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0 On compositions of natural numbers

Douglas E. Iannucci

Pungenday, Confusion 7, Year of Our Lady of Discord 3186

Abstract

In this expository note, we introduce the reader to compositions

of a natural number, e.g., 2 + 1+ 2+ 1+ 7+ 1 is a composition of 14,

and 1 + 2 and 2 + 1 are two different compositions of 3. We discuss

some simple restricted forms of compositions, e.g., 23 + 17 + 33 is

a composition of 73 into three odd parts. We derive formulas that

count the number of so restricted forms of compositions of a natural

number n, and we conclude with a brief general discussion of the topic.

1 Introduction

Let n be a natural number. A composition of n is an ordered sequence of
natural numbers whose sum is n. The notation used to indicate a composition
may vary from author to author. Here, we take a classical approach, and
write a composition of n as an equation that expresses n as a sum, e.g., two
compositions of 37:

37 = 11 + 8 + 3 + 7 + 2 + 6

37 = 1 + 5 + 1 + 1 + 1 + 17 + 1 + 2 + 2 + 4

The addends themselves are called the parts of the composition. In the first
composition of 37 given above, the parts are 11, 8, 3, 7, 2, and 6, in that
order. Thus, by our convention, we write a composition of n in the form

n = a1 + a2 + · · ·+ ak, (1)

where a1, a2, . . . , ak denote the parts of the composition. It is clear from (1)
that a composition of n may contain as few as one part, that being n itself,
or as many as n parts, all being unity.
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We stress here that the sequence of parts is ordered. For example,

17 = 4 + 1 + 3 + 4 + 1 + 1 + 3

17 = 1 + 1 + 3 + 4 + 3 + 4 + 1

give two different compositions of 17.
Clearly, unity has exactly one composition, 1 = 1. Then,

2 = 2 2 = 1 + 1

are the two compositions of 2. How many compositions are there of 3, 4, and
5 respectively? Observe:

3 = 3 3 = 1 + 2

3 = 2 + 1 3 = 1 + 1 + 1

Thus, there are exactly 4 compositions of 3. There are exactly 8 compositions
of 4,

4 = 4 4 = 1 + 3

4 = 3 + 1 4 = 1 + 2 + 1

4 = 2 + 2 4 = 1 + 1 + 2

4 = 2 + 1 + 1 4 = 1 + 1 + 1 + 1

and 16 compositions of 5,

5 = 5 5 = 1 + 4

5 = 4 + 1 5 = 1 + 3 + 1

5 = 3 + 2 5 = 1 + 2 + 2

5 = 3 + 1 + 1 5 = 1 + 2 + 1 + 1

5 = 2 + 3 5 = 1 + 1 + 3

5 = 2 + 2 + 1 5 = 1 + 1 + 2 + 1

5 = 2 + 1 + 2 5 = 1 + 1 + 1 + 2

5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 1 + 1

By now, one likely intuits that there are exactly 2n−1 compositions of n. This
is correct. It is proved easily by induction; we do this in § 2. Note that 2n−1

is sequence A000079 in the OEIS [4].
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Counting function: Restriction on the compositions of n: §:
sr,m(n) a ≡ r (mod m) for all parts a. 3
sr,m,k(n) Same as sr,m(n), but with exactly k parts. 5
tq(n) a ≤ q for all parts a. 7
uq(n) a ≥ q for all parts a. 7
vp,q(n) p ≤ a ≤ q for all parts a. 7
tq,k(n) Same as tq(n), but with exactly k parts. 8
uq,k(n) Same as uq(n), but with exactly k parts. 8
vp,q,k(n) Same as vp,q(n), but with exactly k parts. 8

Table 1: Counting functions discussed in this note.

In this note we derive general formulas for counting the number of com-
positions with additional restrictions imposed. For example, we’ll see in § 5
that the number of compositions of 73 comprising exactly three odd parts
is the number of the Beast, 666. In Table 1, we summarize these counting
functions.

2 The number of compositions of n

Let C(n) denote the number of compositions of n. We prove the well known
formula C(n) = 2n−1 by induction on n, in a natural way suggested by the
lexicographic order in which the compositions of 1–5 are given in § 1.

Theorem 1. There are precisely 2n−1 compositions of the natural number n.
That is, C(n) = 2n−1 for all natural numbers n.

Proof. Clearly C(1) = 1. Consider n > 1. In any composition of n, the first
part, denoted by a1 in (1), has the property 1 ≤ a1 ≤ n. If a1 = n, then
n = a1 is itself a composition of n. Otherwise k > 1.

Consider, then, each fixed value of a1, 1 ≤ a1 < n. Let a = a1. There are
exactly C(n− a) compositions

n− a = a2 + a3 + · · ·+ ak.

Thus

C(n) = 1 +

n−1∑

a=1

C(n− a).
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By induction hypothesis,

C(n) = 1 +

n−1∑

a=1

2a−1 = 1 + (2n−1 − 1) = 2n−1,

hence the result.

We seek to generalize. How may we count the number of compositions
of n where all the parts are odd? How about when the number of parts is
fixed? How about when the parts are bounded?

It is easier to obtain such generalizations if we use a slightly different
method of induction. Before proving the general formula, we first illustrate
this method by providing an alternative proof to Theorem 1.

It begins the same way: C(1) = 1, hence we consider n > 1. A compo-
sition of n, as in (1), either has the property that a1 = 1 or a1 > 1. Let A
denote the set of compositions of n such that a1 = 1, and let B denote the
set of compositions of n such that a1 > 1. Note that A and B are disjoint.
Thus,

C(n) = #A+#B, (2)

where #S denotes the number of elements in a finite set S.
For all compositions in A, we may write

n− 1 = a2 + a3 + · · ·+ ak, (3)

while for all compositions in B, we may write

n− 1 = (a1 − 1) + a2 + a3 + · · ·+ ak. (4)

The sum in (3) is a composition of n− 1; therefore #A = 2n−2 by induction
hypothesis. The sum in (4) is also a composition of n−1, where a1−1 is the
first part; thus, similarly, #B = 2n−2. Hence by (2) C(n) = 2n−2 + 2n−2 =
2n−1.

The key step here was establishing the recurrence

C(n) = C(n− 1) + C(n− 1),

which in this case simplifies to C(n) = 2C(n−1). We can alter this key step
slightly to answer the question: how many compositions on n are there such
that all the parts are all odd? Let us denote this number by D(n). Clearly
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D(1) = 1, and D(2) = 1 because 2 = 1+1 is the only way to compose 2 into
odd parts. Thus, we may assume n > 2. Again, we may let A denote the set
of compositions of n with all odd parts, such that a1 = 1. Again, we may
let B denote the set of compositions of n with all odd parts, such that a1 > 1
(hence a1 > 2). Again, A and B are disjoint, so that D(n) = #A +#B.

