
THE TYPE B PERMUTOHEDRON AND THE POSET OF
INTERVALS AS A TCHEBYSHEV TRANSFORM

GÁBOR HETYEI

Abstract. We show that the order complex of intervals of a poset, ordered by inclu-
sion, is a Tchebyshev triangulation of the order complex of the original poset. Besides
studying the properties of this transformation, we show that the dual of the type B
permutohedron is combinatorially equivalent to the suspension of the order complex of
the poset of intervals of a Boolean algebra (with the minimum and maximum elements
removed).

Introduction

Inspired by Postnikov’s seminal work [28], we have seen a surge in the study of root
polytopes in recent years. A basic object in these investigations is the permutohe-
dron. This paper connects permutohedra with a variant of the Tchebyshev transform
of a poset, introduced by the present author [19, 20] and studied by Ehrenborg and
Readdy [12], and with the (generalized) Tchebyshev triangulations of a simplicial com-
plex, first introduced by the present author in [21] and studied in collaboration with
Nevo in [22]. The key idea of a Tchebyshev triangulation may be summarized as fol-
lows: we add the midpoint to each edge of a simplicial complex, and perform a sequence
of stellar subdivisions, until we obtain a triangulation containing all the newly added
vertices. Regardless of the order chosen, the face numbers of the triangulation will be
the same, and may be obtained from the face numbers fj of the original complex by
replacing the powers of x with Tchebyshev polynomials of the first kind if we work with
the appropriate generating function. The appropriate generating function in this set-
ting is the polynomial F (x) =

∑
j fj−1((x−1)/2)j. It is also known that the links of the

original vertices in a Tchebyshev triangulation from a multiset of simplicial complexes,
called a Tchebyshev triangulation of the second kind, whose face numbers are also the
same for all Tchebyshev triangulations, and may be computed by replacing the powers
of x with Tchebyshev polynomials of the second kind in F (x).

The formula connecting the face numbers of the type A and type B permutohedra
is identical to computing the face numbers of a Tchebyshev triangulation. These per-
mutohedra are simple polytopes, their duals are simplicial polytopes, their boundary
complexes are called the type A resp. type B Coxeter complexes. The suspicion arises
that the type B Coxeter complex is a Tchebyshev triangulation of the type A Coxeter
complex.
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2 GÁBOR HETYEI

The present work contains the verification of this conjecture. The type A Coxeter
complex is known to be the order complex of the Boolean algebra, and the type B
Coxeter complex turns out to be the suspension of an order complex, namely of the
partially ordered set of intervals of the Boolean algebra, ordered by inclusion. We
show that the operation of associating the poset of intervals to a partially ordered
sets always induces a Tchebyshev triangulation at the level of order complexes. This
observation may be helpful in constructing “type B analogues” of other polytopes and
partially ordered sets. Furthermore it inspires further study of the poset of intervals of
a poset, initiated by Walker [34], and continued by Athanasiadis [2], Athanasiadis and
Savvidou [5] and Jojić [24] among others.

This paper is structured as follows. After the Preliminaries, we introduce the poset
of intervals in Section 2 and show that the order complex of the poset of intervals is
always a Tchebyshev triangulation of the order complex of the original poset. We also
introduce a graded variant of this operation that takes a graded poset into a graded
poset. In Section 3 we show that the type B Coxeter complex is the order complex of
the graded poset of intervals of the Boolean algebra. In Section 4 we review how to
compute the flag f -vector of graded a poset of intervals. This topic was first studied by
Jojić [24], and we provide new proofs to some of his key formulas. Section 5 introduces
interval transforms of the second kind. The corresponding multiset of order complexes
is the Tchebyshev triangulation of the second kind corresponding to the Tchebyshev
triangulation induced by taking the order complex of the graded poset of intervals of a
graded poset. We find explicit flag f -vector formulas in terms of the mixing operator
introduced by Ehrenborg and Readdy [10]. Inspired by the work of Ehrenborg and
Readdy [12], we make the first steps towards describing all eigenvectors of the linear
operator on the flag f -vectors, induced by taking the interval transforms of the second
kind. In Section 6 we consider the special case of Eulerian posets, cite a formula by
Jojić [24] and an analogous recurrence found by Ehrenborg and Fox [9] for the mixing
operator, which may be used to compute the effect on the cd-index of taking the interval
transform of the second kind. The latter result is used in Section 7 to compute the
cd-index of the interval transform of the second kind of the ladder poset (the same
calculation was already performed by Jojić [24] for the interval transform of the first
kind of these posets). As part of the proof of our formula, we develop a weighted
lattice path enumeration model to express the values M(ci, cj) for the mixing operator
of Ehrenborg and Readdy [10]. The other special example considered in this section is
the Boolean lattice, where known results of Purtill [29], Hetyei [18] and of Ehrenborg
and Readdy [11] come into play. These results use André permutations, first studied
by Foata, Strehl and Schützenberger [14, 15], and their signed generalizations.

1. Preliminaries

1.1. Graded Eulerian posets. A partially ordered set is graded if it contains a unique
minimum element 0̂, a unique maximum element 1̂ and a rank function ρ satisfying
ρ(0̂) = 0 and ρ(y) = ρ(x) + 1 for each x and y such that y covers x. The number
of chains containing elements of fixed sets of ranks in a graded poset P of rank n + 1
is encoded by the flag f -vector (fS(P ) : S ⊆ {1, . . . , n}). The entry fS in the flag
f -vector is the number of chains x1 < x2 < · · · < x|S| such that their set of ranks
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{ρ(xi) : i ∈ {1, . . . , |S|}} is S. Inspired by Stanley [31] we introduce the upsilon
invariant of a graded poset P of rank n+ 1 by

ΥP (a, b) =
∑

S⊆{1,...,n}

fSuS

where uS = u1 · · ·un is a monomial in noncommuting variables a and b such that ui = b
for all i ∈ S and ui = a for all i 6∈ S. It should be noted that the term upsilon invariant
is not used elsewhere in the literature, most sources switch to the ab-index ΨP (a, b)
defined as ΥP (a − b, b). The ab-index may be also written as a linear combination of
monomials in a and b, the coefficients of these monomials form the flag h-vector. A
graded poset P is Eulerian if every nontrivial interval of P has the same number of
elements of even rank as of odd rank. All linear relations satisfied by the flag f -vectors
of Eulerian posets were found by Bayer and Billera [6]. A very useful and compact
rephrasing of the Bayer–Billera relations was given by Bayer and Klapper in [7]: they
proved that satisfying the Bayer–Billera relations is equivalent to stating that the ab-
index may be rewritten as a polynomial of c = a + b and d = ab + ba. The resulting
polynomial in noncommuting variables c and d is called the cd-index.

As an immediate consequence of the above cited results we obtain the following.

Corollary 1.1. The cd-index of a graded Eulerian poset P may be obtained by rewriting
ΥP (a, b) as a polynomial of c = a+ 2b and d = ab+ ba+ 2b2.

Note that this statement is a direct consequence of ΥP (a− b, b) = ΨP (a, b) which is
equivalent to ΥP (a, b) = ΨP (a+ b, b).

1.2. Tchebyshev triangulations and Tchebyshev transforms. A finite simplicial
complex 4 is a family of subsets of a finite vertex set V . The elements of 4 are called
faces, subject to the following rules: a subset of any face is a face and every singleton
is a face. The dimension of a face is one less than the number of its elements, the
dimension d − 1 of the complex 4 is the maximum of the dimension of its faces. The
number of j-dimensional faces is denoted by fj(4) and the vector (f−1, f0, . . . , fd−1) is
the f -vector of the simplicial complex. We define the F -polynomial F4(x) of a finite
simplicial complex 4 as

F4(x) =
d∑
j=0

fj−1(4) ·
(
x− 1

2

)j
. (1.1)

The join 41 ∗ 42 of two simplicial complexes 41 and 42 on disjoint vertex sets is the
simplicial complex 41 ∗ 42 = {σ ∪ τ : σ ∈ 41, τ ∈ 42}. It is easy to show that
the F -polynomials satisfy F41∗42(x) = F41(x) · F42(x). A special instance of the join
operation is the suspension operation: the suspension 4∗∂(41) of a simplicial complex
4 is the join of 4 with the boundary complex of the one dimensional simplex. (A
(d− 1)-dimensional simplex is the family of all subsets of a d-element set, its boundary
is obtained by removing its only facet from the list of faces.) The link of a face σ is the
subcomplex link4(σ) = {τ ∈ 4 : σ ∩ τ = ∅, σ ∪ τ ∈ K}. A special type of simplicial
complex we will focus on is the order complex 4(P ) of a finite partially ordered set
P : its vertices are the elements of P and its faces are the increasing chains. The order
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complex of a finite poset is a flag complex: its minimal non-faces are all two-element
sets (these are the pairs of incomparable elements).

Every finite simplicial complex 4 has a standard geometric realization in the vector
space with a basis {ev : v ∈ V } indexed by the vertices, where each face σ is realized
by the convex hull of the basis vectors ev indexed by the elements of σ.

