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Abstract

We study the ensemble of a product of n complex Gaussian i.i.d. matrices. We find
this ensemble is Gaussian with a variance matrix which is averaged over a multi-Wishart
ensemble. We compute the mixed moments and find that at large N , they are given by an
enumeration of non-crossing pairings weighted by Fuss-Catalan numbers.
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1 Introduction

The theory of random matrices (RMT) has a remarkably broad reach through physics, mathemat-
ics, biology, computer science and engineering. It is uncanny how fundamental contributions to
RMT are regularly made by researchers in each of these domains. In the current work, with a view
towards studying feedforward neural networks, we draw from results in these fields and study the
mixed moments of products of complex i.i.d. Gaussian matrices1.

A defining feature of a Ginibre matrix, certainly in contrast to Hermitian matrices, is that they
cannot be diagonalized; under the Schur decomposition of a complex matrix

X = U(Λ + T )U−1 , Λ = diag(λ1 , . . . λN) , U ∈ U(N) (1.1)

there is a non-trivial upper triangular component T unless X is Hermitian. Recall that diagonal-
ization is at the heart of many results in Hermitian RMT [2], it allows a problem which a priori has
O(N2) degrees of freedom to be reduced to an O(N) computation. Ginibre managed to circum-
vent this obstacle by exploiting the fact that in the computation of the eigenvalue spectrum, the
components of T are decoupled Gaussian degrees of freedom and can be integrated. However the
presence of O(N2) coupled degrees of freedom is not necessarily something one should shy away
from; while the Hermitian matrix models have a single operator for a fixed number of insertions,
the number of operators in the Ginibre ensemble grows exponentially with the number of inser-
tions. It is thus evident that the space of Ginibre matrices is far richer that the space of Hermitian
matrices and one should expect crucial features to be unattainable through methods which reduce
the problem to O(N) degrees of freedom.

There are numerous ways to generalize the Ginibre ensemble, two ideas which influenced the
current work are:

1. Relax the i.i.d. condition while preserving the Gaussian structure of the distribution.

2. Consider products of Ginibre matrices.

To some extent both these generalizations are designed to produce solvable random matrix ensem-
bles while remaining within, or at least in the vicinity of, the safe harbours of Gaussian ensembles.
However we will in fact find, that products of Ginibre matrices remain Gaussian but are no longer
identically distributed.

One way to relax explicitly the i.i.d. condition is to introduce a fixed variance matrix (or
matrices), for example2

PΣ(X) ∼ e−NTrXΣ−1X† (1.3)

and then when deploying Wick’s theorem one uses the propogator

〈XijX
†
kl〉 =

1

N
δilΣ

jk . (1.4)

1The archetypical result in this field is due to Ginibre [1] who computed the eigenvalue distribution of these
matrices and found it to be uniform on the disk, we will refer to complex i.i.d. Gaussian matrices as Ginibre
matrices.

2 Another interesting way to relax the i.i.d condition intiated in [3] (see [4] for a concise review), is to study
Gaussian ensembles of the form

P (X,X†) ∼ e−TrXX
†+(τTrXX+c.c) (1.2)

where τ is a complex scalar which one might call the elliptical parameter.
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This particular deformation of the Ginibre ensemble has the effect of decorating the graphs which
contribute to the moments of X,X† with a product of traces of powers of Σ and the precise
enumeration is challenging. Nonetheless there are numerous results regarding computations of
moments and limiting eigenvalue distributions reviewed in the nice books [5–8], which we will use
throughout this work.

The ensemble of products of random matrices has been an attractive research area for some
time, much of the history is summarised nicely in the thesis [9]. In the last decade, there has
however been a snowballing of results regarding this ensemble, yet strangely enough, this does
not appear to be due to any particularly new technique which has come online3 but rather it
has been motivated by various potential applications. In that vein, we were drawn to this topic
through the study of simple models of feed forward neural networks [12] and while the techniques
we use are not particularly new, we certainly draw upon many recent results. We will find that
the probability distribution of the product of Ginibre matrices is Gaussian but not identically
distributed. The product structure introduces a variance matrix which is averaged (annealed) over
a Wishart ensemble. Averaging over Gaussian random couplings is a feature of the Sherrington-
Kirkpatrick model [13] and more recently the SYK model [14–16], to the best of our knowledge,
averaging over the Wishart ensemble is novel.

The connection between RMT and neural networks has a long history; the parameters of a
feed forward neural network are neatly packaged into a chain of matrices which certainly hints
that RMT could be useful a technique but it is probably fair to say that the current state of the
art in this line of research is somewhat short of achieving practical applications with competitive
precision. We have been particularly influenced by the recent works [12,17–20] but drawing a more
precise bridge between our current results and neural networks will require further consideration.
Since the number of active degrees of freedom in feed forward neural networks in principle scales
greater than O(N), we are particularly interested in results which go beyond the O(N) degrees
of freedom one has available in studies of eigenvalues and singular values. So whilst there has
been impressive progress in understanding the eigenvalue spectrum of the product of n Ginibre
matrices, both at large N [21] and finite N [22, 23] and also the singular values [24–26] we would
like to study the mixed moments in the product Gaussian ensemble.

Perhaps ones first reaction should be somewhat sceptical, these moments have yet to be com-
puted even within the Ginibre ensemble [27] and as such it might seem inconceivable that this
could then be accomplished in the product ensemble. While this is indeed true, we are optimistic
that this problem can be overcome in the Ginibre ensemble and as additional motivation we ul-
timately find that the mixed moments in the product ensemble are closely related to the mixed
moments in the Ginibre ensemble.

The structure of this paper is as follows: in section 2 we review some known facts about mo-
ments of complex Gaussian matrices, with and without a variance profile. In section 3 we review
some basic and motivational results regarding the eigenvalue and singular value spectrum of the
product ensemble. In section 4 we begin our study of the product Ginibre ensemble and derive
the probability distribution function as well as our formula for the mixed moments for the case
n = 2. In section 5 we generalize our results to any positive integer n and present our results for

3 An interesting more modern development in RMT is the development of the Schwinger-Dyson (loop) equations
into topological recursion [10] and there has been a recent work investigating such modern techniques to the product
Ginibre ensemble [11].
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the mixed moments. The main result of our paper is (5.18).