For all compositions in A, we may write

n− 1 = a2 + a3 + · · ·+ ak, (5)

and for all compositions in B, we may write

n− 2 = (a1 − 2) + a2 + a3 + · · ·+ ak. (6)

Similarly as before, the sum in (5) is a composition of n− 1 into odd parts.
Likewise, the sum in (6) is a composition of n−2 into odd parts, where a1−2
is the first part. Thus #A = D(n− 1), #B = D(n− 2), hence

D(n) = D(n− 1) +D(n− 2).

Therefore

D(1) = D(2) = 1, D(n) = D(n− 1) +D(n− 2) (n > 2).

This defines D(n) as the Fibonacci sequence (A000045 in the OEIS ); i.e.,

D(n) = Fn.

We give here the compositions of n into odd parts for n = 3, 4, and 5:

3 = 3 4 = 3 + 1 5 = 5

3 = 1 + 1 + 1 4 = 1 + 3 5 = 3 + 1 + 1

4 = 1 + 1 + 1 + 1 5 = 1 + 3 + 1

5 = 1 + 1 + 3

5 = 1 + 1 + 1 + 1 + 1

3 The recurrence for sr,m(n)

We introduce here the notation sr,m(n) to represent the number of compo-
sitions of n into parts, all of which are congruent to r modulo m. Thus we
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assume that 0 < r ≤ m. Furthermore, without loss of generality, we may
assume that r and m are relatively prime. For, otherwise m = dµ and r = dρ
for natural numbers µ, ρ, and d, where d > 1 and gcd(µ, ρ) = 1. Thus, all
the parts aj, as in (1), of a composition of n that is counted by sr,m(n) have
the form

aj = mbj + r = d(µbj + ρ).

Letting cj = µbj + ρ, such a composition on n has the form

n = d (c1 + c2 + · · ·+ ck) ,

hence n = dν for some natural number ν. Hence

ν = c1 + c2 + · · ·+ ck,

which is a composition of ν counted by sρ,µ(ν). Therefore sm,r(n) = sρ,µ(ν).
According to our notation, Theorem 1 states that s1,1(n) = 2n−1. In

§ 2 we showed that s1,2(n) = Fn. By mirroring our remarks in § 2, we can
establish a recursive definition for sr,m(n) in general:

Theorem 2. Given 0 < r ≤ m and gcd(r,m) = 1, if 1 ≤ n ≤ m then

sr,m =

{

1, if r | n,
0, if r ∤ n.

(7)

If n > m then sr,m(n) = sr,m(n− r) + sr,m(n−m).

Proof. The only possible part a, such that a ≤ m and a ≡ r (mod m),
is a = r. Thus the only possible compositions of n, with parts congruent to r
modulo m, such that n ≤ m are

n = r, n = r + r, n = r + r + r, . . . , n = r + r + · · ·+ r
︸ ︷︷ ︸

[m/r] parts

.

Thus (7) holds when 1 ≤ n ≤ m.
Otherwise m > n. For any composition of n counted by sr,m(n), the

first part a1 has either the property a1 = r or a1 > r. Let A denote those
compositions such that a1 = r, and let B denote those such that a1 > r
(hence a1 ≥ m+ r). Then A and B are disjoint, hence

sr,m(n) = #A +#B. (8)
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Each composition in A may be written as

n− r = a2 + a3 + · · ·+ ak, (9)

while each composition in B has the form

n−m = (a1 −m) + a2 + · · ·+ ak. (10)

The sum in (9) is a composition of n−r such that all parts are congruent to r
modulo m. The sum in (10) is a composition of n−m such that all parts are
congruent to r modulom. Therefore #A = sr,m(n−r) and #B = sr,m(n−m),
hence by (8)

sr,m(n) = sr,m(n− r) + sr,m(n−m).

Note that Theorem 2 subsumes Theorem 1. Indeed, by Theorem 2,

s1,1(1) = 1, s1,1(n) = 2s1,1(n− 1) (n > 1),

which, as mentioned before, defines the sequence 2n−1. Theorem 2 then
implies

s1,2(1) = s1,2(2) = 1, s1,2(n) = s1,2(n− 1) + s1,2(n− 1) (n > 2),

which, as seen, defines the Fibonacci sequence Fn. Furthermore, we have

s1,3(1) = s1,3(2) = s1,3(3) = 1, s1,3(n) = s1,3(n−1)+s1,3(n−3) (n > 3),

which defines Narayana’s cows sequence (A000930 in the OEIS ). Similarly,

s2,3(1) = 0, s2,3(2) = 1, s2,3(3) = 0,

s2,3(n) = s2,3(n− 2) + s2,3(n− 3) (n > 3)

defines the Padovan sequence (A000931 in the OEIS ), where the sequence
elements a(n) in A000931 are enumerated such that s2,3(n) = a(n+ 1).

Several sequences of the form s1,m(n) (that is, with r = 1) have been
catalogued in the OEIS , as seen in Table 2.

The closed form expression s1,1(n) = 2n−1, as seen, is easily deduced. The
closed form expression

s1,2(n) =
αn − βn

α− β
, α =

1 +
√
5

2
, β =

1−
√
5

2
, (11)
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m s1,m(n) in OEIS seq. m s1,m(n) in OEIS seq.
1 a(n) A000079 5 a(n− 1) A003520

2 a(n) A000045 6 a(n− 1) A005708

3 a(n− 1) A000930 7 a(n− 1) A005709

4 a(n) A003269 8 a(n− 1) A005710

Table 2: Some sequences of form s1,m(n).

is known as Binet’s formula, i.e.,

Fn =
αn − βn

α− β
. (12)

Then (11) may be deduced by means of a generating series, which we discuss
briefly in §4.

When m > 2, it becomes difficult to obtain a closed form for the sequence
sr,m(n), as the order of recurrence exceeds 2. This, too, is discussed briefly
in §4.

4 Generating functions

Given a sequence a(n), n ≥ 1, we define its generating function by

g(x) =
∞∑

n=1

a(n)xn.

This series is treated formally. Thus, we may obtain a closed form for the
generating function as a means of cataloguing the sequence. The generating
function for sr,m(n) is easily obtained.

Theorem 3. The generating function for sr,m(n) is given by

g(x) =

∞∑

n=1

sr,m(n)x
n =

xr

1− xr − xm
.