Definition 1.2. We define a Tchebyshev triangulation T (4) of a finite simplicial
complex 4 as follows. We number the edges e1, e2, . . . , ef1(4) in some order, and we
associate to each edge ei = {ui, vi} a midpoint wi. We associate a sequence 40 :=
4,41,42 . . . ,4f1(4) of simplicial complexes to this numbering of edges, as follows.
For each i ≥ 1, the complex 4i is obtained from 4i−1 by replacing the edge ei and the
faces contained therein with the one-dimensional simplicial complex Li, consisting of
the vertex set {ui, vi, wi} and edge set {{ui, wi}, {wi, vi}}, and by replacing the family
of faces {ei∪τ : τ ∈ link∆i−1

(ei)} containing ei with the family of faces {σ′∪τ : σ′ ∈ Li}.
In other words, we subdivide the edge ei into a path of length 2 by adding the midpoint
wi and we also subdivide all faces containing ei, by performing a stellar subdivision.

As it is defined by a sequence of a stellar subdivisions, it is clear that any Tchebyshev
triangulation of4 as defined above is indeed a triangulation of4 in the following sense:
if we consider the standard geometric realization of 4 and associate to each midpoint
w the midpoint of the line segment realizing the corresponding edge {u, v} then the
convex hulls of the vertex sets representing the faces of T (4) represent a triangulation
of the geometric realization of 4. Furthermore, the following statement is a special
case of [22, Theorem 3.3] and can also be derived from [3, Example 2.8], combined with
Stanley’s locality formula [32, Theorem 3.2].

Theorem 1.3. All Tchebyshev triangulations of a simplicial complex have the same
f -vector.

Remark 1.4. [22, Theorem 3.3] allows replacing the operation of taking the midpoint
of each edge with higher dimensional analogues. On the other hand, every Tchebyshev
triangulation of 4 dissects each k-dimensional face into exactly 2k faces of the same
dimension. This property is shared by other triangulations of 4, such as the second
edgewise subdivision, introduced by Freudenthal [17]. All triangulations of 4 with this
property have the same f -vector by [3, Example 2.8], combined with [32, Theorem
3.2]. Thus, the formulas obtained by Brenti and Welker [8] for the h-vector of the
second edgewise subdivision of 4 apply to Tchebyshev triangulations as well. See also
Remark 1.7 below.

Tchebyshev triangulations of the second kind were first introduced in [21] in con-
nection with some special Tchebyshev triangulations of the second kind. The idea
was generalized to arbitrary generalized Tchebyshev triangulations in [22]. Here we
specialize the definition introduced in [22] to Tchebyshev triangulations as follows. Re-
call that the link link4(τ) of a face τ in a simplicial complex 4 is the set of faces
{σ − τ : σ ∈ 4, τ ⊆ σ}.

Definition 1.5. Let 4 be an arbitrary simplicial complex with vertex set V and T (4)
a Tchebyshev triangulation. We define the corresponding Tchebyshev triangulation of
the second kind U(4) as the collection of the links linkT (4)({v}) for all vertices v ∈ V .



THE POSET OF INTERVALS 5

Note that U(4) is not a simplicial complex, but a multiset of simplicial complexes.
We define its f -vector (F -polynomial) as the sum of the f -vectors (F -polynomials) of
the complexes linkT (4)({v}) for all v ∈ V . The following result is a direct consequence
of [22, Theorem 3.3].

Theorem 1.6 (Hetyei and Nevo). All Tchebyshev triangulations of the second kind of
a simplicial complex have the same f -vector.

v1

v4

v2

v3

v1v1

v2

v4v3 v3

v2

v4

Figure 1. A Tchebyshev triangulation and a second edgewise triangulation

Remark 1.7. While Tchebyshev triangulations have the same face numbers as the
second edgewise triangulation, this result cannot be extended to Tchebyshev triangula-
tions of the second kind. Figure 1 shows a simplicial complex with 4 (black) vertices, 5
edges and 2 two-dimensional faces. A Tchebyshev triangulation (shown in the middle,
obtained by performing the first stellar subdivision at the midpoint of the edge {v1, v2})
has the same face numbers as the second edgewise triangulation (on the right). How-
ever, the sum of the f -vectors of the links of the original vertices is different in the two
triangulations.

The following result has been shown in [21, Propositions 3.3 and 4.4] for a specific
Tchebyshev triangulation. By the preceding theorems it holds for all Tchebyshev tri-
angulations and motivates the choice of the terminology. The Tchebyshev transform
T (U) of the first (second) kind of polynomials used in the next result is the linear
map R[x] −→ R[x] sending xn into the Tchebyshev polynomial of the first kind Tn(x)
(second kind Un(x)).

Theorem 1.8. For any finite simplicial complex 4, the F -polynomial of any Tcheby-
shev triangulation T (4) is the Tchebyshev transform of the first kind of the F -polynomial
of 4:

FT (4)(x) = T (F4(x)).

Similarly, the F -polynomial of any Tchebyshev triangulation U(4) of the second kind
is half of the Tchebyshev transform of the second kind of the F -polynomial of 4:

FU(4)(x) =
1

2
· U(F4(x)).

The notion of the Tchebyshev triangulation of a simplicial complex was motivated
by a poset operation, first considered in [19] and formally introduced in [20] .
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Definition 1.9. Given a locally finite poset P , its Tchebyshev transform of the first
kind T (P ) is the poset whose elements are the intervals [x, y] ⊂ P satisfying x 6= y,
ordered by the following relation: [x1, y1] ≤ [x2, y2] if either y1 ≤ x2 or both x1 = x2 and
y1 ≤ y2 hold.

A geometric interpretation of this operation may be found in [20, Theorem 1.10]. The
graded variant of this poset operation is defined in [12]. Given a graded poset P with

minimum element 0̂ and maximum element 1̂, we introduce a new minimum element
−̂1 < 0̂ and a new maximum element 2̂. The graded Tchebyshev transform of the first
kind of a graded poset P is then the interval [(−̂1, 0̂), (1̂, 2̂)] in T (P ∪ {−̂1, 2̂}). By
abuse of notation we also denote the graded Tchebyshev transform of a graded poset P
by T (P ). It is easy to show that T (P ) is also a graded poset, whose rank is one more
than that of P . The following result may be found in [21, Theorem 1.5].

Theorem 1.10. Let P be a graded poset and T (P ) its graded Tchebyshev transform.

Then the order complex 4(T (P )\{(−̂1, 0̂), (1̂, 2̂)}) is a Tchebyshev triangulation of the

suspension of 4(P \ {0̂, 1̂}).

As a consequence of Theorem 1.10, we have

F4(T (P )\{(−̂1,0̂),(1̂,2̂)}) = T (x · F4(P\{0̂,1̂})). (1.2)

It has been shown by Ehrenborg and Readdy [12] that there is a linear transformation
assigning to the flag f -vectors of each graded poset P of rank n+ 1 the flag f -vector of
its Tchebyshev transform of the first kind T (P ). For Eulerian posets, they also compute
the effect on the cd-index of taking the Tchebyshev transform of the first kind. They
also studied the corresponding Tchebyshev transforms of the second kind.

1.3. Permutohedra of type A and B. Permutohedra of type A and B have a vast
literature, the results cited here may be found in [13] and in [33].

The type A permutohedron Perm(An−1) is the convex hull of the n! vertices
(π(1), . . . , π(n)) ∈ Rn, where π is any permutation of the set [1, n] := {1, 2, . . . , n}.
The type B permutohedron Perm(Bn) is the convex hull of all points of the form
(±π(1),±π(2) . . . ,±π(n)) ∈ Rn. Combinatorially equivalent polytopes may be ob-
tained by taking the An−1-orbit, respectively Bn orbit, of any sufficiently generic point
in an (n−1)-dimensional (respectively n-dimensional) space, and the convex hull of the
points in the orbit. [13, Section 2].

The type A and B permutohedra are simple polytopes, their duals are simplicial
polytopes. The boundary complexes of these duals are combinatorially equivalent to
the Coxeter complexes of the respective Coxeter groups. The Coxeter complex of the
symmetric group An−1 on [1, n] is the order complex of P ([1, n]) − {∅, [1, n]}), where
P ([1, n]) is the Boolean algebra of rank n. The Coxeter complex of the Coxeter group Bn

is the order complex of the face lattice of the n-dimensional crosspolytope [33, Lecture
1]. In either case we consider the order complexes of the respective graded posets
without their unique minimum and maximum elements: adding these would make the
order complex contractible, whereas the boundary complexes of simplicial polytopes
are homeomorphic to spheres. The standard n-dimensional crosspolytope is the convex
hull of the vertices {±ei : i ∈ [1, n]}, where {e1, e2, . . . , en} is the standard basis of
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Rn. Each nontrivial face of the crosspolytope is the convex hull of a set of vertices of
the form {ei, i ∈ K+} ∪ {−ei, i ∈ K−}, where K+ and K− is are disjoint subsets of
[1, n] and their union is not empty. Keeping in mind that each face of a polytope is the
intersection of all the facets containing it, we have the following consequence.