2 Moments of complex Gaussian matrices

2.1 The Ginibre model

The main difficulty encountered in computing expectation values of functions of Ginibre matrices
X is the strictly upper triangular term T in the Schur decomposition (1.1). Of course when X
is Hermitian, T vanishes and it follows that in many such cases the computation reduces to an
integral over the N eigenvalues Λ. The result of Ginibre [1], in computing the eigenvalue pdf of
a complex Gaussian matrix, is an example of a scenario when the integral over the O(N2) upper
triangular terms are all Gaussian and can be performed explicitly. In general however, even at
large N , moments of Ginibre matrices cannot seemingly be reduced to a problem of O(N) degrees
of freedom as the components of T couple non-trivally to the components of Λ. Nonetheless, there
are still numerous exactly solvable results in the field of random complex matrices and we now
mention a few which we have found to be relevant to the current work.

Expectation values of ratios of products of characteristic polynomials operators4〈∏L1

i=1 det(ε1 −X)
∏L2

i=1 det(ε2 −X†)∏M1

i=1 det(η1 −X)
∏M2

i=1 det(η2 −X†)

〉
G

(2.1)

have been progressively computed in [28–32] and the structure of these results follows closely the
work done in the Hermitian case [33,34]. From these results one can derive expectation values for
multi-trace operators of the form

〈TrXk1Tr(X†)l1 . . .TrXknTr(X†)ln〉G (2.2)

but not non-trivial expectation values of single trace operators, since the expectation values of
(anti)-holomorphic single trace operators vanish by Wick’s theorem:

〈TrXk〉G = 〈Tr(X†)k〉G = 0 . (2.3)

Indeed, the non-trivial single-trace correlators in the Ginibre ensemble are of the form

Ci,j = 〈Oi,j(X,X
†)〉G (2.4)

with

Oi,j(X,X
†) = TrX i1(X†)j1 . . . X ik(X†)jk (2.5)

and

i = (i1 , . . . , ik) , j = (j1 , . . . , jk) (2.6)∑
a

ia =
∑
a

ja ≡ m. (2.7)

4We use 〈.〉G to denote the expectation value in the Ginibre ensemble.
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At large N , to leading order, Wick’s Theorem reduces the computation of Ci,j to the enumeration
of non-crossing pairings [35] and the state of the art regarding their enumeration can be found
in [27, 36]. The complete enumeration of non-crossing pairings and thus the evaluation of mixed
moments in the Ginibre ensemble is currently unsolved, but for example in [27] one can find the
following explicit result for a subset of mixed moments5

〈Tr
(
Xs(X†)s

)r〉G = FCs(r) . (2.8)

which are the Fuss-Catalan numbers (see appendix B). When s = 1, these moments are equivalent
to moments of the Marchenko-Pastur distribution of singular values of X and are equal to the
Catalan numbers.

2.2 Enumerating operators in the Ginibre model

It is interesting to count the number of operators (2.5) in the Ginibre model with m insertions
of both X and X† and see the growth for large m. The counting of operators in the product
Ginibre model is identical. Since the trace induces an invariance under cyclic rotation of the X,X†

insertions, this is equivalent to the number of 2-ary necklaces with m-beads of each color [38] and
one can compute this from the cycle index for the cyclic group [39]:

ZC2m =
1

2m

∑
d|2m

ϕ(d)a
2m/d
d . (2.9)

where ϕ(d) is Eulers totient function. We can extract the number of necklaces with m beads of
each color from (2.9) by extracting the coefficient of xmym from (2.9) with ad replaced by xd + yd:

N2m =
1

2m

∑
d|2m

ϕ(d)(xd + yd)2m/d
∣∣∣
xmym

(2.10)

=
1

2m

∑
d|m

ϕ(d)

(
2m/d

m/d

)
. (2.11)

The largest contribution to N2m comes from term d = 1 and this term alone gives the bound

N2m ≥
1

2m

(
2m

m

)
(2.12)

which for large m approximates the Catalan number Cm and grows as

Cm ∼
4m

π1/2m3/2
. (2.13)

From this counting we quantify the obvious fact that the number of inequivalent operators in
the Ginibre model scales much larger than the Hermitian model. We see this as motivation for
studying these moments in more detail.

5 see also [37] where this is obtained from the distribution of singular values of Xs
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2.3 Non-trivial variance profile

An interesting direction of research is to generalize the Ginibre ensemble such that elements in X
are no longer i.i.d. but rather there is a non-trivial variance profile6. When this variance profile is
set by some fixed, Hermitian positive definite matrix W we denote these moments by7

C̃i,j(W ) = 〈Oi,j(XW
1/2,W 1/2X†)〉G (2.15)

=
1

Nm

m∑
k=1

∑
m∈Mm,k

[
Nm−kc̃i,j(m1 , . . . ,mk)

]
TrWm1 . . .TrWmk (2.16)

for some set of coefficients c̃i,j and where we have defined the summation∑
m∈Mm,k

=
∑

m1+...+mk=m
m1≤m2≤...mk

. (2.17)

We have introduced factors of N such that the c̃i,j are finite at large N . We note that (2.16)
defines the coefficients c̃i,j and is exact in N . In this work we will need one particular result found
in [5, 40,41] where these authors have considered the expectation value of the operator

O1m,1m(XW 1/2) (2.18)

and found that to leading order in 1
N

c̃1m,1m(m1 , . . . ,mk) =
m!

(m− k + 1)!f(m1 , . . . ,mk)
(2.19)

where

f(m1 , . . . ,mk) =
m∏
j=1

fj! (2.20)

and fj is the number of elements of [m1 , . . . ,mk] which equal j. In finite N there will be corrections
to c̃1m,1m(m1 , . . . ,mk) from non-planar diagrams.

We note that while in the absence of the variance profile W , the order at which a particular
ribbon diagram contributes is dictated by its Euler characteristic [2, 42], the combinatorics giving
rise to (2.19) goes beyond enumerating the number of faces, edges and vertices.

3 Product of Ginibre matrices

Much is known about the eigenvalue and singular value spectrum of the product of Ginibre matrices
and we summarize some of these results here.

6 Some excellent reviews are [5–8].
7 In (2.15) the deterministic matrix W appears within the operator insertion itself but using the identity∫

d2X f
(
XW 1/2

)
e−NTrXX† =

1

detWN

∫
d2X f(X)e−NTrXW−1X† (2.14)

we see that up to a normalization, this is equivalent to sampling X from a Gaussian distribution with variance
profile given by W .
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3.1 Eigenvalues

Let {Ai|i = 1, . . . n} be N ×N Ginibre matrices where the real and imaginary parts of each entry

are sampled from N (0,
σ2
i

2N
) so that

〈Ai,jk〉 = 0 , 〈|Ai,jk|2〉 =
σ2
i

N
. (3.1)

or more precisely

P (Ai) =

(
N

πσ2
i

)N2 ∫
dAidA

†
ie
− N

σ2
i

TrAiA
†
i
. (3.2)

We want to study the matrix product of the Ai

X(n) = A1 . . . An . (3.3)

The fundamental result in the theory of random complex matrices is due to Ginibre [1] and
known as the circular law; to leading order in an expansion in 1

N
, the eigenvalues of a complex

Gaussian N × N matrix are uniformly distributed on the disk. This has been extended to X(n)

in8 [21]. This remarkably simple result for the distribution of eigenvalues of Xn at large N is

ρn(z, z) =

{
1
nπ
σ−

2
n |z|−2+ 2

n |z| ≤ σ

0 |z| > σ
(3.4)

and one can see in figure 1 that the for n > 1, the eigenvalues are no longer uniformly distributed
but are more dense near the origin.

