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ABSTRACT. In this paper we confirm three conjectures of Z.-W.
Sun on determinants. We first show that any odd integer n > 3
divides the determiant

@+ a) (

)

0<i,j<(n—1)/2

i? + dj2>

n

where d is any integer and () is the Jacobi symbol. Then we
prove some divisibility results concerning |(i + dj)"|o<i,j<n—1 and
|(i% + dj*)"|o<i j<n—1, where d # 0 and n > 2 are integers. Fi-

nally, for any odd prime p and integers ¢ and d with p 1 cd,

we determine completely the Legendre symbol (%), where

i2 iZ+c
Se(d, p) = | (L) 1<i j< (p-1) 2-

1. INTRODUCTION

For an nxn matrix [a;;]1<; j<», Over a commutative ring with identity,
we shall denote its determinant by |a;;|i1<;j<n. In this paper we study
some determinants related to quadratic residues. For the standard
theory of quadratic residues, one may consult [2, Chapter 5, pp. 50-65].

Our first theorem in the case d = 1 was originally conjectured by Sun
[6l, Conjecture 4.5(i)] amid a study of determinants involving Jacobi
symbols.

Theorem 1.1. Let n > 3 be an odd integer. For any integer d, we

have
i2+dj2>

(i* + dj?) ( =0 (mod n), (1.1)
0<ij<(n—1)/2

where (=) denotes the Jacobi symbol.

n

n
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Let p be an odd prime. R. Chapman [1] evaluated the determinant

() -1(57)
p 1<i,j<(p+1)/2 p

and M. Vsemirnov [7, 8] determined the exact value of

p
guessed by Chapman. Recall that () = a?=Y/2 (mod p) for any a € Z.
Our next theorem in the case ¢ = 0 and d = 1 confirms a conjecture

of Sun [5] posed in 2013.

)
0<4,j<(p—1)/2

0<d,j<(p—1)/2

Theorem 1.2. Let ¢, d and n be integers with d # 0 and n > 2. Set
a, = |(i +dj + c)"|0§i7j§n_1 and b, = }(22 + dj2)"}0§i’jgn_1 . (1.2)

Then
. a,d-"n=1)/2 . b, d—"(n=1)/2
P 11 A TR Y s ja v Ty S
are integers; in particular,
d"=V2p2 1 a, and dY2(20)! | by, (1.4)

Also, (=1)""=V2q, > 0 and (—1)""=Y/2b, >0 if d > 0 and c > 0.

In the particular case ¢ = 0 and d = 1, our numerical computations
yield the following data:

ag = —4, aﬁl = 229, a’5 = 89200, ag = —336775500;
by =0, by = —1, by = —17280, by = 1168415539200
and
bg =—1, bﬁl = 559, 6’5 = 10767500, bg = —9372614611500.

Let n € Z* = {1,2,3,...}. For any polynomial P(2) = > 7~} aj2"
of degree smaller than n with complex coefficients, it is known (cf. [3
Lemma 9]) that

n—1
n n—1
Plotibesen =a 1 (") )% T @ea)-w. 15
k=0 1<i<j<n
In particular,
=0 forallk=0,...,n—2,

‘(Z +~j>k‘0§i,j§n—1
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and
n—1 n— 1
‘(Z _i_j)n—l‘ogmgn_l :(_1>n(n—l)/2 H (] B i)2 % H ( N )
0<i<j<n—1 k=0
=(=1)""2 ((n = 1))

But this is of no help in simplifying the determinants a,, and b, given
in (L2) even if ¢ =0 and d = 1.
Our third theorem confirms Conjecture 4.3 of Sun [6].

Theorem 1.3. Let p be an odd prime, and let ¢,d € Z with p 1 cd.
Define

(P +diP e
Sl b= ‘ ( p ) 1<ij<(r-1)/2
Then
1 if (£) =1 and (4) = —1,
S(d,p)\ (5 i (G =) =1,
( y ) @) e =(h=1, (1.6)
(=0) if(55)=—1and (§) =1

In contrast, for any odd prime p and d € Z with p 1 d, Sun [0, (1.15)
and (1.20)] showed that

(so<d,p>) _ {(%) if (4) =1,
p 0 if (9) = —1.

But the method used to prove this does not work for Theorem [L.3

We will prove Theorem [T in the next section. Using an auxiliary
formula in Section [B] we are going to prove Theorems and in
Sections [ and [ respectively.

2. PROOF OF THEOREM [I.1]
Lemma 2.1. Let p be a prime and let k € N={0,1,2,...}. Then

S {—1 (mod p) ifp—1]k,
0 (mod p) ifp—11k.

i=1

This is a well known fact, see, e.g., [2, Section 15.2, Lemma 2.