Corollary 1.11. Each facet of Perm(Bn) is uniquely labeled with a pair of sets (K+, K−)
where K+ and K− is are subsets of [1, n], satisfying K+ ⊆ [1, n]−K− and K+ and K−

cannot be both empty. For a set of valid labels

{(K+
1 , K

−
1 ), (K+

2 , K
−
2 ), . . . , (K+

m, K
−
m)}

the intersection of the corresponding set of facets is a nonempty face of Perm(Bn) if
and only if

K+
1 ⊆ K+

2 ⊆ · · · ⊆ K+
m ⊆ [1, n]−K−m ⊆ [1, n]−K−m−1 ⊆ · · · ⊆ [1, n]−K−1 holds.

The triangle of f -vectors of the type B Coxeter complexes is given in sequence
A145901 in [27].

2. The poset of intervals as a Tchebyshev transform

We will use Corollary 1.11 to represent the type B Coxeter complex using the poset
of intervals of a Boolean algebra. In this section we review this construction and show
that taking the poset of intervals induces a Tchebyshev triangulation.

Definition 2.1. An interval [u, v] in a partially ordered set P is the set of all elements
w ∈ P satisfying u ≤ w ≤ v. For a finite partially ordered set P we define the poset
I(P ) of the intervals of P as the set of all intervals [u, v] ⊆ P , ordered by inclusion.

We may identify the singleton intervals [u, u] in I(P ) with the elements of P . This
subset of elements forms an antichain in I(P ), however, under this identification, the
order complex of I(P ) looks like a triangulation of the order complex of P , see Figures 2
and 3. Figure 2 shows a partially ordered set and its order complex. The poset of its
intervals and the order complex thereof may be seen in Figure 3.

u3

u2

u1 u1

u4 u2

u3

u4

Figure 2. A partially ordered set P and its order complex 4(P )

In Figure 3 we marked the vertices of the order complex associated to non-singleton
intervals with white circles.

The following result is a generalization of [24, Remark 10], and an equivalent restate-
ment of Walker’s result [34, Theorem 4.1].

Theorem 2.2. For any finite partially ordered set P the order complex 4(I(P )) of its
poset of intervals is isomorphic to a Tchebyshev triangulation of 4(P ) as follows. For
each u ∈ P we identify the vertex [u, u] ∈ 4(I(P )) with the vertex u ∈ 4(P ) and for
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[u2, u2]
[u1, u2]

[u2, u3]

[u1, u4]

[u1, u3]
[u4, u4]

[u3, u3]

[u1, u1]

[u1, u4]

[u1, u3]

[u3, u3] [u4, u4][u2, u2][u1, u1]

[u2, u3][u1, u2]

Figure 3. The poset I(P ) of intervals of P and its order complex

each nonsingleton interval [u, v] ∈ I(P ) we identify the vertex [u, v] ∈ 4(I(P )) with
the midpoint of the edge {[u, u], [v, v]}. We number the midpoints [u1, v1], [u2, v2], . . . in
such an order that i < j holds whenever the interval [ui, vi] contains the interval [uj, vj].

Proof. We illustrate the Tchebyshev triangulation process with the poset shown in
Figure 3. We list its nonsingleton intervals in the following order: [u1, u3], [u1, u2],
[u2, u3], [u1, u4]. Figure 4 shows the stage of the process when we already added [u1, u3]
and [u1, u2] but none of the remaining nonsingleton intervals. The following statement

[u2, u2]
[u1, u2]

[u1, u3]
[u4, u4]

[u3, u3]

[u1, u1]

Figure 4. The second step of the Tchebyshev triangulation process

may be shown by induction on the number of stages in the process: in each stage, the
resulting complex is a flag complex, whose minimal nonfaces are the following:

(1) Pairs of singletons {[u, u], [v, v]} such that u and v are not comparable in P .
(2) Pairs of singletons {[u, u], [v, v]} such that u < v holds in P , but the interval

[u, v] has already been added to the triangulation.
(3) Pairs of intervals from I(P ) such that neither one contains the other.

In each stage of the process, the nonsingleton interval [u, v] added is the first midpoint
of any edge whose endpoints are contained in the interval [u, v] of P . At the beginning
of the stage the restriction of the current complex to intervals contained in [u, v] only
contains singleton intervals, and it is isomorphic to the order complex of [u, v]. Sub-
dividing the edge {[u, u], [v, v]} and all faces containing this edge results in a complex
where both [u, u] and [v, v] can not appear in the same face any more, each such face is
replaced with 2 faces: one containing {[u, u], [u, v]} the other containing {[v, v], [u, v]}.
All intervals [u′, v′] containing [u, v] have already been added in a previous stage, and
now we add the edge {[u, v], [u′, v′]}. The cumulative effect of all these changes is that
we obtain a new flag complex satisfying the listed criteria. �
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Remark 2.3. Walker’s proof is a direct geometric argument. The proof above uses
the more general result stated in [22, Theorem 3.3]. It also directly implies the face
counting formula that holds for all Tchebyshev transforms.

When P is a graded poset then [u′, v′] covers [u, v] in I(P ) exactly when the rank
function ρ of P satisfies ρ(v′) − ρ(u′) = ρ(v) − ρ(u) + 1. Hence we may define the
following graded variant of the operation P 7→ I(P ).

Definition 2.4. For a graded poset P we define its graded poset of intervals Î(P ) as
the poset of all intervals of P , including the empty set, ordered by inclusion.

∅

0̂

u1

u2

1̂
[0̂, 1̂]

[u1, u2]

[0̂, u2] [u1, 1̂]

[u2, 1̂]

[1̂, 1̂][0̂, 0̂] [u2, u2]

[0̂, u1]

[u1, u1]

Figure 5. The graded poset of intervals of a chain

Remark 2.5. Figure 5 represents the graded poset of intervals of a chain of rank 3. It
is worth comparing this illustration with [20, Figure 2] where the Tchebyshev transform
of a chain of rank 3 is represented. The two posets are not isomorphic, not even after
taking the dual of the Tchebyshev transform to make the number of elements at the
same rank equal.

The following statement is straightforward.

Proposition 2.6. If P is a graded poset of rank n with rank function ρ then Î(P )
is a graded poset of rank n + 1, in which the rank of a nonempty interval [u, v] is
ρ(v)− ρ(u) + 1.

In analogy to Theorem 1.10 we have the following result.

Proposition 2.7. Let P be a graded poset and Î(P ) its graded poset of intervals. Then

the order complex 4(Î(P )−{∅, [0̂, 1̂]}) is a Tchebyshev triangulation of the suspension

of 4(P − {0̂, 1̂}).

Proof. By Theorem 2.2, the order complex4(Î(P )−{∅}) is a Tchebyshev triangulation

of4(P ). The order complex4(P ) is the join of4(P−{0̂, 1̂}) with the one-dimensional

simplex on the vertex set {0̂, 1̂}. Performing the Tchebyshev triangulation results in

subdividing every simplex containing the edge {0̂, 1̂} into two simplices. The removal

of the midpoint [0̂, 1̂] leaves us exactly with those faces which are contained in a face of
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4(P ) that does not contain the edge {0̂, 1̂}. Hence we obtain a Tchebyshev triangula-

tion of a suspension of 4(P − {0̂, 1̂}): the suspending vertices are 0̂ and 1̂. �

We conclude this section with the following observations regarding the direct product
of two graded posets. Recall that the direct product P ×Q of two graded posets P and
Q is defined as the set of all ordered pairs (u, v) where u ∈ P and v ∈ Q, subject to the
partial order (u1, v1) ≤ (u2, v2) holding exactly when u1 ≤ u2 holds in P and v1 ≤ v2

holds in Q.

Proposition 2.8. If P and Q are graded posets then I(P ×Q) is isomorphic to I(P )×
I(Q).

The straightforward verification is left to the reader. Proposition 2.8 may be immedi-
ately generalized to the graded poset of intervals using the diamond product introduced
by Ehrenborg and Readdy in [12].

Definition 2.9. Given two graded posets P and Q, their diamond product P � Q is
defined as (P −{0̂P})× (Q−{0̂Q})∪ 0̂. In other words, to obtain the diamond product
we remove the unique minimum elements of P and Q respectively, we take the direct
product of the resulting posets and we add a new unique minimum element.

Corollary 2.10. If P and Q are graded posets then Î(P ×Q) is isomorphic to Î(P ) �
Î(Q).

A special case of Corollary 2.10 may be found in [24, Proposition 4 (iv)].

Remark 2.11. It is worth comparing Corollary 2.10 above with [12, Theorem 9.1] where
it is stated that the Tchebyshev transform of the Cartesian product of two posets is
the diamond product of their Tchebyshev transforms.

3. The type B Coxeter complex as a Tchebyshev triangulation

After introducing X := K+ and Y := [1, n] −K−, we may rephrase Corollary 1.11
as follows.

Corollary 3.1. We may label each facet of the type B permutohedron Perm(Bn) with a
nonempty interval [X, Y ] of the Boolean algebra P ([1, n]) that is different from P ([1, n]) =
[∅, [1, n]]. The set {[X1, Y1], [X2, Y2], . . . , [Xm, Ym]} labels a collection of facets with a

nonempty intersection if and only if the intervals form an increasing chain in Î(P ([1, n]))−
{∅, [∅, [1, n]]}.

The representation of each face of Perm(Bn) as an intersection of facets is unique,
hence we obtain the following result.