Proof. For ease of notation, let

X = xr + x2r + · · ·+ x[
m
r ]r.
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Then, applying Theorem 2,

g(x) =
∞∑

n=1

sr,m(n)x
n

= X +
∞∑

n=m+1

sr,m(n− r)xn +
∞∑

n=m+1

sr,m(n−m)xn

= X + xr

∞∑

n=m+1−r

sr,m(n)x
n + xm

∞∑

n=1

sr,m(n)x
n

= X + xrg(x)− (X − xr) + xmg(x),

where the fourth line follows because

xr

∞∑

n=m+1−r

sr,m(n)x
n = xr

(

g(x)−
(

xr + x2r + · · ·+ x[
m−r

r ]r
))

= xrg(x)−
(

x2r + x3r + · · ·+ x[
m
r ]r
)

.

Hence
g(x) = (xr + xm)g(x) + xr.

Solving for g(x) yields the result.

Theorem 3 gives s1,1(n) = 2n−1 immediately by dint of the geometric sum
formula, and then simply by matching coefficients:

∞∑

n=1

s1,1(n)x
n =

x

1− 2x
=

∞∑

n=1

2n−1xn.

Likewise, Theorem 3 gives (11) by using Binet’s method. For, partial fraction
decomposition yields

x

1− x− x2
=

1√
5

(
1

1− αx
− 1

1− βx

)

.

Thus, by the geometric sum formula,

x

1− x− x2
=

1√
5

∞∑

n=0

αnxn − 1√
5

∞∑

n=0

βnxn.
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We note that α− β =
√
5. Thus by Theorem 2

∞∑

n=1

s1,2(n)x
n =

∞∑

n=1

αn − βn

α− β
xn, (13)

and we are left to match the coefficients, hence the result.
What happens when we look at s1,3(n)? We may factor

1− x− x3 = ((s+ t)− x)
(
(1 + (s+ t)2) + (s+ t)x+ x2

)
,

where

s =
3

√

1

2
+

√

31

108
, t =

3

√

1

2
−
√

31

108
.

This factorization becomes evident when considering that 3st = −1 and
s3 + t3 = 1. Letting u = s+ t, we now write

1− x− x3 = (u− x)
(
(1 + u2) + ux+ x2

)
.

The linear factor u−x introduces a real root of the cubic equation 1−x−
x3 = 0, while the quadratic factor (1+u2)+ux+x2 introduces two complex
conjugate roots. Ordinary partial fraction decomposition takes the form

x

1− x− x3
=

1

1 + 3u2

(
u

u− x
− (1 + u2)− ux

(1 + u2) + ux+ x2

)

.

The geometric sum formula yields

u

u− x
=

∞∑

n=0

xn

un
.

Then, further partial fraction decomposition using complex numbers yields

(1 + u2)− ux

(1 + u2) + ux+ x2
=

Auγ

1− uγx
+

Buβ

1− uβx
, (14)

where, writing v = s− t,

A =
u

2
−

√
3(u2 + v2)

4v
i, B =

u

2
+

√
3(u2 + v2)

4v
i,
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and

β = −u

2
−

√
3v

2
i, γ = −u

2
+

√
3v

2
i.

Applying the geometric sum formula to (14),

(1 + u2)− ux

(1 + u2) + ux+ x2
= Auγ

∞∑

n=0

unγnxn +Buβ
∞∑

n=0

unβnxn.

Thus, as 1−Auγ − Buβ = 0, we have

x

1− x− x3
=

1

1 + 3u2

∞∑

n=1

(
1

un
− (Aγn+1 +Bβn+1)un+1

)

xn,

hence by Theorem 2, and by matching coefficients,

s1,3(n) =
1− (Aγn+1 +Bβn+1)u2n+1

un(1 + 3u2)
.

This result is rather esoteric in nature, and of not much practical use. Fur-
thermore, for larger cases of m, it is likely impossible to extract a closed
formula for sr,m(n), especially in light of Abel’s theorem regarding the insol-
ubility by radicals of the general polynomial equation of degree 5 or larger.

However, all is not lost. In § 5, we generalize sr,m(n) a bit more. In this
case, we see that the generating function works perfectly well in obtaining a
closed form.

5 The sequence sr,m,k(n)

We now fix k ≥ 1 and let sr,m,k(n) denote the number of compositions of n
into exactly k parts, such that all the parts are congruent to r modulo m. As
before we assume gcd(r,m) = 1 and 0 < r ≤ m. It follows that sr,m,k(n) = 0
whenever k > n. Trivially,

sr,m,1(n) =

{

1, if n ≡ r (mod m),

0, otherwise.
(15)
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A nontrivial example is s3,17,4(63) = 20:

63 = 54 + 3 + 3 + 3 63 = 3 + 54 + 3 + 3

63 = 37 + 20 + 3 + 3 63 = 3 + 37 + 20 + 3

63 = 37 + 3 + 20 + 3 63 = 3 + 37 + 3 + 20

63 = 37 + 3 + 3 + 20 63 = 3 + 20 + 37 + 3

63 = 20 + 37 + 3 + 3 63 = 3 + 20 + 20 + 20

63 = 20 + 20 + 20 + 3 63 = 3 + 20 + 3 + 37

63 = 20 + 20 + 3 + 20 63 = 3 + 3 + 54 + 3

63 = 20 + 3 + 37 + 3 63 = 3 + 3 + 37 + 20

63 = 20 + 3 + 20 + 20 63 = 3 + 3 + 20 + 37

63 = 20 + 3 + 3 + 37 63 = 3 + 3 + 3 + 54

The lexicographic order in which these compositions are listed suggests a
recurrence in the sequence sr,m,k(n). For, considering (1), it follows that
either a1 = r or a1 > r. By dint of (15), we may assume k > 1. If n ≤ m,
then aj ≤ m for all j; hence aj = r for all j. Thus

sr,m,k(n) =

{

1, if n = rk,

0, otherwise,
(16)

whenever n ≤ m. Similarly,

sr,m,k−1(n) =

{

1, if n = r(k − 1),

0, otherwise,
(17)

whenever n ≤ m.
Otherwise n > m. Letting A denote the set of such compositions where

a1 = r, and B the set where a1 > r, we see that sr,m,k = #A + #B. Each
member of A has the form

n− r = a2 + a3 + · · ·+ ak,

hence #A = sr,m,k−1(n− r). Likewise, each member of B has the form

n−m = (a1 −m) + a2 + a3 + · · ·+ ak,

12



hence #B = sr,m,k(n−m). Therefore

sr,m,k(n) = sr,m,k−1(n− r) + sr,m,k(n−m) (18)

whenever n > m.
Let gk(x) denote the generating function of the sequence sr,m,k(n). Thus,

gk(x) =
m∑

n=1

sr,m,k(n)x
n +

∞∑

n=m+1

sr,m,k(n)x
n. (19)

We remark here, by (16) and (17) we have

m∑

n=1

sr,m,k(n)x
n =

{

xrk, if m ≥ rk,

0, if m < rk,

and,

xr
m−r∑

n=1

sr,m,k−1(n)x
n =

{

xrk, if m ≥ rk,

0, if m < rk.