In our proof of Theorem [LI] and further on, we shall freely use
the ring isomorphism Z,)/pZy) = 7Z/pZ, where p is a prime num-
ber and where Z,) is the ring of all rational numbers with nonnegative
p-valuation. This allows us to work with fractions inside congruences
modulo p as long as the denominators are not divisible by p.
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Proof of Theorem [I1 1If n is composite, then n can be written as
n = pm for some odd integers m > p > 2, and thus i := (m —p)/2 and

= (m + p)/2 are integers satisfying 0 < i <7 < (n—1)/2 and i* =
i"” (mod n). So, when n is composite, there are 0 < i <4’ < (n—1)/2
such that

@ +at) (2 = @2 vty (L) mod

for all 7 = 0,...,(n —1)/2, and hence (II)) holds (since an integer
matrix that has two rows congruent to each other modulo n must have
a determinant congruent to 0 modulo n).

It thus remains to prove Theorem [[.1]in the case when n is a prime.
So let us assume that n is a prime p > 3.

Fix j € {0,...,(p—1)/2}. As (5) = a?=V/2 (mod p) for all a € Z
(due to Euler), we have

S (Mf)

=1 p

(p—1)/2 (r—-1)/2 (p+1)/2

= Z (i2 4 dj*)@+V/ ; Z ( )>2k(dj2)(p+1)/2—k

;z>+1/2 (p 1/2
_ Z (p—i-l/Q) (p+1/2 k Z k (mod p).

Multlplymg this by 2, we obtain

(p—1)/2
d
2Zz+d (Z+j)

( 1)/2 1)/2
= pZ <(p+1)/2)< )P0 2k 'S —i)*)
k=0 k =1
(p+1)/2 p-!
+1)/2 ) _ .
- (@ e )(df)(“”” D (mod p) 1)
k=0 =1

For each k € {0,...,(p+1)/2}, clearly
p—1|2k <= k=0ork=(p—1)/2,
and hence by Lemma 2.1] we get

lek {— InOdp) if]{?zoor]{;:(p_l)/2’

mod p)  otherwise.
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Hence, (2.1)) simplifies to

(p—1)/2
QZ (4% + dj? <z+d])

(s (2

() ) 2 ) o

(where the last two congruence signs relied on (%)

1)

) (-
) e

U/2 (mod p)
) (mod p), respec-

and on the easily verified congruence dj? = dj> (7)(
tively). In other words,

iSRS

—1)/2 2 9 2 9
d 0 d
g @ (i +dj?) <%)+(02+dj2) < _; J ) = 0 (mod p).

P

This congruence holds for all 7 =0,...,(p—1)/2. Thus, if we add
the last (p — 1)/2 rows multiplied by 4/(2 + (%)) to the first row of the

determinant
(i + dj?) (ZQ i dj2)
p

D =

Y
0<i,j<(p—1)/2

then all the entries in the first row of the resulting determinant are
multiples of p. So we have D = 0 (mod p) as desired.
In view of the above, this completes the proof of Theorem [LII [

3. A GENERAL FORMULA FOR |(z; +¥;)"|,; j<,

For each k =1,...,n, the kth elementary symmetric polynomial oy
in zq,...,x, is defined by

k
op(T1, . xy) = Z HI%

1<ig <..<ip<n j=1

In addition, we set og(z1,...,x,) = 1 as usual.
To prove Theorem [[.2] we need the following auxiliary theorem which
improves a result of [4, Section 354(a)l.
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Theorem 3.1. Let n be a positive integer, and let x1, ..., Tn, Y1, .-, Yn
be elements of any commutative ring with identity. Then

@i+ 9) " hcijen = (D2 T (25— @) (5 — w)

1<i<j<n

y i( 11 (:))ak(zl, ) omk ),

k=0 *relo,n]\{k}
(3.1)
where [0,n] denotes the set {0,...,n}.
Proof. Define an n x (n 4 1)-matrix A and an (n + 1) X n-matrix B by

. KZ) " } e OB =[5 e

0<k<n

As the binomial formula yields

we have
AB = [(z; + ?/j)nhgi,jgn :
Applying the Cauchy-Binet formula, we therefore get

@+ 55) s s (3:2)
1<i<n i€[0,n]\{k}

n .
J Jelo,n]\{k}

SINONE
(3.3)