Proposition 3.2. The dual of Perm(Bn) is a simplicial polytope whose boundary com-

plex is combinatorially equivalent to the order complex 4(Î(P ([1, n]))− {∅, [∅, [1, n]]}).

As a consequence of this statement and of Proposition 2.7, we obtain the following
result.
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Corollary 3.3. The dual of Perm(Bn) is a simplicial polytope whose boundary com-
plex is combinatorially equivalent to a Tchebyshev triangulation of the suspension of
4(P ([1, n])− {∅, [1, n]}).

The order complex 4(Î(P ([1, n]))−{∅, [∅, [1, n]]}) has been studied by Athanasiadis
and Savvidou [5]. It is worth noting that the order complex 4(P ([1, n]) − {∅, [1, n]})
is known to be combinatorially equivalent to the dual of the boundary complex of the
permutohedron Perm(An−1). We may also think of this complex as the barycentric
subdivision of the boundary of an (n− 1)-dimensional simplex.

[{3}, {3}]

[{2, 3}, {2, 3}][{1, 3}, {1, 3}]

[{1}, {1}] [{2}, {2}]

[∅, {1, 2}]

[{1, 2}, {1, 2}][{1}, {1, 2}] [{2}, {1, 2}]

∅

Figure 6. Half of the dual of Perm(B3)

Figure 6 represents “half” of the dual of Perm(B3). The boundary of the triangle
whose vertices are labeled with singleton intervals [{i}, {i}] is shown in bold. (In general,
the reader should imagine the boundary of a simplex, whose vertices are labeled with
[{i}, {i}].) The vertices of the barycentric subdivision of the boundary are marked with
black circles. These correspond to singleton intervals of the form [X,X], where X is a
subset of [1, 3]. (In general, X is a subset of [1, n].) The suspending vertex ∅ is marked
with a black square. The other suspending vertex [1, 3] (in general: [1, n]) is not shown
in the picture. One would need to make another picture showing the boundary of the
triangle with the suspending vertex, and “glue” the two pictures along the boundary
of the triangle. The midpoints of the edges are marked with white circles. These are
labeled with intervals [X, Y ] such that X is properly contained in Y . The edges arising
when we take the appropriate Tchebyshev triangulation are indicated with dashed lines.
Note that this part of the picture is different on the “other side” of the dual of Perm(B3):
on the side shown the largest intervals labeling midpoints are of the form [∅, [1, 3]−{i}]
(in general [∅, [1, n] − {i}]) whereas on the other side the largest such intervals are of
the form [{i}, [1, 3]] (in general: [{i}, [1, n]]). We leave to the reader as a challenge to
draw the other side of the dual of Perm(B3).

Remark 3.4. By Proposition 3.2, the work of Anwar and Nazir [1] implies that the
h-polynomial of the type B Coxeter complex has only real roots. As a consequence of
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Corollary 3.3 we know that this is a Tchebyshev triangulation and we may compute its
F -polynomial using (1.2), and obtain that these polynomials have the same coefficients
(up to sign) as the derivative polynomials for secant. Taking the signs into account we
obtain the derivative polynomials for hyperbolic secant. For the Tchebyshev transform
of a Boolean algebra this was first observed in [20, Corollary 9.3], but at the level of
counting faces in the order complex of a graded poset there is no difference between

considering the operator P 7→ T (P ) and the operator P 7→ Î(P ). It has been shown
in [21] that the derivative polynomials for hyperbolic tangent and hyperbolic secant
have interlaced real roots in the interval [−1, 1]. As noted in the same paper, the
F -polynomial F4(t) and the h-polynomial h4(t) of a (d − 1)-dimensional simplicial
complex 4 are connected by the formula

(1− t)d · F4
(

1 + t

1− t

)
= (1− t)d

d∑
j=0

fj

(
t

1− t

)j
= h4(t).

Hence the real-rootedness of the h-polynomial of the type B Coxeter complex is also a
consequence of the fact that the derivative polynomials for the hyperbolic secant have
real roots.

4. Computing the flag f-vector of the graded poset of intervals

In this section we review how for any graded poset P , the flag f -vector of its graded

poset of intervals Î(P ) may be obtained from the flag f -vector of P by a linear trans-
formation. Such formulas were first found by Jojić [24]. At the end of the section we
will also present a more direct proof of his key formulas. By “chain” in this section
we always mean a chain containing the unique minimum element and the unique max-
imum element. This treatment is equivalent to excluding both of these elements from
all chains.

Definition 4.1. Given a chain ∅ ⊂ [u1, v1] ⊂ [u2, v2] ⊂ · · · ⊂ [uk, vk] ⊂ [uk+1, vk+1] =

[0̂, 1̂] in the graded poset of intervals Î(P ) of a graded poset P , we call the set

{u1, v1, u2, v2, . . . , uk+1, vk+1}

the support of the chain.

Obviously the support of a chain in Î(P ) is a chain in P containing the minimum

element 0̂ and the maximum element 1̂.
The next statement expresses the number of chains in Î(P ) having the same support

in terms of the Pell numbers P (n). These numbers are given by the initial conditions
P (1) = 1 and P (2) = 2 and by the recurrence P (n) = 2 ·P (n− 1) +P (n− 2) for n ≥ 3.
A detailed bibliography on the Pell numbers may be found at sequence A000129 of [27].

Proposition 4.2. Let P be a graded poset and let c : 0̂ = z0 < z1 < · · · < zm−1 < zm =
1̂ be a chain in it. Then the number of chains ∅ ⊂ [u1, v1] ⊂ [u2, v2] ⊂ · · · ⊂ [uk, vk] ⊂
[uk+1, vk+1] = [0̂, 1̂] whose support is c is the sum P (m) +P (m+ 1) of two adjacent Pell
numbers.
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Proof. We proceed by induction on m. For m = 1 there are three chains: ∅ ⊂ [0̂, 1̂],

∅ ⊂ [0̂, 0̂] ⊂ [0̂, 1̂] and ∅ ⊂ [1̂, 1̂] ⊂ [0̂, 1̂]. For m = 2, there are the following seven chains

with support 0̂ < z1 < 1̂:

(1) ∅ ⊂ [0̂, z1] ⊂ [0̂, 1̂],

(2) ∅ ⊂ [0̂, 0̂] ⊂ [0̂, z1] ⊂ [0̂, 1̂],

(3) ∅ ⊂ [z1, z1] ⊂ [0̂, z1] ⊂ [0̂, 1̂],

(4) ∅ ⊂ [z1, 1̂] ⊂ [0̂, 1̂],

(5) ∅ ⊂ [1̂, 1̂] ⊂ [z1, 1̂] ⊂ [0̂, 1̂],

(6) ∅ ⊂ [z1, z1] ⊂ [z1, 1̂] ⊂ [0̂, 1̂], and

(7) ∅ ⊂ [z1, z1] ⊂ [0̂, 1̂].

Let us list the elements of the chain in Î(P ) in decreasing order. The largest element

of the chain must be [0̂, 1̂], the unique maximum element. The next element is either

the interval [z1, 1̂] or the interval [0̂, zm] or the interval [z1, zm]. We can not make the
minimum of this next interval larger than z1 because that would force skipping z1 in
the support, similarly the maximum of this next interval is at least zm. Applying the
induction hypothesis to the intervals [z1, 1̂], [0̂, zm] and [z1, zm], respectively, we obtain
that the number of chains is

2 · (P (m) + P (m+ 1)) + (P (m− 1) + P (m)) = P (m+ 1) + P (m+ 2).

�

Remark 4.3. The numbers P (n) + P (n + 1) are listed as sequence A001333 in [27].
They are known as the numerators of the continued fraction convergents to

√
2, and

have many combinatorial interpretations. The even, respectively odd indexed entries in
this sequence may also be obtained by substitutions into the Tchebyshev polynomials
of the first, respectively second kind.

It is transparent in the proof of Proposition 4.2 that the contributions of chains

of Î(P ) with a fixed support to ΥÎ(P )(a, b) depends only on the contribution of their

support to ΥP (a, b). This observation motivates the following definition.

Definition 4.4. Given an ab-word w of degree n, we define ι(w) as the contribution of

all chains of Î(P ) with a fixed support to ΥÎ(P )(a, b), whose support is the same chain

of P , contributing the word w to ΥP (a, b).

Theorem 4.5. The operator ι may be recursively computed using the following formu-
las.

(1) ι(an) = (a+ 2b)an holds for n ≥ 0. In particular, for the empty word ε we have
ι(ε) = (a+ 2b).

(2) ι(aibaj) = (a+ 2b)(aibaj + ajbai) + bai+j+1 holds for i, j ≥ 0.
(3) ι(aibwbaj) = ι(aibw)baj + ι(wbaj)bai + ι(w)bai+j+1 holds for i, j ≥ 0 and any

ab-word w.