Therefore
m∑

n=1

sr,m,k(n)x
n − xr

m−r∑

n=1

sr,m,k−1(n)x
n = 0. (20)

We may now obtain here the generating function gk(x).

Theorem 4. For all k ≥ 1 we have

gk(x) =

∞∑

n=1

sr,m,k(n)x
n =

xrk

(1− xm)k
.

Proof. Suppose k > 1. By (18) we have

∞∑

n=m+1

sr,m,k(n)x
n =

∞∑

n=m+1

sr,m,k−1(n−m)xn +

∞∑

n=m+1

sr,m,k(n)x
n

= xr

∞∑

n=m+1−r

sr,m,k−1x
n + xm

∞∑

n=1

sr,m,k(n)x
n,

13



which, along with (19) and (20), yields

gk(x) =
m∑

n=1

sr,m,k(n)x
n + xrgk−1(x)− xr

m−r∑

n=1

sr,m,k−1(n)x
n + xmgk(x)

= xrgk−1(x) + xmgk(x).

Solving for gk(x), we have

gk(x) =
xr

1− xm
gk−1(x). (21)

By (15) we have

g1(x) =
∞∑

j=0

xmj+r =
xr

1− xm
,

hence by induction we achieve the desired result.

We are now able to apply the generating function gk(x) to obtain a closed
form expression for sr,m,k(n).

Theorem 5. For all k ≥ 1, m ≥ 1, 0 < r ≤ m, gcd(r,m) = 1, we have

sr,m,k(n) = 0 if n 6≡ rk (mod m). Otherwise n ≡ rk (mod m) and

sr,m,k(n) =

(
n−rk
m

+ k − 1

k − 1

)

.

Proof. We apply Theorem 4, and the combinatorial identity

1

(1− z)k
=

∞∑

j=0

(
j + k − 1

k − 1

)

zj , (22)

to obtain
∞∑

n=1

sr,m,k(n)x
n = gk(x) =

∞∑

j=0

(
j + k − 1

k − 1

)

xmj+rk.

Therefore by comparing coefficients we have

sr,m,k(n) =

(
j + k − 1

k − 1

)

,

provided that n = mj + rk for some integer j ≥ 0; otherwise, sr,m,k(n) = 0.
The statement of the theorem follows immediately.

Therefore, as mentioned in § 1, s1,2,3(73) = 666. Further examples include
s17,40,9(1753) = 377348994, and s5,12,8(537) = 0, as 537 6≡ 40 (mod 12).

Also, note that (22) is proved easily by induction on k.
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6 Pascal’s triangle and sr,m(n)

As sr,m,k(n) are binomial coefficients, they may be used to obtain a formula
for sr,m(n) from § 3, however artificial it may be. For, by definition it follows
that

sr,m(n) =

[n/r]
∑

k=1

sr,m,k(n). (23)

It is clear that we cannot have more than [n/r] parts, as r is the smallest
possible part. The addends sr,m,k(n) are nonzero if and only if n ≡ rk
(mod m), that is, k ≡ r−1n (mod m), where r−1 denotes the multiplicative
inverse of r modulo m (which exists as gcd(r,m) = 1). Letting ξ denote the
least positive residue of r−1n modulo m, we have

k = mλ + ξ (24)

for some nonnegative integer λ in every nonzero addend sr,m,k(n) Thus, as
k ≤ n/r,

λ ≤
n
r
− ξ

m
=

n− rξ

rm
. (25)

Also from (24) we have

n− rk

m
+ k − 1 = (m− r)λ+

n− rξ

m
+ ξ − 1. (26)

Hence by Theorem 5, and by (23), (24), (25), and (26),

sr,m(n) =

[n−rξ
rm ]
∑

λ=0

(
(m− r)λ+ n−rξ

m
+ ξ − 1

mλ + ξ − 1

)

. (27)

We may apply (27) to show that s1,2(10) = 55. For, ξ = 2, hence 0 ≤ λ ≤ 4,
hence

s1,2(10) =
4∑

λ=0

(
λ+ 5

2λ+ 1

)

=

(
5

1

)

+

(
6

3

)

+

(
7

5

)

+

(
8

7

)

+

(
9

9

)

= 55.

Similarly, we obtain s3,7(35) = 28: here ξ = 7, thus λ = 0 by (25). Hence

s3,7(35) =

(
8

6

)

= 28.
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Similarly, s2,5(31) = 154: here ξ = 3, hence 0 ≤ λ ≤ 2. Thus,

s2,5(31) =

2∑

λ=0

(
3λ+ 7

5λ+ 2

)

=

(
7

2

)

+

(
10

7

)

+

(
13

12

)

= 154.

Expressing sr,m(n) in this way produces some well known identities in-
volving sums of binomial coefficients. As s1,1(n) = 2n−1, we obtain

2n−1 =

n−1∑

λ=0

(
n− 1

λ

)

,

and as s1,2 = Fn we obtain

Fn =

n−1

2∑

λ=0

(
λ+ n−1

2

2λ

)

, if n is odd,

Fn =

n−2

2∑

λ=0

(
λ+ n

2

2λ+ 1

)

, if n is even.

For Narayana’s cows sequence we obtain

s1,3(n) =

n−1

3∑

λ=0

(
2λ+ n−1

3

3λ

)

, if n ≡ 1 (mod 3),

s1,3(n) =

n−2

3∑

λ=0

(
2λ+ n+1

3

3λ+ 1

)

, if n ≡ 2 (mod 3),

s1,3(n) =

n−3

3∑

λ=0

(
2λ+ n+3

3

3λ+ 2

)

, if n ≡ 0 (mod 3),

and for the Padovan sequence,

s2,3(n) =

[n−4

6
]

∑

λ=0

(
λ+ n−1

3

3λ+ 1

)

, if n ≡ 1 (mod 3),
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

1 + 10 + 7 + 1 = 19

Figure 1: Illustration for s1,3(10) = 19.

s2,3(n) =

[n−2

6
]

∑

λ=0

(
λ+ n−2

3

3λ

)

, if n ≡ 2 (mod 3),

s2,3(n) =

[n−6

6
]

∑

λ=0

(
λ+ n

3

3λ+ 2

)

, if n ≡ 0 (mod 3).