(by standard properties of determinants). For each k € {0,...,n},
comparing the coefficient of 2* on both sides of the polynomial equality

n—i
}yj 1<j<n

n(n—1)/2 |,
icomngrr X (—1) (n=/ }yj i€[0,n]\{n—k}
1<j<n 1<j<n

n
k=0

n
k=0

1 | R 1 1
T ) s T T n
: : o = 1] @ e < [ =)
I’f_l xg—l . xz—l ikt 1<i<j<n i=1
Y Ty ), "

(a consequence of Vandermonde’s determinant), we find that

(=) " ‘5’33 i€0,n\(k} = (=1)" o p(z, .. 2) H (zj — ;)
t=i=n 1<i<j<n
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(where the left-hand side was computed by expanding the determinant
along its last column). Hence,

‘ZL’; i€fo,n)\{k} = O-n—k(xlv SR 7xn) H (xj - xl)
1sjsn 1<i<j<n
Similarly,
Y5 icomninsr = ok(yr, - Yn) H (v; —vi).
1<j<n

1<i<j<n
Therefore, we can rewrite ([B.3) as

@i 4+ 4) Ly =02 T (= 20) (g — w0)

1<i<j<n

x i( I1 (’;»o—n_k(m, )Tk Yn).

k=0 *rel0,n]\{k}

Substituting n — k for k on the right-hand side, and observing that

4. PROOF OF THEOREM

Proof of Theorem[I.Z4 Clearly (L)) holds if a,, b, € Z.
(i) Let us first discuss a,, and a!, € Z. We can easily verify the desired
result for n = 3,4; so let us assume that n > 5.

Define

S(n) =3 0x(0,....n— Do y(d0+e,....dn—-1)+¢) ][] (Z)
- *)

re[0,n]\

which is positive if ¢ > 0 and d > 0. Applying Theorem B.1] we find
that

an =(=)" 2 [T (G = i)(dj — di) x S(n)
0<i<j<n—1
n—1
=(=d)"" s () TG

=1

Hence, (—1)"=1/2q, > 0if ¢ > 0 and d > 0. To prove a/, € Z it
suffices to show that

112!...(n —3)!S(n) =0 (mod n?). (4.1)
Fix k € [0,n]. The product [T,co .1 (") contains at least two of

the three factors (), (5) and (,",) (since n > 5). But each of these

three factors is divisible by n or (in the case of the second factor) by
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n/2 (when n is even). Thus, the product [, ¢ (") is divisible by
n-n or (when n is even) by n - (n/2). In either case, it follows that
2 Lconp iy (") is divisible by n?. Since n > 5yields 2 | 112! ... (n—3)!,
we thus conclude that 112!, .. (n — 3)! [T, joup gy (1) is divisible by n?.
Since we have shown this for all k£ € [0, n], it follows that 1!2!...(n —
3)!S(n) is divisible by n?. This proves (4.I]).

(ii) For n = 3,...,8 we can verify directly the desired result for b,
and b/,

Now we assume n > 9 and define

T(n):= Z 0x(0%, ..., (n— 1) 0on_i(d0?, ... d(n —1)?) H (n)

re[0,n]\{k}

— i A" Fo(0%,. .., (n— 1)) on_i(0%, ..., (n —1)%) H (:)a
k=1 {k}

re[0,n]\

which is positive if d > 0 and always satisfies d | S(n). In view of
Theorem [3.1]

[+ 7)oy g =02 [T (67— 2)(d® = di®) < T(n)
o 0<i<j<n—1

n—1

=(=d)"" V21 (m) [T (25 - 1Y)

i=1

and so
n—1

by = (=d)"" 2T (n)((n — 1)1)? H((Qj — 1% (4.2)

Thus (—1)*"=Y/2p, > 0 if d > 0. Also, [E2) yields

n—1 .
(_1)n(n—l)/2bl _ (n B 1)'2 szl (2‘7 - 1)'T(n)
N G TRV ¥ Y

HTL—2 (2k—1)!

- 2n(2nki11)(§!n —5 1 () (43)

Asn+4<2n—>5and one of n+1,n+2,n+ 3,n+ 4 is divisible by
4, we have

(2(n—2)—1)!

(n—2)!
Therefore, ([A3)) leads to (2n — 1)b, € Z. If we can furthermore show
that 2n(2n — 2)b), € Z, then we will conclude that ¥/, € Z (since 2n — 1

4(n—1)n
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is coprime to 2n(2n —2)). So it remains to show that 2n(2n—2)b/, € Z,

i.e., that 2n — 1| T(n) []1—} (%k_!l)!-
If 2n — 1 = pq with p,q € Z* and 3 < p < ¢, then p < ¢ < 2872 <

n — 3, and hence 2n — 1 = pq divides

@p-1) -1t (2(¢-1)—1)
(p—1)! (g —1)!

