − i2)2

)

×
n
∏

r=0

(

n

r

)

×
((

c

p

)

−
(−d

p

)

− (−1)n
)

(mod p). (5.4)

Clearly,
n
∏

r=0

(

n

r

)

=
n!n+1

(0!1! · · ·n!)2
,

whence
(

∏n
r=0

(

n
r

)

p

)

=

(

n!n+1

p

)

=

(

n!

p

)n+1

=

(

2

p

)n+1

by Lemma 5.1. In view of Gauss’s known identity (2
p
) = (−1)(p

2−1)/8 =

(−1)n(n+1)/2, we can rewrite this as
(

∏n
r=0

(

n
r

)

p

)

= ((−1)n(n+1)/2)n+1 = (−1)n(n+1)2/2.

Hence, (5.4) yields
(

Sc(d, p)

p

)

=

(−d

p

)n(n−1)/2

(−1)n(n+1)2/2

(

( c
p
)− (−d

p
)− (−1)n

p

)

.

(5.5)
Note that (−1

p
) = (−1)n and

(−1)n(n+1)2/2−n2(n−1)/2 = (−1)n(3n+1)/2 = (−1)n(n−1)/2.

So (5.5) can be rewritten as
(

Sc(d, p)

p

)

= (−1)n(n−1)/2

(

d

p

)n(n−1)/2
(

( c
p
)− (−1)n(1 + (d

p
))

p

)

.

(5.6)
Now it remains to deduce (1.6) from (5.6).

Case 1. ( c
p
) = 1 and (d

p
) = −1.

In this case, (5.6) becomes
(

Sc(d, p)

p

)

= (−1)n(n−1)/2(−1)n(n−1)/2

(

1− (−1)n(1− 1)

p

)

= 1.

Case 2. ( c
p
) = (d

p
) = −1.
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In this case, (5.6) gives
(

Sc(d, p)

p

)

= (−1)n(n−1)/2(−1)n(n−1)/2

(−1 − (−1)n(1− 1)

p

)

=

(−1

p

)

.

Case 3. (−c
p
) = (d

p
) = 1.

In this case, ( c
p
) = (−1

p
) = (−1)n. Hence, (5.6) yields

(

Sc(d, p)

p

)

= (−1)n(n−1)/2

(

(−1)n − (−1)n2

p

)

= (−1)n(n+1)/2−n

(−1

p

)n+1

= (−1)(p
2−1)/8(−1)n(−1)n(n+1) =

(

2

p

)(−1

p

)

=

(−2

p

)

.

Case 4. (−c
p
) = −1 and (d

p
) = 1.

In this case, ( c
p
) = −(−1

p
) = −(−1)n. Hence, by (5.6) we have

(

Sc(d, p)

p

)

= (−1)n(n−1)/2

(−(−1)n − (−1)n2

p

)

= (−1)n(n+1)/2−n

(−1

p

)n(−3

p

)

= (−1)n(n+1)/2(−1)n ((−1)n)n
(−3

p

)

= (−1)n(n+1)/2

(−3

p

)

=

(

2

p

)(−3

p

)

=

(−6

p

)

.

In view of the above, (1.6) holds as desired. This concludes the
proof. �
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