We observe that sr,m(n) is thus a sum of binomial coefficients, taken along a
falling diagonal in Pascal’s triangle, except that s1,1(n) is a sum taken along
a row. This is evident from (27). The initial term (when λ = 0), at the top
of the diagonal, occurs in column ξ − 1 of Pascal’s triangle. By definition,
we see that 0 ≤ ξ − 1 ≤ m − 1, and that ξ − 1 is determined completely
by the residue of n modulo m. Thus, the diagonal begins in any one of
the leftmost m columns of Pascal’s triangle, determined by n modulo m.
From (27), it is also evident that the diagonal will slope downward by jumps
of m− r rows down, and m columns to the right.

Figures 1, 2, and 3 offer quick illustrations of this phenomenon where
m = 3.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

4 + 15 + 8 + 1 = 28

Figure 2: Illustration for s1,3(11) = 28.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

21 + 56 + 9 = 86

Figure 3: Illustration for s2,3(21) = 86.
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7 Restrictions on the size of parts

Let q be a fixed natural number. For any natural number n, let tq(n) denote
the number of compositions of n such that all its parts are less than or equal
to q. For example, t3(5) = 13 as

5 = 3 + 2 5 = 1 + 3 + 1

5 = 3 + 1 + 1 5 = 1 + 2 + 2

5 = 2 + 3 5 = 1 + 2 + 1 + 1

5 = 2 + 2 + 1 5 = 1 + 1 + 3

5 = 2 + 1 + 2 5 = 1 + 1 + 2 + 1

5 = 2 + 1 + 1 + 1 5 = 1 + 1 + 1 + 2

5 = 1 + 1 + 1 + 1 + 1

Let uq(n) denote the number of compositions of n such that all its parts are
greater than or equal to q. For example, u3(11) = 13 as

11 = 11 11 = 4 + 7

11 = 8 + 3 11 = 4 + 4 + 3

11 = 7 + 4 11 = 4 + 3 + 4

11 = 6 + 5 11 = 3 + 8

11 = 5 + 6 11 = 3 + 5 + 3

11 = 5 + 3 + 3 11 = 3 + 4 + 4

11 = 3 + 3 + 5

As before, we may obtain both the recursion and the generating function for
the sequences tq(n) and uq(n).

Theorem 6. For the fixed natural number q, we have

tq(n) =

{

2n−1, if n ≤ q,
∑q

j=1 tq(n− j), if n > q.
(28)

Proof. It is clear that tq(n) = 2n−1 when n ≤ q ; this follows directly from
Theorem 1. Assume, then, that n > q. For each j, 1 ≤ j ≤ q, let Aj denote
the set of compositions counted by tq(n), such that a1 = j in the notation
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of (1). The sets Aj are mutually disjoint, hence

tq(n) =

q
∑

j=1

#Aj .

Each composition in Aj may be written as

n− j = a2 + a3 + · · ·+ ak,

hence #Aj = tq(n− j). The result follows immediately.

Theorem 7. The generating function for tq(n) is given by

f(x) =
∞∑

n=1

tq(n)x
n =

x+ x2 + · · ·+ xq

1− x− x2 − · · · − xq
.

Proof. By (28) we have

f(x) = x+ 2x2 + 4x3 + · · ·+ 2q−1xq

+

∞∑

n=q+1

tq(n− 1)xn +

∞∑

n=q+1

tq(n− 2)xn + · · ·+
∞∑

n=q+1

tq(n− q)xn.

Hence,

f(x) =

q
∑

n=1

2n−1xn +

q−1
∑

a=1

xa

(

f(x)−
q−a
∑

b=1

2b−1xb

)

+ xqf(x)

=

q
∑

n=1

2n−1xn +

q
∑

a=1

xaf(x)−
q−1
∑

a=1

xa

q−a
∑

b=1

2b−1xb.

Thus,

f(x)(1− x− x2 − · · · − xq) =

q
∑

n=1

2n−1xn −
q−1
∑

a=1

xa

q−a
∑

b=1

2b−1xb. (29)

To simplify the iterated sum, let n = a + b. Thus 2 ≤ n ≤ q and b = n− a.
Thus,

q−1
∑

a=1

xa

q−a
∑

b=1

2b−1xb =

q
∑

n=2

xn

n−1∑

a=1

2n−a−1

=

q
∑

n=2

xn
(
2n−1 − 1

)
=

q
∑

n=2

2n−1xn −
q
∑

n=2

xn.
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q tq(n) in OEIS seq. q tq(n) in OEIS seq.
2 a(n+ 1) A000045 7 a(n− 1) A172316

3 a(n+ 2) A000073 8 a(n− 1) A172317

4 a(n+ 3) A000078 9 a(n− 1) A172318

5 a(n+ 4) A001591 10 a(n− 1) A172319

6 a(n+ 5) A001592 11 a(n− 1) A172320

Table 3: Some sequences of form tq(n).

Substituting into (29),

f(x)(1− x− x2 − · · · − xq) =

q∑

n=1

2n−1xn −
q∑

n=2

2n−1xn +

q∑

n=2

xn

= x+ x2 + · · ·+ xq,

from which the result follows immediately.

It is clear by definition that t1(n) = 1 for all natural numbers n. The-
orem 7 illustrates this via the geometric sum formula and comparing coeffi-
cients:

∞∑

n=1

t1(n)x
n =

x

1− x
=

∞∑

n=1

xn.

Likewise, Theorem 7, along with Theorem 3, (12), and (13), implies t2(n) =
Fn+1, as

∞∑

n=1

t2(n)x
n =

x+ x2

1− x− x2
= (1 + x)

x

1− x− x2

= (1 + x)

∞∑

n=1

s1,2(n)x
n = (1 + x)

∞∑

n=1

Fnx
n =

∞∑

n=1

Fnx
n +

∞∑

n=1

Fnx
n+1

= x+

∞∑

n=1

(Fn + Fn−1)x
n =

∞∑

n=1

Fn+1x
n.

Several sequences tq(n), as defined recursively by (28), appear in the OEIS ,
as shown in Table 3. Obtaining closed form expressions for tq(n) directly
from Theorem 7 when q > 2 entails the same difficulties as discussed in § 4.
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Theorem 8. For the fixed natural number q, we have

uq(n) =







0, if n < q,

1, if n = q,

uq(n− 1) + uq(n− q), if n > q.

(30)

Proof. It is clear that uq(n) = 0 if n < q by definition, as it is that uq(q) = 1.
Assume, then, that n > q. Let A denote the set of all compositions counted
by uq(n) such that a1 > q, and let B denote those in which a1 = q, in the
notation of (1).