If 2n — 1 = p? with p an odd prime, then 5 < p=+v2n -1 < n — 2
since 2n — 1 >n > 9, hence 2n — 1 = p? divides

2p-2) -1 2pFp-1)-1)
(p—2)! (p—1)!

If 2n — 1 is a prime p, then p > 3 and
by = | (® + @j*) D72

(i + dj*) (
=0 (mod p)

‘Oging(p_l)/2
i? + dj2)
p

0<4,j<(p—1)/2

by Theorem [T hence 2n — 1 = p divides T'(n) by (£2) and due to

d | T(n). In either case, we obtain 2n — 1| T'(n) [[Z3 (%];1)!.

The proof of Theorem is now complete. O

5. PROOF OF THEOREM [.3]

We need the following known lemma (see |6, Lemma 2.3]):

Lemma 5.1. Let p be a prime with p = 1 (mod 4), and write n =

(p—1)/2. Then
(3)-():
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Proof of Theorem[I.3. For convenience we set n = (p—1)/2. Applying
Theorem [B.1] we see that

(& + dj* + C>n‘1§i,j§n

—(—1)nn=1/2 H (5% = i*)(dj* + ¢ — (di* + ¢)) x H (Z)

op(1%,... nH o,k (d12 + ¢, ..., dn? + )

=(—d)"= /2 H (52 —i?)? x ﬁ (Z) X R, (5.1)

where

R, =0,(1%,...,0%) + 0, (d1* +¢,...,dn*+¢)
N Z ak(12,...,n2)an_k(d12+c,...,dn2—I—c). (5.2)

0<k<n (Z)

As observed in [0, (3.2)], we have the polynomial congruence

Z(_l)k%(12, o Pt

k=0
= H(x —7r?) = 2" — 1 (mod p). (5.3)
r=1
So 0,(12,...,n%) = —(=1)" (mod p) and o1(1%,...,n%) = 0 (mod P)
for all k = 1,...,n — 1. Note also that p { (}) for all k=0,...,n
Therefore, (5.2) yields
R, + (—1)"
e 2 2 _ - 2\ _ (__1N\n - _E .2
=0,(d1* +c,...,dn" +c¢) —H(c—l—dr ) = (—d) H( Find )

—(—d)" ((—%)" _ 1) — " — (—d)" = (1—6)) - <_?d) (mod p),

where we have used (B.3]) in the third-to-last congruence. Solving
this for R, and substituting the result into (G5.1I), and noting that
the left-hand side of (5.0l is congruent to S.(d,p) modulo p (since
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(%) = a" (mod p) for all a € Z), we find
Se(d, p)

= (—d)"n=D/2 (J}@ j2 -2 ) x H( )

() ()-r)man s

Clearly,

whence

(5:9)-(5)- (- ()"

by Lemma 5.1l In view of Gauss’s known identity (2) = (—1)®*~1/8 =

2
p
(—1)""+D/2 we can rewrite this as

(M) _ ((_1>n(n+1)/2)n+1 — (_1)n(n+1)2/2_

p
Hence, (5.4) yields

(W) - (_sz)n(n—l)/z (—1)rn 022 <(i) — (_Td; _ (_1)n> |

) = (—1)" and
n(n+1)?/2—n?(n—1)/2 _ (_1>n(3n+1)/2 _ (_1>n(n—1)/2'

|H

Note that (=

(~1

So (B3] can be rewritten as

(@) = (—1)nn-1)/2 (g)nm—w ((ﬁ) - (_1]):(1 - (5))) .

Now it remains to deduce (LL6]) from (G.6]).
Case 1. (7) =1 and (g) =—1.
In this case, (5.6) becomes
(Sc(d,p)) — (— 1y pynn-1/2 (1 — (=)= 1)) 1
p p
Case 2. ($) = (;?l) =—1.

~_ 3
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In this case, (50) gives
(M) _ (= 1)/ (el (‘1 - (=D - 1)) _ (‘_1) .

p p p
Case 3. (=°) = (;?l) = 1.
In this case, (£) = (_71) = (—1)". Hence, (5.0) yields
(Sc(iap)) _ (_1)n(n—1)/2 ((_1)n _p(_l)nQ) _ (_l)n(n+1)/2—n (%1) "

= e = (2) (21 < (22,

(
(Sc(d,p)> _ (—1)rln /2 <—(—1)" - (—1)”2>

p

e ()3
— (= 1) D2y (1) (—?3)

e (2)-0) ) ()

In view of the above, (L) holds as desired. This concludes the
proof. O

Acknowledgment. We thank Prof. Guo-Niu Han for helpful com-
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