At finite N , the eigenvalue pdf of X(n) has been computed in [23] using an inspired matrix
factorization of X(n) and the large N limit is shown to agree with (3.4).

(a) Eigenvalue
distribution for

X = A1

(b) Eigenvalue
distribution for
X = A1A2

(c) Eigenvalue
distribution for
X = A1A2A3

Figure 1: The distribution of eigenvalues, computed for N = 2000

8See [25] for an interesting derivation using free probability and also [43] [44]
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3.2 Singular values

The probability density of singular values of X(n) has been computed at large N using a variety of
methods [24, 45–48] and at finite in N in [26], once again using an ingenious matrix factorization
and orthogonal polynomials. The moments 〈(X(n)X

†
(n))

m〉 are integrals of this density of singular

values and were in fact computed somewhat earlier in [24,45–47]. The upshot for the current work
is that the moments are given by Fuss-Catalan numbers (see appendix B)

1

N
〈(X(n)X

†
(n))

m〉 = FCn(m) . (3.5)

Interestingly, comparing (2.8) we see the following equality

1

N
〈Tr(X(n)X

†
(n))

m〉 =
1

N
〈Tr(Xn

(1)(X
n
(1))
†)m〉 (3.6)

so that these moments are equal if we sample the Ai identically, which is certainly not true of more
general mixed moments.

4 Product of two Ginibre matrices

We will first derive our results for n = 2, then in section 5 we will work with n > 2, where
additional features arise.

To derive the probability distribution function (pdf) of X = A1A2, we use a matrix delta
function:

P(2)(X,X) =

(
N2

π2σ2
1σ

2
2

)N2 ∫
DAδ(X − A1A2)e

− N

σ21
TrA1A

†
1−

N

σ22
TrA2A

†
2

(4.1)

where

DA =
2∏
i=1

dAidA
†
i . (4.2)

Using the integral form of δ(X)

δ(X) =
1

π2N2

∫
dTdT †eiTrTX+iTrT †X† , (4.3)

we complete the square for A2 and integrate it out to find

P(2)(X,X
†) =

(
N

π3σ2
2

)N2 ∫
d2Td2A1 e

iTrTX+iTrT †X†e
− N

σ21
TrA1A

†
1(11+ σ2

N2 T
†T )

(4.4)

=
1

π2N2

∫
dTdT †

eiTrTX+iTrT †X†

det(1 + σ2

N2T †T )N
. (4.5)

where we have defined
σ = σ1σ2. (4.6)
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We define the moment generating function to be

ϕ(2)(T, T
†) = π2N2

∫
dTdT †e−iTrTX−iTrT †X†P (X,X†) (4.7)

so we can generate the moments by derivatives on ϕ(T, T †)

〈Xi1ı1 . . . XimımX
†
1j1

X†njn〉 = (−i)m+n∂Ti1ı1 . . . ∂Timım∂T †1j1
. . . ∂T †njn

φ(T, T †)
∣∣∣
T=T †=0

. (4.8)

From (4.5) we have an explicit expression

ϕ(2)(T, T
†) =

NN2

ΓN(N)

∫
W>0

dW e−NTrW e−
σ2

N
TrT †TW , (4.9)

where we are using
1

det Σa
=

1

ΓN(a)

∫
W>0

dW detW a−Ne−TrΣW . (4.10)

The expression (4.10) gives the determinant of an N × N positive definite Hermitian matrix in
terms of the complex multivariable gamma function ΓN(a) (see appendix D for details) and might
be thought of as a multi-variable Schwinger trick. The W appearing in Equation (4.10) is scaled
by N to obtain (4.9), and the integration is over the space of positive definite Hermitian matrices.
We can then perform the Fourier transform of the moment generating function and integrate out
T to obtain an integral expression for the pdf of X:

P(2)(X,X
†) =

NN2

ΓN(N)

(
N

πσ2

)N2 ∫
W>0

dW
e−N TrW

detWN
e−

N
σ2

TrXX†W−1

. (4.11)

It is straightforward to verify that this pdf is normalized to 1.

4.1 Moments in the product Ginibre model

Our expression for the pdf (4.11) might be recognized as a matrix Bessel function but we will find
it more effective to view it as Gaussian in X,X† with a variance matrix which is averaged over a
Wishart measure. So we see that, as mentioned in the introduction, the product of two Ginibre
matrices remains Gaussian but is no longer identically distributed.

We can compute the mixed moments of X(2)

C
(2)
i,j = 〈Oi,j(X,X

†)〉(2) (4.12)

=
NN2

ΓN(N)

(
N

πσ2

)N2 ∫
W>0

dW
e−N TrW

detWN

∫
d2X Oi,j(X,X

†) e−
N
σ2

TrXX†W−1

(4.13)

in two steps:

1. Compute the corresponding moment C̃i,j(W ) in the Ginibre model

C̃i,j(W ) =

(
N

πσ2

)N2

1

detWN

∫
d2X Oi,j(X,X

†) e−
N
σ2

TrXX†W−1

(4.14)

in terms of products of traces of W .
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2. Average the resulting traces against the Wishart measure9

PW (W ) =
NN2

ΓN(N)
e−NTrW . (4.15)

It follows from Wick’s theorem that there are m =
∑

a ia =
∑

a ja insertions of W but determining
the trace structure in (2.16) by evaluating the coefficients c̃i,j is harder than computing Ci,j which
is already unsolved in the general case. The result from the first step is of the form

C̃i,j(W ) =
σ2m

Nm

m∑
k=1

∑
m∈Mm,k

[
Nm−kc̃i,j(m1 , . . . ,mk)

]
TrWm1 . . .TrWmk . (4.16)

The second step of averaging over the Wishart distribution is, to leading order in N , quite straight-
forward. The multi-trace expectation value factorizes into a product of single trace expectation
values

1

Nk
〈TrWm1 . . .TrWmk〉W =

1

Nk
〈TrWm1〉W . . . 〈TrWmk〉W (4.17)

and

1

N
〈TrW l〉 = Cl (4.18)

where Cl are the Catalan numbers. This enables us to write the following expression, valid in the
large N limit:

C
(2)
i,j = σ2m

m∑
k=1

∑
m∈Mm,k

c̃i,j(m1 , . . . ,mk)Cm1 . . . Cmk , (4.19)

where c̃i,j(m1 , . . . ,mk) should be computed by enumerating particular planar diagrams. As re-
marked previously, this enumeration has been carried out in the literature for certain operators
O
(
X,X†

)
.