As A and B are disjoint, we have uq(n)#A + #B. Every composition
in A has the form

n− 1 = (a1 − 1) + a2 + · · ·+ ak,

hence #A = uq(n− 1). Likewise, every composition in B has the form

n− q = a2 + a3 + · · ·+ ak,

hence #B = uq(n− q). The result follows immediately.

Theorem 9. The generating function for uq(n) is given by

f(x) =
∞∑

n=1

uq(n)x
n =

xq

1− x− xq
.

Proof. By (30) we have

f(x) = xq +

∞∑

n=q+1

uq(n− 1)xn
∞∑

n=q+1

uq(n− q)xn

= xq + xf(x) + xqf(x),

from which the result follows.

Similar as in our discussion of tq(n), it is easy to see that u1(n) = 2n−1

and u2(n) = Fn−1. Several of the sequences uq(n) also appear in the OEIS ,
as seen in Table 4.
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q uq(n) in OEIS seq. q uq(n) in OEIS seq.
2 a(n− 1) A000045 9 a(n) A017903

3 a(n) A078012 10 a(n) A017904

4 a(n) A017898 11 a(n) A017905

5 a(n) A017899 12 a(n) A017906

6 a(n) A017900 13 a(n) A017907

7 a(n) A017901 14 a(n) A017908

8 a(n) A017902 15 a(n) A017909

Table 4: Some sequences of form uq(n).

It is interesting to compare u3(n) with s1,3(n) as discussed in § 4. The
respective generating functions are

∞∑

n=1

u3(n)x
n =

x3

1− x− x3
,

∞∑

n=1

s1,3(n)x
n =

x

1− x− x3
,

hence,
∞∑

n=1

u3(n)x
n =

∞∑

n=1

s1,3(n)x
n+2,

so that by comparing coefficients we have u3(n) = s1,3(n − 2) for all n ≥ 3
(recall u3(1) = u3(2) = 0).

Now we consider what happens when we restrict the size of the parts
from below and from above. Let p and q be fixed natural numbers such that
p ≤ q. For all natural numbers n, let vp,q(n) denote the number of additive
compositions of n such that all the parts are greater than or equal to p, and
less than or equal to q. As an example, we see that v5,9(16) = 6 :

16 = 9 + 7 16 = 6 + 5 + 5

16 = 8 + 8 16 = 5 + 6 + 5

16 = 7 + 9 16 = 5 + 5 + 6

The recursion for vp,q(n) is expressed with initial conditions in terms of up(n).

Theorem 10. For fixed natural numbers p ≤ q, we have vp,q(n) = up(n) if

n ≤ q. Otherwise n > q whence

vp,q(n) =

q
∑

k=p

vp,q(n− k).
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Proof. If n ≤ q, then no part of any composition of n exceeds q, therefore
vp,q = up(n) in this case by definition of up(n).

Otherwise n > q. In the notation of (1), each composition counted by
vp,q(n) must satisfy a1 = k, for some k such that p ≤ k ≤ q. Let Ak denote
the set of such compositions such that a1 = k. Then the sets Ak are mutually
disjoint, hence

vp,q(n) =

q
∑

k=p

#Ak.

For each k, every composition in Ak has the form

n− k = a2 + a3 + · · ·+ ak,

hence #Ak = vp,q(n− k). The result follows.

Theorem 11. Let p and q be fixed natural numbers such that p ≤ q. The

generating function for vp,q(n) is given by

f(x) =
∞∑

n=1

vp,q(n) =
xp + xp+1 + · · ·+ xq

1− xp − xp+1 − · · · − xq
.

Proof. By Theorem 10,

f(x) =
∞∑

n=1

vp,q(x)x
n

=

q
∑

n=1

up(n)x
n +

∞∑

n=q+1

vp,q(n)x
n

=

q
∑

n=1

up(n)x
n +

q
∑

k=p

∞∑

n=q+1

vp,q(n− k)xn.

Thus by Theorem 8,

f(x) =

q
∑

n=p

up(n)x
n +

q
∑

k=p

∞∑

n=q+1

vp,q(n− k)xn. (31)
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Fix k such that p ≤ k ≤ q. Then

∞∑

n=q+1

vp,q(n− k)xn = xk
∞∑

n=q−k+1

vp,q(n)x
n

= xk

(

f(x)−
q−k
∑

n=1

vp,q(n)x
n

)

= xkf(x)− xk

q−k
∑

n=p

up(n)x
n,

where the lower limit of summation in the bottom sum is determined by
Theorem 8. Furthermore, this sum is empty when p > q − k, thus we need
only consider p ≤ k ≤ q − p when iterating this sum by summing it over the
index k. We apply this to (31) to obtain

f(x) =

q
∑

n=p

up(n)x
n + f(x)

q
∑

k=p

xk −
q−p
∑

k=p

xk

q−k
∑

n=p

up(n)x
n,

hence

f(x)
(
1− xp − xp+1 − · · · − xq

)
=

q
∑

n=p

up(n)x
n −

q−p
∑

k=p

xk

q−k
∑

n=p

up(n)x
n. (32)

This gives two cases for (32). Either 2p > q, and the iterated sum on the
right is empty, or, 2p ≤ q and the iterated sum is not empty.

In the former case, we note that by Theorem 8, up(n) = 1 for all n such
that p ≤ n ≤ q, whence

f(x)
(
1− xp − xp+1 − · · · − xq

)
= xp + xp+1 + · · ·+ xq,

and the statement of the theorem follows immediately. Thus we need only
to consider the latter case, 2p ≤ q. Here, in the iterated sum in the right
hand side of (32), we let b = k+n; thus, as k+n ≤ k+(q− k) = q, we have
2p ≤ b ≤ q. Then, as n = b− k, we have

q−p
∑

k=p

xk

q−k
∑

n=p

up(n)x
n =

q
∑

b=2p

xb

b−p
∑

n=p

up(n).
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Substituting into (32), and renaming the indices on the right hand side im-
mediately above, we have

f(x)
(
1− xp − xp+1 − · · · − xq

)
=

2p−1
∑

n=p

xn +

q
∑

n=2p

(

up(n)−
n−p
∑

k=p

up(k)

)

xn, (33)

where we recall by Theorem 8 that up(n) = 1 for all n such that 1 ≤ n ≤
2p− 1.

It remains to show that

up(n)−
n−p
∑

k=p

up(n) = 1 (34)

for all n such that 2p ≤ n ≤ q. We use induction. When n = 2p, we have by
Theorem 8,

up(2p)− up(p) = up(2p− 1) = 1.