Proof. The only chain that contributes an to the ab-index of a graded poset is the chain
0̂ < 1̂ in a graded poset P of rank n+ 1. As seen in the proof of Proposition 4.2, there
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are 3 chains in Î(P ) whose support is 0̂ < 1̂, and their contribution is to the ab-index

of Î(P ) is (a+ 2b)an.
Similarly, the only chains that contribute aibaj to the ab-index of a graded poset

are the chains 0̂ < z1 < 1̂ in a graded poset P of rank i + j + 2, where the rank

of z1 is i + 1. As seen in the proof of Proposition 4.2, there are 7 chains in Î(P )

whose support is 0̂ < z1 < 1̂, and their contribution is to the ab-index of Î(P ) is
(a+ 2b)(aibaj + ajbai) + bai+j.

Finally, consider a chain c : 0̂ < z1 < z2 < · · · < zk < zk+1 = 1̂ that contributes
aibwbaj to the ab-index of a graded poset P of rank n+ 1. In such a chain the rank of
z1 is i+ 1 and the rank of of zk is n− j. The largest element below [0̂, 1̂] of any chain

in Î(P ) with support c is either [0̂, zk] (of rank n− j + 1) or [z1, 1̂] (of rank n + 1− i)
or [z1, zk] (of rank n − i − j + 1). The three terms correspond to the contributions of
the chains of these three types. �

Corollary 4.6. There is a linear map In : R2n → R2n+1
sending the flag f -vector of

each graded poset P of rank n+ 1 into the flag f -vector of its graded poset of intervals

Î(P ). This linear map may be obtained by encoding flag f -vectors with the corresponding
upsilon invariants, and extending the map ι by linearity.

Example 4.7. Using Theorem 4.5 we obtain the following formulas.

n = 1: ι(a) = a2 + 2ba, ι(b) = (a+ 2b)(b+ b) + ba = 4b2 + 2ab+ ba.
n = 2: ι(a2) = a3 + 2ba2, ι(ab) = (a+ 2b)(ab+ ba) + ba2 = a2b+aba+ 2bab+ 2b2a+ ba2,

ι(ba) = a2b+ aba+ 2bab+ 2b2a+ ba2 = ι(ab), and

ι(b2) = 2ι(b)b+ ι(ε)ba = 2(4b2 + 2ab+ ba)b+ (a+ 2b)ba

= 8b3 + 4ab2 + 2bab+ aba+ 2b2a.

We conclude this section by a shorter proof of two key formulas found by Jojić [24].

These express the connection between the ab-indices of P and Î(P ) using a coproduct
operation first introduced by Ehrenborg and Readdy [10].

Definition 4.8. The coproduct ∆ is defined on the algebra Q〈a, b〉, whose basis is the
set of all ab-words, as follows. Given an ab-word u = u1u2 · · ·un, we set

∆(u) =
n∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·un.

Note that the algebra Q〈a, b〉 also includes the empty word 1 as a basis vector. In
the next theorem we will use Sweedler notation

∆(u) =
∑
u

u(1) ⊗ u(2)

to refer to the coproduct and the notation u∗ as a shorthand for u∗ = unun−1 · · ·u1,
obtained by reversing the word u = u1u2 · · ·un.

Theorem 4.9 (Jojić). Given a graded poset P of rank n + 1, we have ΨÎ(P )(a, b) =

I(ΨP (a, b)), where the linear operator I : Q〈a, b〉 → Q〈a, b〉 is defined by the following
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recursive formulas on the basis of ab-words:

I(u · a) = I(u) · a+ (ab+ ba) · u∗ +
∑
u

I(u(2)) · ab · u∗(1) (4.1)

I(u · b) = I(u) · b+ (ab+ ba) · u∗ +
∑
u

I(u(2)) · ba · u∗(1). (4.2)

Proof. We prove the theorem by showing the following, linearly equivalent formulas for
the operator ι:

ι(ua) = ι(u)a+
∑′

u

ι(u(2)) · (ab− ba) · u∗(1) (4.3)

ι(ub) = ι(u)b+ (ab+ ba+ 2b2) · u∗ +
∑′

u

ι(u(2)) · b(a+ b) · u∗(1). (4.4)

Here the symbol
∑′

u is Sweedler notation for the coproduct ∆′ defined on the algebra
Q〈a, b〉 by the rule

∆′(ai1bai2b · · · aikbaik+1) =
k∑
j=1

ai1bai2b · · · aij ⊗ aij+1 · · · aikbaik+1 .

Equations (4.3) and (4.4) are linearly equivalent to the formulas stated in the theorem
because ab-index ΨP (a, b) is obtained by substituting e = a − b into ΥP (a, b), and the
definition of ∆′ corresponds to the rule

∆(ei1bei2b · · · eikbeik+1) =
k∑
j=1

ei1bei2b · · · eij ⊗ eij+1 · · · eikbeik+1

whose verification is left to the reader. After substituting a− b into a, equations (4.3)
and (4.4) become

I(u(a− b)) = I(u)(a− b) +
∑
u

I(u(2)) · (ab− ba) · u∗(1)

I(ub) = I(u)b+ (ab+ ba) · u∗ +
∑
u

I(u(2)) · ba · u∗(1).

The sum of these equations is the first equation stated in the theorem, while the second
equation is the same in both pairs.

To prove (4.4), note that ι(ub) is the sum of all ab-words associated to chains of

intervals supported by a fixed chain 0̂ < x1 < · · · < xk < xk+1 < 1̂ where the rank of
xk+1 is one less than the rank of 1̂ and the set of ranks of x1 < · · · < xk is marked by
the ab-word u. The summand ι(u)b is contributed by all chains of intervals containing

[0̂, xk+1]. These chains can not contain any interval containing 1̂, except for [0̂, 1̂], so the

remaining intervals in all such chains are contained in [0̂, xk+1]. The sum
∑′

u ι(u(2)) ·
b(a + b) · u∗(1) is contributed by all chains of intervals, containing some intervals of the

form [xj, xk+1], for some j ≥ 1 but not containing [0̂, xk+1]. Let i ≥ 1 be the least
index for which [xi, xk+1] belongs to the chain. the factor ι(u(2))b is contributed by the
intervals contained in this interval and by the interval [xi, xk+1] itself. For each j < i the

interval [xj, 1̂] must belong to the chain, these contribute the factor au∗(1). The factor
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(a+b) right after ι(u(2))b reflects the possibility of adding to the chain [xj, 1̂] or omitting
it. This choice may be done independently of everything else. The remaining terms are
contributed by chains not containing any interval of the form [0̂, xk+1] or [xi, xk+1]. We
claim that all these remaining chain contribute the term (ab+ ba+ 2b2) ·u∗. Since xk+1

must be part of the support, these chains contain at least one of [xk+1, 1̂] and [xk+1, xk+1].

The intersection of such a chain of intervals with the set {[1̂, 1̂], [xk+1, 1̂], [xk+1, xk+1]}
can be {[xk+1, 1̂], }, {[xk+1, xk+1]}, {[1̂, 1̂], [xk+1, 1̂], }, or {[xk+1, 1̂], [xk+1, xk+1]}. These
four possibilities account for the presence of a factor (ab + ba + 2b2). For all i ≤ k the

interval [xi, 1̂] must be present, this explains the presence of the factor u∗.
To prove (4.3), note that ι(ua) is the sum of all ab-words associated to chains of

intervals supported by a fixed chain C : 0̂ < x1 < · · · < xk < 1̂ where the difference
between the rank of xk and the rank of 1̂ is at least 2 and the set of ranks of x1 < · · · < xk
is marked by the ab-word u. Let us fix a coatom xk+1 in the interval [xk, 1̂]. There is an
obvious bijection between the chains of intervals supported C and the chains of intervals
supported by the chain C ′ : 0̂ < x1 < · · · < xk < xk+1. This bijection is induced by
replacing each occurrence of 1̂ by xk+1. Clearly the sum of the ab-words of all intervals
supported by C ′ is ι(u), let us multiply this sum by a on the right and compare the
contribution of a chain of intervals supported by C to ι(ua) with the contribution of
the corresponding chain of intervals supported by C ′ to ι(u)a.

Case 1: The chain of intervals supported by C contains no interval of the form [xi, 1̂].
The contribution of such a chain of intervals to ι(ua) is the same as the contribution of
the corresponding chain of intervals supported by C ′ to ι(u)a.

Case 2: The chain of intervals supported by C contains an interval of the form [xi, 1̂].
Let us take the largest i with this property, that is, the least interval of this form, and
let us break the ab word corresponding to chain of intervals at the letter b corresponding
to this interval. The intervals of the chain of intervals contained in [xi, 1̂] do not contain

1̂ and they are the same in the corresponding chain of intervals supported by C ′. Their
contribution is ι(u(2)). The remaining intervals of the original chain of intervals sup-

ported by C are all intervals of the form [xj, 1̂] where j < i. In the corresponding chain

of intervals each [xj, 1̂] needs to be replaced by [xj, xk+1], the rank of the corresponding
interval is one less: the contribution of such a chain of intervals is thus abu∗(1) to ι(ua),

and the contribution of the corresponding intervals to ι(u)a is thus bau∗(1). �

5. Interval transforms of the second kind

In Section 2 we have seen that for any poset P , the order complex of the poset of
intervals I(P ) is a Tchebyshev triangulation of the order complex of P . In this setting,
the elements of the original poset P are identified with the singleton intervals in I(P ).
Hence we make the following definition.