4.2 Examples

Here we compute by hand some mixed moments of X(2), X
†
(2) at leading order in 1

N
using our

prescription as well as some examples of the computation of (4.16) at finite N 4.3. We use Wick’s
theorem with the propagator

X ijX
†
kl =

σ2

N
δilWjk (4.20)

to evaluate the expectation value (4.14) in the Ginibre ensemble. In this way for example one finds

C̃1,1(W ) =
1

N
X ijX

†
ji =

σ2

N
TrW (4.21)

9There are more general Wishart measures which would arise from the product of rectangular Gaussian matrices
but we will not consider them here.
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4.2.1 1
N
〈Tr(X(2)X

†
(2))

m〉

As mentioned in section 3.2, expectation values of 〈Tr(X(2)X
†
(2))

m〉 are already known from the
study of singular values of X(n). Here we will re-compute them as an exposition and check of our
formalism.

m = 1
From (4.16) we find

1

σ2
C̃1,1(W ) =

1

N
c̃1,1(1)TrW (4.22)

with
c̃1,1(1) = 1 (4.23)

and thus C̃1,1(W ) = σ2TrW and trivially agrees with (4.21). We then have

1

σ2
C

(2)
1,1 = c̃1,1(1)C1 (4.24)

= 1 . (4.25)

This agrees with (3.5) since FC2(1) = 1.

m = 2
From (4.16) we find

1

σ4
C̃12,12(W ) =

1

N
c̃12,12(2)TrW 2 +

1

N2
c̃12,12(1, 1)(TrW )2 (4.26)

where from (2.19) we have

c̃12,12(2) = 1 , c̃12,12(1, 1) = 1 . (4.27)

It might be instructive to be painfully explicit and demonstrate how (4.26) arises from non-crossing
pairings, the two diagrams are in figures 2. The Ginibre moment with explicit indices is

1

σ4
C̃12,12(W ) =

1

N
〈XijX

†
jkXklX

†
li〉 (4.28)

which by Wick’s theorem gives

1

σ4
C̃12,12(W ) =

1

N3
δikWjjδkiWll +

1

N3
δiiWjlδkkWlj (4.29)

=
1

N2
(TrW )2 +

1

N
TrW 2 (4.30)

With red dots representing X and blue dots representing X†, the diagram 2a gives the first term
in (4.30) and 2b gives the second. This example is slightly too simple in that all pairings are

11



non-crossing but this is most certainly not true in the general case. We then obtain C
(2)

12,12 by
averaging over the Wishart ensemble

1

σ4
C

(2)

12,12 =
1

N2
〈TrW 〉2 +

1

N
〈TrW 2〉 (4.31)

= C2
1 + C2 (4.32)

= 3 (4.33)

which agrees with (3.5) since FC2(2) = 3.

(a) Pairing which gives TrW 2 (b) Pairing which gives (TrW )2

Figure 2: Pairings for 〈X(2)X
†
(2)X(2)X

†
(2)〉, both are non-crossing

m = 3
We will present one more example in full detail as it exhibits some richer features than m = 2
above. The Ginibre moment is given by

1

σ6
C̃13,13(W ) =

1

N
〈TrXX†XX†XX†〉 (4.34)

=
1

N
〈XijX

†
jkXklX

†
lmXmnX

†
ni〉 (4.35)

=
1

N4
Wjjδik(WllδkmWnnδmi +WlnδkiWnlδmm)

+
1

N4
Wjlδim(WljδkkWnnδmi +WlnδkiWnjδmk)

+
1

N4
Wjnδii(WllδkmWnjδmk +WljδkkWnlδmm) (4.36)

=
1

N3
(TrW )3 +

1

N2
TrWTrW 2

+
1

N2
TrWTrW 2 +

1

N3
TrW 3

+
1

N2
TrWTrW 2 +

1

N
TrW 3 (4.37)

In figures 3 we have the pairings which give rise to (4.37), hopefully it is clear from their arrange-
ment which diagram corresponds to which contractions. We find that the trace structure which
weights each diagram is not obvious from the diagram itself, in particular it is a finer structure
than enumerating vertices, edges and faces on its corresponding fatgraph.
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(a) Pairing which gives 1
N3 (TrW )3 (b) Pairing which gives 1

N2 TrWTrW 2

(c) Pairing which gives 1
N2 TrWTrW 2 (d) Pairing which gives the subleading

term 1
N3 TrW 3

(e) Pairing which gives 1
N2 TrWTrW 2 (f) Pairing which gives 1

NTrW 3

Figure 3: Pairings which arise from 1
N
〈Tr(XX†)3〉. Diagram 3d is crossing and thus contributes

only at subleading order.

We have from (4.16)

1

σ6
C

(2)

13,13 =
1

N
c̃13,13(3)TrW 3 +

1

N2
c̃13,13(1, 2)TrWTrW 2 +

1

N3
c̃13,13(1, 1, 1)(TrW )3 (4.38)

and obtain the large N results from (2.19)

c̃13,13(1, 1, 1) = 1 , c̃13,13(1, 2) = 3 , c̃13,13(3) = 1 . (4.39)

We can see from (4.37) that c̃13,13(1, 1, 1) counts the number of diagrams which give (TrW )3,
c̃13,13(1, 2) counts the diagrams which give TrWTrW 2 and c̃13,13(3) counts the diagrams which give
TrW 3. We finally have

1

σ6
C

(2)

12,12 = C3 + 3C2 + C1 (4.40)

= 12 (4.41)

which agrees with (3.5) since FC2(3) = 12.
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4.2.2 1
N
〈TrXm

(2)(X
†
(2))

m〉

This family of moments is manageable by hand since there is a single non-crossing pairing (see
figure 4) and this evaluates to

1

σ2m
C(2)
m,m =

1

N
〈TrXm

(2)(X
†
(2))

m〉 (4.42)

=
1

Nm
〈TrW 〉m (4.43)

= 1 (4.44)

Figure 4: The sole non-crossing pairing for 〈X6
(2)(X

†
(2))