Thus, for 2p < n ≤ q,

up(n)−
n−p
∑

k=p

up(k) = up(n− 1) + up(n− p)−
n−p
∑

k=p

up(k)

= up(n− 1)−
n−p−1
∑

k=p

up(k) = 1

by induction hypothesis. Thus, having proved (34), we substitute into (33)
to obtain

f(x)
(
1− xp − xp+1 − · · · − xq

)
=

2p−1
∑

n=p

xn +

q
∑

n=2p

xn

= xp + xp+1 + · · ·+ xq,

thus proving the theorem.

It is clear by definition that

vp,p(n) =

{

1, if p | n,
0, if p ∤ n.
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Thus
∞∑

n=1

vp,p(n)x
n =

∞∑

n=1

xpn =
xp

1− xp
,

which is in accordance with Theorem 11. It is also clear by definition that
v1,q(n) = tq(n), and we see that these functions have the same generating
functions by Theorems 7 and 11.

8 Restrictions on both the size and the num-

ber of parts

We consider the counting functions introduced in § 7, and classify them
further by restricting the number of parts in their respective compositions.
Again, recall the notation of (1).

Thus, for a fixed natural number k, we define tq,k(n) as the number of
compositions of n into exactly k parts, such that for all parts aj , we have
aj ≤ q. We define uq,k(n) as the number of compositions of n into exactly k
parts, such that for all parts aj , we have aj ≥ q. Finally, we define vp,q,k(n)
as the number of compositions of n into exactly k parts, such that for all
parts aj, we have p ≤ aj ≤ q.

We include here an example of each counting function.

Here, t3,4(7) = 16:

7 = 3 + 2 + 1 + 1 7 = 2 + 2 + 2 + 1 7 = 2 + 1 + 1 + 3 7 = 1 + 2 + 2 + 2

7 = 3 + 1 + 2 + 1 7 = 2 + 2 + 1 + 2 7 = 1 + 2 + 2 + 1 7 = 1 + 2 + 1 + 3

7 = 3 + 1 + 1 + 2 7 = 2 + 1 + 3 + 1 7 = 1 + 3 + 1 + 2 7 = 1 + 1 + 3 + 2

7 = 2 + 3 + 1 + 1 7 = 2 + 1 + 2 + 2 7 = 1 + 2 + 3 + 1 7 = 1 + 1 + 2 + 3

Here, u3,5(17) = 15:

17 = 5 + 3 + 3 + 3 + 3 17 = 3 + 5 + 3 + 3 + 3 17 = 3 + 3 + 4 + 4 + 3

17 = 4 + 4 + 3 + 3 + 3 17 = 3 + 4 + 4 + 3 + 3 17 = 3 + 3 + 4 + 3 + 4

17 = 4 + 3 + 4 + 3 + 3 17 = 3 + 4 + 3 + 4 + 3 17 = 3 + 3 + 3 + 5 + 3

17 = 4 + 3 + 3 + 4 + 3 17 = 3 + 4 + 3 + 3 + 4 17 = 3 + 3 + 3 + 4 + 4

17 = 4 + 3 + 3 + 3 + 4 17 = 3 + 3 + 5 + 3 + 3 17 = 3 + 3 + 3 + 3 + 5
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Here, v4,7,3(16) = 18:

16 = 7 + 6 + 3 16 = 6 + 5 + 5 16 = 5 + 4 + 7

16 = 7 + 5 + 4 16 = 6 + 4 + 6 16 = 4 + 7 + 5

16 = 7 + 4 + 5 16 = 6 + 3 + 7 16 = 4 + 6 + 6

16 = 7 + 3 + 6 16 = 5 + 7 + 4 16 = 4 + 5 + 7

16 = 6 + 7 + 3 16 = 5 + 6 + 5 16 = 3 + 7 + 6

16 = 6 + 6 + 4 16 = 5 + 5 + 6 16 = 3 + 6 + 7

We may obtain the generating function for tq,k(n) first by introducing an
auxiliary notation. We may expand the polynomial (1+x+ · · ·+xq−1)k, and
write this as

(1 + x+ · · ·+ xq−1)k =

(q−1)k
∑

n=0

[
k
n

]

q

xn. (35)

Thus the symbol [
k
n

]

q

denotes the coefficient of xn in the expansion of (1 + x+ · · ·+ xq−1)k. This,
of course, gives a generalization of the binomial theorem, which is the case
when q = 2; i.e., [

k
n

]

2

=

(
k

n

)

.

The case when q = 1 is trivial, as both sides in (35) become unity and we
obtain

[
k
n

]

1

=

{

1, if n = 0,

0, if n > 0.

The coefficients in (35) may be expressed in terms of binomial coefficients:

[
k
n

]

q

=

[nq ]∑

j=0

(−1)j
(
k

j

)(
k − 1 + n− qj

k − 1

)

. (36)

The formula (36) may be proved several ways. Perhaps the purest combina-
torial proof can be described as follows: the sought coefficient, on the left
hand side of (36), is the number of ways to distribute n balls into k bins,
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such that no bin may contain more than q balls. We attain this number as
an alternating sum, by applying the inclusion-exclusion principle. We first
compute the number of ways to distribute n balls into k bins, but, with no
restriction on the number of balls placed in any given bin; this number is a
binomial coefficient, viz., (

k − 1 + n

k − 1

)

.

If n < b we are done. If not, then we remove b balls, so that n − b balls
remain. We now place the b balls into any one bin, and and distribute the
remaining n− b balls among all the bins. There are

(
k

1

)(
k − 1 + n− b

k − 1

)

to do this, as there are
(
k
1

)
ways of choosing a bin. This quantity is subtracted

from our original sum. If n ≥ 2q, we must continue. We now remove 2b balls
from the original n balls, place b balls each into any given two bins, and
distribute the remaining n− 2b balls into all the bins. There are

(
k
2

)
ways of

choosing two bins, hence we now add back
(
k

2

)(
k − 1 + n− 2b

k − 1

)

.

Then, if n ≥ 3b, we must subtract
(
k

3

)(
k − 1 + n− 3b

k − 1

)

,

and so on, through exactly [n/b] steps. This process yields the alternating
sum in the right hand side of (36). Another, more analytic, way of prov-
ing (36) is to rewrite (35) as

(
1− xq

1− x

)k

=

(q−1)k
∑

n=0

[
k
n

]

q

xn.

Applying (22),

(q−1)k
∑

n=0

[
k
n

]

q

xn =

(
∞∑

n=0

(
n+ k − 1

k − 1

)

xn

)(
k∑

n=0

(
k

n

)

(−1)nxqn

)

.
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Both polynomials in this equation may be treated formally as infinite sums;
i.e., the coefficients [ kn ]q, resp.

(
k
n

)
, are zero if n > (q − 1)k, resp. k > n.