Definition 5.1. Given a partially ordered set P we define its interval transform of the
second kind I2(P ) the multiset of subposets of I(P ) defined as follows: for each x ∈ P
we take the subposets of I(P ) formed by all elements [y, z] ∈ I(P ) containing [x, x].

It is a direct consequence of the definition and Theorem 2.2 we obtain the following.
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Corollary 5.2. For any finite poset P the order complex of I2(P ) is a Tchebyshev
triangulation of the second kind of the order complex of P , associated to the Tchebyshev
triangulation of the first kind that is the order complex of I(P ).

Corollary 5.3. If P is a graded poset then its interval transform of the second kind is
the collection of all intervals of the form [[x, x], [0̂, 1̂]] ⊂ I(P ) for each x ∈ P .

Definition 5.4. Let (P1, . . . , Pm) be a list of graded posets. We extend the notions of
the upsilon invariant and ab-index by linearity, i.e., we set

Υ(P1,...,Pm)(a, b) =
m∑
i=1

ΥPi
(a, b) and Ψ(P1,...,Pm)(a, b) =

m∑
i=1

ΨPi
(a, b)

For a graded poset P we then define the total ab-index ΨÎ2(P )(a, b) of Î2(P ) by

ΨÎ2(P )(a, b) =
∑
u∈P

Ψ[[x,x],[0̂,1̂]](a, b).

The following statement is straightforward.

Proposition 5.5. Let P be a graded poset. For each x ∈ P , the set of intervals [y, z]

contained in [[x, x], [0̂, 1̂]] ⊂ Î(P ) and ordered by inclusion is isomorphic to the direct

product [0̂, x]∗ × [x, 1̂]. Here [0̂, x]∗ is the dual of the poset [0̂, x], obtained by reversing

the order of [0̂, x].

Proposition 5.5 allows us to compute the effect of taking the interval transform on
the second kind on the ab-index of a poset using the mixing operator introduced by
Ehrenborg and Readdy [10, Definition 9.1]

Definition 5.6. The mixing operator M is a bilinear operator defined on the noncom-
mutative algebra Q〈a, b〉 as the follows. For each pair of ab-words (u, v) we set

M(u, v) =
2∑
r=1

2∑
s=1

∑
n−r−s−1 is even

Mr,s,n(u, v).

Here the operators Mr,s,n(u, v) are recursively defined by

M1,2,2(u, v) = u · a · v,
M2,1,2(u, v) = u · b · v,

M1,s,n+1(u, v) =
∑
u

u(1) · a ·M2,s,n(u(2), v) and

M2,s,n+1(u, v) =
∑
v

v(1) · b ·M1,s,n(u, v(2)).

It has been shown by Ehrenborg and Readdy [10, Theorem 9.2] that the ab-index of
the direct product of the graded posets P and Q is given by

ΨP×Q(a, b) = M(ΨP (a, b),ΨQ(a, b)). (5.1)

Combining Equation (5.1) with Corollary 5.3 we may compute the total ab-index of
an interval transform of a second kind as follows.
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Theorem 5.7. Given a graded poset P of rank n+1, we have ΨÎ2(P )(a, b) = I2(ΨP (a, b)),

where the linear operator I2 : Q〈a, b〉 → Q〈a, b〉 is given by the formula

I2(u) = u+ u∗ +
∑
u

M(u∗(1), u(2)).

Proof. By Definition 5.4 and Proposition 5.5 we have

ΨÎ2(P )(a, b) =
∑
x∈P

Ψ[0̂,x]∗×[x,1̂](a, b)

By Equation (5.1) this may be rewritten as

ΨÎ2(P )(a, b) =
∑
x∈P

M(Ψ[0̂,x]∗(a, b),Ψ[x,1̂](a, b))

= Ψ[0̂,1̂](a, b)
∗ + Ψ[0̂,1̂](a, b) +

∑
0̂<x<1̂

M(Ψ[0̂,x](a, b)
∗,Ψ[x,1̂](a, b)).

The statement is now a direct consequence of [10, Equation (3.1)], stating

∆ΨP (a, b) =
∑

0̂<x<1̂

Ψ[0̂,x](a, b)⊗Ψ[x,1̂](a, b).

�

In analogy to [12, Theorem 10.10] we may find many eigenvalues and eigenvectors
of the operator I2 : Q〈a, b〉 → Q〈a, b〉. The quest to find the eigenvalues of I2 is
complicated by the fact that this linear operator has a nontrivial kernel. To find part
of this kernel, we first extend the operator u 7→ u∗ by linearity to all ab-polynomials.

Corollary 5.8. If the homogeneous ab-polynomial u ∈ Q〈a, b〉n satisfies u∗ = −u then
I2(u) = 0

Corollary 5.8 is a direct consequence of Theorem 5.7. It inspires decomposing the
vectorspace Q〈a, b〉n of ab-polynomials of degree n into a direct sum of the vector spaces
of symmetric and antisymmetric ab-polynomials.

Definition 5.9. A homogeneous ab-polynomial u ∈ Q〈a, b〉n of degree n is symmetric if
it satisfies u∗ = u and antisymmetric if it satisfies u∗ = −u. We denote the vectorspace
of symmetric, respectively antisymmetric ab-polynomials of degree n by SQ〈a, b〉n, re-
spectively AQ〈a, b〉n.

Proposition 5.10. The vectorspace Q〈a, b〉n may be written as the direct sum

Q〈a, b〉n = SQ〈a, b〉n ⊕ AQ〈a, b〉n.
Here dimAQ〈a, b〉n = 2n−1 − 2b(n−1)/2c and dimSQ〈a, b〉n = 2n−1 + 2b(n−1)/2c.

Proof. Clearly SQ〈a, b〉n ∩ AQ〈a, b〉n = 0 and each u ∈ Q〈a, b〉n may be written as

u =
1

2
· (u+ u∗) +

1

2
· (u− u∗),

where u + u∗ ∈ SQ〈a, b〉n and u − u∗ ∈ AQ〈a, b〉n. The dimension formulas are direct
consequences of the fact that the number of symmetric ab-words w satisfying w = w∗

is 2b(n+1)/2c and hence the number of asymmetric ab-words w satisfying w 6= w∗ is
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2n − 2b(n+1)/2c. Asymmetric ab-words w form pairs {w,w∗}, and we may associate to
each such unordered pair a vector w − w∗, these vectors form a basis of AQ〈a, b〉n. �

Next we show the following analogue of [12, Proposition 10.9].

Lemma 5.11. If the homogeneous ab-polynomial u ∈ Q〈a, b〉n of degree n is an eigen-
vector of the linear operator I2 : Q〈a, b〉 → Q〈a, b〉 then so is the homogeneous ab-
polynomial L(u) := (a− b)u + u(a− b) ∈ Q〈a, b〉n+1. Both eigenvectors have the same
eigenvalue.

Proof. Assume I2(u) = λ · u holds. By Theorem 5.7 we may write

I2((a− b)u+ u(a− b)) = (a− b)u+ u∗(a− b) + u(a− b) + (a− b)u∗

+ (a− b)
∑
u

M(u∗(1), u(2)) +
∑
u

M(u∗(1), u(2))(a− b)

= (a− b)I2(u) + I2(u)(a− b) = λ · ((a− b)u+ u(a− b)).
�

Note that the restriction of the operator L to SQ〈a, b〉n takes SQ〈a, b〉n into SQ〈a, b〉n+1.
The analogue of [12, Proposition 10.8] may be stated in more general terms, as follows.

Proposition 5.12. For any pair of graded partially ordered sets P and Q,

I2(P ×Q) = I2(P )(×)I2(Q) holds.

Here I2(P )(×)I2(Q) denotes the multiset of posets {P1×Q1 : P1 ∈ I2(P ), Q1 ∈ I2(Q)}.

Proof. The set I2(P ×Q) is the multiset of all intervals of P ×Q, of the form[
[(p, q), (p, q)] ,

[
(0̂P , 0̂Q), (1̂P , 1̂Q)

]]
ordered by inclusion. Here p ranges over all elements of P and Q independently ranges
over all elements of Q. The statement follows from the obvious isomorphism[

[(p, q), (p, q)] ,
[
(0̂P , 0̂Q), (1̂P , 1̂Q)

]]
∼=
[
[p, p] ,

[
0̂P , 1̂P

]]
×
[
[q, q] ,

[
0̂Q, 1̂Q

]]
.

�

Corollary 5.13. Assume the homogeneous ab-polynomial ui is an eigenvector with
eigenvalue λi of the interval transform of the second kind I2 for i = 1, 2. Then M(u1, u2)
is an eigenvector with eigenvalue λ1 · λ2.

As a consequence of [9, Corollary 4.3], if ui ∈ SQ〈a, b〉ni
holds for i = 1, 2 then

M(u1, u2) ∈ SQ〈a, b〉n1+n2 .
In [12] find all eigenvalues and eigenvectors of the Tchebyshev operator of the second

kind, by repeated use of the analogues of Lemma 5.11 and Proposition 5.12. More
precisely, [12, Theorem 10.10] states that a basis of eigenvectors may be generated by
repeatedly using the pyramid operator Pyr : u 7→ M(1, u) and their variant of the
lifting operator L which sends u into (a− b)u. A key ingredient of their proof is the use
of the fact that the intersection of the ranges of the pyramid operator and their lifting
operator is zero. In our case this is not true any more, furthermore our operator I2 has
a nontrivial kernel. That said, we make the following conjectures.
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Conjecture 5.14. For each n ≥ 1, the kernel of I2 : Q〈a, b〉n → Q〈a, b〉n+1 is AQ〈a, b〉n.