6〉

4.2.3 1
N
〈TrXm

(2)X
†
(2)X(2)(X

†
(2))

m〉

This family of moments is also manageable by hand since there are just two non-crossing pairings
(see figures 5) and we find that this evaluates to

Figure 5: Non-crossing pairings for 〈X5
(2)X

†
(2)X(2)(X

†
(2))

5〉

1

σ2m
C

(2)
[m−1,1],[1,m−1] =

1

N
〈TrXm

(2)X
†
(2)X(2)(X

†
(2))

m〉 (4.45)

=
1

Nm+1
〈TrW 〉m+1 +

1

Nm
〈TrW 2〉〈TrW 〉m−1 (4.46)

= 3 . (4.47)

Our numerical experiments are summarized in table 1 and give excellent agreement.
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m 1
N
〈TrXm

(2)X
†
(2)X(2)(X

†
(2))

m〉
1 2.998
2 2.998
3 2.998
4 2.997

Table 1: Numerical values of 1
N
〈TrXm

(2)X
†
(2)X(2)(X

†
(2))

m〉 with N = 500 and averaged from 1500
samples.

4.3 Computing moments at finite N

While we have mostly focussed computing the moments in the product model at leading order
in N so far, there is no conceptual difficulty in implementing our prescription at finite N on a
case-by-case basis.

As an illustration, we shall compute the expectation value of Tr
(
X(2)X

†
(2)

)3

without invoking

the large N approximation. The computation in the Ginibre ensemble by enumerating all pairs,
both non–crossing and crossing, has already been done in (4.37). We are therefore left with
computing the expectation values in the Wishart ensemble i.e. step 2 in our prescription. A
straightforward way of computing these is from the integral

I (N, T ) =
N2

ΓN (N)

∫
W>0

dW e−TrN W T =
1

|T |N
, (4.48)

in terms of which

〈Wi1j1Wi2j2 . . . Wimjm 〉W =

(
− 1

N

)m
∂Tj1i1∂Tj2i2 . . . ∂Tjmim

1

|T |N

∣∣∣∣∣
Tij=δij

. (4.49)

For the moment of interest, it suffices to compute terms up to m = 3. We find

〈Wij〉 = δij , 〈WijWkl〉 = δijδkl +
1

N
δilδkj ,

〈WijWklWpq〉 =δpqδklδij +
1

N
(δpqδilδkj + δkqδplδij + δklδiqδpj) +

1

N2
(δiqδplδkj + δilδkqδpj) .

(4.50)

Hence
1

N
〈TrW 〉 = 1 ,

1

N

〈
TrW 2

〉
= 2 ,

1

N

〈
TrW 3

〉
= 5 +

1

N2
, (4.51)

and
1

N2

〈
TrW 2TrW

〉
= 2 +

2

N
+

2

N2
. (4.52)

We then use these expectation values with Equation (4.37) to find that the moment in the product
ensemble is given by

1

σ6
C13,13 = 1 + 3

(
2 +

2

N
+

2

N2

)
+

1

N2

(
5 +

1

N2

)
+

(
5 +

1

N2

)
= 12 +

6

N
+

12

N2
+

1

N4
' 12 +

6

N
. (4.53)
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The O(1) term is 12, the result previously obtained in the large N limit in Equation (4.40).
To summarize the corrections to the large N formula in this case,

1. The contribution of the crossing pair was suppressed by 1
N2 with respect to the non-crossing

pairs in the Ginibre moment,

2. The expectation values 1
NkTr

〈
W k
〉

were given by Ck +O
(

1
N2

)
, and,

3. We found that 〈
TrW 2TrW

〉
=
〈
TrW 2

〉
〈TrW 〉+O

(
1

N

)
, (4.54)

i.e. there is a non-trivial O
(

1
N

)
correction to large N factorization in the Wishart ensemble.

From this it appears that the first subleading–in–N correction comes from the fact that expectation
values of multi-trace operators in W no longer factorize into products of expectation values of single
trace operators.

5 Product of multiple Ginibre matrices

In this section we generalize our results from section 4 to the product of n Ginibre matrices

X(n) = A1A2 . . . An . (5.1)

We will again be able to reduce the computation of the mixed moments (denoted by C
(n)
i,j below)

to a computation of the mixed moments in the Ginibre model with deterministic variance profile
C̃i,j(W ) but whereas the Catalan numbers played a central role in (4.19), they are now replaced
with the Fuss-Catalan numbers defined in Equation (B.1).

The probablility distribution function of the X(n) is given by

P(n)(X,X
†) =

(
Nn

πnσ

)N2 ∫
D(n)Aδ(X −

n∏
i=1

A1)e
−

∑n
i=1

N

σ2
i

TrAiA
†
i
, (5.2)

where

σ = σ1 . . . σn , D(n)A =
n∏
i=1

dAidA
†
i . (5.3)

After some algebra (see appendix E), we find that this reduces to

P(n)(X,X
†) =

N (n−1)N2

ΓN(N)n−1

( N

πσ2

)N2 ∫
Wi>0

n−1∏
i=1

[
dWi

1

detWN
i

e−NTrWi

]
e−

N
σ2

TrW−1
(n−1)

XX† , (5.4)

where
W(n−1) = W1 . . .Wn−1 (5.5)

and the integral is over positive definite Hermitian Wi. It is again straightforward to check that
the pdf (5.4) is unit normalized.
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5.1 Mixed moments at large N

To obtain an expression for the moments we will work to leading order in 1
N

. The mixed moments
in this ensemble are then given by

C
(n)
i,j = 〈Oi,j(X,X

†)〉(n) (5.6)

=
N (n−1)N2

ΓN(N)n−1

( N

πσ2

)N2 ∫
Wi>0

n−1∏
i=1

[
dWi

1

detWN
i

e−TrWi

] ∫
d2X Oi,j(X,X

†)e−
N
σ2

TrW−1
(n−1)

XX†

(5.7)

where 〈·〉(n) denotes the expectation value in the product Ginibre ensemble (5.4). Using (2.16) we
can obtain from (5.7)

C
(n)
i,j = 〈C̃i,j(W(n−1))〉W,n−1 (5.8)

=
σ2m

Nm

m∑
k=1

∑
m∈Mm,k

[
Nm−kc̃i,j(m1 , . . . ,mk)

]
〈TrWm1

(n−1)〉W,n−1 . . . 〈TrWmk
(n−1)〉W,n−1 (5.9)

where 〈·〉W,n−1 denotes the expectation value in the multi-Wishart ensemble, whose pdf is given by

PW,n−1 =
N (n−1)N2

ΓN(N)n−1

n−1∏
i=1

e−NTrWi . (5.10)