Then we take the Cauchy product on the right hand side, and then compare
coefficients, thus obtaining (36).

Having said all this, it suffices to express tq,k(n) in terms of the coefficients
introduced in (35).

Theorem 12. For all fixed natural numbers q and k, and for all n such that

k ≤ n ≤ qk, we have

tq,k(n) =

[
k

n− k

]

q

. (37)

Otherwise n < k or n > qk, whence tq,k(n) = 0. Furthermore, the generating

function for tq,k(n) is

f(x) =

qk
∑

n=k

tq,k(n) = xk
(
1 + x+ · · ·+ xq−1

)k
. (38)

Proof. We begin by considering the quantity
[

k
n− k

]

q

, (39)

that is, the coefficient of xn−k in the expansion of (1 + x+ · · ·+ xq−1)
k
. To

compute this quantity, we must count all possible ways of choosing one term,
of the form xb, from each of the k identical factors 1 + x + · · · + xq−1, and
then multiply these terms together, thus obtaining an expression of the form

xb1xb2 · · ·xbk = xb1+b2+···+bk ,

where b1 + b2 + · · ·+ bk = n− k and 0 ≤ bj ≤ q − 1, 1 ≤ j ≤ k. Then,

n = a1 + a2 + · · ·+ ak, 1 ≤ aj ≤ q, 1 ≤ j ≤ k.

Hence the coefficient (39) counts the number of compositions of n into k parts,
each part a having the property a ≤ q. This proves (37). By definition it is
clear that tq,k = 0 if n < k or n > qk.

Finally, by (35) and (37) we have

f(x) =

qk
∑

n=k

[
k

n− k

]

q

xn = xk

(q−1)k
∑

n=0

[
k
n

]

q

xn = xk
(
1 + x+ · · ·+ xq−1

)k
,

thus proving (38).
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Theorem 13. For all fixed natural numbers q and k, and for all n such that

n ≥ qk, we have

uq,k(n) =

(
n− qk + k − 1

k − 1

)

, (40)

otherwise n < qk and uq,k(n) = 0.
Furthermore, the generating function for uq,k(n) is

f(x) =

∞∑

n=qk

uq,k(n)x
n =

xqk

(1− x)k
. (41)

Proof. In the notation of (1), let n = a1 + a2 + · · · + ak be a composition
of n that is counted by uq,k(n), so that ak ≥ q for all j, 0 ≤ j ≤ k. Now let
bj = aj − (q − 1), 1 ≤ j ≤ k. Thus bj ≥ 1, 1 ≤ j ≤ k, hence,

n− k(q − 1) = b1 + b2 + · · ·+ bk.

Thus
uq,k(n) = u1,k (n− k(q − 1)) .

By definition, recalling the notation of § 5,

u1,k(n− k(q − 1)) = s1,1,k (n− k(q − 1)) ,

hence (40) follows by Theorem 5. By definition, it is clear that uk,q(n) = 0
if n < qk.

We may now obtain (41) by applying (40) and (22):

f(x) =

∞∑

n=qk

(
n− qk + k − 1

k − 1

)

xn = xqk
∞∑

n=0

(
n + k − 1

k − 1

)

xn =
xqk

(1− x)k
.

Theorem 14. For all fixed natural numbers p, q and k, such that p ≤ q, and
for all n such that pk ≤ n ≤ qk, we have

vp,q,k(n) =

[
k

n− pk

]

q−p+1

. (42)

Otherwise either n < pk or n > qk, whence vp,q,k(n) = 0. Furthermore, the

generating function for vp,q,k(n) is

f(x) =

qk
∑

n=pk

vp,q,k(n)x
n = xpk

(
1 + x+ · · ·+ xq−p

)k
. (43)
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Proof. This theorem merely generalizes Theorem 12, hence the proof is sim-
ilar. The coefficient of xn−pk in the expansion of (1 + x+ · · ·+ xq−p)

k
is as

given in the right hand side of (42), and hence is computed by counting all
possible ways of choosing one term, of the form xb, from each of the k iden-
tical factors 1+ x+ · · ·+ xq−p, and then multiplying these terms together to
obtain an expression of the form

xb1xb2 · · ·xbk = xb1+b2+···+bk ,

where b1 + b2 + · · · + bk = n − kp and 0 ≤ bj ≤ q − p, 1 ≤ j ≤ k. Again,
letting aj = bj + p, we have

n = a1 + a + 2 + · · ·+ ak, p ≤ aj ≤ q, 1 ≤ j ≤ k.

This proves (42). It is clear by definition that vp,q,k(n) = 0 if n < pk or
n > qk.

Finally, by (35) and (42) we have

f(x) =

qk
∑

n=pk

[
k

n− pk

]

q−p+1

xn = xpk

(q−p)k
∑

n=0

[
k
n

]

q−p+1

xn

= xpk
(
1 + x+ · · ·+ xq−p

)k
,

thus proving (43).

We leave with three examples from this Section:

t8,11(44) = 346718362

u6,10(84) = 10015005

v5,11,13(86) = 233197198

9 Concluding remarks

As this note is purely expository, the results presented herein are known
within one context or another. Heubach and Mansour [1] have counted the
number of compositions of n such that the parts belong to a given set A of
natural numbers. For example, in the notation used in § 7, v4,11(n) counts
the number of compositions of n with parts belonging to the set

A = {4, 5, 6, 7, 8, 9, 10, 11}.
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In the notation used in § 3, s3,7(n) counts the number of compositions of n
with parts belonging to the set

A = {3, 10, 17, 24, 31, 38, 45, 52, . . . } = {7n+ 3}n≥0 .

This note’s purpose is to introduce the reader to compositions, and to some
elementary methods used to count them. We suggest the paper of Heubach
and Mansour [1] for a deeper perspective into this topic. As a .pdf file, it
may be downloaded directly from the Wikipedia page for compositions. Be
aware, however, that these authors include 0 in the domain of the counting
functions of the compositions, whereas in this note, the domain is strictly
the set of natural numbers. This produces generating functions that differ
slightly from ours.

Malandro [2] has given an extensive analysis of the compositions counted
by tq(n) in § 7.

In this note, we did not count compositions of n into distinct parts. Rich-
mond and Knopfmacher [3] have provided detailed analysis on this topic.

There are many fine textbooks in combinatorics and discrete mathematics
that discuss the topic of generating functions. Perhaps the most extensive
treatment of this topic is by Wilf [5]. The work cited herein is the third
edition, but the author was able, quite easily, to download the second edition
as a .pdf file via an internet search.

Naturally, we also recommend the OEIS [4] as a valuable resource for
integer sequences in general, and as an excellent source for references.
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