Conjecture 5.15. For each n ≥ 1 a generating set of SQ〈a, b〉n, consisting of eigenvec-
tors only may be found by taking all possible n-fold compositions of the pyramid operator
Pyr and of the lift operator L, and applying it to 1.

6. The graded poset of intervals of an Eulerian poset

The following result is due to C. Athanasiadis [2, Proposition 2.5], it is also stated
in a special case by Jojić [24, Remark 10].

Proposition 6.1. If a graded poset P is Eulerian then the same holds for the graded

poset of its intervals Î(P ).

Indeed, it is well known consequence of Phillip Hall’s theorem (see [30, Propositi-
tion 3.8.5]) that a graded poset is Eulerian if and only if the reduced characteristic
of the order complex of each open interval (u, v) is (−1)ρ(v)−ρ(u) where ρ is the rank
function. Since taking the graded poset of intervals results in taking a triangulation
of the suspension of each such order complex, the reduced Euler characteristic remains
unchanged.

As a consequence of Proposition 6.1, the linear map In takes the flag f -vector of any
graded Eulerian poset of rank n + 1 into the flag f -vector of a graded Eulerian poset
of rank n + 2. As a direct consequence of Theorem 4.9 the following formulas hold,
see [24, Corollary 7]:

Corollary 6.2 (Jojić). Given a graded poset P of rank n + 1, we have ΨÎ(P )(c, d) =

I(ΨP (c, d)), where the linear operator I : Q〈c, d〉 → Q〈c, d〉 is defined by the following
recursive formulas on the basis of ab-words:

I(u · c) = I(u) · c+ 2d · u∗ +
∑
u

I(u(2)) · c · u∗(1)

I(u · d) = I(u) · d+ (dc+ cd) · u∗ + d · u∗ · c

+
∑
u

(I(u(2)) · d · Pyr(u∗(1)) + d · u∗(2) · d · u∗(1)).

Here Pyr is the the linear operator defined by Ehrenborg and Readdy [10] associating to
the cd index of each poset P the cd-index of P ×B1 where B1 is the Boolean algebra of
rank 1.

Proposition 6.1 has the following easy consequence.

Corollary 6.3. The interval transform of the second kind Î2(P ) of any graded Eulerian
poset P of rank n+ 1 is a multiset of Eulerian posets of rank n+ 1. Hence ΨÎ2(P )(a, b)
is a polynomial of c and d

We will use the notation ΨÎ2(P )(c, d) to stand for the polynomial ΨÎ2(P )(a, b) rewritten
as an expression of c and d. In analogy to Theorem 4.9 and Corollary 6.2, the restriction
of the map I2 to cd-polynomials allows us to compute ΨÎ2(P )(c, d). In doing so, the
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following formulas of Ehrenborg and Fox [9, Theorem 5.1] are helpful. For two cd
monomials u and w we have

M(u, v · c) = v · d · u+M(u, v) · c+
∑
u

M(u(1), v) · d · u(2) and (6.1)

M(u, v · d) = v · d · Pyr(u) +M(u, v) · d+
∑
u

M(u(1), v) · d · Pyr(u(2)). (6.2)

Remark 6.4. To avoid introduction a second coproduct denoted ∆∗ and the counit ε
used to state [9, Theorem 5.1], we rewrote formulas (6.1) and (6.2) using M(ε, v) = v,
dε = c and Pyr(ε) = 1.

Equations (6.1) and (6.2), together with the obvious

M(u, v) = M(v, u), (6.3)

the initial condition
M(1, 1) = c (6.4)

and the obvious
Pyr(u) = M(1, u) (6.5)

allow to compute the function M(u, v) in a recursive fashion.

7. Special cases

In this section we compute the cd-indices of the poset of intervals and of the interval
transform of the second kind of two special posets: the “ladder” poset Ln and the
Boolean algebra P ([1, n]) of rank n.

The poset Ln has exactly 2 elements: −i and i for each rank i satisfying 0 < i < n+1,
and any pair of elements at different ranks are comparable. The poset L2 of rank 3
is shown in Figure 7. To simplify our notation in the proof of Theorem 7.1 below, we
write the unique minimum element of Ln as 0 and the unique maximum element as
n+ 1. It is well, known that ΨLn(c, d) = cn.

0

−1

−2

1

2

3

Figure 7. The “ladder” poset L2 of rank 3

The following result is due to Jojić [24, Theorem 9]

Theorem 7.1 (Jojić). Assume that the finite vector (k0, . . . , kr) of nonnegative integers
satisfies 2r+ k0 + k2 + · · ·+ kr = n. Then the coefficient of ck0dck1d · · · ckrdckr in I(cn)
is 2r(k1 + 1)(k2 + 1) · · · (kr + 1).
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Remark 7.2. As noted by Jojić, this formula is the dual of the one obtained for the
other Tchebyshev transform see [19, Theorem 7.1] and [12, Corollary 6.6] (see also [19,
Table 1], although the two poset operations are very different. This observation also
suggests that, when we comparing it to the Tchebyshev transform, one would want to
consider the dual of the poset of intervals, ordered by reverse inclusion.

Next we compute I2(cn). To do so, the following consequence of Equation (6.1) will
be useful:

M(ci, cj+1) = cj · d · ci +M(ci, cj) · c+ 2
i∑

k=1

M(ck−1, cj) · d · ci−k. (7.1)

Lemma 7.3. The expressions M(ci, cj) satisfy the recurrence

M(ci+1, cj+1) = (M(ci, cj+1) +M(ci+1, cj))c+M(ci, cj) · (2d− c2)

for i, j ≥ 0

Proof. Replacing i with i+ 1 in (7.1) yields

M(ci+1, cj+1) = cj · d · ci+1 +M(ci+1, cj) · c+ 2
i∑

k=1

M(ck−1, cj) · d · ci+1−k (7.2)

+ 2M(ci, cj) · d.
By multiplying both sides of (7.1) by c on the right we obtain

M(ci, cj+1)c = cj · d · ci+1 +M(ci, cj) · c2 + 2
i∑

k=1

M(ck−1, cj) · d · ci+1−k. (7.3)

The statement now follows after subtracting (7.3) from (7.2). �

Using Lemma 7.3 it is easy to show the following statement. Recall that a Delannoy
path is a lattice path consisting of East steps (1, 0), North steps (0, 1) and Northeast
steps (1, 1).

Theorem 7.4. M(ci, cj) is the half of the total weight of all Delannoy paths from (−1, 0)
or (0,−1) to (i, j) where each East step and North step has weight c and each Northeast
step has weight (2d− c2). The weight of each Delannoy path is obtained by multiplying
the weight of its steps, left to right, in the order from (−1, 0) or (0,−1) to (i, j).

Proof. Let us define the function M̃(i, j) as follows:

M̃(i, j) =


1
2
cj if i = −1 and j ≥ 0

1
2
ci if j = −1 and i ≥ 0

M(ci, cj) if i, j ≥ 0

Note that the function M̃(i, j) is defined for all pairs of integers (i, j) satisfying i, j ≥
−1, except for i = j = −1. It suffices to show that the value of M̃(i, j) may be
computed as half of the total weight of the Delannoy paths stated above.

This statement is certainly true for M̃(i,−1) for i ≥ 0: there is no Delannoy path
from (−1, 0) to (i,−1) and the only Delannoy path from (0,−1) to (i,−1) is the lattice
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path consisting of i East steps. Similarly, there is only one Delannoy path form (−1, 0)

to (−1, j), consisting of j North steps and the statement holds for M̃(−1, j).
Observe next that there are exactly two Delannoy paths from (−1, 0) or (0,−1) to

(0, 0): the first consists of a single East step the second consists of a single North step,
their total weight is M(1, 1) = c, as expected.

Next we show the validity of the statement for M̃(i, 0) when i > 0. Note that the
last step of any Delannoy path ending at (i, 0) is either an East step from (i− 1, 0) or
a North step from (i,−1) or a Northeast step from (i− 1,−1). We want to show that

M̃(i, 0) = M̃(i− 1, 0) · c+ M̃(i,−1) · c+ M̃(i− 1,−1) · (2d− c2), that is,

M(ci, 1) = M(ci−1, 1) · c+
1

2
· ci+1 + ci−1 · d− 1

2
· ci+1,

which is equivalent to

M(ci, 1) = M(ci−1, 1) · c+ ci−1 · d.
This last equation is a direct consequence of (6.3) and (6.1). The proof of the statement

for M̃(0, j) when j > 0 is completely analogous.
It remains to show the statement when both i and j are positive. For these the last

step of every Delannoy path ending at (i, j) is either an East step from (i − 1, j) or a
North step from (i, j − 1) or a Northeast step from (i − 1, j − 1). The statement is a
direct consequence of Lemma 7.3. �

Recall that Stanley [31] introduced e = a− b and noted that the existence of the cd
index of an Eulerian poset is equivalent to stating that the ab-index is a polynomial of
c and e2 = c2 − 2d. In terms of the resulting ce-index, Theorem 7.4 may be restated as
follows.