To proceed, we must for all m > 0, compute the mixed moment in the multi-Wishart ensemble
to leading order in 1

N
:

1

N
〈TrWm

(n−1)〉W,n−1 =
N (n−1)N2

ΓN(N)n−1

∫
Wi>0

[ n−1∏
i=1

dWie
−NTrWi

] 1

N
Tr(W1 . . .Wn−1)m . (5.11)

which for n = 2 is given by the Catalan numbers. This is where the result (2.16) and (2.19) is
crucial; from the form of the operator insertion, we see that we can solve this moment recursively
by first treating W1 . . .Wn−2 = W(n−2) as a variance matrix for Xn−1 where

Wn−1 = Xn−1X
†
n−1 . (5.12)

So we have

1

N
〈TrWm

(n−1)〉W,n−1 =
N (n−1)N2

ΓN(N)n−1

∫
Wi>0

[ n−2∏
i=1

dWie
−NTrWi

]
×
(N
π

)N2 ∫
d2Xn−1e

−NTrXn−1X
†
n−1

1

N
Tr(W(n−2)Xn−1X

†
n−1)m (5.13)

then using (2.16) and (2.19) we find the recursion relation

1

N
〈TrWm

(n−1)〉W,n−1 =
m∑
k=1

∑
m∈Mm,k

c̃1m,1m(m1 , . . . ,mk)
1

N
〈TrWm1

(n−2)〉W,n−2 . . .
1

N
〈TrWmk

(n−2)〉W,n−2 .

(5.14)
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Comparing (5.14) with (5.9) for (i, j) = (1m, 1m) we see that

1

N
〈TrWm

(n)〉W,n = C
(n)
1m,1m . (5.15)

We note that (5.15) gives the equality of the following moments in the multi-Gaussian ensemble
(see also the equality (3.6))

1

N
〈Tr(A1A

†
1 . . . AnA

†
n)m〉 =

1

N
〈Tr(A1 . . . AnA

†
n . . . A

†
1)m〉 . (5.16)

Finally, from (5.15) and (3.5) we have

1

N
〈TrWm

(n)〉W,n = FCn(m) . (5.17)

and in appendix F we have checked (5.17) explicitly for low values of m. Our final expression for
the general mixed moment in the product Ginibre ensemble is the main result of this paper:

C
(n)
i,j =

m∑
k=1

∑
m∈Mm,k

c̃i,j(m1 , . . . ,mk)FCn−1(m1) . . . FCn−1(mk) . (5.18)

As a mathematical aside, we note that it follows from (5.14) and (5.17) that the Fuss-Catalan
numbers satisfy the following recursion relation10

FCn−1(m) =
m∑
k=1

∑
m∈Mm,k

c̃1m,1m(m1 , . . . ,mk)FCn−2(m1) . . . FCn−2(mk) . (5.19)

with c̃1m,1m given by (2.19).

5.2 Examples

The examples from section 4.2.1 for general n are verified in appendix F when we check the
recursion relation (5.17). We can also compute the examples from sections 4.2.2 and 4.2.3 as
follows (using the same diagrammatica as before):

1

σ2m
C(n)
m,m =

1

N
〈TrXm

(n)(X
†
(n))

m〉 (5.20)

=
( 1

N
〈TrWn−1〉W,n−1

)m
(5.21)

= (FCn−1(1))m (5.22)

= 1 (5.23)

10 In example 5. section 7.5 of [49] we find that Fuss-Catalan numbers satisfy a similar but different recursion
relation. Our recursion relation relates Fuss-Catalan numbers with different values of n whereas the relation in [49]
closes for a given value of n.
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and

1

σ2m
C

(n)
[m−1,1],[1,m−1] =

1

N
〈TrXm

(n)X
†
(n)X(n)(X

†
(n))

m〉 (5.24)

=
1

Nm+1
〈TrWn−1〉m+1

W,n−1 +
1

Nm
〈TrW 2

n−1〉W,n−1〈TrWn−1〉m−1
W,n−1 (5.25)

= FCn−1(1)m+1 + FCn−1(2)FCn−1(1)m−1 (5.26)

= n+ 1 (5.27)

Our numerical experiments are summarized in tables 2 and give excellent agreement with (5.27).

m 1
N
〈TrXm

(3)X
†
(3)X(3)(X

†
(3))

m〉
2 4.000
3 4.001
4 4.004

m 1
N
〈TrXm

(4)X
†
(4)X(4)(X

†
(4))

m〉
2 4.999
3 4.998
4 4.998

Table 2: Numerical values of 1
N
〈TrXm

(n)X
†
(n)X(n)(X

†
(n))

m〉 with
N = 500 and averaged from 1500 samples.

6 Discussion

In this work we have studied the ensemble of products of Ginibre matrices. We have computed
the probability distribution function and then the mixed moments, our main result being (5.18).
The slogan we have drawn from our investigation is that the product Ginibre ensemble remains
Gaussian but not i.i.d. since the elements are no longer identically distributed. Another point
of view is that the variance profile is randomly sampled from the Wishart ensemble; random
couplings are certainly well known from models such a the Sherrington-Kirkpatrick model [13] and
more recently the SYK model [14–16] but the product Ginibre model is somewhat novel in that
the random couplings are Wishart not Gaussian distributed.

There are several directions for future research, most pressing for the problems considered in
this paper is the evaluation of mixed moments for complex Gaussian matrices with a deterministic
variance profile. There are several closely related and slightly more general themes to explore, in
particular the β = 1, 4 versions of the current work (which has β = 2 in Dyson’s classification).
Certainly β = 1 is necessary for applications to neural networks but our explorations so far indicate
the results are essentially identical β = 2. There is some rather more quantitative changes in the
results for the mixed moments when considering rectangular matrices and it would be interesting
to pursue this line of inquiry.

Finally, one of our central goals was to understand the first subleading correction in 1
N

to
ensembles of products of matrices, we have only scratched the surface of this in section 4.3 and
plan to look deeper into this. From our initial investigations in section 4.3, it seems suggestive that
while moments in the Ginibre ensemble are corrected only at order 1

N2 , moments in the product
Ginibre ensemble receives corrections at order 1

N
coming from the expectation value of a multi-

trace operator in the Wishart ensemble. This would be interesting to establish as such corrections
are likely more straightforward than enumerating non-planar pairings in the Ginibre ensemble.
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Appendices

A Notation

Our notation for various expectation values is as follows:

〈O(X,X†)〉G =

∫
d2X O(X,X†)P (X,X†) (A.1)

〈O(X,X†)〉(n) =

∫
d2X O(X,X†)P(n)(X,X

†) (A.2)

〈O(W )〉W =

∫
dW O(W )PW (W ) (A.3)

〈O(W1, . . . ,Wn)〉W,n =

∫ n∏
i=1

dWiO(W1, . . . ,Wn)PW,n (A.4)

where the probability distributions are defined in (3.2), (5.4), (4.15), (5.10). The measure d2X for
a complex matrix X is defined by

d2X = dX dX† =
N∏

i,j=1

Re (Xij) Im (Xij) . (A.5)

We also denote the integral over Hermitian positive-definite matrices W by∫
W>0

dW . (A.6)

B Fuss-Catalan numbers

There is a small amount of discrepancy with what are referred to as Fuss-Catalan numbers. There
are references which refer to a three-parameter sequence as the Fuss-Catalan numbers, we will use
the definition from section 7.5 of [49] albeit with slightly different notation:

FCn(m) =
1

nm+ 1

(
(n+ 1)m

m

)
. (B.1)
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When n = 1 these reduce to the Catalan numbers

FC1(m) = Cm . (B.2)

The Fuss-Catalan numbers appear in numerous places in the text and we have derived a novel
recursion relation which they satisfy (5.19).

C Product of Gaussian scalars

We include here an exposition of the ensemble obtained from the product of two complex Gaussian
scalars a and b distributed in N (0, 1). This is a simple and well known computation but we include
it here as it served to enlighten us on how to think about the probability distribution function of
the product of Ginibre matrices.

Given the probability distribution function of a complex scalar in N (0, 1), viz.

P (a, a∗) =
1

2π

∫
d2a e−

1
2
|a|2 , (C.1)

the probability distribution function for the product ensemble is

P (z, z∗) =
1

4π2

∫
d2a d2b δ(2)(z − ab)e−|a|2/2−|b|2/2

=
1

4π4

∫
d2a d2b d2t eit(z−ab)+it

∗(z−ab)∗e−
1
2
|a|2− 1

2
|b|2

=
1

4π4

∫
d2t eitz+it

∗z∗
∫
d2a d2b e−

1
2

(a−i2t∗b∗)(a∗−i2tb)−2tt∗bb∗e−
1
2
bb∗

=
1

π2

∫
d2t

eitz+it
∗z∗

1 + 4 tt∗
. (C.2)

where we now see that the moment generating function φz(t, t
∗) is given by

φz(t, t
∗) = π2

∫
d2z e−itz−it

∗z∗P (z, z∗) =
1

1 + 4tt∗
, (C.3)

where we have used the normalization conventions of the main text. Continuing on and using the
Schwinger trick in (C.2), we get

P (z, z∗) =
1

π2

∫
d2t

∫ ∞
0

du eitz+it
∗z∗e−u(1+4tt∗) (C.4)

=
1

2π

∫
du

1

u
e−u−

zz∗
4u (C.5)

=
1

2π
K0(|z|2) . (C.6)

The reader may compare Equation (C.5) derived above with the Equation (4.11) obtained in the
main text, setting N = 1 there.
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D Multi-variable gamma functions

One of the key inputs to our analysis is the expression in Equation (4.10) for the determinant of a
Hermitian positive definite matrix in terms of an integral over Hermitian positive definite matrices.
This follows from the definition of the complex multivariate Gamma function. In this appendix
we will prove this relation and provide some additional details about this function.

The complex multivariate Gamma function is given by [50]

ΓN(a) =

∫
W=W †>0

dW detW a−Ne−TrW , (D.1)

= πN(N−1)/2

N∏
k=1

Γ (a− k + 1) , (D.2)

where Γ is the usual gamma function and Re(a) > N−1. The integration is over N×N Hermitian
positive definite matrices W .

We will use Equation (D.1) to provide an integral representation for the determinant of a
Hermitian positive definite matrix. This may usefully be thought of as a multi-variable or matrix
generalization of the Schwinger trick, viz.

Γ(a) =

∫ ∞
0

du ua−1 e−u = λa
∫ ∞

0

dv va−1 e−λ v

⇒ 1

λa
=

1

Γ(a)

∫ ∞
0

dv va−1 e−λ v , (D.3)

where we defined u = λ v.
With Equation (D.3) in mind, we now return to Equation (D.1). Consider a positive definite

Hermitian matrix Σ, it has a unique square root Σ0 which is also positive definite Hermitian:

Σ0Σ0 = Σ . (D.4)

As in the univariate case (D.3), we do the change of variables 11

W = Σ0 V Σ0 , dW = detW = det Σ detV , (det Σ)N dV , (D.7)

in Equation (D.1) to obtain

ΓN(a) = (det Σ)a
∫
V=V †>0

dV detV a−Ne−TrΣV , (D.8)

11It is straightforward to check that V is also hermitian positive definite. It is quite straightforward to verify
these relations when Σ is proportional to the identity matrix, in which case

Σ = b11 , det Σ = bN (D.5)

d(Σ
−1/2
0 V Σ

−1/2
0 ) = b−N

2

dV = det Σ−NdV . (D.6)
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and hence
1

det Σa
=

1

ΓN(a)

∫
W>0

dW detW a−Ne−TrΣW , (D.9)

where we relabeled V as W . The integral
∫
W>0

dW is the integral over the space of positive definite
Hermitian W . This is the main identity we use in the text. It is apparent that the N = 1 case
of this identity is Equation (D.3). For this reason, we refer to this as the matrix generalization of
the Schwinger trick.

E Moment generating function for the product of multiple

Gaussians

In this Appendix we will prove the Equation (5.4) in the main text for the probability distribution
function for the product of n Ginibre matrices by computing the moment generating function. We
start with the probability distribution of the product of n Ginibre matrices in the form

P(n)(X,X
†) =

(
Nn

πnσ2

)N2 ∫
D(n)Aδ(X −

n∏
i=1

A1)e
−N

∑n
i=1

1

σ2
i

TrAiA
†
i

=
1

π2N2

(
Nn

πnσ2

)N2 ∫
d2TeiTrTX+iTrT †X†

∫
D(n)Ae−iTrTA−iTr(TA)†e

−N
∑n
i=1

1

σ2
i

TrAiA
†
i
.