Theorem 7.5. The coefficient of ck0e2ck1e2 · · · e2ckr in M(ci, cj) is

(−1)r

2
·
(
i+ j + 2− 2r

i+ 1− r

)
if k0 + k1 + · · ·+ kr + 2r = i+ j + 1 and 0 otherwise.

Proof. By Theorem 7.4, a lattice path from (−1, 0) or (0,−1) to (i, j) contributes a
term (−1)r/2 · ck0e2ck1e2 · · · e2ckr exactly when there are r Northeast steps, there are
k0 North or East steps before the first Northeast step, kr North or East steps after
the last Northeast step and there are exactly ki Northeast steps between the ith and
(i+ 1)st Northeast step for i = 1, . . . , r − 1. Hence each term contributed must satisfy
k0 + k1 + · · ·+ kr + 2r = i+ j + 1.

Let us count first the number of lattice paths from (−1, 0) to (i, j) contributing a
term (−1)r/2 · ck0e2ck1e2 · · · e2ckr . The parameters i and j must satisfy i + 1 ≥ r and
j ≥ r, as each Northeast step increases both coordinates by 1. Out of the i+ j+ 1− 2r
North or East steps we must select i + 1 − r East steps and j − r North steps. This
may be performed

(
i+j+1−2r
i+1−r

)
ways.

Similarly, the number of lattice paths from (0,−1) to (i, j) contributing a term
(−1)r/2 · ck0e2ck1e2 · · · e2ckr is

(
i+j+1−2r
j+1−r

)
=
(
i+j+1−2r

i−r

)
. The stated result follows by

Pascal’s identity. �
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Remark 7.6. It is worth pointing out that the coefficient of ck0e2ck1e2 · · · e2ckr in
M(ci, cj) depends only on i, j and r. For a fixed expression M(ci, cj) the coefficient of
a ce-word depends only on the number of factors e2 in it.

Remark 7.7. For the somewhat similar diamond product, N.B. Fox gave a more general
lattice path interpretation [16, Theorem 5.4]. It would be interesting to see whether a
similar approach could also help express M(u, v) in general as a total weight of lattice
paths.

Using Theorem 7.5 we may express I2(cn) as follows.

Proposition 7.8. Assume that the finite vector (k0, . . . , kr) of nonnegative integers
satisfies 2r + k0 + k2 + · · ·+ kr = n− 1. Then the coefficient of ck0e2ck1e2 · · · ckr−1e2ckr

in I2(cn), written as a ce-polynomial, is (−1)r · 2n+1−2r.

Proof. Observe first that by the definition of the coproduct, the relation ∆(c) = 2 ·1⊗1
and by Theorem 5.7 we have

I2(cn) = 2 · cn + 2
n−1∑
i=0

M(ci, cn−1−i).

For positive r, by Theorem 7.5 we get that the coefficient of ck0e2ck1e2 · · · ckr−1e2ckr in
I2(cn) is

n−r∑
i=r−1

(−1)r
(
n+ 1− 2r

i+ 1− r

)
,

and the result follows by the binomial theorem. For r = 0, we must take into account
the term 2cn in front of the sum of terms of the form M(ci, cn−1−i) and we must also
note the summation limits. We obtain that the coefficient of cn in I2(cn) is

2 +
n−1∑
i=0

(
n+ 1

i+ 1

)
= 2 + 2n+1 − 2 = 2n+1.

�

Theorem 7.9. Assume that the finite vector (k0, . . . , kr) of nonnegative integers sat-
isfies 2r + k0 + k2 + · · · + kr = n − 1. Then the coefficient of ck0dck1d · · · ckr−1dckr in
I2(cn), written as a cd-polynomial, is 2r+1(k0 + 1)(k1 + 1) · · · (kr + 1).

Proof. We may obtain the cd-index by substituting e2 = c2−2d into the ce-index. Hence
the cd word ck0dck1d · · · ckr−1dckr is contributed by all ce-words that are obtained from
ck0e2ck1e2 · · · ckre2ckr by replacing some factors c2 by e2. By Proposition 7.8, the coeffi-
cient of ck0e2ck1e2 · · · ckre2ckr in I2(cn) is (−1)r ·2n+1−2r, but when we replace all factors
e2 in this word by (c2 − 2d), we have to multiply by (−2)r. Hence, the contribution of
the term (−1)r · 2n+1−2r · ck0e2ck1e2 · · · ckre2ckr to the coefficient of ck0dck1d · · · ckr−1dckr

in I2(cn) is 2n+1−r.
When we replace any factor c2 in ck0e2ck1e2 · · · ckre2ckr by e2, the coefficient of the

resulting ce-word gets changed by a factor of (−2−2) = −1/4. These additional factors
e2 contribute a factor of 1 when we replace e2 with (c2−2d) and consider the coefficient
of ck0dck1d · · · ckr−1dckr . To add up the contribution of all these other terms consider
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first the special case when we compute the coefficient γn of cn in I2(cn), written as a
cd-polynomial. For example, for n = 4, by Proposition 7.8 we have

I2(c4) = 25 · c4 − 23 · (c2e2 + ce2c+ e2c2) + 21 · e4,

and if we rewrite this as a cd-polynomial, using e2 = c2 − 2d, we obtain

γ4 = 25 − 23 · 3 + 21 · 1 = 10.

For general n we obtain

γn =

bn
2
c∑

r=0

(−1)r · 2n+1−2r ·
(
n− r
n− 2r

)
It is easy to show (using for example the Fibonacci-type recurrence γn = 2γn−1− γn−2)
that γn = 2(n+1). Let us compute next the coefficient of ck0dck1d · · · ckr−1dckr in I2(cn),
written as a cd-monomial. As noted above, the rewriting the term (−1)r · 2n+1−2r ·
ck0e2ck1e2 · · · ckre2ckr contributes 2n+1−r to the coefficient of ck0dck1d · · · ckr−1dckr . To
obtain the contribution of the other ce-terms, we may repeat the above reasoning to
each factor cki for i = 0, 1, . . . , r. We obtain the coefficient

2n+1−r γk0
2k0+1

γk1
2k1+1

· · · γkr
2k1+1

= 2n+1−r (k0 + 1)(k1 + 1) · · · (kr + 1)

2n−2r
.

�

As we have seen in Proposition 3.2, the order complex of the poset of intervals

Î(P ([1, n])) of the Boolean algebra P ([1, n]) contains the type B coxeter complex. Fur-
thermore, the following statement is well-known.

Lemma 7.10. The poset of intervals Î(P ([1, n])) of the Boolean algebra P ([1, n]) is
isomorphic to the face lattice Cn of the n-dimensional cube.

Indeed, we may identify each vertex (x1, . . . , xn) of the standard cube [0, 1]n with the
subset σ = {i ∈ [1, n] : xi = 1} of [1, n]. Each interval [σ, τ ] corresponds to the face
containing all vertices (x1, . . . , xn) satisfying xi = 0 for i ∈ [1, n] − τ and xi = 1 for
i ∈ σ.

The cd-index of the cubical lattice has been expressed by Hetyei [18] and by Ehrenborg
and Readdy [11] in terms of (different) signed generalizations of André-permutations.
André permutations, first studied by Foata, Strehl and Schützenberger [14, 15] were
used by Purtill [29] to express the cd-index of the Boolean algebra.

Purtill’s approach may also be used to compute the interval transform of the second
kind I2(P ([1, n])) of a Boolean algebra, because of the following observation: the set of
all faces containing a vertex of an n-dimensional hypercube, ordered by inclusion, form
a lattice that is isomorphic to the Boolean algebra P ([1, n]). (In other words, the link
of a vertex in a cube is a simplex.) Hence we obtain

ΨI2(P ([1,n]))(c, d) = 2n ·ΨP ([1,n])(c, d). (7.4)

Remark 7.11. Equation 7.4 exhibits a remarkable analogy to a result of Ehrenborg and
Readdy [12, Theorem 10.10] completely describing all eigenvectors of the Tchebyshev
transform of the second kind, discussed in their paper.
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8. Concluding remarks

It would be desirable to find more explicit formulas describing the cd-index of a graded
poset of intervals of an Eulerian poset, but this seems harder than for the Tchebyshev
transform studied in [19], [20] and [12]. The source of all difficulties seems that the
operator ι recursively “rotates” the words involved: the recurrences call for cutting
off certain initial segment of some words and placing their reverse at the end. That
said, generalizations of permutohedra abound, and performing an analogous sequence
of stellar subdivisions on their duals, respectively taking the graded poset of intervals
for an associated poset may result in interesting geometric constructions, producing
perhaps new type B analogues. A first step in this direction may be found in the work
of Athanasiadis [4] where the r-fold edgewise subdivision of the barycentric subdivision
of a simplex is considered. Finally, applying the Tchebyshev transform studied in [19],
[20] and [12] to a Boolean algebra creates a poset whose order complex has the same
face numbers as the dual of a type B permutohedron. It may be interesting to find out
whether the resulting polytope also has a nice geometric representation.
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