(E.1)

Therefore the moment generating function is

ϕ(n)(T, T
†) =

(
Nn

πnσ2

)N2 ∫
D(n)Ae−iTrTA−iTr(TA)†e

−N
∑n
i=1

1

σ2
i

TrAiA
†
i
. (E.2)

We will first integrate out An, then An−1, and so on, finally integrating out A1. Doing the An and
An−1 integrals is straightforward, and follows the n = 2 computations. We eventually find 12

ϕ(n)(T, T
†) =

(
Nn

πnσ2

)N2 (
π2(σnσn−1)2

N2

)N2 ∫
D(n−2)Ae

−N
∑n−2
i=1

1

σ2
i

TrAiA
†
i

1

det
(

11 + (σn−1σn)2

N2 |TA1...An−2|2
)N

=

(
Nn

πnσ2

)N2 (
π2(σnσn−1)2

N2

)N2 ∫
D(n−2)Ae

−N
∑n−2
i=1

1

σ2
i

TrAiA
†
i∫

W1>0

dW1e
−TrW1e−

(σn−1σn)2

N2 Tr|TA1...An−2|2W1 . (E.4)

12We have defined the quantity |M |2 = M†M = MM† in the determinant for a complex matrix M . This is a
priori not well-defined as M and M† don’t commute. However, under the determinant

det
(
1 +M†M

)
= etr ln(1+M†M) = etr ln(1+MM†) = det

(
1 +MM†

)
, (E.3)

as we may readily verify from the series expansion of ln. Hence det
(
1 + |M |2

)
, which is what we work with, is

indeed well defined.
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where |TA1...An−2|2 = TA1 . . . An−2A
†
n−2 . . . A

†
1T
†. We can now integrate out An−2 and beyond. It

is useful to write

Tr|TA1...An−2|2W1 = TrAn−2A
†
n−2|W

1/2
1 TA1...An−3|2 . (E.5)

We may now integrate out An−2 to find

ϕ(n)(T, T
†) =

1

π2N2

NnN2

σ2N2

(
(σnσn−1σn−2)2

N3

)N2 ∫
D(n−3)Ae

−N
∑n−3
i=1

1

σ2
i

TrAiA
†
i

(E.6)∫
W1>0

dW1e
−TrW1

1

det
(

11 + (σ1σ2σ3)2

N3 |W 1/2
1 TA1...An−3|2

)N (E.7)

=
1

π2N2

NnN2

σ2N2

(
(σnσn−1σn−2)2

N2

)N2 ∫
D(n)Ae

−N
∑n−3
i=1

1

σ2
i

TrAiA
†
i

(E.8)∫
Wi>0

dW1dW2e
−

∑2
i=1Wie−

(σnσn−1σn−2)
2

N3 Tr|W 1/2
2 W

1/2
1 TA1...An−3|2 . (E.9)

We may similarly integrate out all Ai to get

ϕ(n)(T, T
†) =

1

ΓN(N)n−1

∫
Wi>0

n−1∏
i=1

dWie
−

∑n−1
i=1 Wie−

σ2

Nn
TrTT †W1W2...Wn−1 . (E.10)

Finally we should rescale the Wi by N such that the action is NWi:

ϕ(n)(T, T
†) =

N (n−1)N2

ΓN(N)n−1

∫
Wi>0

n−1∏
i=1

dWie
−N

∑n−1
i=1 TrWie−

σ2

N
TrTT †W1W2...Wn−1 . (E.11)

It is straightforward to Fourier transform this expression and obtain P(n) in eq (5.4).

F Exact computation of TrWm
(n)

In this section we will explicitly verify the expression (5.17) for the moments TrWm
(n) for some low

values of m. For the reader’s convenience, we reproduce (5.17) here

1

N
〈TrWm

(n)〉 = FCn(m) . (F.1)

We will use the recursion relation (5.14)

1

N
〈TrWm

(n−1)〉W,n−1 =
m∑
k=1

∑
m∈Mm,k

c̃1m,1m(m1 , . . . ,mk)
1

N
〈TrWm1

(n−2)〉W,n−2 . . .
1

N
〈TrWmk

(n−2)〉W,n−2 ,

(F.2)
alongwith the coefficients (2.19). We will also need the boundary condition

〈Wm
(1)〉 = Cm , (F.3)
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where Cm is the Catalan number.

TrW(n−1)

The first moment is simple, the only contribution to the recursion relation is

c̃1,1(1) = 1 . (F.4)

Hence
1

N
〈TrWm

(n−1)〉W,n−1 =
1

N
〈TrWm

(n−2)〉W,n−2 =
1

N
〈TrWm

(1)〉W,1 = 1 , (F.5)

where we have repeatedly used the first equality to arrive at the second, and subsequently used
C1 = 1. Therefore

1

N
〈TrWm

(n−1)〉W,n−1 = 1 (F.6)

= FCn−1(1) . (F.7)

TrW2
(n−1)

We first recall that
c̃12,12(2) = c̃12,12(1, 1) = 1 (F.8)

and
〈TrW 2

(1)〉 = 2 (F.9)

then

〈TrW 2
(n−1)〉 = 〈TrW 2

(n−2)〉+ 1 (F.10)

= n (F.11)

= FCn−1(2) . (F.12)

TrW3
(n−1)

We have

c̃13,13(1, 1, 1) = 1 , c̃13,13(1, 2) = 3 , c̃13,13(3) = 1 (F.13)

then

〈TrW 3
(n−1)〉 = 〈TrW 3

(n−2)〉+ 3FCn−2(2) + 1 (F.14)

which is solved by

〈TrW 3
(n−1)〉 = FCn−1(3) . (F.15)

TrW4
(n−1)

We have

c̃14,14(1, 1, 1, 1) = 1 , c̃14,14(1, 1, 2) = 5 , c̃14,14(1, 3) = 4 ,

c̃14,14(2, 2) = 2 , c̃14,14(4) = 1 . (F.16)
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As a result,

〈TrW 4
(n−1)〉 = 〈TrW 4

(n−2)〉+ 2FCn−2(2)2 + FCn−2(4) + 4FCn−2(3) + 6FCn−2(2) + 1 , (F.17)

which is solved by

〈TrW 3
(n−1)〉 = FCn−1(4) . (F.18)

TrW5
(n−1)

Starting with

c̃15,15(1, 1, 1, 1, 1) = 1 , c̃15,15(1, 1, 1, 2) = 10 , c̃15,15(1, 1, 3) = 10 , (F.19)

c̃15,15(1, 4) = 5 , c̃15,15(1, 2, 2) = 10 , c̃15,15(2, 3) = 5 , c̃15,15(5) = 1 . (F.20)

we have

〈Tr(W(n−1))
5〉 = 〈TrW 5

(n−2)〉+ 10FCn−2(2) + 10FCn−2(3) + 5FCn−2(4) (F.21)

+10FCn−2(2)2 + 5FCn−2(2)FCn−2(3) + 1 (F.22)

which is solved by

〈TrW 5
(n−1)〉 = FCn−1(5) . (F.23)
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